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1. Introduction

Businesses are looking at data mining for improving their profits. Data mining can contribute towards
profits by reducing costs as well as increasing revenues. Forexample, if a business is planning a mar-
keting campaign, data mining can be used to target customerswho are most likely to respond to the
campaign. Such an analysis is usually based on expected lossin a probabilistic framework. Probabilistic
extensions have played a major role in the development of rough set theory since its inception. Recently,
Yao [15] provided a comprehensive overview of many of the probabilistic extensions of rough set theory.
The models included in the overview were: rough set-based probabilistic classification [14], 0.5 proba-
bilistic rough set model [7], decision-theoretic rough setmodels [16, 17], variable precision rough set
models [3, 18], rough membership functions [7], parameterized rough set models [8, 10], and Bayesian
rough set models [2, 11, 12]. The list of probabilistic models that could be explained under the decision
theoretic framework is a testimony in itself to the usefulness of the approach. The study of such a variety
of models under a common framework also helps understand thesimilarities and differences between
the models. Such a comparison can help in choosing the right model for the application on hand. It can
also help in creating a new model that combines desirable features of two or more models. Finally, it can
also lead to a unified model that can be moulded to a given application requirement. Yao [15] described
how the decision theoretic framework exposed additional issues in probabilistic rough set models. This
paper builds on Yao’s decision theoretic model to develop a framework that can be used for supervised,
unsupervised, and semi-supervised learning. Moreover, the framework does not depend on the notions
such as equivalence classes or decision tables. The contributions of this paper are as follows:

1. The framework described in this paper includes supervised and unsupervised learning. Conven-
tionally, the classification techniques refer to only supervised learning. When the objects are cate-
gorized without the help of a supervisor, the categories areusually called clusters. The proposed
framework is applicable to both classification and clustering problems. The termcategoryempha-
sizes the fact that it can be based on supervised or unsupervised learning.

2. Another interesting feature of the proposal is that it does not rely on the traditional concepts in the
rough set theory such as equivalence classes and decision tables.

3. While rough set classification is frequently applied to more than two classes, Yao’s decision theo-
retic approach was illustrated for classification between positive and negative regions. This paper
extends the framework to multiple categories that is applicable to both classification and cluster-
ing. The extended framework is shown to reduce to Yao’s classification approach when the number
of categories is equal to two. It is also shown that the decision theoretic crisp categorization is a
special case of the rough set based approach.

4. The proposal is used to describe a semi-supervised learning based on cost/benefit considerations
for a real world retail store. The experiment describes weighing financial implications of a targeted
marketing campaign that is modelled using the proposed framework.

The paper concludes with a discussion on the advantages of introducing decision theoretic framework
in further theoretical development, especially in the rough clustering area.
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2. Literature review

This section provides a review of research that lays foundation for the proposed approach.

2.1. Review of rough sets

The notion of rough set theory was proposed by Pawlak (1982, 1992). It can be approached as an
extension of the classical set theory. LetU denote the universe (a finite ordinary set), and letE ⊆ U ×U
be an equivalence (indiscernibility) relation onU . The pairapr = (U,E) is called an approximation
space. The equivalence relationE partitions the setU into disjoint subsets, denoted byU/E. For
x ∈ U , let [x] = {y | xEy} denote the equivalence class ofE containingx. For a subsetA ⊆ U , A is
characterized in the approximation spaceapr = (U,E) by its lower and upper approximations, defined
respectively as:

apr(A) = {x ∈ U | [x] ⊆ A};

apr(A) = {x ∈ U | [x] ∩ A 6= ∅}. (1)

The lower and upper approximations,apr, apr, are dual operators in the sense thatapr(A) =
(apr(Ac))c andapr(A) = (apr(Ac))c, whereAc is set complement ofA. Based on the rough set ap-
proximations ofA, one can divide the universeU into three disjoint regions, the positive regionPOS(A),
the boundary regionBND(A), and the negative regionNEG(A):

POS(A) = apr(A),

BND(A) = apr(A) − apr(A),

NEG(A) = U − POS(A)
⋃

BND(A) = U − apr(A) = (apr(A))c. (2)

Some of these regions may be empty. One can say with certaintythat any elementx ∈ POS(A)
belongs toA, and that any elementx ∈ NEG(A) does not belong toA. One cannot decide with certainty
whether or not an elementx ∈ BND(A) belongs toA.

2.2. The Bayesian decision procedure

The Bayesian decision procedure deals with making decisionwith minimum risk based on observed
evidence. LetΩ = {ω1, . . . , ωs} be a finite set ofs states, and letA = {a1, . . . , am} be a finite set of
possiblem actions. LetP (ωj|x) be the conditional probability of an objectx being in stateωj given that
the object is described byx. Let λ(ai|ωj) denote the loss, or cost for taking actionai when the state is
ωj. For an objectx with descriptionx, suppose actionai is taken. SinceP (ωj|x) is the probability that
the true state isωj givenx, the expected loss associated with taking actionai is given by:

R(ai|x) =

s∑

j=1

λ(ai|ωj)P (ωj |x) (3)

The quantityR(ai|x) is also called the conditional risk.
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Given a descriptionx, a decision rule is a functionτ(x) that specifies which action to take. That is,
for everyx, τ(x) takes one of the actions,a1, . . . , am. The overall riskR is the expected loss associated
with a given decision rule, defined by:

R =
∑

x

R(τ(x)|x)P (x) (4)

If the actionτ(x) is chosen so thatR(τ(x)|x) is as small as possible for every objectx. For every
x, compute the conditional riskR(ai|x) for i = 1, . . . ,m defined by equation (3) and select the action
for which the conditional risk is minimum. If more than one action minimizesR(ai|x), a tie-breaking
criterion can be used.

2.3. Yao’s basic model

Yao proposed probabilistic rough set approximations in [15], which applies the Bayesian decision pro-
cedure for the construction of probabilistic approximations. The classification of objects according to
approximation operators in rough set theory can be easily fitted into the Bayesian decision-theoretic
framework. LetΩ = {A,Ac} denote the set of states indicating that an object is inA and not inA,
respectively. LetA = {a1, a2, a3} be the set of actions, wherea1, a2 anda3 represent the three actions
in classifying an object, decidingPOS(A), decidingNEG(A), and decidingBND(A), respectively.
The probabilitiesP (A|[x]) andP (Ac|[x]) are the probabilities that an object in the equivalence class
[x] belongs toA andAc, respectively. The expected lossR(ai|[x]) associated with taking the individual
actions can be expressed as:

R(a1|[x]) = λ11P (A|[x]) + λ12P (Ac|[x]), (5)

R(a2|[x]) = λ21P (A|[x]) + λ22P (Ac|[x]), (6)

R(a3|[x]) = λ31P (A|[x]) + λ32P (Ac|[x]), (7)

whereλi1 = λ(ai|A), λi2 = λ(ai|Ac), andi = 1, 2, 3. The Bayesian decision procedure leads to the
following minimum-risk decision risk:

If R(a1|[x]) ≤ R(a2|[x]) andR(a1|[x]) ≤ R(a3|[x]), decidePOS(A);
If R(a2|[x]) ≤ R(a1|[x]) andR(a2|[x]) ≤ R(a3|[x]), decideNEG(A);
If R(a3|[x]) ≤ R(a1|[x]) andR(a3|[x]) ≤ R(a2|[x]), decideBND(A).

Tie-breaking criteria should be added so that each object isclassified into only one region. Since
P (A|[x])+P (Ac|[x]) = 1, the rules to classify any object in[x] can be simplified based on the probability
P (A|[x]) and the loss functionλij (i = 1, 2, 3; j = 2, 2).

2.4. Probabilistic rough set model

Based on the general decision-theoretic rough set model, itis possible to construct specific models by
considering various classes of loss functions. In fact, many existing models can be explicitly derived
from the general model. For example, the 0.5 probabilistic model can be derived when the loss function
is defined as follows:

λ12 = λ21 = 1, λ31 = λ32 = 0.5, λ11 = λ22 = 0. (8)
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A unit cost is incurred if an object inAc is classified into the positive region or an object inA
is classified into the negative region; half of a unit cost is incurred if any object is classified into the
boundary region. The 0.5 model corresponds to the application of the simple majority rule.

3. Proposed approach

Yao’s basic model was described only for positive, negative, and boundary regions and applied to classifi-
cation. This section provides a formal framework that can beused with both supervised and unsupervised
multiple rough categories. Another interesting feature ofthe proposal is that it does not rely on the tra-
ditional concepts in the rough set theory such as equivalence classes and decision table. We will begin
with formal definitions for the proposed framework that can be used for clustering and classification.

3.1. Framework for supervised and unsupervised learning

We will use the terms category, classes, and clusters interchangeably whenever it is appropriate in the
context.
Objects: Let X = {x1, . . . ,xn} be a finite set of objects.

Categories: Let C = {c1, . . . , ck} be a finite set ofk states given thatC is the set of categories and each
category is represented by a vectorci (1 ≤ i ≤ k). Furthermore, letC partition the set of objectsX.

Object and category similarity: For every object,xl, we define a non-empty setTl of all the categories
that are similar toxl. Clearly,Tl ⊆ C. We will usexl → Tl to denote the fact that objectxl is similar
to all the elements of setTl. Let us further stipulate that objectxl can be similar to one and only oneTl.
The definition of the similarity will depend on a given application. Later on we will see an example of
how to calculate similarity using probability distribution.

Upper and lower approximations: If an objectxl is assigned to a setTl, then the object belongs to the
upper approximations of all categoriesci ∈ Tl. If | Tl |= 1, thenxl belongs to the lower approximation
of the onlyci ∈ Tl. Please note that when| Tl |= 1, {ci} = Tl. Therefore, upper (apr) and lower (apr)
approximation of each categoryci can be defined as follows:

apr(ci) = {xl|xl → Tl, ci ∈ Tl}, (9)

apr(ci) = {xl|xl → Tl, {ci} = Tl}. (10)

Since we do not define upper and lower approximations of all the subsets ofX, we cannot test all
the properties of rough set theory. However, it can be easilyshown that the resulting upper and lower
approximations in fact follow important rough set theoretic properties given the fact thatC is a partition
of X specified by Lingras and West [5].

• An object can be part of at most one lower approximation (P1)

• xl ∈ apr(ci) ⇒ xl ∈ apr(ci) (P2)

• An objectxl is not part of any lower approximation (P3)

m
xl belongs to two or more upper approximations.
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3.2. Loss functions for multi-category problem

Following Yao [15], we define a set of states and actions to describe the decision theoretic framework for
multi-category rough sets.

States: The states are essentially the set of categoriesC = {c1, . . . , ck}.

An object is said to be in one of the categories. However, due to lack of information we are unable
to specify the exact state of the object. Therefore, our actions are defined as follows.

Actions: Let B = {B1, . . . , Bs} = 2C −{∅} be a family of non-empty subsets ofC, wheres = 2k − 1.
We will define a set of actionsb = {b1, . . . , bs} corresponding to setB, wherebj represents the action
in assigning an objectxl to the setBj.

Note that some of the setsBj ’s will be the same as the setTl’s defined in previous sections. The
reason we choose to use a different notation is to emphasize the fact that we do not specify any similarity
betweenxl andBj as we do in case ofxl andTl. Note that there will be a total ofn Tl’s, one for each
object, and they may not be distinctly different from each other. That is, two objects may be similar to
the same subset ofC. On the other hand, there will be exactlys = 2k − 1 distinctBj ’s.

Now we are ready to write the Bayesian decision procedure forour multi-category rough sets as
follows.

Let λxl
(bj|ci) denote the loss, or cost, for taking actionbj when an object belongs toci. LetP (ci|xl)

be the conditional probability of an objectxl being in stateci. Therefore, the expected lossR(bj |xl)
associated with taking actionbj for an objectxl is given by:

R(bj |xl) =

k∑

i=1

λxl
(bj |ci)P (ci|xl) (11)

For an objectxl, if R(bj|xl) ≤ R(bh|xl), ∀ h = 1, . . . , k, then decidebj .
We generalize the loss function for the 0.5 probabilistic model [10] given by Yao [15] as follows:

λxl
(bj |ci) =

|bj − Tl|

|bj |
if ci ∈ bj ;

λxl
(bj |ci) =

|bj − ∅|

|bj |
if ci /∈ bj . (12)

Whenci belongs tobj , the loss for taking actionbj corresponds to the fraction ofbj that is not related
to xl. Otherwise, the loss for taking actionbj will have the maximum value of 1.

It can be easily seen that whenk is equal to 2,C = {c1, c2}. Therefore,B = {{c1}, {c2}, {c1, c2}}.
Without loss of generality, we can designatec1 to be the positive class,c2 to be the negative class, and
{c1, c2} to be the boundary region. Then one can easily verify thatλxl

({c1}|c1) = 0, λxl
({c2}|c1) = 1,

andλxl
({c1, c2}|c1) = 1

2
, which corresponds to the loss function described by Yao [15] for the 0.5

probabilistic model [9].
Let us illustrate the proposed rough multi-category expected loss function with the following exam-

ple.
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Table 1. Expected loss for all the actions from Example 1.

The expected loss R(bj |xl) Action

0.35 {c3, c4}

0.433 {c2, c3, c4}

0.467 {c1, c3, c4}

0.5 {c1, c2, c3, c4}

0.6 {c4}

0.7 {c2, c4}

0.725 {c1, c4}

0.75 {c3}, {c1, c2, c4}

0.775 {c2, c3}

0.8 {c1, c3}, {c1, c2, c3}

1 {c1}, {c2}, {c1, c2}

Table 2. Expected loss for all the actions from Example 2.

The expected loss R(bj |xl) Action

0.6 {c4}

0.75 {c3}

0.8 {c2}

0.85 {c1}

Example 1. Let C = {c1, c2, c3, c4} andB = 2C − {∅} (|B| = 24 − 1 = 15). For an objectxl,
let {P (c1|xl), P (c2|xl), P (c3|xl), P (c4|xl)} = {0.15, 0.2, 0.25, 0.4}. We will define the setTl such
that xl → Tl as: Tl = {ch|P (ch|xl) > 0.2} = {c3, c4}. The expected loss associated with taking
actionbj is shown in Table 1. The values of the expected loss seem quitereasonable. The lowest value is
obtained for the setTl = {c3, c4}. It is highest for the sets that do not contain eitherc3 or c4. Since the
probability ofP (c4) > P (c3), the sets containingc4 tend to have lower loss than those containingc3.

Example 2.One can also obtain a crisp categorization from the proposedformulation by stipulating that
all theTl’s in our formulation are singleton sets. We can demonstratethis by using the same probability
function, but changing the criteria for defining the setTl such thatxl → Tl as: Tl = {ch} such that
P (ch|xl) is maximum. If more than one suchch have the same (maximum) value, we arbitrarily choose
the firstch. This ensures thatTl is a singleton set. In our example, with

{P (c1|xl), P (c2|xl), P (c3|xl), P (c4|xl)} = {0.15, 0.2, 0.25, 0.4},

Tl = {c4}. The resulting expected loss function in this example is shown in Table 2.
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4. Modeling promotional campaign for a real world retail store

As mentioned before, one of the major advantages of using thedecision theoretic frameworks is that we
can enhance our loss function using dollar amounts. Let us consider a real world retail store, which wants
to increase its profits by classifying customers into those who could potentially help increase the profits,
and those who may not. The profits will be represented by dollar amounts. Since the decision theoretic
framework focuses on minimizing losses, we can look at profits as negative losses in our formulation.
Minimizing the losses in the decision theoretic framework will translate to maximizing profits for the
retailer.

The database we used for our experiment comes from a small specialty retail store. It has more than
257,000 transactions. The store has 9,080 distinct items and the database contains purchase history of
more than 16,000 customers. All transactions are completedduring the period of January 02, 2005 to
September 30, 2007. Only a third of the identified customers are relatively frequent visitors. These 5,565
customers will be the potential targets of our marketing campaign.

Let Sl be the total annual sales for customerxl. Let profitMargin be the ratio of profits and sales.
The profit margin before fixed costs was found to be 30%. So the benefits fromSl amount of sales will
beSl × 0.3. Loss will be negative of profits, i.e.−Sl × 0.3.

Let us consider a promotional campaign targeted at relatively high and regular spenders. Let us
assume that it is a two tier campaign that will be aimed at the top two categories of customers. The
customers that do not qualify for either of the two promotions will fall into the third category. While
spending is the most important criteria, the regularity with which a customer visits the store is also an
important consideration in determining the likelihood of the customer being attracted by the campaign.
Therefore, in addition to the total spending, the number of months customers visited the store was used
as an indication of their regular patronage.

For the two-tier promotional campaign we need to separate customers into three categories:

1. Most regular and high spenders:c3

2. Moderately regular and reasonable spenders:c2

3. Relatively infrequent low spenders:c1

Since we do not have an expert who can positively identify customers in each one of these categories,
we first group the existing customers into three clusters using the K-means algorithm. Each customerxl

is represented by a two dimensional vector(xl1, xl2), wherexl1 is the spending for the customer andxl2

is the number of months in which the customer visited the store. The range of sales for customers were
as high as $10,000. On the other hand, the values ofxl2 would be between[1, 12]. The sales amount
would have completely dominated the number of months in our analysis. Therefore,xl1 was normalized
to a value between[0, 100]. Similarity of a customerxl with a centroidci generated by the K-means
algorithm was used to calculate the probabilityP (ci|xl) of the customerxl belonging to the clusterci

as:

P (ci|xl) =
sim(ci,xl)∑k

h=1
sim(ch,xl)

(13)

We used inverse of the Euclidean distance between theci andxl to determinesim(ci,xl). We will
define the setTl such thatxl → Tl as: Tl = {ci|P (ci|xl) > 0.3}. It should be noted that theseTl’s
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Table 3. Number of Customers in Upper and Lower Bounds.

Cluster Lower bound Upper bound

c1 3999 4413

c2 747 1331

c3 235 405

essentially give us rough set representations for the threegroups of customers. For example,Tl = {c2}
means that the objectxl belongs to the lower bound ofc2. On the other hand,Tl = {c2, c3} implies that
the objectxl belongs to the boundary region ofc2 andc3. Table 3 shows the upper and lower bounds of
the resulting clusters. There was an overlap of 414 customers between clustersc1 andc2. Similarly, 170
customers were in the intersection ofc2 andc3. However, there were no customers in the intersection of
c1 andc3.

Based on the probabilities andTl’s described above, we are now ready to apply the rough cost/benefit
analysis to various possible promotional campaigns. The first tier promotion will be directed at the
customers in the regularly visiting highest spending category c3. Each promotional campaign has an
associated cost and possible benefits. Cost can be expressedin absolute dollar terms such as $75 or $50.
The benefits usually vary depending on the customers. We willuse possible percent increase in sales to
calculate the benefits.

Let cost3 be the cost for top tier promotion andgain3 be the increase in sales for the top tier cus-
tomers. That means the increase in sales for the top tier customers will beSl×gain3. The nominal profit
will increase bySl × gain3 × profitMargin. We have to subtract the cost of promotion in calculating
the increase in profits, so the net profits will beSl × gain3 × profitMargin − cost3. Since the dollar
loss is the negative of profits, the loss will becost3 −Sl × gain3 × profitMargin. We can now modify
the cost for all the actionsbj such thatc3 ∈ bj , since these actions possibly assign a customer to the
highest spending categoryc3. The modified loss function for such action will be given as:

λxl
(bj |ci) = (cost3 − Sl × gain3 × profitMargin) (14)

×
|bj − Tl|

|bj |
if ci ∈ bj ∧ c3 ∈ bj ;

λxl
(bj |ci) = (cost3 − Sl × gain3 × profitMargin) (15)

×
|bj − ∅|

|bj |
if ci /∈ bj ∧ c3 ∈ bj .

The second tier promotional campaign will be directed at themoderately regular and reasonable
spenders from categoryc2. Let cost2 be the cost for second tier promotion andgain2 be the correspond-
ing increase in sales. That means the increase in sales for the second tier customers will beSl × gain2.
The nominal profit will increase bySl×gain2×profitMargin. We have to subtract the cost of promo-
tion in calculating the increase in profits, so the net profitswill be Sl × gain2 × profitMargin− cost2.
Since the dollar loss is the negative of profits, the loss willbecost2 −Sl × gain2 × profitMargin. We
will exclude all the customers who have already been a targetof Tier 1 campaign. That means we need
to modify the cost for all the actionsbj such thatc2 ∈ bj andc3 /∈ bj . The modified loss function for
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Table 4. Number of Customers in Each Group for Different Promotional Campaigns.

Scenario Tier 1 Tier 2 No promotion

1 63 1095 4407

2 238 920 4407

3 115 1314 4136

such action will be given as:

λxl
(bj |ci) = (cost2 − Sl × gain2 × profitMargin) (16)

×
|bj − Tl|

|bj |
if ci ∈ bj ∧ c3 /∈ bj ∧ c2 ∈ bj;

λxl
(bj |ci) = (cost2 − Sl × gain2 × profitMargin) (17)

×
|bj − ∅|

|bj |
if ci /∈ bj ∧ c3 /∈ bj ∧ c2 ∈ bj .

The loss functions for the remaining actionsbj that do not assign customers to eitherc3 or c2 remain
unchanged.

The loss function described above can be used with the multi-category decision theoretic framework
outlined in the earlier section to generate rules for deciding which customers will be targeted for the two
promotional campaigns.

The rough cost/benefit analysis allows us to test various scenarios based on different assumptions
about the possible gains. We experimented with three scenarios:

1. cost3 = $50, gain3 = 10%, cost2 = $10, gain2 = 5%.

2. cost3 = $75, gain3 = 20%, cost2 = $10, gain2 = 5%.

3. cost3 = $75, gain3 = 20%, cost2 = $25, gain2 = 15%.

Table 4 shows the number of customers that qualify for Tier 1 and Tier 2 promotions, based on
different values of costs and gains given by the three scenarios. First column in the table indicates the
scenario. Second column describes the number of customers who qualify for our Tier 1 promotion. Third
column represents the number of customers who should receive Tier 2 promotional offers. Number of
customers who should not get any promotional offer is given in the last column.

If we compare numbers from Tables 3 and 4 we can draw a correspondence between the clusters
obtained prior to cost/benefit analysis and the customers that qualify for different promotions. The cus-
tomers qualifying for Tier 1 and Tier 2 promotions seem to come from the lower and upper bounds of
c3 andc2. While the non-targeted customers seem to be from the lower and upper bounds ofc1. The
boundaries of these clusters will be affected by the costs and benefits given in the three scenarios.

It can be seen that when the values ofcost3 andgain3 went up from scenario 1 to scenario 2, a
number of customers moved from Tier 2 to Tier 1. This means that if we expect larger sales for Tier
1 promotion, more customers seem to qualify for the promotion. This movement from Tier 2 to Tier 1
is a result of shift in the boundary region ofc3 andc2. The customers from this boundary region who
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originally qualified for Tier 2 promotion are now bumped up toTier 1 promotional offer. However, non-
targeted customers remained the same, because their sales were so low that the expected rise in sales did
not justify increased cost of promotion. Moreover, the non-targeted customers are in the lower and upper
bounds ofc1. Since the boundary region ofc3 andc1 was empty, the movement from non-targeted group
to Tier 1 promotion is unlikely.

On the other hand, when we raisedcost2 andgain2, the Tier 2 group gained customers from Tier
1 as well as previously non-targeted customers. The movement from Tier 1 to Tier 2 is a result of shift
in the boundary region ofc3 andc2. Some of these customers are moving down to Tier 2, as Tier 2’s
expected rise in sales has increased. The movement from non-targeted customers to Tier 2 promotion
comes from the shift in the boundary region ofc2 andc1. Some of these customers may have sufficient
increase in sales to justify cost of promotion for Tier 2. As before, there is no movement of customers
from non-targeted group to Tier 1 promotion, since the boundary region ofc3 andc1 was empty.

This type of what-if scenarios can be used by a marketing manager to come up with the most suitable
promotional campaign. Once a promotional campaign has beenimplemented in practice, the marketing
managers will have better ideas for the values ofcost3, gain3, cost2, gain2 for subsequent campaigns.

5. Concluding remarks

This paper builds on the Bayesian decision procedure described by Yao [15] by making it possible to
use it for supervised and unsupervised learning. The proposed framework is shown to be useful even in
the absence of explicit equivalence relations and decisiontables. The paper also describes how such a
framework can be used in cost/benefit analysis for a business.

The definition of probability used in this paper is abstract as opposed to the frequency based values
used in various probabilistic rough set models, including the unified framework proposed by Yao [15]. By
changing the definition of the probability one can easily adopt the Bayesian decision process to rough set
based clustering. Such an adoption can be useful in further theoretical development in rough clustering.

Finally, the paper illustrates an application of the decision theoretic framework for monetary cost
and benefit analysis in the business world with the help of a multi-tier promotional campaign for a real-
world retail store. The approach described in this paper uses semi-supervised rough cost/benefit analysis
to identify customers who should be targeted for different types of promotion. The customers are first
clustered based on the regularity with which they visit a store and the amount of money they spend. The
resulting profiles of clusters are used to calculate probabilities, and create rough set representations of
these clusters. Finally, the proposed cost/benefit analysis is used to target customers with most beneficial
promotional strategy. The experiments describe how the proposed approach can be used to do a what-if
analysis based on different assumptions about the costs of promotions and expected gains in sales.
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