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Abstract—Quality of clustering is an important issue in application of clustering techniques. Most traditional cluster validity indices are

geometry-based cluster quality measures. This paper proposes a cluster validity index based on the decision-theoretic rough set model

by considering various loss functions. Experiments with synthetic, standard, and real-world retail data show the usefulness of the

proposed validity index for the evaluation of rough and crisp clustering. The measure is shown to help determine optimal number of

clusters, as well as an important parameter called threshold in rough clustering. The experiments with a promotional campaign for the

retail data illustrate the ability of the proposed measure to incorporate financial considerations in evaluating quality of a clustering

scheme. This ability to deal with monetary values distinguishes the proposed decision-theoretic measure from other distance-based

measures. The proposed validity index can also be extended for evaluating other clustering algorithms such as fuzzy clustering.

Index Terms—Cluster validity, decision theory, loss functions, rough-set-based clustering, k-means clustering.
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1 INTRODUCTION

CLUSTERING is one of the important techniques in data
mining. Clustering categorizes unlabeled objects into

several clusters such that the objects belonging to the same
cluster are more similar than those belonging to different
clusters. Conventional clustering assigns an object to exactly
one cluster. Rough-set-based variation makes it possible to
assign objects to more than one cluster [1], [11], [12], [17],
[19], [21], [23], [25], [33]. Quality of clustering is an
important issue in application of clustering techniques to
real-world data. A good measure of cluster quality will help
in deciding various parameters used in clustering algo-
rithms. One such parameter that is common to most
clustering algorithms is the number of clusters.

Many different indices of cluster validity have been
proposed. In general, indices of cluster validity fall into one

of three categories. Some validity indices measure partition
validity to evaluate the properties of crisp structure imposed

on the data by the clustering algorithm, such as Dunn indices
[7] and Davies-Bouldin index [6]. These validity indices are

based on similarity measure of clusters whose bases are the
dispersion measure of a cluster and the cluster dissimilarity

measure. In the case of fuzzy clustering algorithms, some
validity indices such as partition coefficient [2] and classifi-

cation entropy [2] use only the information of fuzzy
membership grades to evaluate clustering results. The third

category consists of validity indices that make use of not only
the fuzzy membership grades but also the structure of the
data. All these validity indices are essentially based on the
geometric characteristics of the clusters. This paper proposes
a decision-theoretic measure of cluster quality. Decision-
theoretic framework has been helpful in providing a better
understanding of classification models [14], [39], [41], [43],
[44]. The decision theoretic rough set model considers
various classes of loss functions. By adjusting loss functions,
the decision-theoretic rough set model can also be extended
to the multicategory problem. It is possible to construct a
cluster validity index by considering various loss functions
based on decision theory. Such a measure has an added
advantage of being applicable to rough-set-based clustering.

This paper describes how to develop a cluster validity
index from the decision-theoretic rough set model. Based
on the decision theory, the proposed rough cluster validity
index is taken as a function of total risk for grouping
objects using a clustering algorithm. Since crisp clustering
is a special case of rough clustering, the proposed index
validity is applicable to both rough clustering and crisp
clustering. Experiments with synthetic and real-world data
show the usefulness of the proposed validity index for the
evaluation of rough clustering and crisp clustering. The
measure is shown to help determine optimal number of
clusters. The experiments also show how the measure can
be used to determine an important parameter called
threshold in rough clustering.

The proposed measure is applied to a synthetic data set
that is designed to highlight the usefulness of the
proposed measure, especially for rough clustering. Experi-
ments with standard data sets are also used to ensure that
the proposed measure works well with clustering schemes
that have been tested by data mining community [38].
Finally, the distinguishing character of the decision-
theoretic measure is illustrated by using monetary profit
and loss considerations in a real-world data set. The
experiments show how the business-oriented data mining
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could benefit from the proposed framework as opposed to
traditional distance-based measures.

2 LITERATURE REVIEW

First, we describe the notations that will appear in this
section. Let X ¼ f~x1; . . . ; ~xng be a finite set of objects.
Assume that the objects are represented by m-dimensional
vectors. A classifying scheme classifies n objects into
k categories C ¼ f~c1; . . . ;~ckg. We use the term category
instead of class or cluster to emphasize the fact that it can be
used in supervised and unsupervised learning. For a
clustering scheme (CS), such as crisp clustering and rough
clustering, C is the set of clusters. And each of the clusters~ci
is represented by an m-dimensional vector, which is the
centroid or mean vector for that cluster.

This section also introduces some notations related to the
rough set theory. The notion of rough set was proposed by
Pawlak [27], [28], and Pawlak et al. [29]. Let P be an
equivalence relation on X. The pair apr ¼ ðX;P Þ is called an
approximation space. Any subset A � X may be repre-
sented by its lower and upper approximations. The lower
approximation aprðAÞ is the union of all the elementary sets
which are subsets of A, and the upper approximation
aprðAÞ is the union of all the elementary sets which have a
nonempty intersection with A. We call bndðAÞ ¼ aprðAÞ �
aprðAÞ the boundary region of A.

2.1 Crisp Clustering

K-means clustering is one of the most popular statistical
clustering techniques [9], [22]. The objective is to assign
n objects to k clusters. The process begins by randomly
choosing k objects as the centroids of the k clusters. The
objects are assigned to one of the k clusters based on the
minimum value of the distance dð~xl;~ciÞ between the object
vector ~xl and the cluster vector ~ci. The distance dð~xl;~ciÞ can
be the standard euclidean distance.

After the assignment of all the objects to various clusters,
the new centroid vectors of the clusters are calculated as

~ci ¼
P

~xl2~ci ~xl

j~ci j
; where 1 � i � k:

Here j~ci j is the cardinality of cluster ~ci. The process
stops when the centroids of clusters stabilize, i.e., the
centroid vectors from the previous iteration are identical to
those generated in the current iteration.

2.2 Rough Clustering

The conventional clustering techniques mandate that an
object must belong to precisely one cluster. Such a require-
ment is found to be too restrictive in many data mining
applications [13]. In practice, an object may display char-
acteristics of different clusters. In such cases, an object should
belong to more than one cluster, and as a result, cluster
boundaries necessarily overlap. Fuzzy set representation of
clusters, using algorithms such as fuzzy C-means, make it
possible for an object to belong to multiple clusters with a
degree of membership between 0 and 1 [30]. In some cases,
the fuzzy degree of membership may be too descriptive for
interpreting clustering results. Rough-set-based clustering

provides a solution that is less restrictive than conventional
clustering and less descriptive than fuzzy clustering.

Rough set theory has made substantial progress as a
classification tool in data mining [3], [15], [27], [28], [35]. The
basic concept of representing a set as lower and upper
bounds can be used in a broader context such as clustering.
Clustering in relation to rough set theory is attracting
increasing interest among researchers [11], [12], [23], [24],
[25], [31], [32], [33]. Lingras [16], [17] described how a rough
set theoretic classification scheme can be represented using
a rough set genome. In subsequent publications [19], [21],
modifications of K-means and Kohonen Self-Organizing Maps
(SOMs) were proposed to create intervals of clusters based
on rough set theory. Asharaf et al. [1] extended the
approach further with Rough Support Vector Clustering.

Rough sets were originally proposed using equivalence
relations. However, it is possible to define a pair of upper
and lower bounds ðaprðCÞ; aprðCÞÞ or a rough set for every
set C � X as long as the properties specified by Pawlak [27],
[28] are satisfied. Yao [40] and Yao and Lin [42] described
various generalizations of rough sets by relaxing the
assumptions of an underlying equivalence relation. Such a
trend toward generalization is also evident in rough
mereology proposed by Polkowski and Skowron [34] and
the use of information granules in a distributed environ-
ment by Skowron and Stepaniuk [36]. The present study
uses such a generalized view of rough sets.

Let us consider a hypothetical classification scheme

X=P ¼ C1; C2; . . . ; Ckf g ð1Þ

that partitions the set X based on an equivalence relation P .
Let us assume due to insufficient knowledge that it is not
possible to precisely describe the sets Ci; 1 � i � k, in the
partition. Based on the available information, however, it is
possible to define each set Ci 2 X=P using its lower aprðCiÞ
and upper aprðCiÞ bounds. We will use m-dimensional
vector representations, ~xt for objects and ~ci for cluster Ci,
whenever it is notationally convenient.

We are considering the upper and lower bounds of only
a few subsets of X. Therefore, it is not possible to verify all
the properties of the rough sets [28]. However, the family of
upper and lower bounds of~ci 2 X=P are required to follow
some of the basic rough set properties such as:

(P1) An object ~x can be part of at most one lower bound,
(P2) ~x 2 Að~ciÞ ¼) ~x 2 Að~ciÞ;
(P3) An object ~x is not part of any lower bound

()
~x belongs to two or more upper bounds.

Property (P1) emphasizes the fact that a lower bound is
included in a set. If two sets are mutually exclusive, their
lower bounds should not overlap. Property (P2) confirms the
fact that the lower bound is contained in the upper bound.
Property (P3) is applicable to the objects in the boundary
regions, which are defined as the differences between upper
and lower bounds. The exact membership of objects in the
boundary region is ambiguous. Therefore, property (P3)
states that an object cannot belong to only a single boundary
region. Note that (P1)-(P3) are not necessarily independent
or complete. However, enumerating them will be helpful
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later in understanding the rough set adaptation of evolu-

tionary, neural, and statistical clustering methods. In the

context of decision-theoretic rough set model, Yao and Zhao

[45] provide a more detailed discussion on the important

properties of rough sets, and positive, boundary, and

negative regions.
Lingras and West incorporated rough set into k-means

clustering, which requires the addition of the concept of

lower and upper bounds [19]. This section describes a

refined version of the original proposal [18], [21], [32]. The

following equation is used to calculate the centroids of

clusters that need to be modified to include the effects of

lower as well as upper bounds. The modified centroid

calculations for rough clustering are then given by

~ci ¼

!low �
P

~xl2aprð~ciÞ
~xl

japrð~ciÞj þ !bnd �
P

~xl2bndð~ciÞ
~xl

jbndð~ciÞj ;

for aprð~ciÞ 6¼ � and bndð~ciÞ 6¼ ;:P
~xl2aprð~ciÞ

~xl

japrð~ciÞj ;

for aprð~ciÞ 6¼ � and bndð~ciÞ ¼ ;:P
~xl2bndð~ciÞ

~xl

jbndð~ciÞj ;

for aprð~ciÞ ¼ � and bndð~ciÞ 6¼ ;;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

where!low þ !bnd ¼ 1 and 1 � i � k. The parameters!low and

!bnd correspond to the relative importance of lower and

upper bounds. The next step is to design criteria to determine

whether an object belongs to the upper and lower bound of a

cluster. For any object vector,~xlð1 � l � nÞ, let dð~xl;~ciÞ be the

distance between itself and the centroid of cluster ~ci. The

ratio dð~xl;~cjÞ=dð~xl;~ciÞ, 1 � i; j � k, are used to determine the

membership of ~xl [21], [32]. Let dð~xl;~ciÞ ¼ min1�j�kdð~xl;~cjÞ
and fTl ¼ j: dð~xl;~cjÞ=dð~xl;~ciÞ � threshold and i 6¼ jg. We

will use ~xl ! Tl to denote the fact that object ~xl is similar to

all the elements of set Tl.

1. If Tl 6¼ ;;~xl 2 aprð~cjÞ; 8j 2 Tl. Furthermore, ~xl is not
part of any lower bound.

2. Otherwise, if Tl ¼ ;; ~xl 2 aprð~ciÞ.
The rough k-means algorithm, described above, depends

on three parameters !low, !bnd, and threshold. It should be

emphasized that approximation space apr is not defined

based on any predefined relation on the set of objects. The

upper and lower bounds are constructed based on the

criteria described above.

2.3 Cluster Quality

Several cluster validity indices have been proposed to

evaluate cluster quality obtained by different clustering

algorithms. An excellent summary of various validity

measures can be found in Halkidi et al. [10]. Here, we

introduce two classical cluster validity indices and one used

for fuzzy clusters.

2.3.1 Davies-Bouldin Index

This index [6] is a function of the ratio of the sum of within-

cluster scatter to between-cluster separation. The scatter

within the ith cluster, denoted bySi, and the distance between

cluster~ci and~cj, denoted by dij, are defined as follows:

Si;q ¼
1

j~ci j
X
~x2~ci
k~x�~cikq2

 !1=q

;

dij;t ¼ k~ci �~cjkt;

where~ci is the center of the ith cluster. j~cij is the number of
objects in ~ci. Integers q and t can be selected independently
such that q; t > 1. The Davies-Bouldin index for a clustering
scheme (CS) is then defined as

DBðCSÞ ¼ 1

k

Xk
i¼1

Ri;qt;

where Ri;qt ¼ max1�j�k;j 6¼ifSi;qþSj;qdij;t
g.

The Davies-Bouldin index considers the average case of
similarity between each cluster and the one that is most
similar to it. Lower Davies-Bouldin index means a better
clustering scheme.

2.3.2 Dunn Index

Dunn proposed another cluster validity index [7]. The index
corresponding to a clustering scheme (CS) is defined by

DðCSÞ ¼ min
1�i�k

min
1�j�k;j 6¼i

�ð~ci;~cjÞ
max1�q�k�ð~cqÞ

� �� �
;

where

�ð~ci;~cjÞ ¼ min
1�i;j�k;i6¼j

k~ci �~cj k;

�ð~ciÞ ¼ max
~xl;~xt2~ci

k ~xl �~xt k :

If a data set is well separated by a clustering scheme, the
distance among the clusters, �ð~ci;~cjÞð1 � i; j � kÞ, is usually
large and the diameters of the clusters, �ð~ciÞð1 � i � kÞ, are
expected to be small. Therefore, a large value of DðCSÞ
corresponds to a good clustering scheme. The main draw-
back of the Dunn index is that the calculation is computa-
tionally expensive and the index is sensitive to noise.

2.3.3 Xie-Beni Index

This index is also called the compactness and separation
validity function [37]. It is a representative cluster validity
measure for fuzzy clustering. In fuzzy clustering, we assign
a membership uit for an object ~xt to a cluster ~ci

S ¼
Pk

i¼1

Pn
t¼1 uit � k~ci �~xtk

n�mini;jk~ci �~cjk
:

The numerator in the Xie-Beni index is a measure of cluster
compactness, while the denominator reflects the separation
of clusters. Xie et al. [38] modified the cluster validity
measure to develop an improved fuzzy clustering algorithm.

Similar to the validity measures for crisp clustering,
fuzzy clustering algorithms are based on the geometric
distances. In the subsequent sections, we will discuss a
decision-theoretic view of clustering. It will also help us
evaluate clustering schemes based on monetary cost and
benefit considerations.

2.4 Yao’s Decision-Theoretic Framework

Yao proposed probabilistic rough set approximations in [39],
which apply the Bayesian decision procedure for the
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construction of probabilistic approximations. The classifica-

tion of objects according to approximation operators in

rough set theory can be easily fitted into the Bayesian

decision-theoretic framework. Let � ¼ fA;Acg denote the

set of states indicating that an object is in A and not in A,

respectively. Let A ¼ fa1; a2; a3g be the set of actions, where

a1, a2, and a3 represent the three actions in classifying an

object, deciding POSðAÞ, deciding NEGðAÞ, and deciding

BNDðAÞ, respectively. The probabilities P ðAj½~x�Þ and

P ðAcj½~x�Þ are the probabilities that an object in the

equivalence class ½~x� belongs to A and Ac, respectively. The

expected loss Rðaij½~x�Þ associated with taking the individual

actions can be expressed as

Rða1j½~x�Þ ¼ �11P ðAj½~x�Þ þ �12P ðAcj½~x�Þ;
Rða2j½~x�Þ ¼ �21P ðAj½~x�Þ þ �22P ðAcj½~x�Þ;
Rða3j½~x�Þ ¼ �31P ðAj½~x�Þ þ �32P ðAcj½~x�Þ;

where �i1 ¼ �ðaijAÞ, �i2 ¼ �ðaijAcÞ, and i ¼ 1; 2; 3. The

Bayesian decision procedure leads to the following

minimum-risk decisions:
If Rða1j½~x�Þ � Rða2j½~x�Þ and Rða1j½~x�Þ � Rða3j½~x�Þ, decide

POSðAÞ;
If Rða2j½~x�Þ � Rða1j½~x�Þ and Rða2j½~x�Þ � Rða3j½~x�Þ, decide

NEGðAÞ;
If Rða3j½~x�Þ � Rða1j½~x�Þ and Rða3j½~x�Þ � Rða2j½~x�Þ, decide

BNDðAÞ.
Tie-breaking criteria should be added so that each object

is classified into only one region. Since P ðAj½~x�Þ þ
P ðAcj½~x�Þ ¼ 1, the rules to classify any object in ½~x� can be

simplified based on the probability P ðAj½~x�Þ and the loss

function �ij (i ¼ 1; 2; 3; j ¼ 1; 2).

3 MULTICATEGORY DECISIONS

The previous section described Yao et al.’s framework for a

binary classification problem. In this section, we extend it to

multicategory problems, where categorization may be

either supervised or unsupervised.

3.1 Extending Yao’s Model

Recently, Yao’s decision-theoretic framework was extended

to the multicategory problem [20]. Let X ¼ f~x1; . . . ; ~xng be a

finite set of objects. Let C ¼ f~c1; . . . ;~ckg be a finite set of

k states given that C is the set of categories and each

category is represented by a vector ~ci (1 � i � k). Further-

more, let C partition the set of objects X. For every object, ~xl,

Tl represents a nonempty set of all the categories that are

similar to ~xl. Clearly, Tl � C. We will use ~xl ! Tl to denote

the fact that object ~xl is similar to all the elements of set Tl.

Moreover, object ~xl can be similar to one and only one Tl.

Therefore, upper (apr) and lower (apr) approximations of

each category ~ci can be expressed as follows:

aprð~ciÞ ¼ f~xlj~xl ! Tl;~ci 2 Tlg;
aprð~ciÞ ¼ f~xlj~xl ! Tl; f~cig ¼ Tlg:

3.2 Loss Functions for Multicategory Problem

Following Yao [39], Lingras et al. [20] proposed a set of
states and actions to describe the decision-theoretic frame-
work for multicategory rough sets, given as follows.

States. The states are essentially the set of categories
C ¼ f~c1; . . . ;~ckg.

Actions. Let B ¼ fB1; . . . ; Bsg ¼ 2C � f;g be a family of
nonempty subsets of C, where s ¼ 2k � 1. A set of actions
b ¼ fb1; . . . ; bsg corresponds to set B, where bj represents the
action in assigning an object ~xl to the set Bj.

Note that some of the sets Bjs will be the same as the set
Tls defined in previous sections. There will be a total of
n Tls, one for each object, and they may not be distinctly
different from each other. That is, two objects may be
similar to the same subset of C. On the other hand, there
will be exactly s ¼ 2k � 1 distinct Bjs. For simplicity, we
will use bj to refer to the action as well as the set Bj.

The Bayesian decision procedure for multicategory
rough sets is described as follows.

Let �~xlðbjj~ciÞ denote the loss, or cost, for taking action bj
when an object ~xl belongs to ~ci. Let P ð~cij~xlÞ be the
conditional probability of an object ~xl being in state ~ci.
Therefore, the expected loss Rðbjj~xlÞ associated with taking
action bj for an object ~xl is given by

Rðbjj~xlÞ ¼
Xk
i¼1

�~xlðbjj~ciÞP ð~cij~xlÞ:

For an object ~xl, if Rðbjj~xlÞ � Rðbhj~xlÞ 8 h ¼ 1; . . . ; s, then
decide bj.

The loss function is generalized from the 0.5 probabilistic
model [29] given by Yao [39] as follows:

�~xlðbjj~ciÞ ¼
jbj�Tlj
jbjj ; if ~ci 2 bj;

�~xlðbjj~ciÞ ¼
jbj�;j
jbjj ; if ~ci 62 bj:

When ~ci belongs to bj, the loss for taking action bj
corresponds to the fraction of bj that is not related to ~xl.
Otherwise, the loss for taking action bj will have the
maximum value of 1.

The loss function described here can be further enhanced
for business applications by using the actual dollar costs of
making the decisions. We will consider such an enhance-
ment when we experiment with data from a retail store.

4 ROUGH CLUSTER QUALITY INDEX BASED

ON DECISION THEORY

Clustering is an unsupervised classification method when
the only data available are unlabeled. Most clustering
algorithms need to know the number of clusters. A cluster
validity measure can provide us some information about the
appropriate number of clusters. Cluster validity measures
such as Davies-Bouldin [6] can help us assess whether a
clustering method accurately presents the structure of the
data set. There are several cluster validity indices to evaluate
crisp and fuzzy clustering [2], [4], [5], [6], [7], [37]. However,
there is no evaluation measure for rough clustering at
present.
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Decision-theoretic framework has been helpful in pro-
viding a better understanding of the classification model.
The decision-theoretic rough set model considers various
classes of loss functions as described above. The extension
of the decision-theoretic rough set model to the multi-
category problem and corresponding loss functions are also
described in the previous section. It is possible to construct
a cluster validity measure by considering various loss
functions based on decision theory.

Within a given set of objects, there may be clusters such
that objects in the same cluster are more similar than those
in different clusters. The objective of clustering is to find the
right groups or clusters for the given set of objects.
However, to find the right clusters, we need exponential
time comparisons and the problem has been proved to be
NP-hard [8]. For defining our framework we will assume
existence of a hypothetical clustering scheme, CS, that
partitions a set of objects X ¼ f~x1; . . . ; ~xng into clusters
CS ¼ f~c1; . . . ;~ckg. Clustering algorithms such as k-means
approximate the actual clustering. It is possible that each
object may not necessarily belong to only one cluster.
However, there will be a core corresponding to each cluster
within our clustering scheme. We will start with formal
definitions for the proposed validity indices based on the
hypothetical cores. The centroid of the hypothetical core
will be used in our definitions.

Cluster core. Let coreð~ciÞ be the core of the cluster ~ci, which is
used to calculate the centroid of the cluster. Any ~xl 2 coreð~ciÞ
cannot belong to other clusters. Therefore, coreð~ciÞ can be
considered the best representation of ~ci to a certain extent.

Risk for assigning an object to clusters. For a given
clustering scheme CS, let bjðCS;~xlÞ be the action that assigns
the object ~xl to a cluster or a group of clusters. (Note that an
object may not belong to a single cluster under rough
clustering.) The risk associated with the assignment will then
be given as RðbjðCS;~xlÞj~xlÞ. RðbjðCS;~xlÞj~xlÞ is obtained
assuming that the conditional probability P ð~cij~xlÞ is propor-
tional to the similarity between ~xl and coreð~ciÞ.

Group risk for clustering scheme. Given a clustering scheme
(CS) and a group of objects ~c ¼ f~x1; . . . ; ~xgg, we define
RðCS;~cÞ as the group risk for ~c under a clustering scheme,
given by

RðCS;~cÞ ¼
X
~xl2~c

RðbjðCS;~xlÞj~xlÞ: ð2Þ

Therefore, the cluster validity indices for a clustering
scheme (CS) can be taken as the function of group risk,
defined as follows:

RðCSÞ ¼
Xk
i¼1

RðCS;~ciÞ ¼
Xn
l¼1

RðbjðCS;~xlÞj~xlÞ: ð3Þ

Obviously, the smaller the value of the total risk, the
better a clustering scheme. The objective is to minimize
RðCSÞ in order to obtain the optimal number of clusters for
a clustering scheme (CS).

For rough clustering (RC), an object~xl may belong to more
than one cluster. Moreover, each cluster~ci is represented by
its lower approximation aprð~ciÞ and upper approximation

aprð~ciÞ. There also exists the boundary region bndð~ciÞ ¼
aprð~ciÞ � aprð~ciÞ. Based on the definitions given above, we
give the following definitions for rough clustering.

Risk for assigning an object to clusters under rough
clustering. For rough clustering, let bjðRC;~xlÞ be the action
that assigns the object ~xl to a set S � RC such that ~ci 2 S.
Since Tl is equal to bjðRC;~xlÞ, the loss function for ~xl can be
expressed as follows:

�~xlðbjðRC;~xlÞj~ciÞ ¼ 0 if ~ci 2 bjðRC;~xlÞ;
�~xlðbjðRC;~xlÞj~ciÞ ¼ 1 if ~ci 62 bjðRC;~xlÞ:

ð4Þ

The risk associated with the assignment will then be given as
RðbjðRC;~xlÞj~xlÞ. Let simð~xl;~ciÞ be the similarity between ~xl
and coreð~ciÞ. Usually, sim will be inversely proportional to
the distance between the two vectors. We will assume that
coreð~ciÞ ¼ aprð~ciÞ. If the lower bound is empty, then we will
assume that the coreð~ciÞ is the centroid of aprð~ciÞ.
RðbjðRC;~xlÞj~xlÞ is obtained assuming that the conditional

probability P ð~cij~xlÞ is proportional to simð~xl;~ciÞ, given by

P ð~cij~xlÞ ¼
simð~xl;~ciÞP

1�j�k simð~xl;~cjÞ
; ð5Þ

RðbjðRC;~xlÞj~xlÞ
¼

X
i¼1;...;k

~ci 62bjðRC;~xlÞ

�~xlðbjðRC;~xlÞj~ciÞ � P ð~cij~xlÞ: ð6Þ

Risk for Lower Approximation. For rough clustering, let
RðRC; aprð~ciÞÞ be the risk for a lower approximation. Since
aprð~ciÞ consists of a group of objects aprð~ciÞ ¼ f~xi1; . . . ; ~xigg,
RðRC; aprð~ciÞÞ is given by

RðRC; aprð~ciÞÞ ¼
X

~xl2aprð~ciÞ
RðbjðRC;~xlÞj~xlÞ: ð7Þ

Risk for Upper Approximation. For rough clustering, let
RðRC; aprð~ciÞÞ be the risk for a upper approximation. Since
aprð~ciÞ consists of a group of objects aprð~ciÞ ¼ f~xi1; . . . ; ~xigg,
RðRC; aprð~ciÞÞ is given by

RðRC; aprð~ciÞÞ ¼
X

~xl2aprð~ciÞ
RðbjðRC;~xlÞj~xlÞ: ð8Þ

Risk for Boundary Area. For rough clustering, let
RðRC; bndð~ciÞÞ be the risk for the boundary area of ~ci. Since
bndð~ciÞ consists of a group of objects bndð~ciÞ ¼ f~xi1; . . . ; ~xigg,
RðRC; bndð~ciÞÞ is given by

RðRC; bndð~ciÞÞ ¼
X

~xl2bndð~ciÞ
RðbjðRC;~xlÞj~xlÞ: ð9Þ

One can deduce the following properties for rough
clustering:

. RðRC; aprð~ciÞÞ
¼ RðRC; aprð~ciÞÞ þRðRC; bndð~ciÞÞ; ðP1:1Þ

. RðRC; aprð~ciÞÞ � RðRC; aprð~ciÞÞ; ðP1:2Þ

. RðRC; aprð~ciÞ \ aprð~ciÞÞ ¼ RðRC; aprð~ciÞÞ; ðP1:3Þ
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. RðRC; aprð~ciÞ [ aprð~ciÞÞ ¼ RðRC; aprð~ciÞÞ; ðP1:4Þ

. RðRC; aprð~ciÞ \ aprð~cjÞÞ ¼ RðRC; ;Þ ¼ 0; ðP1:5Þ

. RðRC; aprð~ciÞ [ aprð~cjÞÞ
¼ RðRC; aprð~ciÞÞ þRðRC; aprð~cjÞÞ; ðP1:6Þ

. RðRC; aprð~ciÞ [ aprð~cjÞÞ
� RðRC; aprð~ciÞÞ þRðRC; aprð~cjÞÞ; ðP1:7Þ

. RðRCÞ�
Pk

i¼1 RðRC; aprð~ciÞÞ; ðP1:8Þ
. RðRCÞ �

Pk
i¼1 RðRC; aprð~ciÞÞ: ðP1:9Þ

Property (P1.1) follows from the fact that aprð~ciÞ and
bndð~ciÞ are disjoint and their union is equal to aprð~ciÞ.
The fact that aprð~ciÞ is a subset of aprð~ciÞ can be used to
derive properties (P1.2), (P1.3), and (P1.4). Since aprð~ciÞ\
aprð~cjÞ ¼ ;, we get properties (P1.5), and (P1.6). How-
ever, aprð~ciÞ [ aprð~cjÞ may not be an empty set. Hence,
we get the properties (P1.7) and (P1.8). Finally, property
(P1.9) can be derived using the knowledge that the
unions of all the lower bounds is an improper subset
of X.

Properties (P1.8) and (P1.9) tell us that we cannot
calculate the risk for a rough clustering scheme by simply
summing up risks for either the lower bounds or upper
bounds of the clusters.

Crisp clustering is a special case of rough clustering.
Using the definitions given above, we can obtain the risk for
crisp clustering (CC) as follows. The core of a cluster is, in
fact, the cluster ~ci obtained from clustering.

. coreð~ciÞ ¼ aprð~ciÞ ¼ aprð~ciÞ; ðP2:1Þ

. RðCC; coreð~ciÞÞ
¼ RðCC; aprð~ciÞÞ ¼ RðCC; aprð~ciÞÞ; ðP2:2Þ

. RðCC; coreð~ciÞ \ coreð~cjÞÞ ¼ RðCC; ;Þ ¼ 0; ðP2:3Þ

. RðCC; coreð~ciÞ [ coreð~cjÞÞ
¼ RðCC; coreð~ciÞÞ þRðCC; coreð~cjÞÞ: ðP2:4Þ

Therefore, the proposed risk measure for crisp clustering
can be expressed as follows:

RðCCÞ ¼
Xk
i¼1

RðCC; coreð~ciÞÞ

¼
Xk
i¼1

RðCC; aprð~ciÞÞ

¼
Xk
i¼1

RðCC; aprð~ciÞÞ:

ð10Þ

Let us illustrate the proposed risk measure for two
different clustering schemes, crisp clustering and rough
clustering, with the following example. Since crisp cluster-
ing is assumed to approximate the actual clustering, we can
evaluate rough clustering by comparing the value of the
proposed risk measure to that of crisp clustering.

Example 1. Let X ¼ f~x1; . . . ;~x10g and C ¼ f~c1;~c2;~c3g. The
distribution of objects is shown in Fig. 1. According to
the distribution, nine objects ~xi ð1 � i � 10; i 6¼ 4Þ are
expected to form three groups, but one object denoted by
~x4 ¼ ð3:6; 2:3Þ is far from these groups.

For crisp clustering, we get the three clusters as shown in
Fig. 2. Risk of each object, as well as bj and Tl for each object,
are presented in Table 1. Table 2 shows coreð~ciÞ and group
risk of each cluster ~ci.

For rough clustering, we set k ¼ 3 and !low ¼ 0:8. We
also adjust the threshold to obtain the results presented in
Fig. 3. In the figure, the dashed line outlines the upper
approximation of each cluster, and the solid line describes
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Fig. 1. Distribution of objects.

Fig. 2. Crisp clustering.

TABLE 1
Risk Calculations for Objects in Crisp Clustering (CC)

TABLE 2
Risk for Clusters in Crisp Clustering (CC)



the lower approximation of each cluster. Since the distance
between ~x4 and coreð~c1Þ is close to that between ~x4 and
coreð~c2Þ, ~x4 belongs to the upper approximations of ~c1 and
~c2. Risk, as well as bj and Tl for each object, is presented in
Table 3. Table 4 shows centroid and group risk for each
cluster~ci. Because of the existence of the upper approxima-
tions, the centroids of coreð~c1Þ and coreð~c2Þ go toward the
center much more than those in crisp clustering.

According to (3), we obtain the risk for crisp clustering
and that for rough clustering, shown in Table 5. Since we
have one object ~x4 that should not belong to a single cluster,
rough clustering provides a more reasonable representa-
tion. This fact is confirmed by the risk for rough clustering,
which is smaller than that for crisp clustering.

5 STUDY DATA AND EXPERIMENTS

We use three data sets, synthetic data set to highlight
various features of the proposal, a standard data set to

compare our results with other researchers [26], [38], and a
retail store’s data set to show the unique ability of our
proposal to consider monetary costs and benefits while
analyzing cluster quality.

5.1 Synthetic Data

The synthetic data set has been developed to test some of
the salient features of both crisp and rough clustering in
relation to the proposed risk measure. In order to visualize
the data set, we restrict it to two dimensions as can be seen
in Fig. 4. There are a total of 65 objects. It is obvious that
there are three distinct clusters. However, five objects do
not belong to any particular cluster. We performed crisp
clustering and rough clustering on the synthetic data set for
different numbers of clusters.

Fig. 5 shows how the cluster index varies for different
number of clusters for crisp clustering. As shown in Fig. 5,
the risk decreases as the number of clusters is reduced from
seven to three. However, we see a sudden and sharp
increase when the number of clusters is reduced from three
to two. The risk reaches the minimum value when objects
are grouped into three clusters. That means the risk
measure proposed in this study correctly indicates that
the right number of clusters equals three. A similar trend
can also be found for rough clustering in Fig. 6. The
minimum risk can be found for the number of clusters equal
to three. The value of threshold used in Fig. 6 is 1.4. The
threshold is an important parameter in rough clustering that
determines the size of boundary regions. The risk measure
was used to arrive at the appropriate value of threshold.

Fig. 7 shows how changing the value of threshold can
affect the risk of clustering. The number of clusters was kept
constant at three, while the threshold values were changed
from 1.1 to 1.7. The higher values led to larger boundary
regions and lower risks. However, one should not increase
the boundary region too much as it will lead to fairly
indecisive and uninformative clustering scheme. Fig. 7
shows a rapid decline in risk until the threshold reaches a
value of 1.4. One can see that the decline slows down after
that point. Therefore, it is reasonable to use the value of
threshold ¼ 1:4.

The results so far seem to indicate that the risk measure
can be used to determine important features of a clustering
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TABLE 4
Risk for Clusters in Rough Clustering (RC)

TABLE 3
Risk Calculations for Objects in Rough Clustering (RC)

Fig. 3. Rough clustering.

TABLE 5
Risk as the Quality Indices for Example 1



scheme such as the number of clusters and the size of

boundary region.
We can have a closer look at the detailed risk values that

help us understand the difference between crisp and rough

clustering. Fig. 8 presents the crisp clustering results. A

satisfactory rough clustering with k ¼ 3, !low ¼ 0:75, and

threshold ¼ 1:4 is presented in Fig. 9. Summary of the

comparison between risks from various regions in rough

and crisp clustering can be found in Table 6. In crisp

clustering, the five objects that do not seem to belong to any

particular cluster are forced to go to one of the clusters. This

results in the centroids of the clusters to be shifted from the

centroid of the cores of the clusters. That is why the risk of

assigning objects to these cores tends to be higher in

comparison to those for rough clustering. The difference in

risk for crisp and rough clustering seems to be the highest

for the boundary region consisting of the five objects. This

large difference makes sense, since rough clustering clearly

represents the ambivalent assignments of these five objects

to more than one cluster, while crisp clustering is forced to
assign these objects to a single cluster.

The shape of the neighborhood of the cluster can vary
depending on the exponent used in the distance function.
Most studies use the euclidean distance, where the
exponent of the difference is 2. It would be interesting to
study the impact on the value of the number of clusters and
threshold by using distance functions that use different
values of exponents. We used the absolute values of
distances in determining the closeness. Fig. 10 shows the
change in risk for different values of threshold for three
clusters. The results show that for all the values of
exponents, the risk experiences an identifiable dip for
threshold ¼ 1:4. Fig. 11 shows the change in risk for
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Fig. 4. Synthetic data.

Fig. 5. Synthetic data: risk for crisp clustering for different number of

clusters.

Fig. 7. Change in risk for rough clustering with threshold for synthetic

data.

Fig. 6. Synthetic data: risk for rough clustering for different number of

clusters.

Fig. 8. Synthetic data: crisp clustering.

Fig. 9. Synthetic data: rough clustering.



threshold ¼ 1:4 and different number of clusters. The
results show that for all the values of exponents other than
1, the risk is minimum for three clusters. Based on these
results, one can say that the euclidean distance is adequate
for our clustering process.

5.2 Wisconsin Breast Cancer Data

The previous section used synthetic data that was designed
to highlight and test salient features of the proposed risk-
based measure. In this section, we use a standard real-world
data set that is tested for clustering by other researchers
such as Xie et al. [38]. The testing for such a standard data
set makes it possible to compare the proposed approach
with some of the previous clustering results.

Wisconsin breast cancer databases were obtained from
the University of Wisconsin Hospitals, Madison, by
Dr. William H. Wolberg [26]. This data set contains
699 instances that fall into two classes: benign (458 in-
stances) and malignant (241 instances). Each instance is
represented by nine attributes, all of which are scaled to a
½1; 10� range.

Fig. 12 shows the variation in risk as we change the
number of clusters in the K-means crisp clustering. Corre-
sponding changes in risk with the use of rough K-means
algorithm is shown in Fig. 13. For rough clustering, we set

!low ¼ 0:75 and threshold ¼ 1:4. It can be seen from both the
figures that the risk of clustering is minimum for two clusters
and then continuously rises. This is an encouraging sign,
since we want to group the objects into two categories: benign
and malignant. The appropriate number of clusters obtained
here also corresponds to those obtained by Xie et al. [38]
when they tested their modified fuzzy clustering algorithm
with Xie-Beni validity measure for fuzzy clustering.

The variation in risk for different values of threshold is
shown in Fig. 14. The risk seems to decline from threshold
value of 1.1 to 1.7. However, there is a sharp drop in risk
when the threshold is reduced from 1.3 to 1.4. Therefore,
threshold of 1.4 can again be used as an appropriate value.
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Fig. 10. Effect of distance functions.

Fig. 11. Effect of distance functions.

TABLE 6
Risk Comparison between Rough and Crisp Clustering of Synthetic Data

Fig. 12. Breast cancer data: crisp clustering.

Fig. 13. Breast cancer data: rough clustering.

Fig. 14. Breast cancer data: threshold in rough clustering.



5.3 Monetary Loss Function for Retail

This section reports experiments with a real-world data set
belonging to a small retail chain. The experiments highlight
the contributions of decision-theoretic cluster quality
measure. The loss function is enhanced with monetary cost
and benefit considerations of a clustering scheme.

The data consists of all the customer transactions in 2006.
There were a total of 68,716 transactions, one transaction per
item purchased. 40,260 of these transactions can be
associated with 5,878 identified customers. The objective
of the experiment is to cluster the customers based on their
spending habits. Each customer is represented by his
monthly spending patterns. The monthly spending pattern
gives a better understanding of a customer’s spending
habits than total spending. A customer who spends $100
every month may be a little more loyal than one who spends
$1,200 during a single visit. The chronological ordering of
spending does not help us understand the propensity of a
customer to spend. For example, a person spending $100,
$200, $300 in three months will look different from the one
who spends $300, $100, $200 during the same three months.
Therefore, we sort the spending values, which makes the
two customers identical in terms of their revenue generation
potential. Instead of using 12-monthly spending and visit
values, which may be too detailed for the purpose of
grouping, we represent the patterns using the lowest,
highest, and average spending. However, in some cases,
lowest and highest values can be outliers. Therefore, we use
second highest, second lowest, and median values as a
representative of the pattern.

Three hundred and thirteen customers visited in only
one month. These customers were termed as infrequent
customers. It was decided that there was no further need for
grouping these customers. After eliminating the 313 cus-
tomers, the number of customers was 5,565. After experi-
menting with different values, wl was set at 0.75.

As mentioned before, we can enhance our loss function
using dollar amounts. In our case, the dollar amounts will
be the profits. We can look at profits as negative losses in
our formulation. Let Sl be total annual sales of a customer
~xl. Assuming 30 percent profit margin, our profits will be
Sl � 0:3. Loss will be �Sl � 0:3.

Let us consider a promotional campaign targeted at
relatively high spenders. Let us assume that it is a two-tier
campaign that will be aimed at the top two clusters of
customers. The first-tier promotion will be directed at the
customers in the highest spending cluster~ck. It will cost $100
and will result in 10 percent increase in sales. That means the
increase in sales will be Sl � 0:1. We have to subtract the cost
of promotion in calculating the increase in profits, so the
profits will be Sl � 0:1� 0:3� $100. Since the dollar loss is
the negative of profits, it will be $100� Sl � 0:1� 0:3. We
can now modify the cost for all the actions bj such that
~ck 2 bj, since these actions possibly assign a customer to the
highest spending cluster ~ck. The modified loss function for
such an action will be given as

�~xlðbjj~ciÞ ¼ ð$100� Sl � 0:1� 0:3Þ

� jbj � Tljjbjj
if ~ci 2 bj ^~ck 2 bj;

ð11Þ

�~xlðbjj~ciÞ ¼ ð$100� Sl � 0:1� 0:3Þ

� jbj � ;jjbjj
if ~ci 62 bj ^~ck 2 bj:

ð12Þ

The second-tier promotional campaign will be directed at
the second largest spending cluster~ck�1. It will cost $50 and is
expected to lead to a 5 percent increase in sales. That means
the increase in sales will be Sl � 0:05. We have to subtract the
cost of promotion in calculating increase in the profits, so the
profits will be Sl � 0:05� 0:3� $50. Since the dollar loss is
the negative of profits, it will be $50� Sl � 0:05� 0:3. We
will exclude all the customers who have already been a target
of tier-1 campaign. That means we need to modify the cost
for all the actions bj such that ~ck�1 2 bj and ~ck 62 bj. The
modified loss function for such an action will be given as

�~xlðbjj~ciÞ ¼ ð$50� Sl � 0:05� 0:3Þ

� jbj � Tljjbjj
if ~ci 2 bj ^~ck 62 bj ^~ck�1 2 bj;

ð13Þ

�~xlðbjj~ciÞ ¼ ð$50� Sl � 0:05� 0:3Þ

� jbj � ;jjbjj
if ~ci 62 bj ^~ck 62 bj ^~ck�1 2 bj:

ð14Þ

The loss functions for the remaining actions bj that do not
assign customers to either ~ck or ~ck�1 remain unchanged.

Fig. 15 shows the changes in risks for two-tier promo-
tional campaign with K-means crisp clustering. There is a
decline in risk with increase in number of clusters.
However, the rate of decline slows down after seven
clusters. Therefore, it is reasonable to assume that the
customers fall into seven clusters.

To illustrate the flexibility of the proposed decision-
theoretic framework, we will further apply it to a three-
tier campaign. The first-tier promotions will be aimed at
customers that possibly belong to ~ck. It will cost $200 and
result in sales increase of 20 percent. The second-tier
promotions will be aimed at customers that possibly
belong to ~ck�1. It will cost $100 and result in sales
increase of 10 percent. The third-tier promotions will be
aimed at customers that possibly belong to ~ck�2. It will
cost $50 and result in sales increase of 5 percent. The loss
functions for actions that assign customers to either ~ck,
~ck�1, or ~ck�2 are modified using formulas similar to those
used for two-tier campaign.

Fig. 16 shows the changes in risks for three-tier promo-
tional campaign with K-means crisp clustering. As with the

LINGRAS ET AL.: ROUGH CLUSTER QUALITY INDEX BASED ON DECISION THEORY 1023

Fig. 15. Monetary risk for crisp clustering for two-tier retail promotion.



two-tier campaign, there is a decline in risk with increase in

number of clusters. It is interesting to note that the risk for

two clusters and three clusters is exactly the same. This

makes sense since a three-tier campaign should separate the

customers into four categories: one for each promotion and

one for no promotion. The rate of decline slows down a little

later for the three-tier campaign compared to two-tier

campaign. Since the rate of decline slows down significantly

after 10 clusters, it may be reasonable to cluster the

customers into 10 clusters. Again, a little higher number of

clusters for the three-tier promotion makes sense compared

to the two-tier promotion.
Fig. 17 shows the changes in risk for rough clustering for

the two-tier promotional campaign. Except for a curious

jump in risk from two clusters to three clusters, the pattern

is the same as the one obtained for the two-tier crisp

clustering. The rate of decrease in the risk seems to slow

down after five clusters, and there is a further decline in rate

after seven clusters.

Therefore, we will set the number of clusters to be
between five and seven. Fig. 18 shows the variation in risk
as threshold changes for k ¼ 7. Interestingly, similar to the
synthetic and Wisconsin breast cancer data, when threshold

is at a value of 1.4, there is a local minima suggesting that
1.4 is again a reasonable value. Similar local minima was
also found for k ¼ 5.

Tables 7 and 8 show the sizes of the upper and lower
bounds of each cluster for k ¼ 5 and k ¼ 7, respectively. The
representative patterns for each cluster can be found in
Fig. 19 for k ¼ 5 and Fig. 20 for k ¼ 7. One can see that if we
set k ¼ 7, there is a marginal gain in lower risk, but the two-
tier campaign will be directed at only 73 clusters. With k ¼ 5,
the campaign will be directed at a total of 117 customers. The
store owner may choose to include a larger customer base in
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Fig. 16. Monetary risk for crisp clustering for three-tier retail promotion.

Fig. 17. Monetary risk for rough clustering for the two-tier retail

promotion.

Fig. 18. Monetary risk for different thresholds in rough clustering.

TABLE 7
The Number of Objects in

Lower and Upper Bounds of Five Clusters

TABLE 8
The Number of Objects in

Lower and Upper Bounds of Seven Clusters

Fig. 19. Five rough centroids for the retail data.

Fig. 20. Seven rough centroids for the retail data.



the campaign and choose the clustering scheme with k ¼ 5.
Moreover, five clusters are a little easy to analyze than the
seven clusters. Therefore, let us look at the five clusters in
little greater detail.

Cluster C1 is the largest cluster consisting of moderate
spenders who spend $0 to $52 in a month. The next cluster,
C2, is about the quarter the size of C1 with spending
ranging from $1 to $163. Third cluster (C3) is even smaller
with spending ranging from $16 to $330. Fourth cluster has
approximately 69 to 117 customers with spending ranging
from $109 to $594. Please note that these values are
monthly spending. The average annual spending for these
customers is in excess of $3,500. When the store spends $50
on promotion for these customers, it will likely receive
additional annual profits exceeding $3;500� 0:05� 0:3 ¼
$52:50. The profits can be increased by focusing on the
lower bound of the cluster. The last cluster is the smallest
with spending ranging from $137 to $1,330. The average
annual spending for these customers is in excess of $6,000.
When the store spends $100 on promotion for these
customers, it will likely receive additional annual profits
exceeding $6;000� 0:1� 0:3 ¼ $180. Again, the profits can
be increased by focusing on the lower bound of this cluster
as well. The objects in the upper bound could be the target
of the second-tier $50 promotional campaign. The overlaps
between different clusters is shown in Table 9. It can be
seen that the intermediate clusters, i.e., C2, C3, and C4
have overlaps with two clusters on either side. For
example, C2 overlaps with C1 and C3, while C3 overlaps
with C2 and C4, and C4 overlaps with C3 and C5. On the
other hand, clusters C1 and C5 have overlap with only one
cluster: C1 with C2 and C5 with C4.

6 SUMMARY AND CONCLUSIONS

This paper describes a cluster quality index based on decision
theory. The proposal uses a loss function to construct the
quality index. Therefore, the cluster quality is evaluated by
considering the total risk of categorizing all the objects. Such a
decision-theoretic representation of cluster quality may be
more useful in business-oriented data mining than traditional
geometry-based cluster quality measures. In addition to
evaluating crisp clustering, the proposal is an evaluation
measure for rough clustering. This is the first measure that
takes into account special features of rough clustering that
allow for an object to belong to more than one cluster. The
measure is shown to be useful in determining important
aspects of a clustering exercise such as determining the
appropriate number of clusters and size of boundary region

(in case of rough clustering). The application of the measure

to synthetic data with known number of clusters and

boundary region provides credence to the proposal. The

measure is also tested with a standard data set that is used by

other researchers for testing clustering schemes and cluster

validity measures. The proposed measure gave comparable

results to the previous studies.
A real advantage of the decision-theoretic cluster validity

measure is its ability to include monetary considerations in

evaluating a clustering scheme. Use of the measure to

derive an appropriate clustering scheme for a promotional

campaign in a retail store highlighted its unique ability to

include cost and benefit considerations in commercial data

mining. We can also extend it to evaluating other clustering

algorithms such as fuzzy clustering. Such a cluster validity

measure can be useful in further theoretical development in

clustering. Results of such development will be reported in

future publications.
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