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1. Introduction

Businesses are looking at data mining for improving theafifs. Data mining can contribute towards
profits by reducing costs as well as increasing revenueseXxample, if a business is planning a mar-
keting campaign, data mining can be used to target custowigpsare most likely to respond to the
campaign. Such an analysis is usually based on expecteih laggobabilistic framework. Probabilistic
extensions have played a major role in the development gfreet theory since its inception. Recently,
Yao [15] provided a comprehensive overview of many of thébphilistic extensions of rough set theory.
The models included in the overview were: rough set-baselamilistic classification [14], 0.5 proba-
bilistic rough set model [7], decision-theoretic rough metdels [16, 17], variable precision rough set
models [3, 18], rough membership functions [7], parame¢efirough set models [8, 10], and Bayesian
rough set models [2, 11, 12]. The list of probabilistic medélat could be explained under the decision
theoretic framework is a testimony in itself to the usefskef the approach. The study of such a variety
of models under a common framework also helps understandirfitarities and differences between
the models. Such a comparison can help in choosing the rigbdehfor the application on hand. It can
also help in creating a new model that combines desirabtarfesaof two or more models. Finally, it can
also lead to a unified model that can be moulded to a givenagtigh requirement. Yao [15] described
how the decision theoretic framework exposed additiorslds in probabilistic rough set models. This
paper builds on Yao’s decision theoretic model to develomaé&work that can be used for supervised,
unsupervised, and semi-supervised learning. Moreoverfréimework does not depend on the notions
such as equivalence classes or decision tables. The adianb of this paper are as follows:

1. The framework described in this paper includes supetvégel unsupervised learning. Conven-
tionally, the classification techniques refer to only sujsd learning. When the objects are cate-
gorized without the help of a supervisor, the categoriesuatally called clusters. The proposed
framework is applicable to both classification and clustgproblems. The termategoryempha-
sizes the fact that it can be based on supervised or unsapdréarning.

2. Another interesting feature of the proposal is that it<doet rely on the traditional concepts in the
rough set theory such as equivalence classes and deciblen.ta

3. While rough set classification is frequently applied taenthian two classes, Yao's decision theo-
retic approach was illustrated for classification betweasitive and negative regions. This paper
extends the framework to multiple categories that is applie to both classification and cluster-
ing. The extended framework is shown to reduce to Yao's ifleason approach when the number
of categories is equal to two. It is also shown that the decitiieoretic crisp categorization is a
special case of the rough set based approach.

4. The proposal is used to describe a semi-supervised hgpbaised on cost/benefit considerations
for a real world retail store. The experiment describes hiaigfinancial implications of a targeted
marketing campaign that is modelled using the proposeddinark.

The paper concludes with a discussion on the advantagesadircing decision theoretic framework
in further theoretical development, especially in the foalystering area.
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2. Literature review

This section provides a review of research that lays fouoddor the proposed approach.

2.1. Review of rough sets

The notion of rough set theory was proposed by Pawlak (19892)L It can be approached as an
extension of the classical set theory. Letlenote the universe (a finite ordinary set), anddlet U x U

be an equivalence (indiscernibility) relation 6h The pairapr = (U, E) is called an approximation
space. The equivalence relatidh partitions the seUU into disjoint subsets, denoted iy/E. For

x € U, let[z] = {y | xEy} denote the equivalence classBfcontainingz. For a subsetl C U, A is
characterized in the approximation spage = (U, F) by its lower and upper approximations, defined
respectively as:

apr(A) ={z e U [z] € A};
apr(A) ={z e U|[[z]N A # 0}. (1)

The lower and upper approximationspr, apr, are dual operators in the sense that(A) =
(apr(A°)) andapr(A) = (apr(A°))¢, whereA¢ is set complement afl. Based on the rough set ap-
proximations of4, one can divide the univergéinto three disjoint regions, the positive regifd.S(A),
the boundary regio® N D(A), and the negative regiaN EG(A):

POS(A) = apr(A),
BND(A) = apr(A) — apr(A),
NEG(A) =U — POS(A)| JBND(A) = U — apr(A) = (apr(A))°. )

Some of these regions may be empty. One can say with certdiatyany element: € POS(A)
belongs ta4, and that any elementce N EG(A) does not belong td. One cannot decide with certainty
whether or not an elemente BN D(A) belongs toA.

2.2. The Bayesian decision procedure

The Bayesian decision procedure deals with making decisitim minimum risk based on observed
evidence. Lef) = {wy,...,ws} be afinite set ok states, and le!l = {a,...,a,} be afinite set of
possiblem actions. LetP(w;|x) be the conditional probability of an objectbeing in statev; given that
the object is described by Let A(a;|w;) denote the loss, or cost for taking actienwhen the state is
w;. For an object: with descriptionx, suppose action; is taken. Since’(w;|x) is the probability that
the true state is); givenx, the expected loss associated with taking actipis given by:

R(ailx) =D Mailw;)P(w;|x) @)
j=1

The quantityR(a;|X) is also called the conditional risk.
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Given a descriptiorx, a decision rule is a function(x) that specifies which action to take. That is,
for everyx, 7(x) takes one of the actions;, . .., a,,. The overall riskR is the expected loss associated
with a given decision rule, defined by:

R=>Y"R(r(x)X)P(x) (4)

If the actionT(X) is chosen so thaR(7(x)|x) is as small as possible for every objectFor every
X, compute the conditional risk(a;|x) for i = 1,..., m defined by equation (3) and select the action
for which the conditional risk is minimum. If more than onedian minimizesR(a;|x), a tie-breaking
criterion can be used.

2.3. Yao’s basic model

Yao proposed probabilistic rough set approximations ifj,[ihich applies the Bayesian decision pro-
cedure for the construction of probabilistic approximasio The classification of objects according to
approximation operators in rough set theory can be easibdfinto the Bayesian decision-theoretic
framework. LetQ? = {A, A°} denote the set of states indicating that an object id iand not inA,
respectively. LetA = {a1, a2, a3} be the set of actions, whetg, a» andas represent the three actions
in classifying an object, decidinfOS(A), decidingN EG(A), and decidingBN D(A), respectively.
The probabilitiesP(A|[x]) and P(A¢|[z]) are the probabilities that an object in the equivalencesclas
[x] belongs toA and A¢, respectively. The expected loB%a;|[z]) associated with taking the individual
actions can be expressed as:

R(ar[[z]) = A P(Al[z]) + A2 P(A%|[2]), ()
R(az[x]) = A1 P(A|[2]) + Az P(A%|[]), (6)
R(as[x]) = As1 P(A|[z]) + Az2 P(A%|[2]), (7)

whereA;; = A(a;|4), A2 = A(a;|A°), andi = 1,2,3. The Bayesian decision procedure leads to the
following minimum-risk decision risk:

If R(as|[z]) < R(as|[z]) andR(a1|[z]) < R(as|[z]), decidePOS(A);
If R(as|[z]) < R(a1|[z]) andR(as|[z]) < R(as|[z]), decideN EG(A);
If R(as|[z]) < R(a1|[z]) andR(as|[z]) < R(as|[z]), decideBN D(A).

Tie-breaking criteria should be added so that each objedassified into only one region. Since
P(A|[z])+P(A¢|[z]) = 1, the rules to classify any object jm] can be simplified based on the probability
P(A|[z]) and the loss function;; (i = 1,2,3; j = 2,2).

2.4. Probabilistic rough set model

Based on the general decision-theoretic rough set modslpibssible to construct specific models by
considering various classes of loss functions. In fact, yresting models can be explicitly derived
from the general model. For example, the 0.5 probabilisticiehcan be derived when the loss function
is defined as follows:

A2 = Ao =1, A31 = Az2 = 0.5, A1 = A2 = 0. (8)
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A unit cost is incurred if an object iM€ is classified into the positive region or an object4n
is classified into the negative region; half of a unit costnisuired if any object is classified into the
boundary region. The 0.5 model corresponds to the apgicati the simple majority rule.

3. Proposed approach

Yao’s basic model was described only for positive, negatinel boundary regions and applied to classifi-
cation. This section provides a formal framework that cand®sl with both supervised and unsupervised
multiple rough categories. Another interesting featuréhefproposal is that it does not rely on the tra-
ditional concepts in the rough set theory such as equivaletasses and decision table. We will begin
with formal definitions for the proposed framework that caruised for clustering and classification.

3.1. Framework for supervised and unsupervised learning

We will use the terms category, classes, and clusters h@ageably whenever it is appropriate in the
context.
Objects: Let X = {x31,...,xn} be afinite set of objects.

Categories LetC = {c1,...,ck} be afinite set ok states given that’ is the set of categories and each
category is represented by a veatp(1 < i < k). Furthermore, le€ partition the set of objectX .

Object and category similarity: For every objectx;, we define a non-empty sét of all the categories
that are similar tox;. Clearly,7; € C. We will usex; — T} to denote the fact that objegy is similar
to all the elements of séf. Let us further stipulate that objegt can be similar to one and only ofig
The definition of the similarity will depend on a given apglion. Later on we will see an example of
how to calculate similarity using probability distributio

Upper and lower approximations: If an objectx; is assigned to a s&, then the object belongs to the
upper approximations of all categoriese 7;. If | T; |= 1, thenx; belongs to the lower approximation
of the onlyc; € T;. Please note that whei¥; |= 1, {c;} = T;. Therefore, upperapr) and lower ¢pr)
approximation of each categoey can be defined as follows:

apr(c;) = {x1|x1 — T, ¢c; € Tj}, ()]
apr(c;) = {x1|x1 — 1, {c;} = Ti}. (10)

Since we do not define upper and lower approximations of allstibsets o, we cannot test all
the properties of rough set theory. However, it can be easibwn that the resulting upper and lower
approximations in fact follow important rough set theargtioperties given the fact thét is a partition
of X specified by Lingras and West [5].

e An object can be part of at most one lower approximation (P1)

® X) € @(Ci) = X)] € W(Ci) (P2)

¢ An objectx; is not part of any lower approximation (P3)
T

x) belongs to two or more upper approximations.
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3.2. Loss functions for multi-category problem

Following Yao [15], we define a set of states and actions torites the decision theoretic framework for
multi-category rough sets.

States The states are essentially the set of categaries {c1, ..., cx}.

An object is said to be in one of the categories. However, ddadk of information we are unable
to specify the exact state of the object. Therefore, oupastare defined as follows.

Actions: Let B = {By, ..., B,} = 2¢ — {(} be a family of non-empty subsets @f wheres = 2¥ — 1.
We will define a set of actions = {b1,...,bs} corresponding to seB, whereb; represents the action
in assigning an object, to the setB;.

Note that some of the sef3;’s will be the same as the séj's defined in previous sections. The
reason we choose to use a different notation is to emphdmzadt that we do not specify any similarity
betweenx; and B; as we do in case of; and7;. Note that there will be a total of 7;’s, one for each
object, and they may not be distinctly different from eadteat That is, two objects may be similar to
the same subset ¢f. On the other hand, there will be exacty-= 2k _ 1 distinct B;’s.

Now we are ready to write the Bayesian decision proceduredormulti-category rough sets as
follows.

Let Ay, (bj]ci) denote the loss, or cost, for taking actigrwhen an object belongs tg. Let P(c;|x)
be the conditional probability of an objegi being in statec;. Therefore, the expected loggb;|x;)
associated with taking actidr for an objectx; is given by:

k
R(bjlx1) = Y Ay (bjles) Plesfxa) (11)
i=1
For an objeck;, if R(bj|x1) < R(by|x1),V h=1,...,k, then decidé;.
We generalize the loss function for the 0.5 probabilistiadeio[10] given by Yao [15] as follows:

b — 11
b5
b; — 0|

Ax (bjlei) = Bl if ci¢b;. 12)

Axq (bjlei) = if ci€b;;

Whenc; belongs ta;, the loss for taking actiob; corresponds to the fraction df that is not related
to x;. Otherwise, the loss for taking actién will have the maximum value of 1.

It can be easily seen that whiiis equal to 2(C' = {c1, c2}. Therefore B = {{c1 }, {c2}, {c1,c2}}.
Without loss of generality, we can designateto be the positive clasgg to be the negative class, and
{c1, c2} to be the boundary region. Then one can easily verifyXRat{c, }|c1) = 0, Ax,({c2}|e1) = 1,
and A, ({c1,c2}|c1) = % which corresponds to the loss function described by Ya@ fd5the 0.5
probabilistic model [9].

Let us illustrate the proposed rough multi-category exgetdss function with the following exam-
ple.
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Table 1. Expected loss for all the actions from Example 1.

The expected loss R(bj|x1) Action
0.35 {cs3,c4}
0.433 {c2,c3,c4q}
0.467 {c1,c3,c4}
0.5 {c1,c2,c3,c4}
0.6 {ca}
0.7 {c2,c4}
0.725 {c1,ca}
0.75 {cs},{c1,c2,c4}
0.775 {c2,c3}
0.8 {c1,c3},{c1,c2,c3}
1 {c1},{ca}. {c1,c2}

Table 2. Expected loss for all the actions from Example 2.

The expected loss R(bj|x1) Action
0.6 {ca}
0.75 {cs3}
0.8 {c2}
0.85 {c1}

Example 1L LetC = {cj,c2,c3,c4} andB = 2¢ — {()} (|B| = 2* — 1 = 15). For an object;,

let {P(Cl‘Xl), P(C2’X1), P(Cg’X]), P(C4‘X1)} = {015, 0.2,0.25, 04} We will define the sef; such
thatx; — 7; as: 7} = {cn|P(cn|x1) > 0.2} = {c3,c4}. The expected loss associated with taking
actionb; is shown in Table 1. The values of the expected loss seemmgais®nable. The lowest value is
obtained for the sef; = {cg,c4}. Itis highest for the sets that do not contain eitbgor c4. Since the
probability of P(c4) > P(c3), the sets containing, tend to have lower loss than those containigg

Example 2.One can also obtain a crisp categorization from the propfisetllation by stipulating that

all theT;’s in our formulation are singleton sets. We can demonstraseby using the same probability
function, but changing the criteria for defining the $gtsuch thatx; — 7; as: 7; = {cp} such that
P(cn|x;) is maximum. If more than one sueh have the same (maximum) value, we arbitrarily choose
the firste;,. This ensures thdl; is a singleton set. In our example, with

{P(c1]x1), P(ca|x1), Pcs|x1), Plcalx)} = {0.15,0.2,0.25,0.4},

T; = {c4}. The resulting expected loss function in this example isvshim Table 2.
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4. Modeling promotional campaign for a real world retail store

As mentioned before, one of the major advantages of usindebision theoretic frameworks is that we
can enhance our loss function using dollar amounts. Letunsider a real world retail store, which wants
to increase its profits by classifying customers into thoke would potentially help increase the profits,
and those who may not. The profits will be represented by datt@ounts. Since the decision theoretic
framework focuses on minimizing losses, we can look at @i negative losses in our formulation.
Minimizing the losses in the decision theoretic framewoik tianslate to maximizing profits for the
retailer.

The database we used for our experiment comes from a smalbpeetail store. It has more than
257,000 transactions. The store has 9,080 distinct iterdgtendatabase contains purchase history of
more than 16,000 customers. All transactions are compldteicig the period of January 02, 2005 to
September 30, 2007. Only a third of the identified customexrsedatively frequent visitors. These 5,565
customers will be the potential targets of our marketing gaign.

Let .S; be the total annual sales for custonser Let profit M argin be the ratio of profits and sales.
The profit margin before fixed costs was found to be 30%. So ¢nefiis fromS; amount of sales will
be S; x 0.3. Loss will be negative of profits, i.e-.S; x 0.3.

Let us consider a promotional campaign targeted at relgtivigh and regular spenders. Let us
assume that it is a two tier campaign that will be aimed at tipettvo categories of customers. The
customers that do not qualify for either of the two promagiamill fall into the third category. While
spending is the most important criteria, the regularityhwithich a customer visits the store is also an
important consideration in determining the likelihood log¢ tcustomer being attracted by the campaign.
Therefore, in addition to the total spending, the number ohtihs customers visited the store was used
as an indication of their regular patronage.

For the two-tier promotional campaign we need to separatomers into three categories:

1. Most regular and high spenders;
2. Moderately regular and reasonable spendsys:
3. Relatively infrequent low spenders;

Since we do not have an expert who can positively identifyausrs in each one of these categories,
we first group the existing customers into three clustensguie K-means algorithm. Each custonser
is represented by a two dimensional vedtor , x;2 ), wherez;; is the spending for the customer ang
is the number of months in which the customer visited theestdhe range of sales for customers were
as high as $10,000. On the other hand, the valueg.ofvould be betweerfl, 12]. The sales amount
would have completely dominated the number of months in nalyais. Thereforey;; was normalized
to a value betweef0, 100]. Similarity of a customei; with a centroidc; generated by the K-means
algorithm was used to calculate the probabilityc;|x;) of the customex; belonging to the clustet;
as:

sim(c;, x;)

Zizlsim(ch,xl)
We used inverse of the Euclidean distance betweer;taedx; to determinesim(c;, x;). We will
define the sefl; such thatx; — T; as: 7T; = {c;|P(c;|x;) > 0.3}. It should be noted that thegg’s

P(eilx;) = (13)
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Table 3. Number of Customers in Upper and Lower Bounds.

Cluster | Lower bound | Upper bound
c1 3999 4413
Co 747 1331
Cc3 235 405

essentially give us rough set representations for the tmeaeps of customers. For examplg,= {c2}
means that the objegf; belongs to the lower bound ef. On the other hand]; = {c2, c3} implies that

the objectx; belongs to the boundary region ef andcs. Table 3 shows the upper and lower bounds of
the resulting clusters. There was an overlap of 414 cus®bwtween clusters;, andc,. Similarly, 170
customers were in the intersectionafandcs. However, there were no customers in the intersection of
c; andcs.

Based on the probabilities afiifs described above, we are now ready to apply the rough evstft
analysis to various possible promotional campaigns. Tls¢ tier promotion will be directed at the
customers in the regularly visiting highest spending aaegs. Each promotional campaign has an
associated cost and possible benefits. Cost can be expresgeblute dollar terms such as $75 or $50.
The benefits usually vary depending on the customers. Wausdllpossible percent increase in sales to
calculate the benefits.

Let costs be the cost for top tier promotion amding be the increase in sales for the top tier cus-
tomers. That means the increase in sales for the top tiesroess will beS; x gains. The nominal profit
will increase byS; x gaing x profitMargin. We have to subtract the cost of promotion in calculating
the increase in profits, so the net profits willBex gaing x profit Margin — costs. Since the dollar
loss is the negative of profits, the loss will bests — .S; x gaing x profitMargin. We can now modify
the cost for all the actions; such thatcs; € b;, since these actions possibly assign a customer to the
highest spending categoey. The modified loss function for such action will be given as:

Ax, (bjlei) = (costs — S x gaing x profitMargin) (14)
b; —T;| .
ulf CiEbj/\C;gEbj;
b1
Ax, (bjlci) = (costs — S x gaing x profitMargin) (15)
b; — 0| .
X’] m if CiﬁébjACngj.
b1

The second tier promotional campaign will be directed atrtwerately regular and reasonable
spenders from categony. Let costs be the cost for second tier promotion apdns be the correspond-
ing increase in sales. That means the increase in salessfeetond tier customers will & x gains.
The nominal profit will increase by, x gaing x profitMargin. We have to subtract the cost of promo-
tion in calculating the increase in profits, so the net prefitsbe S; x gaing x profitMargin — costs.
Since the dollar loss is the negative of profits, the losslvéltosts — S; X gaing x profitMargin. We
will exclude all the customers who have already been a tarfg€ier 1 campaign. That means we need
to modify the cost for all the actions; such thatc, € b; andes ¢ b;. The modified loss function for
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Table 4. Number of Customers in Each Group for Different Rstomal Campaigns.

Scenario | Tier1l | Tier2 | No promotion
1 63 1095 4407
2 238 920 4407
3 115 1314 4136
such action will be given as:
Ax, (bjlei) = (costa — S x gaing x profitMargin) (16)
b; —1i|.
X %If CiEbjA03¢bjA02€bj;
J
Ax, (bjlei) = (costa — S x gaing x profitMargin) a7
b — 0| .
| j|b |@| if c; ¢ bj/\Cg ¢ bj/\CQ Ebj.
J

The loss functions for the remaining actiolsthat do not assign customers to eitlegror c, remain
unchanged.

The loss function described above can be used with the watifigory decision theoretic framework
outlined in the earlier section to generate rules for dagidvhich customers will be targeted for the two
promotional campaigns.

The rough cost/benefit analysis allows us to test variousasi®s based on different assumptions
about the possible gains. We experimented with three sosnar

1. costz = $50, gaing = 10%, costo = $10, gaing = 5%.
2. costy = $75, gaing = 20%, costs = $10, gaine = 5%.
3. costg = $75, gaing = 20%, costs = $25, gaing = 15%.

Table 4 shows the number of customers that qualify for Tiend &ier 2 promotions, based on
different values of costs and gains given by the three saenaFirst column in the table indicates the
scenario. Second column describes the number of custonmergualify for our Tier 1 promotion. Third
column represents the number of customers who should eed&v 2 promotional offers. Number of
customers who should not get any promotional offer is givethé last column.

If we compare numbers from Tables 3 and 4 we can draw a comdspoe between the clusters
obtained prior to cost/benefit analysis and the custometstialify for different promotions. The cus-
tomers qualifying for Tier 1 and Tier 2 promotions seem to ednom the lower and upper bounds of
c3 andcs. While the non-targeted customers seem to be from the lomeugper bounds af;. The
boundaries of these clusters will be affected by the costdanefits given in the three scenarios.

It can be seen that when the valuesco$ts and gaing went up from scenario 1 to scenario 2, a
number of customers moved from Tier 2 to Tier 1. This meansithae expect larger sales for Tier
1 promotion, more customers seem to qualify for the pronmmotibhis movement from Tier 2 to Tier 1
is a result of shift in the boundary region ef andc,. The customers from this boundary region who
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originally qualified for Tier 2 promotion are now bumped uprier 1 promotional offer. However, non-
targeted customers remained the same, because their smkesmlow that the expected rise in sales did
not justify increased cost of promotion. Moreover, the mengeted customers are in the lower and upper
bounds of;. Since the boundary region of andc; was empty, the movement from non-targeted group
to Tier 1 promotion is unlikely.

On the other hand, when we raisegkt, and gaino, the Tier 2 group gained customers from Tier
1 as well as previously non-targeted customers. The movefreen Tier 1 to Tier 2 is a result of shift
in the boundary region of3 andcs. Some of these customers are moving down to Tier 2, as Tier 2's
expected rise in sales has increased. The movement frontargeted customers to Tier 2 promotion
comes from the shift in the boundary regioncefandc,. Some of these customers may have sufficient
increase in sales to justify cost of promotion for Tier 2. Asdre, there is no movement of customers
from non-targeted group to Tier 1 promotion, since the bampdegion ofcg andc; was empty.

This type of what-if scenarios can be used by a marketing gerta come up with the most suitable
promotional campaign. Once a promotional campaign has in@gemented in practice, the marketing
managers will have better ideas for the valueswts, gaing, costs, gaing for subsequent campaigns.

5. Concluding remarks

This paper builds on the Bayesian decision procedure destidy Yao [15] by making it possible to
use it for supervised and unsupervised learning. The peapframework is shown to be useful even in
the absence of explicit equivalence relations and decisibles. The paper also describes how such a
framework can be used in cost/benefit analysis for a business

The definition of probability used in this paper is abstracbpposed to the frequency based values
used in various probabilistic rough set models, includimegunified framework proposed by Yao [15]. By
changing the definition of the probability one can easily@dibe Bayesian decision process to rough set
based clustering. Such an adoption can be useful in futtiearetical development in rough clustering.

Finally, the paper illustrates an application of the decisiheoretic framework for monetary cost
and benefit analysis in the business world with the help of Hitier promotional campaign for a real-
world retail store. The approach described in this papes ssmi-supervised rough cost/benefit analysis
to identify customers who should be targeted for differgpet of promotion. The customers are first
clustered based on the regularity with which they visit aesand the amount of money they spend. The
resulting profiles of clusters are used to calculate prditi@si and create rough set representations of
these clusters. Finally, the proposed cost/benefit arslysised to target customers with most beneficial
promotional strategy. The experiments describe how thpgs®d approach can be used to do a what-if
analysis based on different assumptions about the costewfgtions and expected gains in sales.
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