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a b s t r a c t

Incremental learning is an efficient computational paradigm of acquiring approximate knowledge
of data in dynamic environment. Most of the research focuses on knowledge updating for single-
label classification, whereas incremental mechanism for multi-label classification is of preliminary
nature. This leads to considerable computation complexity to maintain desired performance. To address
this challenge, we formulate a granular structure system (GSS). The proposed granular structure
system in bottom-up way provides a systematic view on label-specific based classification. We
demonstrate that the three-way selective ensemble (TSEN) model, a state-of-the-art solution for
multi-label classification, is compatible with GSS in granulation. An incremental mechanism of GSS is
introduced for both label-specific feature generation and optimization, and an incremental three-way
selective ensemble algorithm for multiple instances immigration (IMOTSEN) is presented. Experiments
completed on six datasets show that the proposed algorithm can maintain considerable classification
performance while significantly accelerating the knowledge (GSS) updating.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Granular Computing [1] is an effective structured problem
solving methodology. It simulates human-centric operations re-
alized in the presence of multifaceted data, and embraces a
plethora of techniques which minimize uncertainty. The generic
component, information granule, is rich in semantics and reflects
a certain level of abstraction. As a representative model, rough
set theory (RST), established by Pawlak [2] in 1982, is capable of
dealing with ambiguous concept. Rough Sets have been exten-
sively applied in various domains including sentiment analysis
(e.g. [3]), social networks (e.g. [4]) and video analysis (e.g. [5]).

Previous studies usually assume a large collection of objects
with all information is known in advance. However, the emerg-
ing features occur unexpectedly in a dynamic environment. To
name a few examples, sensors continuously monitor the status
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of forest; navigation updates dynamically as the location changes;
stock price fluctuates as new policy has been announced. A fea-
sible solution is to assess the reliability of learnt knowledge
incrementally beforehand, and make necessary modifications to
accommodate information variations. For single-label learning,
there are many inspiring works. Theoretically, knowledge updat-
ing can be induced by variations of objects, attributes, values,
solely or simultaneously [6]. Leite et al. [7] investigated a fuzzy
model-based control for nonlinear dynamic systems given object
immigrations. Yu and Xu [8] proposed an incremental updating
strategy for interval-valued ordered information system given
different object variations. Luo et al. [9] discussed a matrix-
based incremental mechanism with the consideration of decision
risks when objects variations occur. Das et al. [10] enhanced the
robustness of rough set-based pseudo outer-product model by
incrementally updating the membership function. Xu et al. [11]
extended object incremental mechanism to stream computing
field. Yang et al. [12] explained the principles of attribute re-
duction updating with sample arriving based on fuzzy rough set.
Lang et al. [13] presented a matrix-based approach for updating
reduct of type-1 and type-2 characteristic matrices. Jing et al. [14]
elaborated on the incremental mechanism of attribute reduction
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0950-7051/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2019.105066
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2019.105066&domain=pdf
https://doi.org/10.1016/j.knosys.2019.105066
https://doi.org/10.1016/j.knosys.2019.105066
mailto:dqmiao@tongji.edu.cn
https://doi.org/10.1016/j.knosys.2019.105066


2 Y. Zhang, D. Miao, W. Pedrycz et al. / Knowledge-Based Systems 189 (2020) 105066

given object variations. Xie and Qin [15] presented an inconsis-
tency degree driven mechanism for updating attribute reduction
incrementally when objects and attributes vary simultaneously.

Multi-label learning [16,17] is an extension of single-label
learning. Instances come with multiple labels present simultane-
ously, thus label correlations are introduced. Besides, an enor-
mous number of features are collected to describe the seman-
tics of label, which challenges the computational efficiency. The
past decades witnessed a surge of developments on multi-label
classification [18–23], and algorithms in static scenarios can be
categorized into problem transformation (fit data to algorithm)
and algorithm adaptation (fit algorithm to data). However, these
approaches cannot be directly employed for cases of continuously
generated pairwise instance-label. An alternative solution is to
endow the model with incremental learning. Shi et al. [24] inves-
tigated an incremental updating strategy based on frequency of
label combination. Class incremental operation is activated if the
label combination is deemed as frequent, and instance incremen-
tal operation is activated otherwise. Lin et al. [25] considered the
streaming label scenario, in which label information are available
one by one, whereas the attribute side keeps unchanged. In
contrast, Liu et al. [26] explored the streaming feature issue in
multi-label classification, in which eligibility of group relevant
features and inter-group features are subsequently examined for
unchanged labels. Recently Zhu et al. [27] developed a learnware
for emerging labels including three components named as op-
timizer, detector and classifier respectively. Nguyen et al. [28]
proposed a Bayesian-based model by considering the pair-wise
correlation within labels and relationship between features and
labels simultaneously. In spite of the impressive work reported on
incremental multi-label learning, the uncertainty of knowledge
updating has not been critically investigated.

Rough set theory can describe the roughness of multi-label.
Duan et al. [29] firstly analyzed the lower approximation pre-
served reduction of neighborhood rough set for multi-label clas-
sification. Xu et al. [30] suggested that integration of fuzzy rough
set with learning label-specific features can generate a more
desirable result. Lin et al. [31] focused on the integrity of label
correlation for the usage of fuzzy rough set in multi-label clas-
sification. Li et al. [32] integrated fuzzy rough set with multiple
kernel learning to enable the robustness of the model. The non-
numerical case is discussed in [33], where a criterion called com-
plementary decision reduction is defined. Despite these progress,
two questions remain unsolved. The first problem is the concept
definition. The co-existence of label combinations implies that
at least one view is eligible for determining the association of
a label with regard to a given instance. In other words, neither
prediction as a whole nor concatenate label level prediction is
plausible to be directly recognized as classification of included
labels. The second problem is that the label association should
be learned instead of stipulated. In a dynamic environment, the
sparsity of labels implies that the determination of instance-label
pair is challenging if a given concept representation is considered
only. Thus, it is imperative to study the process of granulation in
a systematical way.

Three-way Decisions (3WD) [34–37], also known as trisecting–
acting–outcome (TAO) model, is a theoretical framework for rea-
soning with uncertainty. By introducing a third option, instances
may be deferred for the affiliation of a particular knowledge
structure. The law of three-way construction is versatile since
it is independent of concrete algorithms. It is especially pre-
ferred when the multi-faceted information or pairwise granular
structure is available [38–40]. For multi-label classification, the
three-way selective ensemble model (TSEN) [41] is demonstrated
to be superior than a collection of state-of-the-art methods. As
new emerging labels are inevitable for limited known instances

Fig. 1. Pipeline of multi-label learning with existing label-specific (left) and
proposed algorithm (right).

and difficult to update as a whole, we believe that the label-
specific method should be extended to a dynamic environment.
Our contributions are summarized as follows:

• We firstly consider the problem of knowledge updating of
multi-label under the framework of three-way decisions.
• The granulation of multi-label classification with label-

specific view is formulated. The incremental mechanism at
each granular layer is discussed.
• An incremental learning algorithm for multiple-objects im-

migration is developed. In most cases, the proposed algo-
rithm can accelerate the construction of granular structure
with comparable performance.

The comparison between the pipeline of existing label-specific
multi-label learning and our algorithm is illustrated in Fig. 1.
The incremental mechanism is implemented on the step ‘‘Label-
specific feature selection’’ and ‘‘Label-specific feature construc-
tion’’. Comparing to the existing incremental model, the advan-
tages of proposed model are twofold: (1) the order of label
correlation is automatically determined by iteratively conduct-
ing pair-wise observations on feature representations, without
the assumption of correlations among all labels; (2) the renew-
ing of emerging label combinations is replaced by updating a
group of label-specific knowledge, and it is possible to update the
knowledge of labels selectively.

The paper is organized as follows. Section 2 outlines some
preliminaries of the proposed method. Section 3 concerns the
granulation of multi-label classification, and it provides the com-
ponent for incremental extension. Section 4 elaborates on the
details of incremental mechanism. Experiments and analyses of
results are described in Section 5. Finally, we offer conclusions in
Section 6.
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2. Preliminaries

2.1. Three-way decisions

In this section, we review the basic notions and concepts for
three-way decisions from the perspective of probability [35,42]
defined in single-label learning paradigm.

Definition 1 ([43]). An information system is defined by a quadru-
ple tuple: IS = (U, A, V , f ) where U is a finite non-empty set of
data objects called universe; A = C

⋃
D is a finite non-empty set

of attributes, where C is a set of condition attributes, D is a set
of decision attributes; V =

⋃
{Va|a ∈ A}, where Va is the set of

values of attribute a; f is an information function from U to V,
denoted as f : U × A→ V .

Definition 2 ([43]). Given attributes set C , the IND(C) denotes a
binary relationship on IS with C , and is defined as:

IND(C) = {(x, y) ∈ U × U |∀a ∈ C, f (x, a) = f (y, a)}. (1)

It can be easily shown that attributes C partition U into a num-
ber of non-overlapped sets. For simplicity, the sets of granules
induced by IND(C) is denoted as [x]C . The conditional probabil-
ity can be applied to measure the possibility of x belonging to
concept X (X ⊂ U), and is defined as follows.

Definition 3 ([43]). Let [x]C be an equivalence class determined by
x with respect to attribute C , then for an arbitrary subset X ⊂ U ,
we have the conditional probability as:

P (X |[x]C ) =
|X ∩ [x]C |
|[x]C |

. (2)

where |•| denotes the cardinality of a set.

For an ambiguous concept X , it can be approximated by a pair
of operators as follows:

Definition 4 ([44]). Let IS = (U, A, V , f ) be an information system,
the lower approximations of X ⊂ U (denoted as Rα

C ) and upper
approximation of X ⊂ U (denoted as Rβ

C ) given attribute sets C
are defined as follows:
Rα

C = {x ∈ U ∥ P(X |[x]C ) ≥ α};

Rβ

C = {x ∈ U |P(X |[x]C ) > β}.
(3)

From the perspective of decision-making, the result of con-
ditional probability divides the whole universe into three re-
gions named as positive region (POS), boundary region (BND) and
negative region (NEG) respectively.

Definition 5 ([44]). Given a pair of thresholds α and β with 0 ≤
β < α ≤ 1, the positive region, boundary region and negative
region are defined as follows:

POSα
C (X) = {x ∈ U ∥ P(X |[x]C ) ≥ α};

BND(α,β)
C (X) = {x ∈ U |β < P(X |[x]C ) < α};

NEGβ

C (X) = {x ∈ U |P(X |[x]C ) ≤ β}.

(4)

In order to balance the generality and reliability, a subset of
attributes is selected. A wealth of uncertainty measures can be
weighted to define a knowledge retention strategy, and one can
resort to ρ

(α,β)
B (U/D) (where B ⊆ C , U/D denotes a partition

of U induced by IND(D)), a general constraint-based form of
reduct criterion over threshold pair (α, β). The selected attributes
are jointly sufficient and individually necessary. Therefore, for
ρ
(α,β)
B (U/D), (where 0 ≤ β ≤ α ≤ 1) reduct criterion can be

written as follows:
(1) ρ

(α,β)
B (U/D) = ρ

(α,β)
C (U/D),

(2) ρ
(α,β)
B−{a}(U/D) ̸= ρ

(α,β)
B (U/D), for ∀a ∈ B.1

2.2. The TSEN model

TSEN [41] stands for three-way decisions with ensemble label
correlation. It has been demonstrated to be effective in multi-
label classification under static environment. In this section, we
will review the main idea.

The model is based on two assumptions. Firstly, we assume
that the characteristics with regard to an arbitrary label should
be considered. Secondly, we assume that the knowledge rep-
resentation of an arbitrary label can be improved by combin-
ing instance-based information with the relevant information
granule. Three-way decisions are considered as the prediction
framework to reduce uncertainty, whereas the selective ensemble
is used to optimize the representation of each label. The notation
L = {L1, L2, . . . , Lm}, extends from D, is introduced to describe a
label space with multiple labels. Li ∈ A holds since A stands for the
non-empty set of attributes, i.e. A = C∪L holds for multi-label. To
retain class-specific lower approximation of each label, for b ∈ Ri
and Ri ⊆ C , the corresponding reduct criterion for the ith label Li,
ρ
(α,β)
B (U/Li), is equivalent to ρ

(α1,α2)
Ri

(U/Li)2 and defined as:

R
αj
Ri
(Yj) = R

αj
C (Yj);

R
αj
Ri−{b}

(Yj) ̸= R
αj
Ri
(Yj).

(5)

where j = {1, 2}, Y1 ⊂ U/Li and Y2 ⊂ U/Li represent the instances
with/without label Li. 0.5 ≤ α1 ≤ α2 ≤ 1. The significance of
attribute γ

(α1,α2)
Ri

(U/Li), is defined as:

γ
(α1,α2)
Ri

(U/Li) = 1− (1− α
(α1,α2)
Ri

(U/Li))× GK (Ri). (6)

where α
(α1,α2)
Ri

(U/Li) =

⏐⏐⏐Rα1
Ri

(Y1)
⏐⏐⏐+⏐⏐⏐Rα2

Ri
(Y2)

⏐⏐⏐⏐⏐⏐R1−α1
Ri

(Y1)
⏐⏐⏐+⏐⏐⏐R1−α2

Ri
(Y2)

⏐⏐⏐ and GK (Ri) = 1
|U |2∑K

i=1 |Xi|
2, Xi ∈ U/Ri.

The obtained information granule Ri constitutes the proto-
type of label-specific relevant features w.r.t. Li. We assume that
reductions with shared attributes, if they are computed by the
same reduction strategy, signify stronger associations within la-
bels. We introduce notation ‘‘PWRLi’’ to specify the relevant label
information of label Li, denoted as:

PWRLi =
⋃
{Lj|Ri

⋂
Rj ̸= ∅}, ∀j ̸= i. (7)

Our next step is to develop an integration strategy to leverage
the discernibility stemming from relevant feature representation.
Instead of directly evaluating the similarity across those rep-
resentations, we explore the relative tendency with regard to
positive/negative classes. For each unseen instance xj, we firstly
define two repositories, P j

i and N j
i , to select the candidate pos-

itive/decision rules. Let Rk
i represent the kth relevant feature

representation, xRij represent the features of xj on Ri, Rk
i → P and

Rk
i → N represent instances with features of Rk

i is supposed to
be positive class (with label Li)/negative class (without label Li)
given the threshold pair (α1, α2), then P j

i is defined as:

P j
i =

⋃
Rki

argmax
Rki

[[
Rk
i → P

]] [[
Sim(xRij , Rk

i ) > 0.5
]]

. (8)

1 The second condition is a generalization of monotonicity ρ
(α,β)
B (U/D) ≤

ρ
(α,β)
B∪{b}(U/D), for ∀b /∈ B. The monotonicity is not always true.
2 β can be omitted since it only works for determining upper approximation,

herein we use (α1, α2) as superscript of ρ to indicate the criterion is controlled
by (α1, α2). Ri substitutes B implies that reduct of Li and Lj are different.



4 Y. Zhang, D. Miao, W. Pedrycz et al. / Knowledge-Based Systems 189 (2020) 105066

Analogously, we have N j
i as:

N j
i =

⋃
Rki

argmax
Rki

[[
Rk
i → N

]] [[
Sim(xRij , Rk

i ) > 0.5
]]

. (9)

where Sim(·, ·) is Jaccard index,3 [[·]] is an indicator function and
reaches 1 if condition · holds and reaches 0 otherwise.

The purpose for this selection operation is to find the corre-
sponding features on Rk

i . In other words, an instance xj is assumed
to with label Li if the representation on relevant labels (the
features of xj on the reduct of kth relevant label Rk

i , denoted as x
Rki
j )

is included in a set (a feature set from the training set that comes
from the kth relevant label of Ri and has the same representations
as xj on feature Ri, denoted as Ck

(i,j)) and is recognized as positive

class in the sense of α1 (f (xRij ) = 1), and without label Li if x
Rki
j is

included in Ck
(i,j) and satisfies f (xRij ) = 0. Regarding the impor-

tance of similarity with regard to all relevant features equally,
we have positive label correlation degree lcpji and negative label
correlation degree lcnj

i for xj on label Li.

lcpji =
∑
k

[[
x
Rki
j ⊆ Ck

(i,j)

]]
|PWRLi|

. (10)

where Lki ∈ PWRLi ∧ f (xRij ) = 1.

lcnj
i =

∑
k

[[
x
Rki
j ⊆ Ck

(i,j)

]]
|PWRLi|

. (11)

where Lki ∈ PWRLi ∧ f (xRij ) = 0.
Finally, we determine the label affiliation of Li to xj in the

following way:

fi(xj) =

⎧⎪⎨⎪⎩
1 lcpji > lcnj

i,

0 lcpji < lcnj
i,

gi(xj) otherwise.
(12)

where gi(xj) is a function and determines the association of Li to
xj via the features of Ri.

Since the reduction serves as the component for ensemble, our
model is hierarchically developed. The overall complexity of TSEN
is O(|U/C ∥ C |2|L|).

3. Granular structure system: an descriptor for multi-label

Definition 6 (Multi-label Information System). A multi-label infor-
mation system (MLIS) is defined by a quadruple tuple: MLIS
= (U, A, V , f ) where U is a finite non-empty set of objects;
A = C

⋃
L is a finite non-empty set of attributes, where C =

{c1, c2, . . . , cn} is a set of condition attributes, L = {L1, L2, . . . , Lm}
is a set of labels; V =

⋃
{Va |a ∈ A }, where Va is the set of values

of attribute a; f is an information function from U to V, denoted
as f : U × A→ V .

To simulate the case of objects addition, we introduce the no-
tation U t to represent the instances at time t . For other elements
in MLIS (i.e. A, V , f ), we do not use the superscript t and assume
that the underlying information, including the value domain,
remains unchanged in the duration of updating. Typically, a brief
example is provided:

3 Sim(x, y) = |x∩y|
|x∪y| .

Table 1
An example of multi-label information system [33].
U t c1 c2 c3 L1 L2 L3
x1 1 2 1 1 0 0
x2 3 2 2 0 1 0
x3 1 2 1 1 0 1
x4 2 3 1 1 0 1
x5 2 3 1 0 0 1
x6 1 2 2 0 1 0
x7 2 3 1 1 1 1
x8 1 2 2 1 1 1
x9 1 1 2 0 1 1
x10 3 1 1 1 1 1
x11 1 1 2 1 1 0

Example. A multi-label information system MLISt = (U t , A, V , f )
at time t is given in Table 1, where U t

= {x1, x2, x3, x4, x5, x6,
x7, x8, x9, x10, x11}, A = C ∪ L, with C = {c1, c2, c3} and L =
{L1, L2, L3}. It can be observed that each object in U t is associated
with at least one label from L and that each label from L is
associated with at least one object in U t . It follows that U t/C =
{X1, X2, . . . , X6}, where

X1 = {x1, x3}, X2 = {x2}, X3 = {x4, x5, x7},

X4 = {x6, x8}, X5 = {x9, x11}, X6 = {x10}. □

Problem-transformation based algorithms constitute a large
proportion of the multi-label learning algorithm. By completing
problem transformation, original problems are converted poten-
tially to a great number of well-established learning scenarios.
Thus, the essence of the approach is twofold: (1) how to define
problem transformation operations, and (2) how to synthesize the
instance-based classification result.

Multi-class classification is one of the most favored problem
transformation solutions in multi-label classification. Let LS =
{LS1, LS2, . . . , LSi, . . . , LSr} be a description of the label set L. For
each LSi, a multi-class subproblem is formulated. Assume an
assemble of binary relations Rel = {Rel1, Rel2, . . . , Reli · · · , Relr}
is considered for corresponding label learning problems, we have
information granule structure GS = {GS1,GS2, . . . ,GSi, · · · ,GSr},
where GSi is determined by MLIS, Reli, LSi simultaneously, and
1 ≤ i ≤ r . For different LSi, the binary relations can be ho-
mogeneous or heterogeneous, depending on the nature of the
classification problem. The granularity of GSi may be different
from GSk, depending on the distribution of relevant attributes and
labels. By solving each multi-class problem, the features of multi-
label on a specific label Li can be bottom-up constructed. For
a dynamic environment, we arrive at the definition of granular
correlation matrix.

Definition 7 (Granular Correlation Matrix). GM t
= (gmt

i,k)j×j
denotes a granular correlation matrix at time t, where gmt

i,k is
the correlation metric regarding granular structure GSi and GSk at
time t . The basic element gmt

i,k is defined as

gmt
i,k =

⏐⏐{b | b ∈ GSti ∩ GStk}
⏐⏐⏐⏐{b | b ∈ GSti ∪ GStk}
⏐⏐ . (13)

Based on Definition 7, we have the definitions of granular
structure system.

Definition 8 (Granular Structure System). A granular structure
system (GSS) at time t is defined by a quadruples tuple GSSt =
(MLISt , Rel,GSt ,GM t ), where MLISt = (U t , A, V , f ) is a multi-label
information system, GSt stands for granular structure determined
by Rel at time t .
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In what follows, the description of label set L is implemented
in a label-specific way, denoted as LS = {LS1, LS2, · · · , LSm}, with
LSi = Li. The basic element gmt

i,j in GM t is thus defined as:

gmt
i,j =
|Rt

i ∩ Rt
j |

|Rt
i ∪ Rt

j |
. (14)

where Rt
i and Rt

j are the reduct of LSi and LSj at time t respectively.
It is easy to verify that cardinality of gmt

i,j is at least zero and
at most one. This is implied by the fact that ∅ ⊆ Rt

i ∩R
t
j ⊆ Rt

i ∪R
t
j ,

which implies 0 ≤ gmt
i,j =

|Rti∩R
t
j |

|Rti∪R
t
j |
≤ 1.

Let θ t
j (GSj) be the indicator of instances on label(s) GSj given

feature representations on GSj at time t . From the perspective
of label, the information function fL with the semantics U ×
L → VL can be rewritten as f tL = {f

t
L1

, f tL2 , . . . , f
t
Lm}. Given an

representation of GS, the f tLi can be determined by an aggregation
function agg(·), i.e.,

f tLi = agg(θ t
j (GSj)). (15)

where Li is associated with GSj. The aggregation function agg
(θ t

j (GSj)) can be implemented with majority, mean, or weighted
sum etc for all included θ t

j (GSj). As to algorithms adopt binary
relevance strategy, the agg(·) = θ t

j (·) holds ∀Li.
For agg(Li), we stipulate as the mean of relative label pref-

erences w.r.t. positive/negative classes on all relevant granular
structure θ t (GSj). i.e.,

f tLi =
[[∑

(θ t
j (GSj) = 1)−

∑
(θ t

j (GSj) = 0) > 0
]]

. (16)

where Lj ∈ PWRLi.

4. Knowledge-based incremental updating for multi-label
classification

Incremental knowledge updating is capable of reducing repet-
itive computations and renewing underlying structure when it is
necessary. For convenience of description, we will firstly present
the incremental mechanism and then summarize it as an incre-
mental algorithm.

4.1. Incremental updating mechanism

We consider the incremental mechanism of GSS. Being spe-
cific, the mechanism concerns the updating of granular structure
GS and granular correlation matrix GM . Given 0.5 ≤ α1 ≤ α2 ≤

1,4 the updating mechanism of GS and GM for multiple instances
is elaborated in Sections 4.1.1 and 4.1.2 respectively.

4.1.1. Updating mechanism of granular structure
In our previous study [41], the lower approximation is selected

as a reduct criterion. This criterion is capable of maintaining
the approximation quality from available data, however it is
an absolute criterion. In order to make a fair comparison with
incremental algorithms, the criterion is replaced by a relative
measure:

ρ
(α1,α2)
Rti

(U t/Li) =
|Rα1

Rti
(Y t

1)| + |R
α2
Rti
(Y t

2)|

|U t |
. (17)

where Y t
1 and Y t

2 are the instances associated with label Li and
without label Li at time t . The semantics of the renewed criterion
is the preservation of lower approximation rate.

4 We penalize more on misclassification of positive class since positive class
tends to be misclassified more easily.

Example. Consider the multi-label information system given in
Table 1 collected at time t . Given (α1, α2) = (1, 1), we have:

ρ
(α1,α2)
C (U t/L1) =

2+ 1+ 0+ 0+ 0+ 1
11

=
4
11

,

ρ
(α1,α2)
C (U t/L2) =

2+ 1+ 0+ 2+ 2+ 1
11

=
8
11

,

ρ
(α1,α2)
C (U t/L3) =

0+ 1+ 3+ 0+ 0+ 1
11

=
5
11

.

Additionally, we compute the equivalence classes induced by
U t/c1, U t/c2 and U t/c3 as:

U t/c1 = {{x1, x3, x6, x8, x9, x11}, {x4, x5, x7}, {x2, x10}},
U t/c2 = {{x9, x10, x11}, {x1, x2, x3, x6, x8}, {x4, x5, x7}},
U t/c3 = {{x1, x3, x4, x5, x7, x10}, {x2, x6, x8, x9, x11}}.
For L1, we examine the candidate reduction by taking addition–

deletion strategy as:

Rα1
c1 (Y

t
1) = ∅,R

α2
c1 (Y

t
2) = ∅

R1−α1
c1 (Y t

1) = U t ,R1−α2
c1 (Y t

2) = U t .

GK (c1) =
62
+ 32
+ 22

112 =
49
121

,

γ (α1,α2)
c1 (U t/L1) = 1− (1− 0)×

49
121
=

72
121

.

Rα1
c2 (Y

t
1) = ∅,R

α2
c2 (Y

t
2) = ∅.

R1−α1
c2 (Y t

1) = U t ,R1−α2
c2 (Y t

2) = U t .

GK (c2) =
32
+ 52
+ 32

112 =
43
121

,

γ (α1,α2)
c2 (U t/L1) = 1− (1− 0)×

43
121
=

78
121

.

Rα1
c2 (Y

t
1) = ∅,R

α2
c2 (Y

t
2) = ∅.

R1−α1
c2 (Y t

1) = U t ,R1−α2
c2 (Y t

2) = U t .

GK (c3) =
62
+ 52

112 =
61
121

,

γ (α1,α2)
c3 (U t/L1) = 1− (1− 0)×

61
121
=

60
121

.

We select c2 since c2 = argmaxci∈C γ
(α1,α2)
ci (U t/L1), where i ∈

{1, 2, 3}.
We need to add more attributes since ρ

(α1,α2)
c2 (U t/L1) = 0 <

ρ
(α1,α2)
C (U t/L1) = 4

11 ,
Then we consider the combination of {c1, c2} and {c2, c3}.
Combination of {c1, c2}:

Rα1
{c1,c2}

(Y t
1) = {x10},R

α2
{c1,c2}

(Y t
2) = {x2}.

R1−α1
{c1,c2}(Y

t
1) = {x1, x3, x4, x5, x6, x7, x8, x9, x10, x11},

R1−α2
{c1,c2}(Y

t
2) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x11}.

GK ({c1, c2}) =
22
+ 42
+ 32
+ 12
+ 12

112 =
31
121

,

γ
(α1,α2)
{c1,c2}

(U t/L1) = 1− (1−
2
20

)×
31
121
=

1179
1210

.

Combination of {c2, c3}:

Rα1
{c2,c3}

(Y t
1) = {x1, x3, x10},R

α2
{c2,c3}

(Y t
2) = ∅.

R1−α1
{c2,c3}(Y

t
1) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11},

R1−α2
{c2,c3}(Y

t
2) = {x2, x4, x5, x6, x7, x8, x9, x10, x11}.

GK ({c2, c3}) =
12
+ 22
+ 22
+ 32
+ 32

112 =
27
121

,

γ
(α1,α2)
{c2,c3}

(U t/L1) = 1− (1−
3
19

)×
27
121
=

2218
2299

.
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We select c1 since c1 = argmaxci∈C γ
(α1,α2)
ci (U t/L1), where

i ∈ {1, 3}.
ρ
(α1,α2)
{c1,c3}

(U t/L1) = 3
11 < ρ

(α1,α2)
C (U t/L1), Since ρ

(α1,α2)
C (U t/L1) is

4
11 , we consider deletion of c1, c2, and c3 in order of the value of
γ

(α1,α2)
ci (U t/L1) from small to large.
Deletion of c3:

ρ
(α1,α2)
{c1,c2}

(U t/L1) =
5
11
̸= ρ

(α1,α2)
C (U t/L1) =

4
11

.

Deletion of c1:

ρ
(α1,α2)
{c2,c3}

(U t/L1) =
3
11
̸= ρ

(α1,α2)
C (U t/L1) =

4
11

.

Deletion of c2:

ρ
(α1,α2)
{c1,c3}

(U t/L1) =
4
11
= ρ

(α1,α2)
C (U t/L1).

Therefore, we obtain Rt
1 = {c1, c3}.

Similarly, for L2, we have Rt
2 = {c2, c3}, for L3, we have Rt

3 =

{c1, c2}.

Given the unchanged attribute set, it will be time-consuming if
we consider Definition 5 for the approximation set. An alternative
solution is to revise the approximation set incrementally based on
the variation of conditional probability, which is compared with
a threshold pair (α1, α2). Let Y t

j ∈ U t/Lk and B ⊆ C , Bt
i ∈ U t/C

be the jth equivalence class of label Lk at time t , then given
ith equivalence class w.r.t. attribute B, the variation trend for
probability of Y t+1

j conditioned on Bt+1
i at time t + 1 (denoted as

P(Y t+1
j |B

t+1
i )), as compared to probability of Y t

j conditioned on Bt
i

at time t (denoted as P(Y t
j |B

t
i )), can be incrementally determined

(see Lemma 1).

Lemma 1. Let Y t
j ∈ U t/Lk and Bt

i ∈ U t/B be the jth equivalence
class of label Lk and ith equivalence class of attributes B at time t,
∆U t are the immigrated instances at time t+1. ∆Et+1

Yj
∈ ∆U t+1/Lk

and ∆Et+1
Bi
∈ ∆U t+1/B be the immigrated instances with jth label

in Lk and instances with ith feature vector at time t + 1. Given
Bt+1
i ∈ U t

∪∆U t+1/B the variation trend for conditional probability
P(Y t+1

j |B
t+1
i ) can be estimated as:

P(Y t+1
j |B

t+1
i ) ≥ P(Y t

j |B
t
i ), if P(∆Et+1

Yj
|∆Et+1

Bi
) ≥ P(Y t

j |B
t
i );

P(Y t+1
j |B

t+1
i ) < P(Y t

j |B
t
i ), if P(∆Et+1

Yj
|∆Et+1

Bi
) < P(Y t

j |B
t
i );

P(Y t+1
j |B

t+1
i ) = P(Y t

j |B
t
i ), if ∆Et+1

Bi
= ∅.

(18)

Lemma 2. Let Y t
j ∈ U t/Lk, Bt

i ∈ U t/B be the ith equivalence class of
feature set at time t, ∆Et+1

Bi
∈ ∆U t+1/B is the incremental instance

assemble with feature vector ∆Et+1
Bi

at time t + 1. Given thresholds
αk (0.5 ≤ αj ≤ 1), the lower approximation with regard to Yj at
time t + 1 (RB(Y

t+1
j )) can be estimated as:

RB(Y
t+1
j ) = RB(Y

t
j ) ∪∆Et+1

Bi
if P(Y t+1

j |B
t+1
i ) ≥ αj

∧P(Y t
j |B

t
i ) ≥ αj;

RB(Y
t+1
j ) = RB(Y

t
j )− Bt

i if P(Y t+1
j |B

t+1
i ) < αj
∧P(Y t

j |B
t
i ) ≥ αj;

RB(Y
t+1
j ) = RB(Y

t
j )∪B

t
i ∪∆Et+1

Bi
if P(Y t+1

j |B
t+1
i ) ≥ αj

∧P(Y t
j |B

t
i ) < αj;

RB(Y
t+1
j ) = RB(Y

t
j ) if∆Et+1

Bi
= ∅∨

(P(Y t+1
j |B

t+1
i ) < αj ∧ P(Y t

j |B
t
i ) < αj).

(19)

Detailed proofs of Lemmas 1 and 2 can be found in appendix.

Table 2
Immigrated objects of multi-label information system at time t + 1.
∆U t+1 c1 c2 c3 L1 L2 L3
x12 1 1 2 1 1 0
x13 3 2 1 0 1 1
x14 1 1 1 1 0 1
x15 2 2 1 1 0 1

Remark 1. The condition 0.5 ≤ αj ≤ 1 implies that an instance
x will not belong to the lower approximation of Yk at time t,
i.e. RB(Y

t
k ), if it belongs to the lower approximation of Yj at time

t, i.e. RB(Y
t
j ), and vice versa.

When a collection of objects (∆U t+1) is available to the de-
cision system at time t + 1, the next objective is to deter-
mine whether the approximation quality w.r.t. label at time t
(ρ(α1,α2)

Rti
(U t/Li)) is preserved at time t + 1 (ρ(α1,α2)

Rti
((U t
∪∆U t+1)/

Li)). To accelerate the calculation of ρ
(α1,α2)
Rti

((U t
∪∆U t+1)/Li), we

present the corresponding incremental mechanism.

Theorem 1. Let MLISt = (U t , A = C
⋃

L, V , f ) be a multi-label
information system at time t, and ∆U t+1 denotes a new assemble
of instances at time t + 1. Suppose Rt

i is the reduct of Li at time t,
and ∆U t+1

= ∆U t+1
1 ∪ ∆U t+1

2 , U t+1
= U t

∪ ∆U t+1, U t+1/Rt
i =

{Et
1, E

t
2, . . . , E

t
q, ∆Et+1

q+1, . . . , ∆Et+1
q+s , ∆Et+1

q+s+1, . . . , ∆Et+1
q+s+v}, where

∆U t+1
1 /Rt

i = {∆Et+1
q+1, ∆Et+1

q+2, . . . , ∆Et+1
q+s }, ∆U t+1

2 /Rt
i = {∆Et+1

q+s+1,

∆Et+1
q+s+2, . . . , ∆Et+1

q+s+v}. For the equivalence classes in U t+1/Rt
i , the

first q equivalence classes represent the information granules which
remain unchanged, the middle s equivalence classes represent the
equivalence classes that can be merged with existing classes in U t/Rt

i ,
and the remaining v equivalence classes represent the equivalence
classes that cannot be combined with the existing equivalence classes
deduced by U t/Rt

i . Given two thresholds α1 and α2 with 0.5 ≤ α1 ≤

α2 ≤ 1, then approximate quality ρ
(α1,α2)
Rti

(U t+1/Li) can be updated
as:

ρ
(α1,α2)
Rti

(U t+1/Li)

=

∑q
r=1

⏐⏐⏐⋃{Et
r | E

t
r ⊆ R

αj

Rti
(Y t+1

j )}
⏐⏐⏐

|U t | +
⏐⏐∆U t+1

⏐⏐
+

∑q+s
r=q+1

⏐⏐⏐⋃{Et
r∪∆Et+1

r |E
t
r∪∆Et+1

r ⊆ R
αj

Rti
(Y t+1

j )}
⏐⏐⏐

|U t | +
⏐⏐∆U t+1

⏐⏐
+

∑q+s+v

r=q+s+1

⏐⏐⏐⋃{∆Et+1
r | ∆Et+1

r ⊆ R
αj

Rti
(Y t+1

j )}
⏐⏐⏐

|U t | +
⏐⏐∆U t+1

⏐⏐ .

(20)

where j ∈ {1, 2}.

The proof of Theorem 1 can be found in the appendix. The-
orem 1 suggests that we can leverage the existing information
directly for the first situation, and incrementally update the in-
formation for the second situation, only compute for the third
situation.

Example. Consider the multi-label information system given
in Table 1 at time t . Suppose at time t + 1, four objects are
immigrated, as shown in Table 2:

We can deduce the equivalence classes of ∆U t+1/Rt
1, ∆U t+1/

Rt
2, ∆U t+1/Rt

1 as:
∆U t+1/Rt

1 = ∆U t+1/{c1, c3} = {{x12}, {x13}, {x14}, {x15}},
∆U t+1/Rt

2 = ∆U t+1/{c2, c3} = {{x12}, {x13, x15}, {x14}},
∆U t+1/Rt

3 = ∆U t+1/{c1, c2} = {{x12, x13}, {x14}, {x15}}.
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By following Theorem 1, we can estimate the value of ρ
(α1,α2)
Rt1

(U t+1/L1), ρ
(α1,α2)
Rt2

(U t+1/L2), ρ
(α1,α2)
Rt3

(U t+1/L3).

Calculation of ρ
(α1,α2)
Rt1

(U t+1/L1): The result U t/{c1, c3} = {Et
1,

Et
2, E

t
3, E

t
4, E

t
5} = {{x1, x3}, {x2}, {x4, x5, x7}, {x6, x8, x9, x11}, {x10}}

is known. Firstly, we examine the changes of existing equivalence
classes.

Et
1(i.e., {x1, x3}) : Among ∆U t+1/Rt

1, {x14} is with (c1, c3) =
(1, 1). Additionally, Et

1 ⊂ Rα1
Rt1
(Y t

1), where Y t
1 are the concept

that instances are associated with label L1 at time t . Besides,
x14 ∈ Rα1

Rt1
(Y t+1

1 ) The two conditions imply that the equivalence

classes satisfies Et
1 ⊂ Rα1

Rt1
(Y t+1

1 ), and this contributes 2+1
11+4 =

3
15

in ρ
(α1,α2)
Rt1

(U t+1/L1).

Et
2(i.e., {x2}): Among ∆U t+1/Rt

1, no equivalence classes are
with (c1, c3) = (3, 2). Additionally, Et

2 ⊂ Rα2
Rt1
(Y t

2), where Y t
2 are

the concept that instances are not associated with label L1 at
time t . The two conditions imply that the equivalence classes
satisfies Et

2 ⊂ Rα2
Rt1
(Y t+1

2 ), and this contributes 1
11+4 =

1
15 in

ρ
(α1,α2)
Rt1

(U t+1/L1).

Et
3(i.e., {x4, x5, x7}): Among ∆U t+1/Rt

1, the fourth equivalence
class {x15} is with (c1, c3) = (2, 1). Additionally, P(Y t

1 |E
t
3) =

2
3 ,

P(Y t
2 |E

t
3) =

1
3 , where Y t

1 and Y t
2 are the concepts that instances

are associated/not associated with label L1 at time t respectively.
By following Lemma 1, P(Y t+1

1 |E
t+1
3 ) is increased to 3

4 , which still
fails to be subset of Rα1

Rt1
(Y t+1

1 ) and subset of Rα1
Rt2
(Y t+1

2 ). According
to Lemma 2 and Theorem 1, this component has no contribution
to ρ

(α1,α2)
Rt1

(U t+1/L1).

Et
4(i.e., {x6, x8, x9, x11}): Among ∆U t+1/Rt

1, the first equiva-
lence class {x12} is with (c1, c3) = (1, 2). Additionally, P(Y t

1 |E
t
4) =

1
2 , P(Y

t
2 |E

t
4) =

1
2 , where Y t

1 and Y t
2 are the concept that instances

are associated/not associated with label L1. This implies that E4 ̸⊂
Rα1

Rt1
(Y t

1). By following Lemma 1, P(Y t+1
1 |E

t+1
4 ) is increased to 3

5 ,

which still fails to be subset of Rα1
Rt1
(Y t

1) and subset of Rα1
Rt2
(Y t

2).
According to Lemma 2 and Theorem 1, this component has no
contribution to ρ

(α1,α2)
Rt1

(U t+1/L1).

Et
5(i.e., {x10}): Among ∆U t+1/Rt

1, the second equivalence class
{x13} is with (c1, c3) = (3, 1). Additionally, P(Y t

1 |E
t
5) =

1
2 Et

2 ⊂

Rα1
Rt1
(Y t

1), where Y t
1 are the concept that instances are not associ-

ated with label L1 at time t . The two conditions imply that the
equivalence classes satisfies Et

5 ∪ {x10} ̸⊂ Rα1
Rt1
(Y t+1

1 ), and this

component has no contribution to ρ
(α1,α2)
Rt1

(U t+1/L1).
Secondly, we evaluate the influence of new equivalence classes

to ρ
(α1,α2)
Rt1

(U t+1/L1). However, no such equivalence classes exist.

Hence, ρ(α1,α2)
Rt1

(U t+1/L1) = 3
15 +

1
15 =

4
15 .

The calculation of ρ
(α1,α2)
Rt2

(U t+1/L2) and ρ
(α1,α2)
Rt3

(U t+1/L3) is

analogous. ρ(α1,α2)
Rt2

(U t+1/L2) = 2
5 , ρ

(α1,α2)
Rt3

(U t+1/L3) = 1
3 . □

For single-label case, the reduct remains unchanged if ap-
proximation quality is kept, i.e. Rt+1

i = Rt
i if ρ

(α,β)
Rti

(U t/Li) =

ρ
(α1,α2)
Rti

((U t
∪ ∆U t+1)/Li). However, it does not invariably hold

for multi-label case. The reasons are two-folds. Firstly, the mech-
anism of selective ensemble is vulnerable to the super-reduct,
which signifies that the classification performance may be degen-
erated. Secondly, compared with finding a new reduction, a more
compact representation on the same label may maintain the ap-
proximation degree with limited time complexity. To balance the
effectiveness and efficiency, we consider the following strategies:

• ρ
(α1,α2)
Rti

(U t
∪∆U t+1/Li) = ρ

(α1,α2)
Rti

(U t/Li): Find a reduct Rt+1
i

with Rt+1
i ⊆ Rt

i s.t.

ρ
(α1,α2)
Rt+1i

(U t
∪∆U t+1/Li)

= ρ
(α1,α2)
Rti

(U t
∪∆U t+1/Li), ρ

(α,β)
Rt+1i −{b}

(U t
∪∆U t+1/Li)

̸= ρ
(α1,α2)
Rti

(U t
∪∆U t+1/Li).∀b ∈ Rt

i

• ρ
(α1,α2)
Rti

(U t
∪∆U t+1/Li) ̸= ρ

(α1,α2)
C (U t/Li): Find a reduct Rt+1

i

with Rt+1
i ̸⊂ Rt

i s.t.

ρ
(α1,α2)
Rt+1i

(U t
∪∆U t+1/Li)

= ρ
(α1,α2)
C (U t

∪∆U t+1/Li), ρ
(α1,α2)
Rt+1i −{b}

(U t
∪∆U t+1/Li)

̸= ρ
(α1,α2)
C (U t

∪∆U t+1/Li).∀b ∈ Rt
i

It is worth mentioning that Rt+1
i may be the Rt

i if ρ
(α1,α2)
Rti

(U t
∪

∆U t+1/Li) = ρ
(α1,α2)
Rti

(U t/Li) holds. This means that the removal of
attributes from Rt

i is not mandatory.

Example. Consider the multi-label information system given
in Table 1 at time t . Suppose at time t + 1, four objects are
immigrated, as shown in Table 2.

For time t , we have:

ρ
(α1,α2)
Rt1

(U t/L1) =
4
11

,

ρ
(α1,α2)
Rt2

(U t/L2) =
8
11

,

ρ
(α1,α2)
Rt3

(U t/L3) =
5
11

.

For time t + 1, we have:

ρ
(α1,α2)
Rt1

(U t
∪∆U t+1/L1) =

4
15

,

ρ
(α1,α2)
Rt2

(U t
∪∆U t+1/L2) =

2
5
,

ρ
(α1,α2)
Rt3

(U t
∪∆U t+1/L3) =

1
3
.

Obviously, ρ(α1,α2)
Rti

(U t/Li) ̸= ρ
(α1,α2)
Rti

(U t
∪ ∆U t+1/Li), i ∈ {1, 2, 3}.

Thus, the targeted reduct Rt+1
i satisfies Rt+1

i ̸⊂ Rt
i . □

4.1.2. Updating mechanism of granular correlation matrix
Recomputing granular structure correlation matrix (GM t ) is

also time-consuming. Computing pair-wise granular structures
which are definitely intersected does not introduce any benefit. It
is worth mentioning that the non-empty judgment on reduction
intersection is our interest, we can accelerate the computation
from the perspective of set cardinality. We define a matrix with
the same rank as granular structure correlation matrix called
cardinality counting matrix (CCM). Let Rt

i and Rt
j be the reduct

w.r.t. label i and label j at time t respectively, we have:

CCM t
= {ccmt

i,j}|L|×|L|. (21)

where

ccmt
i,j = |R

t
i ∩ Rt

j |.

Example. Consider the multi-label information system given in
Table 1. Based on Eq. (21), the corresponding CCM t is computed
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as:

CCM t
=

[ 2 1 1
1 2 1
1 1 2

]
. □

Theorem 2. Given a CCM t , ∆Rt
i and ∆Rt

i represent the immi-
grated/emmigrated attributes of label-specific reduct w.r.t. label i at
time t. Then for ∀t > t0, we have

ccmt
i,j >0.

if ccmt−1
i,j >0 ∧ ccmt−1

i,j +

⏐⏐⏐∆Rt
i ∩∆Rt

j

⏐⏐⏐−⏐⏐⏐∆Rt
i ∪∆Rt

j

⏐⏐⏐ > 0.

The proof of Theorem 2 can be found in appendix.

Theorem 3. Given a MLISt , the element gmt
i,j > 0 in granular

structure system GSSt holds if the corresponding element ccmt
i,j in

cardinality counting matrix CCM t satisfies ccmt
i,j > 0.

The proof of Theorem 3 can be found in Appendix. Accord-
ingly, we can simplify the problem of computing gmt

i,j as the
determine of ccmt

i,j > 0.

Example. Consider the multi-label information system given in
Table 1. Suppose at time t + 1, four objects are immigrated, as
shown in Table 2. Then the variations w.r.t. Rt

1, R
t
2, and Rt

3 are
deduced as:

∆Rt
1 = {c2}, ∆Rt

1 = ∅;

∆Rt
2 = {c1}, ∆Rt

2 = ∅;

∆Rt
3 = {c3}, ∆Rt

3 = ∅.

Based on Theorem 2, we update ccmt+1
i,j as:

ccmt+1
1,2 : ccmt

1,2+

⏐⏐⏐∆Rt
1 ∩∆Rt

2

⏐⏐⏐− ⏐⏐⏐∆Rt
1 ∩∆Rt

2

⏐⏐⏐ = 1+ 0− 0 > 0

therefore, ccmt+1
1,2 > 0 and ccmt+1

1,2 is estimated as 1. This implies
the features included in Rt+1

1 are effective for the determine of L2
at time t + 1, and vice versa.

ccmt+1
1,3 : ccmt

1,3+

⏐⏐⏐∆Rt
1 ∩∆Rt

3

⏐⏐⏐− ⏐⏐⏐∆Rt
1 ∩∆Rt

3

⏐⏐⏐ = 1+ 0− 0 > 0

therefore, ccmt+1
1,3 > 0 and ccmt+1

1,3 is estimated as 1. This implies
the features included in Rt+1

1 are effective for the determine of L3
at time t + 1, and vice versa.

ccmt+1
2,3 : ccmt

2,3+

⏐⏐⏐∆Rt
2 ∩∆Rt

3

⏐⏐⏐− ⏐⏐⏐∆Rt
2 ∩∆Rt

3

⏐⏐⏐ = 1+ 0− 0 > 0

therefore, ccmt+1
2,3 > 0 and ccmt+1

2,3 is estimated as 1. This implies
the features included in Rt+1

2 are effective for the determine of L3
at time t + 1, and vice versa. □

4.2. An incremental algorithm

Based on the incremental mechanisms of granular structure
system, this subsection introduces an algorithm named Incre-
mental Multiple Object with Three-way decisions and Selective
ENsemble (‘‘IMOTSEN’’, see Algorithm 1).

Time complexity for Algorithm 1 at time t + 1 is analyzed
as follows: Step 1 occupies O(avg(Rt

i )|(U
t
∪∆U t+1)/avg(Rt

i ) ∥ L|),
Step 2 takes λ1×O((|C |−avg(Rt

i ))
2
|(U t
∪∆U t+1)/C∥L|)+(1−λ1)×

O(avg(Rt
i )

2
|(U t
∪∆U t+1)/avg(Rt

i )∥L|), where operator avg(·) rep-
resents the average length of a set and 0 ≤ λ1 ≤ 1. Step 3 costs
O(λ2× avg(Rt

i )
2
|L|2+|L|2). O((|C |− avg(Rt

i ))
2
|(U t
∪∆U t+1)/C∥L|)

≤ O(|C |2|(U t
∪∆U t+1)/C∥L|) holds, and dominates the step 3,

where 0 ≤ λ2 ≤ 1. Therefore, the overall complexity for
Algorithm 1 is O((|C | − avg(Rt

i ))
2
|(U t
∪∆U t+1)/C ∥ L|).

Table 3
Description of datasets.
Dataset # instances # features # labels # cardinality

Genbase 662 1185 27 1.252
Medical 978 1449 45 1.245
Enron 1702 1001 53 3.39
Slashdot 3782 1079 22 1.18
LangLog 1460 1004 75 1.18
Bibtex 7395 1836 159 2.402

5. Experimental analysis

5.1. Datasets

We conducted experiments on six multi-label benchmark
datasets, the details of which are summarized in Table 3. To
satisfy the equivalence relation requirement, attributes type of
selected benchmark is nominal. The term ‘‘cardinality’’ is abbre-
viated for label cardinality representing the average labels count
regarding instances. They can be downloaded from the websites
of Mulan5 [45] and Meka6 [46].

5.2. Evaluation metrics

The primary goal behind the introduction of incremental
mechanism is to overcome computation deficiency. The execution
time for the construction of GSS in both non-incremental version

5 http://mulan.sourceforge.net/datasets.html.
6 http://meka.sourceforge.net/.

http://mulan.sourceforge.net/datasets.html
http://meka.sourceforge.net/
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Fig. 2. Elapsed time between TSEN and IMOTSEN on six multi-label datasets
with (α1, α2) = (0.8, 1.0).

(‘‘TSEN’’) and incremental version (‘‘IMOTSEN’’) over six bench-
marks is included. All experiments are coded in Matlab 2017b
and completed on a workstation with the following specification:
Intel Core12 i7-6800K 3.40 GHz CPU, 64 GB of memory with
64-bit ubuntu 16.0.4 operation system.

Classification performance is another important aspect to eval-
uate the quality of renewed knowledge. The evaluation measures
for multi-label classification is roughly classified into two tax-
onomies, i.e. example-based metrics and label-based metrics. The
first category of metrics evaluates prediction performance on
each example separately, and returns the mean value across the
test set. The second category of metrics evaluates prediction
performance on each label separately, and returns the mean
value across all labels. We consider the following metrics Label-
based Precision [47], Label-based Recall [47], Example-based Pre-
cision [48], Example-based Recall [48], Hamming-Loss [49], Micro
F1 [49]. Except for Hamming Loss, the larger the remaining metric
values, the better the performance.

Fig. 2. (continued).

5.3. Experimental setting

For each benchmark in Table 2, 10% instances are randomly
selected as basic datasets, and for the remaining instances, we
divide them into nine subsets and regard each subset (i.e. 10% in-
stances) as basic batch of immigrated objects. For a given thresh-
old pair (α1, α2), we report eight round incremental tests for
both time dimension and classification performance dimension
(i.e. 10% object immigrations from current object assembles with
the count ranges from 10% to 80% at a step of 10%). It is worth
mentioning that all labels of batch objects are assumed to be
available after each round of immigration.

The main goal of experiments is to testify whether ‘‘IMOTSEN’’
can generate comparable performance with satisfactory computa-
tional complexity. Thus, we examine three aspects of ‘‘IMOTSEN’’.
The first experiment (see Section 5.4) evaluates the algorithm
efficiency in terms of knowledge reconstruction/updating be-
tween ‘‘IMOTSEN’’ and ‘‘TSEN’’ with a predefined threshold pair
(α1, α2) = (0.8, 1.0). The second experiment (see Section 5.5)
compares the classification performance between ‘‘IMOTSEN’’ and
‘‘TSEN’’ with the same threshold pair (α1, α2) = (0.8, 1.0). The
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Table 4
Average execution time for reconstruction of GSS between TSEN and IMOTSEN (unit: seconds).
Dataset Alg-GSS Size of processed ratio

10% 20% 30% 40% 50% 60% 70% 80%

Genbase

N-GS 0.225 0.283 0.320 0.391 0.474 0.527 0.625 0.683
I-GS 0.219 0.241 0.251 0.318 0.300 0.257 0.384 0.418

N-GM 0.036 0.035 0.034 0.037 0.037 0.037 0.036 0.036
I-GM 0.022 0.021 0.022 0.019 0.019 0.027 0.020 0.021

Medical

N-GS 0.808 1.385 1.898 2.650 3.571 4.778 5.375 6.562
I-GS 0.973 1.548 1.916 2.481 3.454 3.319 3.157 4.233

N-GM 0.077 0.080 0.082 0.083 0.090 0.089 0.089 0.084
I-GM 0.053 0.068 0.083 0.085 0.081 0.085 0.075 0.088

Enron

N-GS 6.178 10.19 14.51 19.39 21.24 24.70 27.89 32.90
I-GS 3.806 4.943 6.584 7.049 8.988 9.557 11.10 11.42

N-GM 0.135 0.140 0.140 0.139 0.142 0.142 0.141 0.132
I-GM 0.126 0.126 0.127 0.126 0.130 0.125 0.129 0.131

Languagelog

N-GS 13.52 21.90 32.08 42.05 52.58 63.70 74.78 86.36
I-GS 6.483 6.824 7.686 8.202 8.703 10.09 10.14 10.63

N-GM 0.247 0.249 0.245 0.242 0.245 0.250 0.247 0.249
I-GM 0.227 0.225 0.224 0.221 0.215 0.226 0.212 0.212

Slashdot

N-GS 19.46 45.80 92.29 139.3 190.5 252.3 340.4 375.6
I-GS 15.49 39.48 74.99 135.6 224.0 301.9 434.0 447.3

N-GM 0.027 0.029 0.028 0.027 0.024 0.025 0.025 0.025
I-GM 0.039 0.041 0.043 0.038 0.034 0.035 0.038 0.035

Bibtex

N-GS 131.9 229.2 338.6 438.9 531.9 632.8 746.4 826.8
I-GS 96.63 145.4 181.0 206.3 243.7 264.8 289.2 323.9

N-GM 1.295 1.267 1.277 1.232 1.200 1.122 1.098 1.073
I-GM 1.029 1.057 1.063 1.068 1.084 1.066 1.078 1.083

third experiment (see Section 5.6) explores the robustness of
execution time of ‘‘IMOTSEN’’ under different threshold pairs
(α1, α2) ∈ {(1.0, 1.0), (0.8, 1.0), (0.6, 1.0)}. All experiments are
conducted with five-fold cross validation to conduct a fair com-
parison.

5.4. Performance comparison between TSEN and IMOTSEN: Algorith-
mic efficiency

The plots of computational efficiency between ‘‘TSEN’’ and
‘‘IMOTSEN’’ are displayed in Fig. 2. In each sub-figure, the x-axis
is the count for instances with known labels, and the y-axis is
the average value of computation time. Blocks marked with black
lines are computation time of ‘‘TSEN’’ and circles marked with red
lines are computation time of ‘‘IMOTSEN’’.

Fig. 2 illustrates the effectiveness of algorithm ‘‘TSEN’’ and al-
gorithm ‘‘IMOTSEN’’. The time for reconstruction of GSS seems to
be significantly compressed for dataset ‘‘Genbase’’, ‘‘Enron’’, ‘‘Lan-
guagelog’’ and ‘‘Bibtex’’. However, the result is a bit frustrated
on dataset ‘‘Medical’’ and ‘‘Slashdot’’. To reveal the underlying
reason, we decompose the reconstruction time for GSS as gran-
ular structure (abbreviated as GS) component and granular ma-
trix(abbreviated as GM) component. For each dataset, we report
four groups of time when objects are immigrated with 10% count.
In what follows, ‘‘Alg-GSS’’ specifies the algorithm leveraged for
updating granular structure system; ‘‘N-GS’’ signifies the time for
reconstruction of granular structure when ‘‘TSEN’’ is employed;
‘‘T-GS’’ signifies the time for reconstruction of granular structure
when ‘‘IMOTSEN’’ is employed; ‘‘N-GM’’ signifies the time for
reconstruction of granular matrix when ‘‘TSEN’’ is employed; ‘‘T-
GS’’ signifies the time for reconstruction of granular matrix when
‘‘IMOTSEN’’ is employed.

From Table 4, we can deduce that time reconstruction of
granular structure is much longer than the reconstruction of
granular matrix. The negligible time for generation of granular
matrix implies that the overall time may still be saved if the time
for updating of granular matrix is prolonged. This is consistent

with the analysis in computation complexity. From Table 5 , we
can observe that the time variations of renewing granular ma-
trix are much smaller than finding granular structure. It implies
that, compared to determine the shared attributes, the search for
granular structure is more data-dependent.

As suggested in [50], the speed-up ratio can explain the rela-
tive superiority of efficiency between algorithms directly. The in-
cremental speed-up ratio is defined as Tn−x

Ti−x
, where x ∈ {GS,GM},

Tn−x represents execution time of the non-incremental algorithm
(i.e. ‘‘TSEN’’) and Ti−x represents execution time of the incre-
mental algorithm (i.e. ‘‘IMOTSEN’’). Theoretically, ‘‘IMOTSEN’’ is
assumed to be more efficient than ‘‘TSEN’’ if speed-up is larger
than 1. The speed-up ratio that is larger than 1 is highlighted in
bold face.

From Table 6 we can summarize that in most cases (77/96),
‘‘IMOTSEN’’ performs faster than ‘‘TSEN’’. For dataset ‘‘Genbase’’,
‘‘Enron’’, and ‘‘Languagelog’’, the speed-up (yields 1.027− 8.124)
is rather acceptable for both GS and GM . For those speed-up times
less than 1, the minimum is 0.651 (30% label known with 10% in-
crease on ‘‘Slashdot’’). Furthermore, the incremental mechanism
is least effective on ‘‘Slashdot’’. It may due to the occurrence of
concept drift in ‘‘Slashdot’’.

5.5. Performance comparison between TSEN and IMOTSEN: Classifi-
cation accuracy

To visualize the closeness of classification performance, we
draw spider web diagram to show the stability over six evaluation
metrics. The referenced values for different metrics are affiliated
in each graph to measure the accuracy/loss. For metric ‘‘Hamming
Loss’’, the referenced value ranges from 0 to 0.2 with a step
of 0.05. For metrics ‘‘Example-based Precision’’, ‘‘Example-based
Recall’’, and ‘‘Micro F1’’ the referenced value ranges from 0 to 1
with a step of 0.2. For metrics ‘‘Label-based Precision’’ and ‘‘Label-
based Recall’’, the referenced value ranges from 0 to 0.8 with a
step of 0.2. Averaged performance on six evaluations generated
from ‘‘TSEN’’ and ‘‘IMOTSEN’’ are circled in blue lines and red
lines, respectively.
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Table 5
Variance of time cost for reconstruction of GSS between TSEN and IMOTSEN.
Dataset Alg-GSS Size of processed ratio

10% 20% 30% 40% 50% 60% 70% 80%

Genbase

N-GS 0.016 0.042 0.049 0.072 0.063 0.059 0.034 0.043
I-GS 0.026 0.025 0.022 0.059 0.058 0.059 0.049 0.119

N-GM 0.003 0.002 0.003 0.004 0.003 0.002 0.001 0.001
I-GM 0.003 0.004 0.004 0.002 0.003 0.005 0.005 0.001

Medical

N-GS 0.087 0.070 0.140 0.108 0.169 0.236 0.315 0.274
I-GS 0.194 0.136 0.239 0.400 0.375 0.554 0.456 0.253

N-GM 0.002 0.003 0.004 0.005 0.006 0.003 0.005 0.002
I-GM 0.014 0.018 0.007 0.002 0.006 0.006 0.004 0.004

Enron

N-GS 0.673 0.927 2.027 2.602 4.351 3.891 3.892 5.023
I-GS 0.196 0.349 0.499 0.826 1.159 0.575 0.732 0.839

N-GM 0.009 0.009 0.009 0.008 0.008 0.011 0.011 0.006
I-GM 0.003 0.004 0.003 0.005 0.003 0.004 0.002 0.003

Languagelog

N-GS 0.623 0.592 1.479 2.007 1.700 2.283 2.241 2.617
I-GS 0.298 0.288 0.279 0.368 0.382 0.302 0.535 0.409

N-GM 0.009 0.005 0.006 0.005 0.006 0.005 0.004 0.005
I-GM 0.003 0.002 0.006 0.006 0.005 0.011 0.014 0.008

Slashdot

N-GS 1.724 5.397 10.01 17.44 21.89 62.26 46.42 48.04
I-GS 2.283 6.809 5.478 18.70 34.93 44.41 31.68 163.491

N-GM 0.003 0.003 0.002 0.001 0.003 0.001 0.002 0.001
I-GM 0.002 0.004 0.003 0.004 0.001 0.002 0.004 0.002

Bibtex

N-GS 3.263 6.438 17.45 19.34 24.32 30.17 19.78 21.74
I-GS 1.571 1.582 7.401 5.503 16.73 10.62 14.65 24.90

N-GM 0.043 0.059 0.061 0.034 0.061 0.040 0.081 0.023
I-GM 0.012 0.020 0.016 0.022 0.013 0.012 0.014 0.010

Table 6
The incremental speed-up for reconstruction of GSS between TSEN and IMOTSEN.
Dataset GSS Size of processed ratio

10% 20% 30% 40% 50% 60% 70% 80%

Genbase GS 1.027 1.174 1.275 1.230 1.580 2.051 1.628 1.634
GM 1.636 1.667 1.545 1.947 1.947 1.370 1.800 1.714

Medical GS 0.830 0.895 0.991 1.068 1.034 1.440 1.703 1.550
GM 1.453 1.176 0.988 0.976 1.111 1.047 1.187 0.955

Enron GS 1.623 2.062 2.204 2.751 2.363 2.584 2.513 2.881
GM 1.071 1.111 1.102 1.103 1.092 1.136 1.093 1.008

Languagelog GS 2.085 3.209 4.174 5.127 6.042 6.313 7.375 8.124
GM 1.088 1.107 1.094 1.095 1.140 1.106 1.165 1.175

Slashdot GS 1.256 1.160 1.231 1.027 0.850 0.834 0.784 0.840
GM 0.692 0.707 0.651 0.711 0.706 0.714 0.658 0.714

Bibtex GS 1.364 1.576 1.871 2.127 2.183 2.390 2.581 2.553
GM 1.259 1.199 1.201 1.154 1.107 1.053 1.019 0.991

From Fig. 3, we can observe that: (1) the classification perfor-
mance deduced from IMOTSEN is data-dependent, which means
the degree of instance inconsistency cannot be reduced signifi-
cantly; (2) for all considered metrics, the shape of ‘‘TSEN’’ and
‘‘IMOTSEN’’ is very similar, which means that ‘‘IMOTSEN’’ obtains
a comparable solution.

5.6. Robustness test for IMOTSEN with different threshold pairs

The accumulated computation time required for different
datasets with the algorithm ‘‘IMOTSEN’’ is shown in Fig. 4. The
x-axis corresponds to the value of threshold pair (α1, α2), and the
y-axis corresponds to the computation time.

From Fig. 4, we can conclude that fluctuations of time on each
dataset is very limited with different thresholds of (α1, α2). It fur-
ther validates that the computation time depends mostly on data
scale, which is also consistent with the analysis of algorithmic
complexity.

6. Discussion

Combining Sections 5.4–5.6, we can conclude that, without
losing too much classification accuracy, algorithm ‘‘IMOTSEN’’ can
accelerate knowledge updating. In this section, we attempt to
discuss some facets of ‘‘IMOTSEN’’.

The first issue concerns the computation time. The experimen-
tal results seem to be contradicted by the complexity analysis.
For updating of granular structure, we believe that in some cases,
the strategy of taking a granular structure at time t − 1 as the
starting point of t may incur erroneous heuristic information. This
means more attributes may be combined first to satisfy the ρ-
preserving requirement. Additionally, for cases that ρ-preserving
holds in both t − 1 and t , the incremental mechanism seems to
be more prudent in confirming the components of the granular
structure. This operation can also introduce computation. It is also
interesting to find that the acceleration of granular structure is
not equivalent to the acceleration of granular matrix (see speed-
up of ‘‘Slashdot’’ in Table 5), and vice versa (see speed-up of
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Fig. 3. Classification performance between TSEN and IMOTSEN on six multi-label
datasets with (α1, α2) = (0.8, 1.0).

Fig. 3. (continued).

‘‘Medical’’ in Table 5). The reasons are two folds: (1) the lim-
ited variations of reductions may influence the shared attributes,
leading to more non-positive elements in CCM . The acceleration
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Fig. 4. Execution time for updating GSS with IMOTSEN on multi-label datasets.

fails if the proportion of non-positive elements in CCM is large
enough, which means the computation of CCM is extra operation
in ‘‘TSEN’’. (2) the positive elements of CCM do not signify that the
granular structure can be preserved, which means the variations
of granular structure have limited influence on the result of
granular matrix.

Another issue is related to the strategy of updating granular
structure when ρ-preserving strategy holds (see Section 4.1.1).
Originally, we intend to keep the reducts unchanged when ρ-
preserving strategy holds. However, we find that the classification
performance on ‘‘Genbase’’ and ‘‘Medical’’ degenerate dramati-
cally as more labels known (for ‘‘Genbase’’, the performance on
‘‘Micro F1’’ reduced from 0.93 to 0.68, and for ‘‘Medical’’, the
performance on ‘‘Micro F1’’ reduced from 0.81 to 0.53). It is
reasonable since the model capacity, a metric to evaluate the
fitness of hypothesis space, is competent for a limited number of
instances with large size of features and labels. As more instances
are immigrated, the candidate solutions are gradually focused.
We believe that an incremental mechanism does not make any
sense if fast knowledge updating is obtained at the expense of
deteriorated quality. The change of updating strategy on granular
structure implies the value of controlled variations.

7. Conclusions

Labeling is a time-consuming work in practical applications,
and the cost in both time and money to obtain high-quality
label in multi-label data is exponential. To cope with multi-label
effectively, we propose a novel granular structure system from
the perspective of label-specific. Motivated by the knowledge
updating work in single-label environment, we have extended
three-way selective algorithm (‘‘TSEN’’) from a static environment
to dynamical environment (‘‘IMOTSEN’’). The introduction of in-
cremental mechanism on granular structure system can signifi-
cantly improve the computation efficiency with the maintenance
of classification performance. In the future work, we will consider
other scenarios of multi-label incremental learning. Real appli-
cations will also be examined to demonstrate the feasibility of
proposed algorithm.
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j ), i.e.

RB(Y
t+1
j ) = RB(Y

t
j ) ∪∆Et+1

Bi
.

(2) Given P(Y t
j |B

t
i ) ≥ αj, then for all Bi which satisfies P(Y t+1

j |

Bt+1
i ) < αj, we can deduce that Bt+1

i ⊈ POS
αj
B (Y t+1

j ) and Bt
i ⊆

POS
αj
B (Y t

j ). Since ∆Et+1
Bi
∈ ∆U t+1/B and Bt+1

i = Bt
i ∪ ∆Et+1

Bi
, we

have Bt
i ⊈ POS

αj
B (Y t+1

j ). Thus, for RB(Y
t+1
j ) we should delete all

these Bt
i from POS

αj
B (Y t

j ), i.e.

RB(Y
t+1
j ) = RB(Y

t
j )− Bt

i .

(3) Given P(Y t
j |B

t
i ) < αj, then for all Bi which satisfies P(Y t+1

j |

Bt+1
i ) ≥ αk, we can deduce that Bt+1

i ⊆ POS
αj
B (Y t+1

j ) and Bt
i ⊈

POS
αj
B (Y t

j ). Since ∆Et+1
Bi
∈ ∆U t+1/B and Bt+1

i = Bt
i ∪ ∆Et+1

Bi
,

we have Bt
i ⊆ POS

αj
B (Y t+1

j ) and ∆Et+1
Bi
⊆ POS

αj
B (Y t+1

j ). Thus,
for RB(Y

t+1
j ) we should append all these Bt

i and ∆Et+1
Bi

as a
component of RB(Y

t+1
j ), i.e.

RB(Y
t+1
j ) = RB(Y

t
j ) ∪ Bt

i ∪∆Et+1
Bi

.

(4) Given ∆Et+1
Bi
= ∅, then for all Bi, we can deduce that

Bt+1
i = Bt

i , which implies P(Y t+1
j |[x]B) = P(Y t

j |[x]B), i.e.

RB(Y
t+1
j ) = RB(Y

t
j ).

(5) Given P(Y t
j |B

t
i ) < αj, then for all Bi which satisfies P(Y t+1

j |

Bt+1
i ) < αj, we can deduce that Bt+1

i ⊈ POS
αj
B (Y t+1

j ) and Bt
i ⊈

POS
αj
B (Y t

j ). Since ∆Et+1
Bi
∈ ∆U t+1/B and Bt+1

i = Bt
i ∪ ∆Et+1

Bi
, we

have Bt
i ⊈ POS

αj
B (Y t+1

j ), which implies addition of ∆Et+1
Bi

has no
influence on POS

αj
B (Y t+1

j ), i.e.

RB(Y
t+1
j ) = RB(Y

t
j ). □

Proof of Theorem 1

Proof. According to Eq. (13), we can deduce that

ρ
(α1,α2)
Rt+1i

(U t+1/Li) =
|R

α1
Rt+1i

(Y t+1
1 )|+|R

α2
Rt+1i

(Y t+1
2 )|

|U t+1|
Since U t+1

= U t
∪

∆U t+1, we have
⏐⏐U t+1

⏐⏐ = ⏐⏐U t
∪∆U t+1

⏐⏐ = ⏐⏐U t
⏐⏐+ ⏐⏐∆U t+1

⏐⏐. Mean-
while, the condition ∆U t+1 is composed of ∆U t+1

1 and ∆U t+1
2 im-

plies that equivalence classes from either ∆U t+1
1 /Rt

i or ∆U t+1
2 /Rt

i
have the result of empty set with the intersection of U t/Rt+1

i .

Given Rt+1
i ← Rt

i , we will demonstrate the three components
subsequently.

(1) For the first q equivalence classes (i.e. Et
r , r ∈ {1, 2, . . . , q}),

we have ∆Et+1
r = ∅. Furthermore, for such Et

r , they will be
recognized as component of lower approximation with regard to
Yk at time t + 1 if it satisfies condition Et

r ⊆ Rαk
Rti
(Y t+1

j ). Accord-

ingly, we denote

∑j
r=1

⏐⏐⏐⏐⋃{Etr | Etr⊆Rαj
Rti

(Y t+1
j )}

⏐⏐⏐⏐
|U t |+|∆U t+1|

as the first component of

ρ
(α1,α2)
Rti

(U t+1/Li).
(2) For the middle s equivalence classes (i.e. Et

r , r ∈ {q +
1, q + 2 · · · , q + s}), the condition Et

r ∪ ∆Et+1
r ⊆ R

αj
Ri
(Y t+1

j )
implies that both Et

r ⊆ R
αj

Rti
(Y t+1

j ) and ∆Et+1
r ⊆ R

αj

Rti
(Y t+1

j ). From

Definition 3, we have P(Y t+1
j |E

t
i ) ≥ αk and P(Y t+1

j |∆Et+1
i ) ≥

αj. Obviously, we have P(Y t
j |E

t
i ) ≥ αk. Based on Lemma 2, we

have RRti
(Y t+1

k ) = RRti
(Y t

j ) ∪ ∆Et+1
Rti

. Accordingly, we denote∑q+s
r=q+1

⏐⏐⏐⏐⋃{Etr∪∆Et+1r | Etr∪∆Et+1r ⊆R
αj
Rti

(Y t+1
j )}

⏐⏐⏐⏐
|U t |+|∆U t+1|

as the second component of

ρ
(α1,α2)
Rti

(U t+1/Li).
(3) For the last v equivalence classes (i.e. Et

r , r ∈ {q+ s+1, q+
s+ 2 · · · , q+ s+ v}), they have empty intersections with regard
to all Et

r ∈ U t/Rt+1
i . the condition ∆Et+1

r ⊆ R
αj

Rti
(Y t+1

j ) implies that

∆Et+1
r ⊆ R

αj

Rti
(Y t+1

j ). From Definition 3, we have P(Y t+1
j |∆Et+1

i ) ≥

αk. Based on Lemma 2, we have RRti
(Y t+1

j ) = RRti
(Y t

j ) ∪ ∆Et+1
Ri

.

Accordingly, we denote

∑q+s+v
r=q+s+1

⏐⏐⏐⏐⋃{∆Et+1r |∆Et+1r ⊆R
αj
Rti

(Y t+1
j )}

⏐⏐⏐⏐
|U t |+|∆U t+1|

as the

third component of ρ
(α1,α2)
Rti

(U t+1/Li). □

Proof of Theorem 2

Proof. ccmt−1
i,j > 0 suggests that Rt−1

i ∩ Rt−1
j ̸= ∅. ccmt−1

i,j +⏐⏐⏐∆Rt
i ∩∆Rt

j

⏐⏐⏐− ⏐⏐⏐∆Rt
i ∪∆Rt

j

⏐⏐⏐ > 0 measures the lower bound of
variations of intersecting attributes to removal attributes. Here
lower bound means that elements in ∆Rt

i ∩∆Rj
t are definitely

a subset of Rt
i and Rt

j whereas the attributes in ∆Rt
i ∪∆Rt

j may

not reduce the size of the intersection of Rt−1
i and Rt−1

j . Since
∆Rt

i ∩ ∆Rt
i = ∅ and ∆Rt

j ∩ ∆Rt
j = ∅ hold, varied attributes will

not be repetitively counted. Hence we complete the proof. □

Proof of Theorem 3

Proof. Without losing generality, we consider the relation be-
tween ccmt

i,j and gmt
i,j. The positive of ccmt

i,j, which implies⏐⏐Rt
i ∩ Rt

j

⏐⏐ > 0. According to Definition 7, gmt
i,j > 0 holds. This

completes the proof. □
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