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a b s t r a c t

A relative reduct can be considered as a minimum set of attributes that preserves a certain
classification property. This paper investigates three different classification properties, and
suggests three distinct definitions accordingly. In the Pawlak rough set model, while the
three definitions yield the same set of relative reducts in consistent decision tables, they
may result in different sets in inconsistent tables.

Relative reduct construction can be carried out based on a discernibility matrix. The
study explicitly stresses a fact, that the definition of a discernibility matrix should be tied
to a certain property. Regarding the three classification properties, we can define three dis-
tinct definitions accordingly.

Based on the common structure of the specific definitions of relative reducts and discern-
ibility matrices, general definitions of relative reducts and discernibility matrices are
suggested.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Rough set theory is a useful tool for data analysis, dependency analysis and rule mining. It is typically assumed that we
have a finite set of objects described by a finite set of attributes. The values of objects on attributes can be conveniently rep-
resented by an information table. Decision tables are one type of information tables with a decision attribute that gives the
decision classes for all objects. A decision table is consistent if all object pairs that have the same condition values also have
the same decision value; otherwise, it is inconsistent.

Attribute reduction is an important problem of rough set theory. The notion of a reduct plays an essential role in analyz-
ing an information table. A reduct is a minimum subset of attributes that provides the same descriptive or classification
ability as the entire set of attributes [12]. In other words, attributes in a reduct are jointly sufficient and individually neces-
sary. Many methods have been proposed and examined for finding the set of all reducts or a single reduct
[3,5,12,13,15,16,21,22,24,30,31]. One important class of reduct construction methods is based on the notion of a discernibil-
ity matrix [15]. One can construct a Boolean discernibility function from a discernibility relation. Skowron and Rauszer [15]
show that the set of reducts are in fact the set of prime implicants of the reduced disjunctive form of the discernibility func-
tion. Many researchers studied reduct construction by using the discernibility information in a discernibility matrix
[5,19,22,25,28,29,31].
. All rights reserved.
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This article emphasizes and unifies various types of relative reducts in the Pawlak rough set model. This is a fundamental
issue that requires a careful investigation for the following three reasons. First, in the literature, there are many definitions
for a reduct, and each focuses on preserving one specific property. For example, for classification tasks, we can consider the
following three important properties: the certainty of decision making for all objects, the decision making for all objects, and
object pair relationships regarding the decision attribute. Regarding the three properties, they are equivalent in consistent
decision tables in the Pawlak rough set model, but are not necessarily equivalent in inconsistent tables. Misusing a reduct
definition that is for consistent tables only for an inconsistent table will cause a problem.

Second, these existing reduct definitions are characterized by the same structure. However, there is still a lack of abstrac-
tion of a higher level. With the increasing requirements of data analysis, one needs to consider more properties of an infor-
mation table. This naturally leads to more new definitions in different forms. Due to these reasons, a general definition of an
attribute reduct is necessary and useful.

Third, there are confusions and misuses in the published papers on matrix-based approaches for reduct construction.
Based on the three different properties and their corresponding reduct definitions, one needs to define distinct discernibility
matrices accordingly. We examine the properties embedded in some of the existing definitions of discernibility matrices,
such as the definitions provided by Hu and Cercone [5], Ye and Chen [29], Yang and Sun [25]. It should be emphasized that
decoupling a certain property from its matching matrix will lead to a failure of finding the required reducts, or a result of
finding some unwanted reducts. The paper aims to explain and clarify the reasons and results of the mismatch of properties
and matrices. Based on the analysis, a general definition of discernibility matrices is suggested.

Many definitions of relative reducts and discernibility matrices presented in this paper are not new. Comparisons be-
tween some properties and reduct definitions have already been studied by many researchers [7,9,17,20,30]. The novelty
of this study is to put all these definitions into a unified framework, and emphasize the coupling issues between properties
and reduct definitions, also between properties and matrix definitions. Through the study of various properties, the relation-
ships among reduct definitions and matrix definitions are more easily recognized. The significance of the generalized defi-
nitions is more easily identified. The study provides a complete view of relative reducts in consistent and inconsistent
decision tables. This view can enhance the theoretical and logical understanding of the concept of relative reducts. Based
on this understanding, efficient heuristics and algorithms can be designed and implemented.

The rest of the paper is organized as follows. Section 2 reviews the basic notations of the Pawlak rough set model. Section
3 discusses the definitions of relative reducts in both consistent and inconsistent decision tables. Section 4 provides a con-
structive view of relative reducts based on discernibility matrices. Section 5 is the conclusion. To improve the readability of
the paper, the proofs are provided in Appendix.

2. Basic notions

Information tables are defined by Pawlak for raw data representation [12]. For classification tasks, we consider a special
information table with a set of decision attributes. Such an information table also is called a decision table.

Definition 1. A decision table is the following tuple:

S ¼ U;At ¼ C [ D; fVaja 2 Atg; fIaja 2 Atgð Þ;
where U is a finite nonempty set of objects, and At is a finite nonempty set of attributes including a set C of condition attri-
butes that describe the objects, and a set D of decision attributes that indicate the classes of objects. Va is a nonempty set of
values of a 2 At, and Ia : U ! Va is an information function that maps an object in U to exactly one value in Va.

For simplicity, we assume D ¼ fdg in this paper, where d is a decision attribute which labels the decision for each object. A
table with multiple decision attributes can be easily transformed into a table with a single decision attribute by considering
the Cartesian product of the original decision attributes.

Consistency and inconsistency are two important concepts for classification tasks.

Definition 2. A decision table is consistent if all object pairs that have the same condition values on C also have the same
decision value on d, i.e.,
8ðx; yÞ 2 U � U 8a 2 C IaðxÞ ¼ IaðyÞ½ � ) IdðxÞ ¼ IdðyÞ½ �;

otherwise, it is inconsistent if there exists at least one object pair that have the same condition values on C but different deci-
sion values on d, i.e.,
9ðx; yÞ 2 U � U 8a 2 C IaðxÞ ¼ IaðyÞ½ � ^ IdðxÞ– IdðyÞ½ �:
For a subset A # At of attributes, Pawlak defines that two objects in U are A-indiscernible if and only if they have the same
values on all attributes in A [12]. As a dual relation to A-indiscernibility, two objects are considered A-discernible if and only
if they have different values on at least one attribute of A [33].

Definition 3. The indiscernibility and discernibility relations with respect to A # At are defined as:
INDðAÞ ¼ ðx; yÞ 2 U � Uj8a 2 A IaðxÞ ¼ IaðyÞ½ �f g;
DISðAÞ ¼ fðx; yÞ 2 U � Uj9a 2 A IaðxÞ–IaðyÞ½ �g: ð1Þ
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An indiscernibility relation is reflexive, symmetric and transitive, and thus is an equivalence relation. A discernibility rela-
tion is irreflexive, symmetric, but not transitive. The indiscernibility relation INDðAÞ induces a partition of U, denoted by
U=INDðAÞ or pA. The equivalence class of U=INDðAÞ containing x is given by ½x�INDðAÞ ¼ ½x�A ¼ y 2 Ujðx; yÞ 2 INDðAÞf g, or ½x� if
INDðAÞ is understood.

For classification tasks, the relative indiscernibility relation and the dual relative discernibility relation are defined as
follows.

Definition 4. The relative indiscernibility and discernibility relations defined by A # C with respect to D are defined as:
INDðAjDÞ ¼ ðx; yÞ 2 U � Uj8a 2 A IaðxÞ ¼ IaðyÞ½ � _ IdðxÞ ¼ IdðyÞf g;
DISðAjDÞ ¼ ðx; yÞ 2 U � Uj9a 2 A IaðxÞ–IaðyÞ½ � ^ IdðxÞ–IdðyÞf g: ð2Þ
A relative indiscernibility relation is reflexive, symmetric, but not transitive. A relative discernibility relation is irreflexive,
symmetric, but not transitive. According to the definition of consistency and inconsistency, it is intuitive that given a deci-
sion table S, if there exists an object pair ðx; yÞ 2 U � U such that ðx; yÞ 2 INDðCÞ and ðx; yÞ R INDðDÞ, then S is inconsistent; it is
consistent, otherwise.

After introducing the indiscernibility relation, objects share the same condition values can be treated as a whole rather
than individuals. For consistent decision tables, all objects in the same equivalence class ½x�C satisfying one and only one
class; while for inconsistent decision tables, objects in an equivalence class ½x�C may take different classes. It is necessary
to use a set to indicate all decision classes labelled by some objects in an equivalence class. Skowron proposes a generalized
decision d : U ! 2Vd as the set of decision classes of an object [14].

Definition 5. Given a condition attribute set A # C, the generalized decision of an object x 2 U is denoted as:
dðxjAÞ ¼ IdðyÞjy 2 ½x�A
� �

: ð3Þ
The set of generalized decisions of all objects in U is denoted as the general decision DðAÞ, such that
DðAÞ ¼ dðx1jAÞ; dðx2jAÞ; . . . ; dðxnjAÞð Þ; ð4Þ
where n ¼ jUj.

Regarding the definition of consistency and inconsistency, given a decision table S, if there exists one object x 2 U such
that jdðxjCÞj > 1 then S is inconsistent; if for all objects x 2 UjdðxjCÞj ¼ 1 then S is consistent.

Similar to the generalized decision, Slezak [17] proposes the notion of majority decision that uses a binary vector
for each equivalence class to indicate the decision classes to which its member objects may belong. In general, a
membership distribution function over decision classes may be used to indicate the degree to which an equivalence
class belongs [16]. Kryszkiewicz also distinguishes the generalized decision and the membership distribution func-
tion, termed as l-decision [7]. Zhang et al. [9,30] propose the maximum distribution criterion based on the member-
ship distribution function. In the following discussion, we only concentrate on the generalized decision defined in
Eq. (3).

Consider a partition pD ¼ D1;D2; . . . ;Dmf g of the universe U defined by the decision attribute set D, and another partition
pA defined by a condition attribute set A. The equivalence classes induced by the partition pA are the basic blocks to construct
the Pawlak rough set approximations. For a decision class Di 2 pD, the lower and upper approximations of Di with respect to
a partition pA are defined by Pawlak [12]:
aprpA ðDiÞ ¼ x 2 Uj½x�A # Di
� �

;

aprpA
ðDiÞ ¼ x 2 Uj½x�A \ Di–;

� �
: ð5Þ
Based on the rough set approximations of Di defined by pA, one can divide the universe U into three disjoint regions: the
positive region POSpA ðDiÞ, the boundary region BNDpA ðDiÞ and the negative region NEGpA ðDiÞ.

Definition 6. For a decision class Di 2 pD, the three regions of Di with respect to a partition pA are defined by Pawlak [12]:
POSpA
ðDiÞ ¼ aprpA

ðDiÞ;
BNDpA

ðDiÞ ¼ aprpA
ðDiÞ � aprpA

ðDiÞ;
NEGpA ðDiÞ ¼ U � POSpA ðDiÞ [ BNDpA ðDiÞ ¼ U � aprpA ðDiÞ ¼ aprpA ðDiÞ

� �c
: ð6Þ
For the partition pD ¼ fD1;D2; . . . ;Dmg, we can compute its lower and upper approximations in terms of m two-class
problems. Then, POSpA ðpDÞ indicates the union of all the equivalence classes defined by pA that each for sure can induce
a certain decision. BNDpA

ðpDÞ indicates the union of all the equivalence classes defined by pA that each can induce a
partial decision. NEGpA ðpDÞ indicates the union of all the equivalence classes defined by pA that each cannot induce
any decision.
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Definition 7. The three regions of the partition pD with respect to a partition pA are defined by Yao [26]:
POSpA ðpDÞ ¼
[

16i6m

POSpA ðDiÞ;

BNDpA
ðpDÞ ¼

[
16i6m

BNDpA
ðDiÞ;

NEGpA
ðpDÞ ¼ U � POSpA

ðpDÞ [ BNDpA
ðpDÞ: ð7Þ
If the decision table is consistent, then
POSpC ðpDÞ ¼ U; and BNDpC ðpDÞ ¼ NEGpC ðpDÞ ¼ ;:

If the decision table is inconsistent, then
POSpC ðpDÞ [ BNDpC ðpDÞ ¼ U; BNDpC ðpDÞ–;; and NEGpC ðpDÞ ¼ ;:
We can conclude that given a decision table S, if BNDpC ðpDÞ–; then S is inconsistent; it is consistent, otherwise.
Pawlak defines a measure to evaluate the quality of classification, or the degree of dependency of D, on an attribute set A # C

[13]:
cðpDjpAÞ ¼
jPOSpA

ðpDÞj
jUj : ð8Þ
The c measure is used by many researchers based on its simple quantitative evaluation of the positive region [1,4,12,15,20].

3. Relative reducts

There are various definitions of relative reducts in rough set theory. Some are only applicable to consistent tables, and
others are applicable to both consistent and inconsistent tables. Some researchers apply the definitions for consistent tables
only to inconsistent tables without noticing it. This has led to much confusion. In this section we consider three classification
properties, and investigate the corresponding definitions of relative reducts. It can be proved that the three definitions of
relative reducts are equivalent in consistent tables, but are not equivalent in inconsistent tables.

3.1. Interpretations of relative reducts

Intuitively speaking, a relative reduct of a decision table is a subset of attributes that has the same or similar classification
property as that of the entire set of condition attributes. A first step in defining a relative reduct is to examine such proper-
ties. We consider the following three properties:

� An attribute set A # C is said to preserve the positive region if and only if it produces the same positive region as C does,
i.e., POSpA

ðpDÞ ¼ POSpC ðpDÞ. In the Pawlak rough set model, if A preserves the positive region defined by C, it must also
preserve the boundary region defined by C. An attribute set A # C that preserves both the positive region and the boundary
region also is said to preserve the classification quality. In the Pawlak model, we can use the quantitative relation
cðpDjpAÞ ¼ cðpDjpCÞ to reflect the qualitative equivalence.

� An attribute set A # C is said to preserve the general decision if and only if it produces the same generalized decisions for
all objects as the ones produced by C, i.e., DðAÞ ¼ DðCÞ.

� An attribute set A # C is said to preserve the relative indiscernibility relation if and only if it produces the same relation as
C does, i.e., INDðAjDÞ ¼ INDðCjDÞ. If A preserves the relative indiscernibility relation defined by C, it must also preserve the
relative discernibility relation defined by C.

A relative reduct can be defined based on these three properties. It should be a minimum set of attributes that preserve a
certain property. Pawlak defines a relative reduct by requiring that the positive region of pD is unchanged [12]. Therefore, a
Pawlak relative reduct also is a region preservation reduct, or say, a classification quality reservation reduct. Similarly, we
can define a decision preservation reduct, and a relationship preservation reduct.

Definition 8. Given a decision table S ¼ U;At ¼ C [ D; fVaja 2 Atg; fIaja 2 Atgð Þ, we define the following three types of
relative reducts:

Region preservation reduct:
An attribute set R # C is a region preservation reduct of C with respect to D if it satisfies the following two conditions:

(s) POSpR ðpDÞ ¼ POSpC ðpDÞ,
(n) for any attribute subset R0 � R;POSpR0

ðpDÞ–POSpC ðpDÞ;

Decision preservation reduct:
An attribute set R # C is a decision preservation reduct of C with respect to D if it satisfies the following two conditions:
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(s) DðRÞ ¼ DðCÞ,
(n) for any attribute subset R0 � R;DðR0Þ–DðCÞ;

Relationship preservation reduct:

An attribute set R # C is a relationship preservation reduct of C with respect to D if it satisfies the following two
conditions:

(s) INDðRjDÞ ¼ INDðCjDÞ,
(n) for any attribute subset R0 � R; INDðR0 jDÞ–INDðCjDÞ.
The first condition (s) indicates the joint sufficiency of the attribute set R, i.e., R is sufficient to preserve a property. The
second condition (n) indicates that each attribute in R is individually necessary with respect to the property, i.e., any subset
of R is not sufficient to preserve the property.

This definition is based on the following important monotocity property. Consider any two subsets of attributes A;B # C
with A # B. For any x 2 U, we have ½x�B # ½x�A. We immediately obtain the monotocity of the relative indiscernibility relations,
general decisions and positive regions with respect to set inclusion of attributes.

Proposition 1. For any two subsets of attributes A;B # C with A # B,
A # B) POSpA ðpDÞ# POSpBðpDÞ;
A # B) dðxjBÞ# dðxjAÞ for all x 2 U;

A # B) INDðBjDÞ# INDðAjDÞ:
According to Proposition 1, the attribute set C produces the largest positive region POSpC ðpDÞ, the smallest generalized
decision dðxjCÞ for all objects, and the smallest relative indiscernibility relation INDðCjDÞ. A relative reduct R is able to pre-
serve the same result regarding a certain property, and none subset of R can produce a better result than R does. Therefore,
the equality relation is suitable for condition (s). According to Proposition 1, given an attribute set R0 � R, if R0 cannot pre-
serve the same result as C does regarding a certain property, then none of the proper subsets of R0 can. Thus, as stated in
condition (n), one only needs to check the proper subsets R� fag for all a 2 R in order to verify a relative reduct R. Therefore,
Definition 8 is well-defined.

A region preservation reduct, also is a standard Pawlak relative reduct [12], is based on the positive regions defined by
different attribute sets. For consistent decision tables, there is no need to consider the boundary region or the negative region
because they both are the empty sets. It is sufficient to consider only the positive rule set in consistent tables. For inconsis-
tent decision tables, we have POSpC ðpDÞ \ BNDpC ðpDÞ ¼ ;;POSpC ðpDÞ [ BNDpC ðpDÞ ¼ U, and the boundary region is not empty.
The condition POSpR ðpDÞ ¼ POSpC ðpDÞ is equivalent to BNDpR ðpDÞ ¼ BNDpC ðpDÞ. It is sufficient to consider only the positive
regions in the inconsistent tables.

Various types of relative reducts also have been studied by many researchers. For decision preservation, besides the
generalized decisions, one also can address other decision related functions, such as the membership distribution func-
tion and the maximum distribution function. Alternative decision preservation reducts have been studied [7,9,16]. For
relationship preservation, besides the relative indiscernibility relation, one can also preserve the relative discernibility
relation, or both. Relative reducts for object pair relationship preservation also have been studied [18,33]. The quanti-
tative alternative of region preservation reducts, also called classification quality preservation reducts, is studied by
many authors [1,3,4,12,20]. The conditional entropy reflects the classification accuracy from the information viewpoint,
and can be used for reduct computation. In general, any monotonic measure f can be used to evaluate positive region
preservation if it satisfies the condition
f ðpDjpAÞ ¼ f ðpDjpCÞð Þ () POSpA
ðpDÞ ¼ POSpC ðpDÞ

� �
:

For example, Shannon’s entropy and many of its variations have been explored to measure the uncertainty in rough set the-
ory [1,2,6,8,23], and thus can be understood as different forms of the f measure.

There may exist more than one reduct in an information table. We denote REDregionðCjDÞ as the set of region preservation
reducts, REDdecisionðCjDÞ as the set of decision preservation reducts, and REDrelationshipðCjDÞ as the set of relationship preserva-
tion reducts.

The following theorem states the equivalence relation among the three properties in consistent decision tables.

Theorem 1. Given a consistent decision table S ¼ ðU;At ¼ C [ D; fVaja 2 Atg; fIaja 2 AtgÞ, for an attribute set A # C, the following
conditions are equivalent:

(i) POSpA ðpDÞ ¼ POSpC ðpDÞ,
(ii) DðAÞ ¼ DðCÞ,

(iii) INDðAjDÞ ¼ INDðCjDÞ.
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The equivalence of the three properties stated in Theorem 1 indicates that the three definitions of relative reducts are in
fact equivalent in consistent decision tables. Different forms of the definitions yield the same set of relative reducts. In other
words, the definition of the Pawlak relative reducts preserves the positive region, relative relationship, and general decision
that are defined by the attribute set C at the same time.

The following theorem indicates that the three properties may not be equivalent in inconsistent decision tables. Further-
more, there is an ordering among them.

Theorem 2. Given an inconsistent decision table S ¼ ðU;At ¼ C [ D; fVaja 2 Atg; fIaja 2 AtgÞ, for an attribute set A # C, consider
the following conditions:

(i) POSpA ðpDÞ ¼ POSpC ðpDÞ,
(ii) DðAÞ ¼ DðCÞ,

(iii) INDðAjDÞ ¼ INDðCjDÞ.

Condition (ii) implies condition (i), and condition (iii) implies conditions (i) and (ii).

Theorem 2 indicates that in inconsistent decision tables, a Pawlak relative reduct preserves the positive region defined
by C, but does not necessarily preserve the general decision or the object pair relationship. Furthermore, the relationship
preservation is the strongest criterion, the region preservation is the weakest, and the decision preservation is in the mid-
dle. Preserving a stronger property guarantees that a weaker property also is preserved, while the reversed proposition
does not hold. The sets REDdecisionðCjDÞ and REDrelationshipðCjDÞ might be different, and they might not be equivalent to
REDregionðCjDÞ.

3.2. A general definition of a relative reduct

In the rough set literature, there exist many different definitions, just as the above three we have discussed. Along
with the increasing requirements of data analysis, we may need to define more properties of an information table; this
naturally leads to more definitions of reducts. All these definitions have the same structure. Therefore, a general
definition of an attribute reduct is necessary and useful [32]. Here, we provide a generalized definition for relative
reducts.

Definition 9. Given a decision table S ¼ ðU;At ¼ C [ D; fVaja 2 Atg; fIaja 2 AtgÞ and a certain property P of S regarding the
decision attribute set D. The attribute set R # C is a relative reduct of C if it satisfies the following three conditions:

(p) evaluate P by a function e : 2At ! L, which maps an attribute set of 2At to an element of a poset L;
(s) eðRÞ ¼ eðCÞ;
(n) for any R0 � R; eðR0Þ–eðCÞ.

According to the above analysis, the property P can be interpreted as region preservation, relationship preservation or
decision preservation. By applying the function e, we are able to pick the attribute set that preserves the property P. The
mapping yields different sets of reducts, such as RED regionðCjDÞ;REDdecisionðCjDÞ and REDrelationshipðCjDÞ.

Skowron and Rauszer define [15] that an attribute a 2 C is relatively indispensable in C if
POSpC�fag ðpDÞ–POSpC ðpDÞ;
otherwise a is said to be relatively dispensable in C. The set of relatively indispensable attributes is called a relative core, or
more specifically, a region preservation core, denoted as COREregionðCjDÞ. Similarly, we can define a relative core for decision
preservation and relationship preservation as follows:
COREdecisionðCjDÞ ¼ fa 2 CjDðC� fagÞ–DðCÞg;

CORErelationshipðCjDÞ ¼ fa 2 CjINDðC� fagjDÞ–INDðCjDÞg:
For various relative reducts and cores, the following proposition indicates that a relative core is in fact the intersection of the
corresponding set of relative reducts.

Proposition 2. COREPðCjDÞ ¼
T

REDPðCjDÞ.

It is crucial to note that the above general definition of relative reducts is based on the assumption that the monotocity of
the function e is held with respect to set inclusion of attributes. In this case, R can preserve the biggest value as the entire
condition attribute set C does regarding the function e, and no proper subset of R can reach the same value. For simplicity,
only the proper subsets R� fag for all a 2 R need to be checked. This important assumption is true in the Pawlak rough set
model, but is not true in probabilistic rough set models [27]. It means that the above general definition is applicable for the
Pawlak model only.
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4. Relative reduct construction based on discernibility matrices

A theoretical result has been developed by Skowron and Rauszer based on the notion of a discernibility matrix [15]. In this
section, we first review the standard definition of a discernibility matrix, and the inference of the corresponding discernibil-
ity function. Definitions of different discernibility matrices are then introduced and compared. Finally, a generalized defini-
tion of discernibility matrices is proposed.

4.1. Classical discernibility matrix and discernibility function

Skowron and Rauszer suggest a matrix representation for storing the sets of attributes that discern pairs of objects, called
a discernibility matrix [15]. Both the rows and columns of the matrix correspond to the objects. An element of the matrix is
the set of all attributes that distinguishes the corresponding object pairs.

Definition 10. Given an information table S, its discernibility matrix M ¼ ðMðx; yÞÞ is a jUj � jUjmatrix, in which the element
Mðx; yÞ for an object pair ðx; yÞ is defined by:
Table 1
A simpl

U

o1

o2

o3

o4

o5

o1

o2

o3

o4

o5
Mðx; yÞ ¼ a 2 AtjIaðxÞ–IaðyÞf g: ð9Þ
The physical meaning of the matrix element Mðx; yÞ is that objects x and y can be distinguished by any attribute in Mðx; yÞ.
The pair ðx; yÞ can be discerned if Mðx; yÞ–;. A discernibility matrix M is symmetric, i.e., Mðx; yÞ ¼ Mðy; xÞ, and Mðx; xÞ ¼ ;.
Therefore, it is sufficient to consider only the lower triangle or the upper triangle of the matrix.

From a discernibility matrix, one can define the notion of a discernibility function [15].

Definition 11. The discernibility function of a discernibility matrix is defined by:
f ðMÞ ¼
^ _

ðMðx; yÞÞj8x; y 2 U½Mðx; yÞ–;�
n o

: ð10Þ
The expression
W
ðMðx; yÞÞ is the disjunction of all attributes in Mðx; yÞ, indicating that the object pair ðx; yÞ can be distin-

guished by any attribute in Mðx; yÞ. The expression
V W

ðMðx; yÞÞf g is the conjunction of all
W
ðMðx; yÞÞ, indicating that the

family of discernible object pairs can be distinguished by a set of attributes satisfying
V W

ðMðx; yÞÞf g.

The discernibility function can be used to state an important result regarding the set of reducts of an information table, as
shown by the following theorem from Skowron and Rauszer [15].

Theorem 3. The reduct set problem is equivalent to the problem of transforming the discernibility function to a reduced
disjunctive form. Each conjunctor of the reduced disjunctive form is called a prime implicant. Given the discernibility matrix M of an
information table S, an attribute set R ¼ fa1; . . . ; apg is a reduct if and only if the conjunction of all attributes in R, denoted as
a1 ^ . . . ^ ap, is a prime implicant of f ðMÞ.

In order to derive the reduced disjunctive form, the discernibility function f ðMÞ is transformed by using the absorption
and distribution laws. Accordingly, finding the set of reducts can be modelled based on the manipulation of a Boolean func-
tion. The set reducts of an information table is equivalent to the set of prime implicants of the discernibility function.

4.2. Related work

For a decision table, the discernibility matrix also can be defined. A typical definition of a discernibility matrix for decision
tables is proposed by Hu and Cercone, in which an element is defined as [5]:
Mðx; yÞ ¼ a 2 Cj½IaðxÞ–IaðyÞ� ^ ½IdðxÞ–IdðyÞ�f g: ð11Þ
That is, we only consider the discernibility of objects in different decision classes.
e decision table and its discernibility matrix defined by Eq. (11).

a1 a2 d

1 0 1
1 0 2
0 0 1
0 0 0
1 1 1

o1 o2 o3 o4 o5

;
; ;
; fa1g ;
fa1g fa1g ; ;
; fa2g ; fa1; a2g ;
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An interesting counter example has been offered by Ye et al., and has led to the doubt on the descriptive power of the
discernibility matrix [29]. Let us first have a look at the decision table and its discernibility matrix shown in Table 1. The
table is slightly modified from the original example. According to the discernibility matrix defined in Eq. (11) and the dis-
cernibility function, we can easily verify that fa1; a2g is a relative reduct. According to Definition 7, we obtain that
POSpfa1 ;a2g

ðpDÞ ¼ fo5g;POSpfa1g
ðpDÞ ¼ ; and POSpfa2g

ðpDÞ ¼ fo5g, and thus fa2g is a relative reduct. This is a contradiction.
If fa2g is a reduct then fa1; a2g cannot be a reduct. How to explain this result?

We can do some computation regarding the relative indiscernibility relations. According to the definition, we obtain:
IND fa1; a2gjDð Þ ¼ ðo1; o1Þ; ðo1; o2Þ; ðo1; o3Þ; ðo1; o5Þ; ðo2; o1Þ; ðo2; o2Þ; ðo3; o1Þ;f
ðo3; o3Þ; ðo3; o4Þ; ðo3; o5Þ; ðo4; o3Þ; ðo4; o4Þ; ðo5; o1Þ; ðo5; o3Þ; ðo5; o5Þg;

IND fa1gjDð Þ ¼ ðo1; o1Þ; ðo1; o2Þ; ðo1; o3Þ; ðo1; o5Þ; ðo2; o1Þ; ðo2; o2Þ; ðo2; o5Þ;
n

ðo3; o1Þ; ðo3; o3Þ; ðo3; o4Þ; ðo3; o5Þ; ðo4; o3Þ; ðo4; o4Þ; ðo5; o1Þ; ðo5; o2Þ; ðo5; o3Þ; ðo5; o5Þ
o

;

IND fa2gjDð Þ ¼ ðo1; o1Þ; ðo1; o2Þ; ðo1; o3Þ; ðo1; o4Þ; ðo1; o5Þ; ðo2; o1Þ; ðo2; o2Þ; ðo2; o3Þ; ðo2; o4Þ; ðo3; o1Þ;
n

ðo3; o2Þ; ðo3; o3Þ; ðo3; o4Þ; ðo3; o5Þ; ðo4; o1Þ; ðo4; o2Þ; ðo4; o3Þ; ðo4; o4Þ; ðo5; o1Þ; ðo5; o3Þ; ðo5; o5Þ
o
:

This indicates that neither fa1g nor fa2g is sufficient to keep the relative indiscernibility relation. Hence, fa1; a2g is a relation-
ship preservation reduct.

We also can do some computation regarding the general decisions. According to the definition, we obtain:
d o1jfa1; a2gð Þ ¼ f1;2g; d o1jfa1gð Þ ¼ f1;2g; d o1jfa2gð Þ ¼ f0;1;2g;
d o2jfa1; a2gð Þ ¼ f1;2g; d o2jfa1gð Þ ¼ f1;2g; d o2jfa2gð Þ ¼ f0;1;2g;
d o3jfa1; a2gð Þ ¼ f0;1g; d o3jfa1gð Þ ¼ f0;1g; d o3jfa2gð Þ ¼ f0;1;2g;
d o4jfa1; a2gð Þ ¼ f0;1g; d o4jfa1gð Þ ¼ f0;1g; d o4jfa2gð Þ ¼ f0;1;2g;
d o5jfa1; a2gð Þ ¼ f1g; d o5jfa1gð Þ ¼ f1;2g; d o5jfa2gð Þ ¼ f1g:
This indicates that neither fa1g nor fa2g is sufficient to keep the same generalized decisions for all objects. Hence, fa1; a2g is a
decision preservation reduct.

Conclusively, both fa2g and fa1; a2g are relative reducts. While fa2g is a region preservation reduct, fa1; a2g is both a deci-
sion preservation reduct and a relationship preservation reduct. To judge if an attribute set is a reduct or not without con-
sidering the property it preserves is not meaningful, and may lead to a wrong judgement.

4.3. Specific discernibility matrices

Regarding the general definition of a relative reduct, given a certain property P of S, we can define a discernibility matrix
for storing the sets of attributes that discern pairs of objects regarding the property P. In this subsection, we focus on the
three property preservation matrices. They are relative relationships, general decisions and positive regions.

Regarding the region preservation property, given two objects x; y 2 U, if ½x�C 2 POSpC ðpDÞ and ½y�C 2 BNDpC ðpDÞ then they
are considered discernible; if both of them belong to the positive region, they may still be distinguished when
½x�C 2 POSpC ðDiÞ and ½y�C 2 POSpC ðDjÞ where Di–Dj; if both of them belong to the boundary region, they are considered indis-
cernible. Hence, the discernibility matrix for region preservation can be defined as follows.

Definition 12. Given a decision table S, its discernibility matrix Mregion ¼ ðMregionðx; yÞÞ for region preservation is a jUj � jUj
matrix, in which the element Mregionðx; yÞ for an object pair ðx; yÞ is defined by:
Mregionðx; yÞ ¼
a 2 CjIaðxÞ–IaðyÞf g; ½x� or ½y� 2 POSpC ðpDÞ;
;; otherwise:

�
ð12Þ
Skowron and Rauszer’s definition of a discernibility matrix [15] is equivalent to this definition. Another version is pro-
vided by Ye and Chen [29] by using the cardinality of generalized decisions. The condition min jdðxjCÞj; jdðyjCÞjf g ¼ 1 means
that at least one of the equivalence classes ½x�C and ½y�C belongs to the positive region, and thus ðx; yÞ needs to be compared.

A discernibility matrix for decision preservation only keeps track of the object pairs that have different generalized deci-
sions, and can be defined as follows.

Definition 13. Given a decision table S, its discernibility matrix Mdecision ¼ ðMdecisionðx; yÞÞ for decision preservation is a
jUj � jUj matrix, in which the element Mdecisionðx; yÞ for an object pair ðx; yÞ is defined by:
Mdecisionðx; yÞ ¼
a 2 CjIaðxÞ–IaðyÞf g; dðxjCÞ–dðyjCÞ;
;; otherwise:

�
ð13Þ
A discernibility matrix for relationship preservation only keeps track of the object pairs that satisfy the relative discern-
ibility relation defined by C, and can be defined as follows.
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Definition 14. Given a decision table S, its discernibility matrix Mrelationship ¼ ðMrelationshipðx; yÞÞ for relationship preservation
is a jUj � jUj matrix, in which the element Mrelationshipðx; yÞ for an object pair ðx; yÞ is defined by:
Mrelationshipðx; yÞ ¼
a 2 CjIaðxÞ–IaðyÞf g; ðx; yÞ 2 DISðCjDÞ;
;; otherwise:

�
ð14Þ
Hu and Cercone’s definition of a discernibility matrix [5] is equivalent to this definition, by having IdðxÞ–IdðyÞ to simplify
the relative discernibility relation.

From these three constructive definitions, one can also investigate the superset-subset relationship among the three
properties. The matrix for relationship preservation compares all object pairs that have different decision classes. The
matrix for decision preservation compares less pairs. Those object pairs having different decision classes are not com-
pared if they have the same generalized decisions. The matrix for region preservation compares least pairs. Those object
pairs having different generalized decisions are not compared if both the equivalence classes belong to the boundary
region.

4.4. A general definition of a discernibility matrix

To summarize the common structure of the discernibility matrices for different property preservations, we here provide a
general definition of discernibility matrices.

Definition 15. Given a decision table S ¼ U;At ¼ C [ D; fVaja 2 Atg; fIaja 2 Atgð Þ and a certain property P of S regarding the
decision attribute set D. The discernibility matrix MP ¼ ðMPðx; yÞÞ of the property P is a jUj � jUj matrix, in which the
element MPðx; yÞ for an object pair ðx; yÞ is defined by:
MPðx; yÞ ¼
a 2 CjIaðxÞ–IaðyÞf g; ðx; yÞ are distinguishable w:r:t: P;

;; otherwise:

�
ð15Þ
Two fundamental concepts – reduct and core – can be constructed in the discernibility matrix. For classification problems,
one can verify that the relative core, COREPðCjDÞ, can be characterized by a discernibility matrix MP in the following way:

Proposition 3
COREPðCjDÞ ¼ a 2 CjMPðx; yÞ ¼ fag for some x and yf g:
The discernibility function in Definition 11 offers a logical and systematic way to compute the set of all reducts. However,
a difficulty exists when applying the theoretical results. It is not very clear how to design an efficient algorithm for construct-
ing one reduct based on manipulating the discernibility function. Many efforts have been made to construct reducts based on
the matrices. For example, Miao et al. introduce Wu’s method to transform a matrix problem to a linear algebra problem
[10]. Yao and Zhao propose a reduct construction method based on discernibility matrix simplification [28]. The method
works in a similar way to the classical Gaussian elimination method for solving a system of linear equations. Various heu-
ristic algorithms also can be applied to all types of discernibility matrices [8,11,21,22,31].
5. Conclusion

A relative reduct is a minimum set of attributes that keeps a particular classification property. Three different properties
are discussed in this paper for classification tasks. In consistent decision tables, they yield the same set of relative reducts. In
inconsistent decision table, they may result in different sets. To suit with different properties, different discernibility matri-
ces are defined. Uncoupling the definitions of a reduct from its discernibility matrix may lead to the failure of reduct con-
struction or wrong results. To summarize the common structures of the specific definitions, the general definitions of
relative reducts and discernibility matrices are suggested.

The study also tries to remark on the generalization problem. A simple definition may work very well for the standard and
simple model by integrating several interpretations explicitly and implicitly. Moving forward to a more general model, these
interpretations may not be equivalent, and need to be treated differently and separately. A straightforward or oversimplified
generalization may take the risk for missing some interpretations, or mixing up the whole concept.

From consistent decision tables to inconsistent decision tables, we encounter the problem of generalizing the definition of
a relative reduct. This paper is one of the efforts to differentiate the embedded interpretations and properties that are equiv-
alent and might not need to be distinguished in consistent tables, but are different and need to be differentiated in incon-
sistent tables. To generalize the Pawlak model to probabilistic models, more complicated situations will be encountered
while the monotonic feature might not hold for some properties.



D.Q. Miao et al. / Information Sciences 179 (2009) 4140–4150 4149
Acknowledgements

The authors thank the anonymous referees for the constructive comments and suggestions. This work is partially sup-
ported by the National Natural Science Foundation of China, Grant No. 60775036, the Specialized Research Fund for the Doc-
toral Program of Higher Education of China, Grant No. 2006024703, and a Discovery Grant from NSERC Canada.
Appendix A. Proofs of proposed theorems and propositions

A.1. Proof of Theorem 2

‘‘(ii)) (i)” Based on the monotocity of the positive regions with respect to set inclusion of attributes, we have
A # C) POSpA ðpDÞ# POSpC ðpDÞ. We thus should prove that POSpC ðpDÞ# POSpA ðpDÞ. For any x 2 U; ½x�C 2 POSpC ðpDÞ indicates
that ½x�C has one and only one decision value denoted by v1, i.e., dðxjCÞ ¼ fv1g. Because dðxjAÞ ¼ dðxjCÞ, then dðxjAÞ ¼ fv1g,
which indicates that ½x�A 2 POSpA ðpDÞ. Therefore, POSpC ðpDÞ# POSpA ðpDÞ.

‘‘(ii)( (i) is not true”. Proof by a counter example shown in Table 2. Investigate the attribute sets C and fa1; a2g. The com-
putation shows that D fa1; a2gð Þ–DðCÞ, and thus fa1; a2g does not preserve the general decision defined by C. However, also in
the previous example, POSpC ðpDÞ ¼ POSpfa1 ;a2g

ðpDÞ ¼ fo1g. Thus, fa1; a2g preserves the positive region defined by C. This indi-
cates that an attribute set preserving the region does not necessarily preserve the general decision.

‘‘(iii)) (ii)” Proof by contradiction. Suppose there exists an object x1 2 U such that dðx1jAÞ–dðx1jCÞ. Based on the monot-
ocity of the general decisions with respect to set inclusion of attributes, we have A # C) dðxjCÞ � dðxjAÞ. In other words,
there must exist a decision value v1 2 Vd such that v1 2 dðx1jAÞ and v1 R dðx1jCÞ. Denote an object y1 having Idðy1Þ ¼ v1, then
y1 2 ½x1�A and y1 R ½x1�C. This indicates that ðx1; y1Þ 2 INDðAjDÞ and ðx1; y1Þ R INDðCjDÞ. Therefore INDðAjDÞ–INDðCjDÞ.

‘‘(iii)( (ii) is not true” Proof by a counter example shown in Table 3. Investigate the attribute sets C and fa1; a2g. The com-
putation shows that D fa1; a2gð Þ ¼ DðCÞ, and thus fa1; a2g preserves the general decision defined by C. At the same time,
POSpC ðpDÞ ¼ POSpfa1 ;a2g

ðpDÞ ¼ fo1g. Thus, fa1; a2g preserves the positive region defined by C. However, by reducing C to
fa1; a2g, we cannot distinguish the object pairs ðo2; o5Þ; ðo3; o4Þ; ðo4; o3Þ and ðo5; o2Þ which are originally discernible. This indi-
cates that an attribute set preserving the general decision, or the positive region, does not necessarily preserve the object pair
relationship defined by C.

‘‘(iii)) (i)” can be proved based on the fact that (iii)) (ii) and (ii)) (i). ‘‘(iii)( (i) is not true” can be proved by the same
counter example shown in Table 3. h

A.2. Proof of Proposition 2

We show the proof for CORErelationshipðCjDÞ ¼
T

REDrelationshipðCjDÞ. where Mðx; yÞ is computed according to Definition 14.
‘‘)” Proof by contradiction. According to the definition, for any core attribute a 2 CORErelationship

ðCjDÞ; INDðCjDÞ–INDðC� fagjDÞ. Based on the monotocity of the relative indiscernibility relations with respect to set inclu-
sion of attributes, INDðCjDÞ � INDðC� fagjDÞ. It means that there exists an object pair ðx1; y1Þ 2 INDðC� fagjDÞ and
Table 2
A counter example to show that an attribute set which is region preservable is not necessarily decision preservable.

U a1 a2 a3 D DðCÞ D fa1; a2gð Þ

o1 0 1 1 1 {1} {1}
o2 1 0 0 1 {1,2} {1,2,3}
o3 1 0 0 2 {1,2} {1,2,3}
o4 1 0 1 3 {2,3} {1,2,3}
o5 1 0 1 2 {2,3} {1,2,3}

Table 3
A counter example to show that an attribute set which is decision preservable or region preservable is not necessarily relationship preservable.

U a1 a2 a3 D DðCÞ D fa1; a2gð Þ

o1 0 1 1 1 {1} {1}
o2 1 0 0 1 {1,2} {1,2}
o3 1 0 0 2 {1,2} {1,2}
o4 1 0 1 1 {1,2} {1,2}
o5 1 0 1 2 {1,2} {1,2}
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ðx1; y1Þ R INDðCjDÞ. This indicates that for all c 2 C� fag; Icðx1Þ ¼ Icðy1Þ _ Idðx1Þ ¼ Idðy1Þ and there exists b 2 C; Ibðx1Þ–Ibðy1Þ^
Idðx1Þ–Idðy1Þ. Thus, b ¼ a such that Iaðx1Þ–Iaðy1Þ. Suppose R1 # C is a relationship preservation reduct and a R R1. Then,
ðx1; y1Þ 2 INDðR1jDÞ and ðx1; y1Þ R INDðR1 [ fagjDÞ. Since INDðCjDÞ# INDðR1 [ fagjDÞ � INDðR1jDÞ, then R1 is not a relative
reduct.

‘‘(” Proof by contradiction. Suppose a R CORErelationshipðCjDÞ. According to the definition of a relationship preservation core,
INDðCjDÞ ¼ INDðC� fagjDÞ. Furthermore, there exists R1 # C� fag which is a relative reduct. It indicates that a R R1. h

A.3. Proof of Proposition 3

We show the proof of a relationship preservation core. i.e., CORErelationshipðCjDÞ ¼ a 2 CjMðx; yÞ ¼ fagfor some x and yf g,
where Mðx; yÞ is computed according to Definition 14. The interpretation of a region preservation core has been proved
by Skowron and Rauszer [15]. Other Interpretations can be similarly proved.

‘‘)” For any a 2 CORErelationshipðCjDÞ; INDðCjDÞ–INDðC� fagjDÞ, thus INDðCjDÞ � INDðC� fagjDÞ. It indicates that there ex-
ists ðx1; y1Þ 2 INDðC� fagjDÞ but ðx1; y1Þ R INDðCjDÞ. Thus, ð8b 2 C� fag Ibðx1Þ ¼ Ibðy1Þ½ �Þ _ ðIdðx1Þ ¼ Idðy1ÞÞ and ð9a 2 C ICðx1Þ–½
ICðy1Þ�Þ ^ ðIdðx1Þ ¼ Idðy1ÞÞ. These two results imply that Ibðx1Þ ¼ Ibðy1Þ for all b 2 C� fag, and thus Mðx1; y1Þ \ ðC� fagÞ ¼ ;
and Mðx1; y1Þ \ C–;. Thus, Mðx1; y1Þ ¼ fag.

‘‘(” For any a 2 C such that fag 2 M, there exists ðx1; y1Þ 2 U � U satisfying Mðx1; y1Þ ¼ fag. This indicates that
ðx1; y1Þ R INDðCjDÞ and ðx1; y1Þ 2 INDðC� fagjDÞ. These two results imply that INDðCjDÞ–INDðC� fagjDÞ. Thus, a 2
CORErelationshipðCjDÞ. h
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