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Abstract

In this paper, the concept of a -maximal consistent
blocks is proposed to formulate the new rough
approximations to an arbitrary object set in interval
valued information systems. The a -maximal consistent
blocks can provide the simpler discernibility matrices
and discemibility functions in reduction of interval
valued information systems. This means that they can
provide a more efficient computation for knowledge
acquisitions. Numerical examples are employed to
substantiate the conceptual arguments.

1. Introduction

Rough set theory (RST), proposed by Pawlak [7] in
1982, is a mathematical approach to deal with
imprecision, vagueness and uncertainty in data analysis.
It has been successfully applied in many fields, such as
data classification, medical diagnosis, pattern recogni
tion, image processing, decision analysis, process
control, information retrieval, and conflict analysis.

Due to rampant existence of interval numbers in
information systems in real life, the research on
combination of rough sets and interval numbers
becomes necessary [21-23]. Yao [21] presented a
model for the interval set by using the lower and upper
approximations. Yao and Liu [23] introduced the
generalized decision logic in interval-set-valued infor
mation tables which is an extension of decision logic
studied by Pawlak. Leung et ale [2] defined the concept
of misclassification rates and discovered the
classification rules from the interval-valued informa
tion systems. Qian et ale [8] investigated a dominance
relation in interval-valued information systems, and
proposed attribute reductions of interval ordered
information systems that eliminate the redundant
information. Rebolledo [9] presented the interval
qualitative models based on rough set theory which are
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more compact and precise than ordinary qualitative
models.

Rough set models in interval-valued information
systems are also called grey-rough set models in the
research of grey system theory. Yang et ale [20]
introduced a new model based on grey systems to unify
fuzzy sets and rough sets in one model, and also
proved that fuzzy sets and rough sets are special cases
of the proposed grey sets. Crisp, fuzzy, grey and rough
mathematical models are reviewed systematically in
literature [15]. In [13], Wu et ale defined a tolerance
relation in grey information systems, and got the
decision rules from the decision tables. Based on the
equivalence class [X]GR ,Yamaguchi et ale [16] sug-

gested a grey-rough set model which is the special case
of grey-rough set model proposed in [13]when a =1

and the tolerance relation actually is the equivalence
relation [X]GR .In [17], Yamaguchi et ale investigated

grey lattice operations, and presented a new grey-rough
set model which is based on the grey lattice relation
instead of an equivalence relation in classical rough set
theory. Li et ale [5] introduced a method to resolve
supplier's selection problems in combination of rough
set theory and grey system theory. In [14], Wu et ale
suggested a new model of grey-rough set in terms of
the tolerance relation, and compared the restricted
tolerance relation with the grey tolerance relation in
grey information decision tables. Wu and Liu [12]
introduced the real formal concept analysis about grey
rough set theory by using grey numbers, and proposed
a grey-rough set approach to Galois lattices reductions.
An interval data reduction of attributes was proposed
in [18] .Yamaguchi et ale investigated [19] a method of
decision rules extraction in grey information systems.

The rest of the paper is organized as follows. The
fundamental notions in interval-valued information
systems are introduced in section 2. In section 3,
approximations based ona -maximal consistent blocks
to a set are redefined. We suggest the knowledge
reduction based on a -maximal consistent blocks, and



and complement.
(1) Intersection ak(uJnak(u):
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discover the latent knowledge in an IvIS in section 4.
The whole paper is summarized in section 5.

2. Fundamental notions in interval-valued
information systems

2.1 Interval-valued information systems

[/;,un
ak(u,)na ,(u)= [/,',u ;]

[I; ,u:]
o

[I;,un~ [/,"u:]
1,' E [I; ,u;}\ u; E [I,' ,u:] .

I; E[I,',U:] AU: E[/;,un
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In real life, the data in an information system is not
restricted to the discrete value. So, an Interval-valued
Information System (IvIS) is proposed as follows:

Definition 1[2]. Let, =(U,AT,v,f) denote an

information system called an Interval-valued Infor
mation System (IvIS), where U = {u1,UZ,.",u n } is a non-

empty finite set called the universe of discourse,
AT = {al'az,...,am } is non-empty finite set of m attributes,

such that ak(uJ=[/,k,u:], I,k :O;U,k for all i=I,2, ....n and

k = 1,2,....m . V is a set of values. f is called the

information function as f: U x AT~ V .

Example 1. Table l is an IvIS, = (U ,AT,V,f) ,

where U ={Ul'Uz,""u lO } , AT ={al'aZ,a3 ,a4 ,aS} , the attri

bute value ak(uJ = [/,k ,u:] is an interval number.

2.2 Similarity rates

In this section, we will define the similarity rates in
an IvIS. First, we introduce some basic operators of
interval computing [17], such as intersection, union,

(2) Union a,(uJuak(u):

ak(u/) uak(u) =[min(l,k ,IJ),max(u,k,uJ)J.
(3) Complement ak(u/):

ak(uJ =(-<:I),I,k)u (u: ,+00).

Several kinds of relations between different num
bers are shown in Fig.I.

Fig.1. Interval numbers

In an interval-valued information system, we pro
pose the concept of similarity rates as follows:

Definition 2. Let, = (U,AT,V,f) be an IvIS. For

Vu"u j E U , ak E A, the similarity rate between ak(u,)

and a,(u) is defined as follows:

a; =min{p; ,pJ;} .

Table 1
An interval-valued information system

a1
a2 a3 a4 as

u1
[3.12,4.56] [5.76,6.64] [7.92,9.21] [1.14,3.21) [8.27,10.13]

u2
[4.07,5.18] [6.31,7.20] [8.01,9.37] [1.75,3.86] [9.08,10.49]

u3
[4.26,5.37] [5.03,5.91] [7.87,9.23] [1.64,3.75] [7.40, 8.52]

u4
[3.00,4.44] [5.83,6.71] [7.01,8.21] [1.20,3.30] [7.85, 9.71)

Us [3.77,4.86] [6.09,6.97] [8.13,9.54] [1.96,4.00] [8.97,10.25]

u6
[4.21,5.30] [6.20,7.11] [8.05,9.50] [3.11,4.98] [8.85,10.13]

u7
[2.97,4.39] [5.63,6.51] [8.15,9.43] [1.50,3.49] [8.03, 9.97]

Us [4.39,5.48] [6.14,7.02] [8.07,9.48] [1.80,3.88] [9.02,10.30]

u9
[2.05,3.14] [6.27,7.15] [7.98,9.32] [1.69,3.68] [8.89,10.25]

ulO
[1.15,2.35] [5.68,6.56] [9.01,9.89] [0.12,1.19] [6.41, 7.52]
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Where

1
0 [Ii

k ,u;l(l [1;,u;l=0

p;= . {min{U;-l;,U;-Ii
k

} }
min k k ,1 otherwise

u, -Ii

For a given similarity rate a , ifa; ~ a , then there

exists the attribute ak e A such that ak(u) and ak(uj )

can be separated. Ifa; >a, then there does not exist

the attribute ak e A such that ak(ui) and ak(uj ) can be

separated. Therefore, we claim that ak(u) and ak(uj )

can not be distinguished within a .

2.3 a -maximal consistent blocks

Definition 3[2]. Let ,= (U,AT,V,f) be an IvIS.

For a given similarity rate a e [0,1], A~ AT . The a 

tolerance relation TA
a is defined as follows:

T:: = {(upUj) e U xu: a~ > a, '\Iak e A} .

Where a; is introduced by Definition 2.

It is clear that the relation T:: is reflexive and

symmetric, but not transitive. Based on the concept
of TA

a
, the a -tolerance class corresponding to T:: is

defined as follows:
Definition 4[2, 13, 14]. Let' =(U,AT,V,f) be an

IvIS. S; (Ui ) , called a -tolerance class for Ui with res

pect to TA
a

, is given as

S; (v, )={u j e U:(up U j ) e T;} .
Next, we introduce the a -maximal consistent

block in interval-valued information systems.
Let, =(U,AT,V,f) be an IvIS, A~ AT . For '\lui'

Uj eM, M ~ U satisfying (ui,uj ) e TA
a, then M is the

a -tolerance class in an IvIS. If '\Ium e U - M , there

exists Ui eM satisfying (ui,um ) e T; . Here, M is

called the a -Maximal Consistent Block (a -MCB),
and M;r (ui ) is the a -maximal consistent block for the

object u, with respect to T; . It is the extension of

application of the original maximal consistent blocks
[3].

Let us continue to have sa (AT) andz" (AT), as

Sa(AT)={S;r(u1)'S;r(u2)'....'S;r(un)} , (1)

;a (AT) = {M;r (ul),M;r (U2),····,M;r (un)} . (2)

Example 2. In an interval-valued information
system given by Table 1, ifa =0.7 , we can have the
Boolean matrix corresponding of T1; as follows:
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1 0 0 000 1 000

o 1 001 001 0 0
001 0 0 0 0 0 0 0
000 1 0 0 0 0 0 0
o 1 001 000 0 0T1; = o 0 0 001 0 0 0 0

1 0 0 000 1 000
o 1 000 0 0 1 0 0
o 0 0 0 0 0 001 0
o 0 0 0 0 0 000 1

And then we obtain SO.7 (AT) as follows:

SO.7 (AT) = {S~; (u1),S~; (u2), ....,S~; (ulO) } •

S~; (».) ={u1, u7 } , S~; (u2 ) ={u2 , us'ug} , S~; (u3) ={u3} ,

S~·; (U4) = {U4} , S~; (Us) = {U2,Us} , S~; (U6) = {U6} ,

S~; (U7 ) = {U1, U7 } , S~;(Ug ) ={U2 , Ug } ,

S~; (U9 ) = {U 9} , S~; (UIO) = {U lO} •

From the formula (2), we have

;0.7 (AT) = {M~; (uI),M~; (u2),....,M~; (ulO) } •

M~; (u1) = {U1,U7 } ,M~; (u2 ) = {u2 ,US} ,

M~;(U3)={U3} ,M~;(U4)={U4} ,M~;(U6)={U6}'

M~; (ug ) ={u2,ug } , M~; (u9 ) ={u9 } , M~; (ulO ) ={ulO } •

;;r (ui ) is the collection of M e ;a (A) containing

the object Uj ' where i.] ~ n .

;~; (u1) = {M~'; (u1) = {U1,U7 } } ,

;~; (u2)={M~'; (u2)={u2,us},M~; (Ug ) ={u2,ug } } ,

;~; (U3) = {M~; (U3) = {U3}} ,

;~; (u4)= {M~; (u4)= {U4}} ,

;~; (us) = {M~; (U2) = {u2,Us }} ,

;~; (U6) = {M~'; (U6) = {u6}} ,

;~; ( U7 ) = {M~; (U1) = {U1' U7 }} ,

;~; (ug ) = {M~; (ug ) = {u2,ug } } ,

;~; ( U9 ) = {M~; (U9 ) = {u9 }} ,

;~; ( UIO) = {M~; (UIO) = {ulO} } •

In what follows, we will analyze the relations
between S; (uj ) and;; (uj ) •

Property 1. Let, =(U,AT,V,f) be an interval

valued information system, A~ AT , M ~ U .Then we

will have Me;a(A) iff M= (l S;CuJ.
ujEM

Proof. (1)" ~" .IfM = (l S;CuJ, then Me ;a(A).
ujEM

If not, we suppose M u {uj} is a maximal consistent



block with respect to A, Uj e M .For arbitrary Ui EM,

we obtain uj E S;(ui) .Thus, uj E n S;(ui) . Because
ujEM

uj eM, so M =I; n S;(ui) . This is contrary to M =
ujEM

n S;(uJ . Thus, ifM = n S;(uJ, then M E ~a(AT) .
~EM ~EM

(2)" ~" . If M E~a(A) , then M = n S;(ui) . If not
ujEM

existM= n S;(Ui) , we supposeMu{uj}= n S;(ui) ,
~EM ~EM

uj «u , Then, we have uj E n S;(ui) . It means
ujEM

M U {uj } is also a consistent block. This is contrary to

ME~a(A).So, ifME~a(A), thenM= n S;(uJ. This
ujEM

completes the proof. D
Property 2. Let' = (U,AT,V,f) be an interval-

valued information system, A ~ AT , then we have

S;(UJ=U{ME~;(Ui)} .

Proof . (1) According to the definition of S; (u, )

and ;; (u;) , for "Vuj E S; (uJ , It is clear that

ujEU{ME~;(UJ} . SO S;(UJ~U{ME~;(UJ} . (2)

Suppose"VujEM ,ME;;(U;) , so (u;,uj)ETA
a. There

fore uj E S;(ui ) , U{M E ~;(uJ} ~ S;(uJ. From the

analysis above, we haveS;(ui)=U{ME~;(ui)}. This

completes the proof. D

3. Approximations to a set in an IvIS

The lower and upper approximations to a subset X
of U in an IvIS in [2, 13, 14] are listed as follows:

Definition 5. Let, = (U,AT,V,f) be an interval-

valued information system, A ~ AT .

APRA(X)={UiEU:S;(UJ~X} ,

APR A(X) = {Ui E U: S;(uJ nX =I; 0} .
Property 3. Let ,= (U,AT,V,f) be an interval

valued information system, A ~ AT , X ~ U .Then

APRA(X) = {u i E U: S;(uJ ~ X}

= {u i EX: S;(uJ ~ X},

APRA(X) = {Ui EU:S;(uJnX=I;0}

=U{S;(uJ:Ui EX}.

In this section, we will redefine the concepts of
lower and upper approximations to a subset X in an
IvIS, and compare the proposed definition with
Definition 5 to illustrate the advantages of the new
definition.
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Definition 6. Let' = (U,AT,V,f) be an interval

valued information system, for "VX ~ U , A ~ AT , we
define the lower and upper approximations to X as
follows:

aprA(X) = U{M;(ui) :M;(ui) ~ X},

aprA(X) = U{M; (zz.): M;(uJ n X =I; 0}.
The positive region, boundary region and negative

region in an IvIS can be expressed respectively as:
POSA(X) =aprA(X) ,

bnrA(X) = aprA(X) - aprA(X) ,

negA(X) = U - POSA(X) U bnrA(X).

Property 4. Let ,= (U,AT,V,f) be an interval

valued information system, A ~ AT ,X ~ U . We have
-- --

APR A(X) ~ aprA(X) ,APRA(X) =aprA(X).

Proof. First, we will prove APR A(X) ~ aprA(X).

According to Definition 5 and Property 2, we have

APR A(X) = {Ui E U: S;(uJ ~ X}

= {Ui EX: S;(uJ ~ X}

={UiEX:U{ME;;(Ui)}~X}.

aprA(X) = U{M E ~a(A):M ~ X}.

Thus, we can obtain APR A(X) ~ aprA(X).
-- --

Next we prove APR A(X) = aprA(X).

APR A(X) = {Ui : S;(Ui) nX =I; 0}

= {Ui E U: U{M E ;;(Ui)} n X =I; 0}
= U{M E~;(Ui):MnX =I; 0}
=U{M E~a(A):MnX=I;0}

=aprA(X).

This completes the proof. D
Property 4 indicates that higher approximation

accuracy is achieved with respect to A by Definition 6
than by Definition 5. We give the example as follows:

Example 3. In an interval-valued information
system given by Table 1, let X = {U2,U4,US } ' we obtain

the approximation accuracies of X according to
Definition 5 and Definition 6 as follows:

APRAT(X) = {u i E U: S~;(uJ~ X} = {u4,US } ,

APRAT(X) = {u i E U: S~;(uJn X =I; 0} = {U2,U4,US'ug } ;

aprAT(X) = U{M~';(uJ: M~';(uJ ~ X} = {U2,U4,US } ,

aprAT(X) = u{M~;(Ui): M~;(Ui)nX =I; 0}
= {U2,U4,US'ug } •

According to Definition 5 and 6, the approximation
accuracies ofX are calculated as:



_IAPRAr(X)1 1 t _laprAr(X)I_ 3
Y - - Y - --
st IAPRAr (X)I 2' st IaprAr(X)1 4

Where lSi denotes the cardinality of set S.

Obviously, we can obtain r ., < Y~r. Example 3 also

indicates the validity ofProperty 4.

4. Rough reduction in an IvIS

Attribute reduction plays an important role in
Pawlak rough set theory. The notion of a reduct is
essential for analyzing an information table, which is a
minimum subset of attributes that provides the same
descriptive or classification ability as the entire set of
attributes. In other words, attributes in a reduct are
sufficient and necessary in an information system. In
recent years, many types of knowledge reduction have
been researched. Kryszkiewicz [1] proposed a type of
attribute reduction that only eliminates the information
which is not essential in incomplete information
systems. Miao et ale and Wang et ale [6,11] gave gree
dy algorithms of knowledge reductions by using the
mutual information and conditional information
entropy as the heuristic information respectively. Yao
and Zhao [24] introduced attribute reduction in
decision-theoretic rough set models.

In this section, an approach to attribute reduction in
an IvIS will be established and some relative examples
will be given. Now, we present the definition of a
reduct in an IvIS as follows:

Definition 7. Given an interval-valued information
system' =(U,AT,V,f) , an attribute set A is a reduct

of , if it satisfies the following two conditions:

(1) ;a(A)=;a(AT).

(2) For any attribute set Be A c AT ,

;a(B) *;a(AT) .

The set of all reducts with respect to AT in , is

denoted by red a (AT) .

Definition 8. Let, =(U,AT,V,f) be an interval

valued information system, AI,A2'...'~ are all the

reducts of , .We call ai the core attribute in'

iff ai e Al nA2 n ...n~. cora(AT) is the set of ai •

Based on the concept of discemibility matrix and
discemibility function [10], we have the following
theorem to compute all reducts in an IvIS.

Theorem 1. Let, =(U,AT,V,f) be an IvIS,

A ~ AT is a reduct of , iff /\A is a prime implicant of

discemibility function lfIa (AT) which can be expressed
as follows:
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Where

aAr{M;r(u;),M;r(uj)} = a/\ a va(upuj) ,
(Uj,Uj )eMAT(Uj )xMAT (Uj)

a(upuj)={ak eAT:a~ sa}.

Proof.
Let

c ={A ~ AT: V'(M;r(u;),M;r(u j)) e ;a(AT) x ;a(AT),

M;r(u;) *M;r(u j); V'(upu j) e M;r(u;) x M;r(u j),

An a(upuj) *0, a(upuj) *0} .

~ = {A ~ AT :;a(A) = ;a(AT)} .

"ce~~". (1) Suppose Me;a(A) , upujeM.It

implies that the arbitrary attribute in attribute set A can
not distinguish the object Ui and uj , then

Ana(upu j)=0 .Suppose M -{uj}e;a(AT) , Me

;a(AT). According to the definition of ce, we can

have An a(upu j) * 0 which is contrary to

Ana(upu j)=0.So, ifMe;a(A) , then Me;a(AT).

Therefore, ;a(A)~;a(AT) . (2) Next we prove

;a(AT) ~;a(A). Suppose M e;a(AT) , u
i
eM and

uj eM .By the definition of ce, An a(upuj) *0 .We

suppose M e;a (A), and M U {uj } e;a (A) which notes

that for the arbitrary attribute in attribute set A can not
distinguish the attribute Ui and U j , so A n a (up Uj) =0

which is contrary to An a(upuj) *0 . So, we can ob

tain ;a(AT)~;a(A). By ;a(A)~;a(AT) and ;a(AT)

~;a(A), ;a(AT)=;a(A) holds.

"~~ce" .
Suppose {M;r(u;),M;r(uj)}e ;a(AT)x;a(AT) ,

M;r(u;)*M;r(u j) , (upuj)eM;r(u;)xM;r(u j), It imp

lies the attribute set AT can distinguish the object U i

and u j' thus ATna(upu j)*0 .Because of ;a(AT)

= ;a (A) , it means that A provides the same descriptive
or classification ability as AT. Thus, we can obtain
Ana(upu j)*0.

From the discussion above, ce ¢:> ~ holds. ce ¢:> ~

shows that A ~ AT is a reduct of' iff /\ A is a prime

implicant of discemibility function lfIa • D
In some applications of reduction in interval-valued

information systems, we just need identify some ob
jects from the rest. So, the concept of a reduct for an
object of U in an IvIS will be introduced as follows:



Definition 9. Given an interval-valued information
system' =(U, AT, V, f), an attribute set A is a reduct

of , for Ui , if it satisfies the following two conditions:

(1) ;; (u;) = ;;T(Ui ) •

(2) For any attribute setB cAe AT ,

;;(U;)*;;T(U;) .

The set of all reducts of Ui with respect to AT in

, is denoted by red;T(ui).

Definition 10. Let, =(U,AT,V,f) be an interval

valued information system, and Al'A2""'~ are all

reducts of , for Ui .We call ai the core attribute for

uiin, iff aieAln~n ...nAt·cor;T(u;) is the set of ai

for ui •

Theorem 2. Let, =(U,AT,V,f) be an interval

valued information system, A ~ AT is a reduct of ,
for Ui iff /\A is a prime implicant of discernibility

function If/;T(ui) which is given as follows:

f//;T(Ui) = /\ a AT{ui,M;T(Uj ) }
M~T (u j )e;a (AT)-;~T(Uj )

/\ a AT{M;T(Um),M;T(Un)} .
{M~T (Urn ),M~T (u; )}e;~T (u, )X;~T (u, )

Where

a AT{ui,M;T(U j ) } = 'd v a(ui,uj ) ,
ujeMAT(Uj)

a AT{M;T (Um),M;T(un)} = /\ V a(um,un) ,
Urn », eM~T (Urn )xM~T (Un)

a(ui,uj ) = {ak eAT: a~ :::;; a},

a(um,un) = {ak eAT: a~n :::;; a} .

Proof:
Let
<C = {A ~ AT: 'VM' e ;a(AT) -;;T(U;),

'VM;T(um),M;T(un) e ;;T(Ui), M;T(U m)*M;T(U n),

'V(um,un) e M;T(U m) x M;T(U n), A na(um,un)*0,

a(um,un)*0} ,

~={A~AT:~;(uJ=~;T(uJ} .

"<C ~~". (1) IfMe ;;(uJ , v-«, eM .It implies

Ana(upuj)=0 .Suppose M e;;T(U;) , M -{uj}e

;;T(U;). We can have a, «u' , M' e ;;T(U;) , M *M' , or

ujeM" , M"e;a(AT)-;;T(u;) . Case 1: ujeM' .

According to A na(um,un)*0 in definition ce, we can

have An a(upuj) *0 There is a conflict. So,

if M e;;(ui) , then M e;;T(ui) .Thus, ;;(Ui)~

;;T(u;).Case 2: ujeM" .According to Ana(upu j)*0

in definition ce, we can have An a(ui,uj) *0 which is

contrary to Ana(ui,u j)=0. Thus, if M e;;(ui) , then
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M e;;T(u;). Therefore, ;;(Ui)~;;T(U;). (2) Next we

prove ;;T(U;)~;;(u;) . If M e;;T(ui) , and Ui eM ,

uj eM. It implies Ana(ui,u j)*0 . Suppose Mu

{uj } e ;;(ui ) it means any attribute in attribute set A

can not distinguish the object Ui and U j , thus

Ana(upu j)=0 which is contrary toAna(upu j)*0.

So, if M e;;T(u;) then M e;;(u;) .We obtain ;;T(Ui)

~ ;;(u;).

"~~ <C" • If Ui eM, uj e ;;T(UJ , then we can

obtain ATna(upu j)*0 .Because ;;(Ui)=;;T(Ui) , so

Ana(upu j)*0 . If 'VM;T(Um) , M;T(un)e;;T(ui) ,

'V(um,un) e M;T(U m) x M;T(U n) , M;T(U m) *M;T(U n) . Ac

cording to ;;T (u i ) =;; (u, ) , it is clear that A n

a(um,un)*0, a(um,un)*0 .

From the discussion above, we can have <C ¢:> ~

which shows that A ~ AT is a reduct of , for u, iff
/\A is a prime implicant of discemibility function
If/;T(Ui) .This completes the proof. D

Example 4. Based on Theorem 1 and 2, we can
obtain If/O.7 (AT) and If/~';(Ui) of, given by Table 1, as

follows:
If/O.7 (AT) =al /\ a3/\ a, /\ (a2vas)

= (al /\ a2 /\ a3/\ a4)v (al /\ a3/\ a, /\ as) ,

red 0.7(AT) = {{al,a2,a3,a4},{al'a3,a4,aS}} ,

cor'" (AT) = {al'a2,a3,a4}n {al'a3,a4,aS}={al,a3,a4};

If/~';(UI)=a3/\ (al v a2vas)

= (al /\ a3)v (a2 /\ a3)v (a3/\ as) ,

red~;(uI) = {{al,a3},{a2,a3},{a3,aS}} ;

If/~;(U2) =((a 2v as) /\ a4) /\ al

= (al /\ a2 /\ a4)v (al /\ a, /\ as),

red~;(u2) = {{al'a2,a4},{al'a4,aS}} ;

If/~;(U3) =a2vas' red~;(u3)= {{a 2},{aS}} ;

If/~';(U4) =a3, red~;(u4) ={{a3}} ;

If/~';(us) = (a2vas) /\ a, ,red~;(us) = {{a2,a4},{a4,aS}} ;

If/~;(U6) =a, ,red~;(u6) = {{a4}} ;

If/~';(U7) =a3/\ (al va2vas)

= (al /\ a3)v (a2 /\ a3)v (a3/\ as) ,

red~;(u7) = {{al,a3},{a2,a3},{a3,aS}} ;

If/~';(U8) = (a2vas) /\ a4, red~;(u8) = {{a2,a4},{a4,aS}} ;

If/~';(U9) =al ,red~';(u9) ={al } ;

If/~';(UIO) =al /\ a3/\ a, /\ as' red~;(uIO) = {{a l,a 3,a4,aS}} .



5. Conclusions

In this paper, we present the new framework of
knowledge reduction in an interval-valued information
system based on a -maximal consistent blocks.
Numerical examples are also employed to substantiate
the conceptual arguments. Contributions of this paper
are summarized as follows:

The research on combination of rough sets and
interval numbers (grey numbers) is reviewed
systematically in this paper.
New concept of the similarity rates is defined to
measure the two interval numbers.

• The a -maximal consistent blocks are used in an
IvIS for formulating approximations to an arbi
trary object set in an IvIS with higher accuracy.

• The a -maximal consistent blocks in an IvIS can
provide the simpler discemibility matrices and
discemibility functions in reduction of an IvIS.
Finally, the latent knowledge is discovered from
an IvIS by knowledge reduction.
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