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Abstract

In this paper, the concept of a -maximal consistent
blocks is proposed to formulate the new rough
approximations to an arbitrary object set in interval-
valued information systems. The a -maximal consistent
blocks can provide the simpler discernibility matrices
and discernibility functions in reduction of interval-
valued information systems. This means that they can
provide a more efficient computation for knowledge
acquisitions. Numerical examples are employed to
substantiate the conceptual arguments.

1. Introduction

Rough set theory (RST), proposed by Pawlak [7] in
1982, is a mathematical approach to deal with

imprecision, vagueness and uncertainty in data analysis.

It has been successfully applied in many fields, such as
data classification, medical diagnosis, pattern recogni-
tion, image processing, decision analysis, process
control, information retrieval, and conflict analysis.
Due to rampant existence of interval numbers in
information systems in real life, the research on
combination of rough sets and interval numbers
becomes necessary [21-23]. Yao [21] presented a
model for the interval set by using the lower and upper
approximations. Yao and Liu [23] introduced the
generalized decision logic in interval-set-valued infor-
mation tables which is an extension of decision logic
studied by Pawlak. Leung et al. [2] defined the concept
of misclassification rates and discovered the
classification rules from the interval-valued informa-
tion systems. Qian et al. [8] investigated a dominance
relation in interval-valued information systems, and
proposed attribute reductions of interval ordered
information systems that eliminate the redundant
information. Rebolledo [9] presented the interval
qualitative models based on rough set theory which are
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more compact and precise than ordinary qualitative
models.

Rough set models in interval-valued information
systems are also called grey-rough set models in the
research of grey system theory. Yang et al [20]
introduced a new model based on grey systems to unify
fuzzy sets and rough sets in one model, and also
proved that fuzzy sets and rough sets are special cases
of the proposed grey sets. Crisp, fuzzy, grey and rough
mathematical models are reviewed systematically in
literature [15]. In [13], Wu et al. defined a tolerance
relation in grey information systems, and got the
decision rules from the decision tables. Based on the
equivalence class [x]; ,Yamaguchi et al. [16] sug-

gested a grey-rough set model which is the special case
of grey-rough set model proposed in [13]when a =1
and the tolerance relation actually is the equivalence
relation [x],, .In [17], Yamaguchi et al. investigated

grey lattice operations, and presented a new grey-rough
set model which is based on the grey lattice relation
instead of an equivalence relation in classical rough set
theory. Li et al. [5] introduced a method to resolve
supplier’s selection problems in combination of rough
set theory and grey system theory. In [14], Wu et al.
suggested a new model of grey-rough set in terms of
the tolerance relation, and compared the restricted
tolerance relation with the grey tolerance relation in
grey information decision tables. Wu and Liu [12]
introduced the real formal concept analysis about grey-
rough set theory by using grey numbers, and proposed
a grey-rough set approach to Galois lattices reductions.
An interval data reduction of attributes was proposed
in [18] .Yamaguchi et al. investigated [19] a method of
decision rules extraction in grey information systems.
The rest of the paper is organized as follows. The
fundamental notions in interval-valued information
systems are introduced in section 2. In section 3,
approximations based on & -maximal consistent blocks
to a set are redefined. We suggest the knowledge
reduction based on « -maximal consistent blocks, and



discover the latent knowledge in an IVIS in section 4.
The whole paper is summarized in section 5.

2. Fundamental notions in interval-valued
information systems

2.1 Interval-valued information systems

In real life, the data in an information system is not
restricted to the discrete value. So, an Interval-valued
Information System (IVIS) is proposed as follows:

Definition 1[2]. Let ¢ =(U,4T.V,f) denote an

information system called an Interval-valued Infor-
mation System (IVIS), where U ={u,,u,,...,u,}is a non-

empty finite set called the universe of discourse,

AT ={a,,a,,...,a, } is non-empty finite set of m attributes,

such that a,(u)=[I},u"], ¥ <u’ for all i=1,2,..,n and
k=12,..,m .V is a set of values. f is called the
information function as f:Ux AT -V .

Example 1. Tablel is an IVIS {=(U,AT.V,f),
where U ={u,u,,...,u,,}, AT ={a,,a,,a;,a,,a;}, the attri-

bute value a,(,)=[I},u4}] is an interval number.

2.2 Similarity rates

In this section, we will define the similarity rates in
an IvIS. First, we introduce some basic operators of
interval computing [17], such as intersection, union,

and complement.
(1) Intersection a,(1,)Na,(u,):
(] [Eat)efne)
[l]'.‘,uf] [lf,uf]g[lf,u,."
aw)na,(u;)= [l,",uj] Ife [lf,uf]/\uf € [I,.",u,"] .
l:.‘,u,"] lf e[lf,uf]/\ufe[l;,uf]
%) otherwise
(2) Union aq,(u)va,(u)):
a,(u)Va,(u)= [min(lik,l; ), max(uf,uf)] .
(3) Complement q,(v):
a, (u,) = (—0,If) U (uf ,+0) .
Several kinds of relations between different num-
bers are shown in Fig.1.
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Fig.1. Interval numbers

In an interval-valued information system, we pro-
pose the concept of similarity rates as follows:
Definition 2. Let ¢ =(U,AT.V, f)be an IVIS. For

Vu,u,eU , a, €A, the similarity rate between a,(4,)

and g, (u,) is defined as follows:

k . { ok gk
a; =mln{,B,.j,/3ﬁ} .

Table 1
An interval-valued information system
a, a, a, a, as
u, [3.12,4.56] [5.76,6.64] [7.92,9.21] [1.14,3.21] [8.27,10.13]
u, [4.07,5.18] [6.31,7.20] [8.01,9.37] [1.75,3.86] [9.08,10.49]
u, [4.26,5.37] [5.03,5.91] [7.87,9.23] [1.64,3.75] [7.40, 8.52]
u, [3.00,4.44] [5.83,6.71] [7.01,8.21] [1.20,3.30] [7.85, 9.71]
ug [3.77,4.86] [6.09,6.97] [8.13,9.54] [1.96,4.00] [8.97,10.25]
ug [4.21,5.30] [6.20,7.11] [8.05,9.50] [3.11,4.98] [8.85,10.13]
u, [2.97,4.39] [5.63,6.51] [8.15,9.43] [1.50,3.49] [8.03, 9.97]
U [4.39,5.48] [6.14,7.02] [8.07,9.48] [1.80,3.88] [9.02,10.30]
U, [2.05,3.14] [6.27,7.15] [7.98,9.32] [1.69,3.68] [8.89,10.25]
U, [1.15,2.35] [5.68,6.56] [9.01,9.89] [0.12,1.19] [6.41, 7.52]
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Where
0

) min{u,." — 15 ub —Ii"}
miny ———————=

k k
u; —1;

U uf 1A uf 1= 2

'B; ,1} otherwise

For a given similarity ratea , ifa; <, then there
exists the attribute a, € 4 such that q,(4) and a,(x))
can be separated. Ifz; >« , then there does not exist
the attribute a, € 4 such that a,(»)and a,(x,) can be
separated. Therefore, we claim that a,(x)and a,(u))

can not be distinguished within« .
2.3 «-maximal consistent blocks

Definition 3[2]. Let {=(U,4T,V,f) be an IVIS.
For a given similarity rate @ €[0,1], Ac AT . The « -
tolerance relation T is defined as follows:

Te = {(ui,uj) eUxU:q;>a,Va, e A} .
Where «; is introduced by Definition 2.
It is clear that the relation 7] is reflexive and

symmetric, but not transitive. Based on the concept
of T{ , the a -tolerance class corresponding to T is

defined as follows:

Definition 4[2, 13, 14]. Let £ =(U,AT,V,f)be an
IVIS. S§(w), called o -tolerance class for «, with res-
pectto T, is given as

S‘j(ui)={ujeU:(u,,uj)eTA"’} .

Next, we introduce the a -maximal consistent
block in interval-valued information systems.

Let ¢ =(U,AT,V,f)be an IVIS, Ac AT . For Vu,,
u,eM ,McU satisfying (u,u,)eT; , then M is the
« -tolerance class in an IVIS. If Vu,eU-M , there
exists u,eM satisfying (u,u,)eT; . Here, M is
called the o -Maximal Consistent Block ( @ -MCB),
and M, (u,)is the a -maximal consistent block for the
object », with respect to Ty . It is the extension of
application of the original maximal consistent blocks

(3]
Let us continue to have $* (4T )and £%(A4T), as

S(AT) = {857 (1,),85 (1) Sir (,)} » 6))
E(AT) = {M 5 (). M7 (1) oes M (1)} Q)
Example 2. In an interval-valued information

system given by Table 1, ifa =0.7, we can have the
Boolean matrix corresponding of T, as follows:
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1000001000
0100100100
0010000000
0001000000
0y |01.001 00000
Ty = .
AT
0000010000
1000001000
0100000100
000000O00O0T1O
0000000001

And then we obtain S°7(AT)as follows:
ST (AT) ={S37 (1), 857 (43) -7 (210 )} -

Ay (w)= {u,,u7} Ay (w)= {uz,us,us} , 8% ()= {u3} ,
Sar (us)={us}, Sar (us) ={uy,us} , Sar (us) = {uc} ,

Sar () = {upur} . Sir () = {45}

Sar (ug) ={us} , Sz (10) = {14} -

From the formula (2), we have

ET(AT) ={M] (1), M7 (14, ) sores M7 (11 )} -

Mgr(”l) {u,,u7} Mz';(”z)={”2’us}’
Mg (us) ={us} Mg (ug) = {us} , Mg (ug) = {u} »
Mj;(”s) {“z’us} Mg (“9)= {"‘9} My (ulo)={“w} .

&ir(u;) is the collection of M e£%(A4) containing
the object u,, where i,j<n .

o7 () ={ M () = {1, }}

( )={MAQ;(”2) {u,u5}, Mz';(us)={u2,u3}},
( )={M07 () ={us} }
( 4)={M07(“4)={”4 }
i () = (M7 () = o }}
i () = {007 () = {uc}}
3;(“7)={M07(ul)={“l’”7}
3;(“8)={M07(”8)={“2’”8}}
3;(“9)={M07(”9)={“9}}

0.7
AT

(me)= { i (”10) = {ulo}} .

In what follows, we will analyze the relations
between S§ () and &5 ().

Property 1. Let {=(U,AT,V,f) be an interval-
valued information system, 4 AT, M cU .Then we
will have M e £%(A) iff M =u,-QMSZ<ui) .

Proof. (1)“<” If M =u,-QMSj(ui) ,then M e&%(4).

If not, we suppose M U{u,} is a maximal consistent



block with respect to 4, u, ¢ M .For arbitraryu, e M ,
we obtain u, € S5(u,) .Thus, u; e 2 S$(u;) . Because
u,gM , so M;&MQMSj(u,.) . This is contrary to M =
,,QMS:(“") . Thus, if M = S9(u,), then M € £*(4T) .
Q)“=".IfMeé*(4), then M = u,»QMSZ(ui) . If not
exist M =u,QMSj(u")’ we suppose M U {u,} =0, Siu) ,
u,g M . Then, we have u; e o) S7(,) . It means
M U{u,} is also a consistent blocic. This is contrary to
M e £%(A) .So, if M € £%(4) , then M =u,»©M S4(u,). This
completes the proof. O

Property 2. Let {=(U,AT.,V,f) be an interval-

valued information system, 4 ¢ AT , then we have
S5(u)=U{M e &)} .

Proof . (1) According to the definition of S5 (x,)
and &§(w) , for Vu,eSj(w,) , It is clear that
u eu{M efj‘(u,.)} . So Sj’(u,.)gu{M efj(u,.)} . (2
Suppose Vu, e M , M €&{(w,) , so (u,u,)eT; . There-
fore u, € S5(u), U{Me&u)}cSiw) . From the
analysis above, we have Sf,‘(u,)=u{M Efj(ui)} . This

completes the proof. O

3. Approximations to a set in an IVIS

The lower and upper approximations to a subset X
of Uin an IVIS in [2, 13, 14] are listed as follows:
Definition 5. Let {=(U,AT,V,f) be an interval-

valued information system, 4 c AT .
ﬂAX):{ui eU:Sj(u,.)gX} ,
APRA(X)={u,eU:S5(u)n X =@} .
Property 3. Let {=(U,AT,V,f) be an interval-
valued information system, 4 AT , X cU .Then
APR (X)={u, eU:S;(u) c X}
={ui eX:Sj‘(u,.)gX} R
APR«(X)={u, €U :S5(u) N X =3}
=U{S5(u):u € X} .

In this section, we will redefine the concepts of
lower and upper approximations to a subset X in an
IvIS, and compare the proposed definition with
Definition 5 to illustrate the advantages of the new
definition.
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Definition 6. Let ¢ =(U,AT.V,f) be an interval-

valued information system, for VX cU , Ac AT , we

define the lower and upper approximations to X as
follows:

apr (X)=U{M;u): M5 () c X},

apr (X) =U{M5 () : M§(u) N X =B}

The positive region, boundary region and negative
region in an IvIS can be expressed respectively as:

pos(X)=apr (X),

bnr(X) = apr (X)—apr (X),

neg (X)=U - pos ,(X) U bnr,(X).

Property 4. Let {=(U,AT,V,f) be an interval-
valued information system, 4 c AT , X cU . We have

APR (X)C apr (X) , APRA(X)=apr,(X).
Proof. First, we will prove 4PR ,(X)c apr (X).

According to Definition 5 and Property 2, we have
APR (X)={u; €U :S5(u) c X}
={u, e X:85(u) c X}
={u, e X:U{Me&i @)} c X} .
ﬂA(X)=u{M el (A):M gX} .
Thus, we can obtain 4PR ,(X) c apr (X).
Next we prove APR4(X)= E(X ).
APRA(X)={u;: S5(u) " X # D}
={u,. cU:U{M e&iu)}n X = @}
=U{M e&(u):M X =2}
=U{M e£°(4):M N X =D}
= apr ,(X) .
This completes the proof. O
Property 4 indicates that higher approximation
accuracy is achieved with respect to 4 by Definition 6
than by Definition 5. We give the example as follows:

Example 3. In an interval-valued information
system given by Table 1, let X ={u,,u,,u;}, we obtain

the approximation accuracies of X according to
Definition 5 and Definition 6 as follows:

APR ,(X)={u, €U : S5 () € X} = {u,us},
APRr(X) = {u,. eU:SYu)NnX = @} = {1y, Uy U, g}
apr (X)=U{M3(u): MY w) < X} ={u,,u,,us} ,
apr ¢ (X) = U{My () : M3 (u) " X # @}

= {1y, Us,Us } -
According to Definition 5 and 6, the approximation
accuracies of X are calculated as:



APR . (X)| 1.

apr ()| 3
= 5 }/AT R — e
APRAT(X)l 2

apr g (X)| 4

Var =1

Where |S| denotes the cardinality of set S.
Obviously, we can obtainy,, <y, . Example 3 also
indicates the validity of Property 4.

4. Rough reduction in an IVIS

Attribute reduction plays an important role in
Pawlak rough set theory. The notion of a reduct is
essential for analyzing an information table, which is a
minimum subset of attributes that provides the same
descriptive or classification ability as the entire set of
attributes. In other words, attributes in a reduct are
sufficient and necessary in an information system. In
recent years, many types of knowledge reduction have
been researched. Kryszkiewicz [1] proposed a type of
attribute reduction that only eliminates the information
which is not essential in incomplete information
systems. Miao et al. and Wang et al. [6,11] gave gree-
dy algorithms of knowledge reductions by using the
mutual information and conditional information
entropy as the heuristic information respectively. Yao
and Zhao [24] introduced attribute reduction in
decision-theoretic rough set models.

In this section, an approach to attribute reduction in
an IvIS will be established and some relative examples
will be given. Now, we present the definition of a
reduct in an IVIS as follows:

Definition 7. Given an interval-valued information
system ¢ =(U,AT,V, f), an attribute set 4 is a reduct

of ¢ ifit satisfies the following two conditions:
(1) &()=¢°(4T).
(2) For any attribute set Bc 4 < AT ,
EN(B)=L(AT) .

The set of all reducts with respect to AT in ¢ is
denoted by red” (AT) .

Definition 8. Let ¢ =(U,4T.,V,f) be an interval-
valued information system, 4,4,,..,4, are all the
reducts of ¢ .We call q, the core attribute in £
iff a,€e 4 NA,N..04,. cor®(AT) isthe set of q,.

Based on the concept of discernibility matrix and
discernibility function [10], we have the following
theorem to compute all reducts in an IVIS.

Theorem 1. Let {=(U,AT,V,f) be an IVIS,
Ac AT isa reduct of ¢ iff AAis a prime implicant of
discernibility function *(4T) which can be expressed
as follows:
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(4T =

A M (), M5 (u))t .

(M5 () M5y (e AT (ar) 4T M ). M )
Where

@ {M (), M 5y ()} = vau,u,),

(s 1 )& M5y (<M G ()

a(u,u;) ={ak edT:a; Sa} .

Proof .

Let

C= {A C AT V(M5 (u), My (u,)) € E*(AT)x £°(AT),

Mg (u)# Mg (u,); V(u,u;)e M (u)xMi(u),

Ana(u,u;) 9D, alu,u;)# @} .

R={dc AT :£°(4)=£"(AT)} .

“C=R”. (1) Suppose M e&*(4), u,u;eM It
implies that the arbitrary attribute in attribute set 4 can
not distinguish the object u and u, , then
Ana(u,u)=D .Suppose M —{u}ef(AT) , Mg
£%(AT) . According to the definition of C, we can
have Ana(u,u;)# which is contrary to
Ana(u,u,)=3 So, if M e£*(4), then M e&*(AT) .
Therefore, &*(A)cé*(AT) . (2) Next we prove
E*(AT) < £%(A) . Suppose M e&%(AT) , u,e M and
u,¢ M By the definition of C, Ana(y,u;)#3 .We
suppose M ¢&%(4), and M U {u,} e £*(4) which notes
that for the arbitrary attribute in attribute set 4 can not
distinguish the attribute «, and u;, so Ana(u,u;)=D
which is contrary to Ana(u,,u;)#3 . So, we can ob-
tain £*(AT)c&(4) . By £7(4) =&7(AT) and £7(4T)
c&7(4), £7(AT)=£%(A4) holds.

“R=>C".

Suppose {M (1), M5 (u,)} € E*(AT)x £°(AT),

M (u)#Mg(w,), (u,u)eMp(u)xMi(u,). It imp-
lies the attribute set AT can distinguish the object u,
and u, , thus AT na(y,u,)#@ Because of &%(4AT)
=£%(4A) , it means that 4 provides the same descriptive
or classification ability as AT. Thus, we can obtain
Ana(u,u)+9 .

From the discussion above, C < R holds. C & R
shows that 4c AT is a reduct of £ iff A Ais a prime
implicant of discernibility function y*. O

In some applications of reduction in interval-valued
information systems, we just need identify some ob-

jects from the rest. So, the concept of a reduct for an
object of U in an IvIS will be introduced as follows:



Definition 9. Given an interval-valued information
system ¢ =(U,AT,V, f), an attribute set A is a reduct

of ¢ for u,, if it satisfies the following two conditions:
(1) &)=t
(2) For any attribute set Bc 4 < AT ,
&p )= &5 (w) .

The set of all reducts of u, with respect to AT in
¢ is denoted by red5, (u,) .

Definition 10. Let ' =(U,4T,V, f) be an interval-
valued information system, and 4,,4,,...4, are all
reducts of ¢ for u, We call g, the core attribute for
uin¢ iff a,e 4ANA4,N..N4,.corir(u,) is the set of g,
for u,.

Theorem 2. Let ¢ =(U,AT,V,f) be an interval-
valued information system, 4 < AT is a reduct of ¢
for u, iff A4 is a prime implicant of discernibility
function () which is given as follows:

War(u)= aAT{ui’MZT(uj)}

A
Mr(u;)e® (AT)-E4r ()

%yr {MZT (), M 4 (u, )} .

A
(M M D (D585 ()
Where

A yr {ui’MjT(uj)} = A

u;eMgr(u;)

v a(ui9uj) ’

va(u,,u,)
Uty €M i a1 <M i (1) mnle

Cyr {MZT(UM),MZT(“,,)} =
au,u,)= {ak €dT:a) < a},
a(u,.u,)={a, € AT :a}, <a}.

Proof:
Let

C={AC AT:VM € £*(AT)- &5 (u,),

VM G (), M5 (u,) € Sar(uy), Mg (u,) # Mg (u,),

V(u,,u,)eMiy(u,)x M5 u,), Ana(u,,u,)#D,

a(u,,u,) =},

R={dc AT : £ ()= &5 w)} -

"C=R". (1) IfMe&iw), uueM It implies
Ana(u,u;)=3 .Suppose M ely(u) , M-—{u}e
Er(u). We can haveu, e M, M €& (u), M# M, or
u,eM , M ef(AT)-E5w) . Case 1 ueM .
According to Ana(u,,u,)= D in definitionC, we can
have Ana(u,u))#=S There a conflict. So,
if Me&u) , then Me&%(u) .Thus, &(u)c
£ () .Case 2: u, e M’ .According to Ana(u,u,)+D

is

in definition C, we can have 4na(u,,u;)# < which is
contrary to Ana(u,u,)=3 . Thus, if M €&f(x,), then
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M e &5 (u,) . Therefore, £5(u,) = &5, ;) . (2) Next we
prove £ (u)céS(w) - If Meéf(w), and u,eM
u,eM .
{u,}e&{(w,) it means any attribute in attribute set 4
thus
Ana(u,u;)=2 which is contrary to Ana(u,u;)#3D .
So, if M e&.(u)then M e&S(u,) .-We obtain £5.(x,)
c&iw).

"R=>C" . Ifu,eM , u; &5 (w) , then we can

It implies AN a(u,u,)#@ . Suppose ML

can not distinguish the object # and u, ,

obtain AT Nna(u,u;)# 3 Because &§(u)=£&5(w,), so
Ana(u,u)=D . If YMy@w,), Miu@w)eésw),
V(u,,u,) € My (u,)x Mg (u,)y Mg (u,)#Mi(u,) . Ac-
cording to &5.(u)=&5(w,) , it is clear that An
a(u,,u,)=3, a(u,,u,)=3d.

From the discussion above, we can have C< R
which shows that 4c AT is a reduct of ¢ for u, iff
A4 is a prime implicant of discernibility function
w4 (u,) .This completes the proof. O

Example 4. Based on Theorem 1 and 2, we can
obtain "’ (4T) and %) (u,)of ¢ given by Table 1, as
follows:

W (AT)=a, na; na, A(a, V as)

=(arayna;na) V(g Anasna Nas),

red® (AT) ={{a,,a,,a,,a,},{a,,a,,a,,a5}} ,

cor®’(AT) ={a,,a,,a,,a,} "{a,,a,,a,,a,} ={a,,a,,a,} ;

v w)=a,A(aVva,vay)

=(aqAna)Vv(a,ra)Vv(a;nag),
redg;(ul) = {{al,aS},{az,a3},{a3,a5}} >

W)= ((az vag) A a4)/\ 9

=(a,rna,na) V(g Aa,nay),
redy; (u,)={{a,,a,,a,},{a,,a,,a5}} ;

Vi) =a,vay,redy () ={{a,}.{a}} ;

Wi (u) = ay, red g (u) = {{a,}} 5

Wi(us)=(a,vas)na, ,redy (us) ={{a,,a,}.{a,,a}} ;

Wir(ug) = a, , red g (u) = {{a}};

WSl w,)=a, n(a,va,Vva)

=(q,nay)Vv(a,na;)Vv(a,nay),
redg';(u7) = {{al,as},{az,%},{a},as}} 5
wir(ug) =(a, vas) na,, redy (u) ={{a,,a,},{a,,a5}} ;
Wit (uy) =a, , redy](uy) ={a,};

: 0.7
‘//3;(’410) =ayAayna, Aas, red g ()= {{a,,as,a4,a5}} .



5. Conclusions

In this paper, we present the new framework of
knowledge reduction in an interval-valued information
system based on « -maximal consistent blocks.
Numerical examples are also employed to substantiate
the conceptual arguments. Contributions of this paper
are summarized as follows:

* The research on combination of rough sets and
interval numbers (grey numbers) is reviewed
systematically in this paper.

* New concept of the similarity rates is defined to
measure the two interval numbers.

* The o -maximal consistent blocks are used in an
IVIS for formulating approximations to an arbi-
trary object set in an IVIS with higher accuracy.

* The o -maximal consistent blocks in an IVIS can
provide the simpler discernibility matrices and
discernibility functions in reduction of an IVIS.
Finally, the latent knowledge is discovered from
an IVIS by knowledge reduction.
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