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KNN (k nearest neighbor) is widely discussed and applied in pattern recognition and data mining, how-
ever, as a similar outlier detection method using local information for mining a new outlier, neighbor-
hood outlier detection, few literatures are reported on. In this paper, we introduce neighborhood
model as a uniform framework to understand and implement neighborhood outlier detection. Further-
more, a neighborhood-based outlier detection algorithm is also given. This algorithm integrates rough
set granular technique with outlier detecting. We propose a neighborhood-based metric on outlier detec-
tion, and compare neighborhood outlier detection with DIS, KNN and RNN. The experimental results
show that neighborhood-based metric is able to measure the local information for outlier detection.
The detected accuracies based on neighborhood outlier detection are superior to DIS, KNN for mixed
dataset, and a litter better than RNN for discrete dataset.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In contrast to traditional pattern recognition question that aims
to construct a general pattern map to the majority of data, outlier
detection targets to find the rare data whose behavior is very
exceptional when compared with rest large amount of data. One
of the most popular outlier detection techniques is distance-based
outlier, introduced by Knorr and Ng (1998, 1999). A distance-based
outlier in a dataset D is a data object with pct% of the objects in D
having a distance of more than dmin away from it. This notion
generalizes many concepts from distribution-based approach and
enjoys better detected accuracy. What is more, it is extended based
on the distance of a point from its kth nearest neighbor, which is
called KNN method (Ramaswamy, Rastogi, & Kyuseok, 2000). It
ranks the top k points by the distance to its kth nearest neighbor
as the outliers. Efficient algorithms for mining top-k outliers are
also studied. Furthermore, in the algorithm proposed by Angiulli
and Pizzuti (2002), the outlier factor of each datum point is com-
puted as the sum of distances from its k nearest neighbors, which
obtained better result comparing with traditional KNN. However,
as KNN outlier detections computing all the dimensional distances
of the points from one another, it is time-consuming if the avail-
able objects are of very great size. Besides, the direct application
of KNN methods to high dimensional problems often results in
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unexpected performance and qualitative costs due to the curse of
dimensionality.

With increasing awareness on outlier detection in literatures,
more concrete meanings of outliers are defined for solving prob-
lems in specific domains (Breunig, Kriegel, Ng, & Sander, 2000; Jain,
Murty, & Flynn, 1999; Jiang, Sui, & Cao, 2009; Johnson, Kwok, & Ng,
1998; Kovacs, Vass, & Vidacs, 2004; Rousseeuw & Leroy, 1987). In
addition to distance-based outlier approach, the other approaches
to outlier detection can be classified into five categories, which are
distribution-based approach, depth-based approach, clustering
approach, density-based approach and RST-based approach
(Kovacs et al., 2004). Distribution-based approach is the classical
method in statistics. It is based on some standard distribution
model (Normal, Poisson, etc.) and those objects which deviate from
the model are recognized as outliers (Rousseeuw & Leroy, 1987).
Its greatest disadvantage is that the distribution of the measure-
ment data is unknown in practice. Depth-based approach is based
on computational geometry and compute different layers of k–d
convex hulls and flags objects in the outer layer as outliers
(Johnson et al., 1998). However, it is a well-known fact that the
algorithms employed suffer from the dimensionality curse and
cannot cope with large k. Clustering approach classifies the input
data. It detects outliers as by-products (Jain et al., 1999). Since
the main objective is clustering, it is not optimized for outlier
detection. Density-based approach was originally proposed by
Breunig et al. (2000). A local outlier factor (LOF) is assigned to each
sample based on their local neighborhood density. Samples with
high LOF value are identified as outliers. The disadvantage of this
solution is that it is very sensitive to parameters defining the
neighborhood. Rough set theory (RST) is proposed by Pawlak
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Table 1
An example of neighborhoods.

U A

x1 0.1
x2 0.2
x3 0.3
x4 0.7
x5 0.8
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(1982), which is applied in machine learning, data mining and
pattern recognition successfully. RST-based approach was origi-
nally proposed by Jiang et al. (2009). A sequence-based outlier
was defined based on RST in information systems. An algorithm
to find such outliers was also given, which is effective for discrete
data. Furthermore, an expanded distance-based approach using
RST was also proposed. However, his RST-based method is suitable
to discrete data rather than continues data, for which only
considering equivalence class and equivalence relation.

In fact, neighborhoods and neighborhood relations are a class of
important concepts in topology. Lin (1988, 1997) pointed out that
neighborhood spaces are more general topological spaces than
equivalence spaces and introduced neighborhood relation into
rough set theory. Yao (1998) and Wu and Zhang (2002) discussed
the properties of neighborhood approximation spaces. It is a
powerful tool to attribute reduction, feature selection, classifica-
tion and reasoning with uncertainty (Hu, Yu, & Xie, 2006a; Hu,
Yu, Xie, & Liu, 2006b; Jensen & Shen, 2004; Swiniarski & Skowron,
2003). However, few applications of neighborhood rough set mod-
el were reported these years. In this paper, we will review the basic
concepts on neighborhood and neighborhood rough sets. And then
we will propose a method to outlier detection based on neighbor-
hood rough set. This approach integrates its powerful granular
ability of uncertainty data with outlier detection, and detects an
outlier in the selected subspaces based on the majority class in
the neighborhood of the data. Furthermore, as recent rough set
outlier detection method only dealing with discrete data, our pro-
posed approach is not only suitable to discrete data but also to con-
tinues data. Some experimental analysis is conducted on UCI data
sets. The results show that the detected accuracies of proposed
detection systems outperform the popular DIS and KNN outlier
detection for mixed dataset, and a little better than RNN for dis-
crete dataset.

The remainder of the paper is organized as follows. The basic
concepts on neighborhood rough set model are shown in Section
2. The neighborhood outlier detection method is introduced in Sec-
tion 3. Section 4 presents the experimental analysis. Then the con-
clusion is given in Section 5.

2. Neighborhood model

Formally, An information system for data mining can be writ-
ten as a quadruple IS = (U,A,V, f), where: U is a non-empty finite
set of objects, called a universe, A is a non-empty finite set of fea-
tures, V is the union of feature domains such that V =

S
a2AVa for

Va denotes the value domain of feature a, f: U � A ? V is an infor-
mation function such that f(x,a) 2 Va for every a 2 A and x 2 U. We
can split set A of features into two subsets: C � A and D = A � C,
conditional set of features and decision (or class) feature(s),
respectively. The condition features represent measured features
of the objects, while the decision features are a posteriori out-
come of classification.

Consider a universe U and a distance function D: f(x,y) ? R+,
where R+ is the set of non-negative real numbers. Given any
x 2 U, B # C and q 2 R+, the neighborhood nq

BðxÞ of x in the sub-
space B is defined as

nq
BðxÞ ¼ fyjx; y 2 U;DBðx; yÞ 6 qg

D is a distance function, which satisfies

(1) DB(x,y) P 0: Distances cannot be negative.
(2) DB(x,y) = 0: if and only if x = y.
(3) DB(x,y) = DB(y,x): Distance is symmetric.
(4) DB(x,y) + DB(y,z) P DB(x,z): Triangular inequality.
A distance metric is a distance function on a set of points, map-
ping pairs of points into the non-negative real numbers. In general,
there are three metric functions that are widely used. Consider that
x1 and x2 are two objects in n-dimensional space A = a1, a2, . . . , an,
f(x,ai) denotes the value of sample x in the ith dimension ai, then a
general metric, named Minkowsky distance, is defined as

Dpðx; yÞ ¼
Xn

i¼1

jf ðx; aiÞ � f ðy; aiÞjp
 !1=p

where (1) it is called Manhattan distance D1 if p = 1; (2) Euclidean
distance D2, if p = 2; (3) Chebychev distance D1, if p =1.

Example 1. Given an information system IS = (U,A,V, f), where
U = x1, x2, x3, x4, x5, A = {a}, as shown in Table 1.

Using the Manhattan distance, supposed q = 0.1, we can have
the following neighborhoods for objects of U:

nq
aðx1Þ ¼ ðx1; x2Þ; nq

aðx2Þ ¼ ðx1; x2; x3Þ; nq
aðx3Þ ¼ ðx2; x3Þ;

nq
aðx4Þ ¼ ðx4; x5Þ; nq

aðx5Þ ¼ ðx4; x5Þ

Given an information system IS = (U,A,V, f), the family of neigh-
borhoods nq

BðxÞ ¼ fyjx; y 2 U;DBðx; yÞ 6 q;B # Ag forms a neighbor-
hood system, which covers the universe. A neighborhood relation
R over the universe can be written as a relation matrix
M(R) = (rij)n�n, where rij = 1 if D(xi,xj) 6 q, otherwise rij = 0. It is easy
to show that R satisfies the following properties:

(1) Reflexivity: rij = 1;
(2) Symmetry: rij = rji.

Obviously, neighborhood relations are one class of similarity
relations, which satisfy reflexivity and symmetry. Specially, n(x) is
an equivalent class and R is an equivalence relation if q = 0, this
case is applicable to discrete data. Neighborhood relations draw
the objects together for similarity or indistinguishability in terms
of distances.

3. Neighborhood-based outlier detection

3.1. The value difference metric under the neighborhood relation

The value difference metric (VDM) was introduced by Stanfill
and Waltz (1986) to provide an appropriate distance function for
nominal attributes. A simplified version (without the weighting
schemes) of the VDM is defined as follows:

VDMðx; yÞ ¼
X
f2F

df ðxf ; yf Þ

where F is the set of all features in the problem domain, x and y are
any two objects between which we shall calculate the distance and
df(xf,yf) denotes the distance between two values xf and yf of feature
f, where xf is the value of object x on feature f and yf is the value of
object y on feature f.

For any feature f 2 F, df(xf,yf) is defined as follows:

df ðxf ; yf Þ ¼ ðPðxf Þ � Pðyf ÞÞ
2

where P(xf) is the probability of object x on feature f and P(xf) is the
probability of object y on feature f.
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Since traditional rough set theory is suitable to discrete data, it
deals with not only discrete data but also continue data if we intro-
duce neighborhood relation to rough set. Next we give the revised
definition of VDM in rough set theory under the neighborhood
relation.

Definition 1. Given an information system IS = (U,A,V, f), where U
is a non-empty finite set of objects and A is non-empty finite set of
attributes. Let x, y 2 U be any two objects between which we shall
calculate the distance. The value difference metric in rough set
theory under the neighborhood relation VDMN: U � U ? [0,1] is
defined as VDMNðx; yÞ ¼

P
a2Adaðxa; yaÞ where da(xa,ya) denotes the

distance between two objects on attribute a, and xa is the value of
object x on attribute a. For any a 2 A, let qa is a neighborhood
parameter, define

daðxa; yaÞ ¼
jnqa

a ðxÞj
jUj �

jnqa
a ðyÞj
jUj

� �2

where nqa
a ðxÞ is a neighborhood of object x on attribute a and nqa

a ðyÞ
is a neighborhood of object y on attribute a.

If values on attribute a are discrete, we set the neighborhood
parameter qa = 0, otherwise, set q 2 (0,1). Obvious, jn

qa
a ðxÞj
jUj is similar

to P(xf) in the above definition.

Example 2. Given an information system IS = (U,A,V, f), where
U = {x1,x2,x3,x4,x5}, A = {a,b,c}, as shown in Table 2.

The second column and the fourth column are continues data.
The third column is discrete data. Let qa = 0.1, qb = 0, qc = 0.1. Using
the distance metric defined by Definition 1, we can calculate the
distance for every pair of objects in U. Because of the limitation of
space, we just present the procedure for calculating the distance
between x1 and y2.

Initialization:
VDMNðx1; x2Þ ¼ dað0:1;0:2Þ þ dbð1; 0Þ þ dcð0:3; 0:4Þ
Step 1: Calculate da(0.1,0.2):
n0:1
a ðx1Þ ¼ fx1; x2g; n0:1

a ðx2Þ ¼ fx1; x2; x3g

dað0:1;0:2Þ ¼
jn0:1

a ðx1Þj
jUj � jn

0:1
a ðx2Þj
jUj

� �2

¼ jfx1; x2gj
jfx1; x2; x3; x4; x5gj

� jfx1; x2; x3gj
jfx1; x2; x3; x4; x5gj

� �2

¼ 2
5
� 3

5

� �2

¼ 1
25
Step 2: Calculate db(1,0):
n0
bðx1Þ ¼ fx1g; n0

bðx2Þ ¼ fx2; x4; x5g
dbð1;0Þ ¼
jn0

bðx1Þj
jUj �

jn0
bðx2Þj
jUj

� �2

¼ jfx1gj
jfx1; x2; x3; x4; x5gj

� jfx2; x4; x5gj
jfx1; x2; x3; x4; x5gj

� �2

¼ 1
5
� 3

5

� �2

¼ 4
25
Table 2
An example of value difference metric.

U a b c

x1 0.1 1 0.3
x2 0.2 0 0.4
x3 0.3 2 0.6
x4 0.7 0 0.7
x5 0.8 0 0.5
Step 3: Calculate dc(0.3,0.4):
n0:1
c ðx1Þ ¼ fx1; x2g; n0:1

c ðx2Þ ¼ fx1; x2; x5g
dcð0:3;0:4Þ ¼
jn0:1

c ðx1Þj
jUj � jn

0:1
c ðx2Þj
jUj

� �2

¼ jfx1; x2gj
jfx1; x2; x3; x4; x5gj

� jfx1; x2; x5gj
jfx1; x2; x3; x4; x5gj

� �2

¼ 2
5
� 3

5

� �2

¼ 1
25
Step 4:
VDMNðx1; x2Þ ¼
1

25
þ 4

25
þ 1

25
¼ 0:24
Repeating the above calculation, we can finally obtain distances
for all the other pairs of objects in U. By then, we define a
neighborhood-based object outlier factor (NOOF), which indicates
the degree of outlier for every object in an information system.
Definition 2 (Neighborhood-based Object Outlier Factor). Let
IS = (U,A,V, f) be an information system, where A = {a1,a2, . . . ,am}
and U = {x1,x2, . . . ,xn}. For any xi 2 U, let neighborhood parameter
q ¼ fqa1

; qa2
; . . . ; qam

g. The neighborhood-based object outlier factor
of xi in IS is defined as follows:

NOOFðxiÞ ¼
Xn

j¼1;j–i

VDMNðxi; xjÞ
Definition 3 (Neighborhood-based Outliers). Let IS = (U,A,V, f) be an
information system, where A = {a1,a2, . . . ,am}, U = {x1,x2, . . . ,xn} and
neighborhood parameter q ¼ fqa1

; qa2
; . . . ; qam

g. Let l be a given
threshold value, for any x 2 U, if NOOF(x) > l then x is called a
neighborhood-based outlier in U with respect to IS, where NOOF(x)
is the neighborhood-based object outlier factor of x in IS.
3.2. Algorithm

Neighborhood outlier detection (NED)

Input: an information system IS = (U,A,V, f), where jUj = n and
jAj = m; neighborhood parameter q ¼ qa1

; qa2
; . . . ; qam

,
threshold value l.

Output: a set O of neighborhood-based outliers.

(1) For every a 2 A
(2) {
(3) For every x 2 U
(4) {
(5) Calculate jnqa

a ðxÞj;
(6) }
(7)}
(8) For every x 2 U
(9) {
(10) For every y 2 U
(11) {
(12) For every a 2 A
(13) {

(14) Calculate daðxa; yaÞ ¼
jnqa

a ðxÞj
jUj �

jnqa
a ðyÞj
jUj

� �2
;

(15) }
(16) Calculate VDMN(x,y)
(17) }
(18) Calculate NOOF(x)
(19) If NOOF(x) > l, then O = O [ x
(20)}
(21) Return O.
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In the worst case, the time complexity of algorithm NED is
O(m � n2), and its space complexity is O(m � n), where m and n

are the cardinalities of A and U respectively.

4. Experimental analysis

In this section, following the experimental setup in He, Deng,
and Xu (2005), we shall use two real life data sets (Annealing
and Cancer) to demonstrate the performance of neighborhood-
based outlier detection algorithm (NED) against traditional dis-
tance-based method (Knorr & Ng, 1998, Knorr, Ng, & Tucakov,
2000) and KNN algorithm (Ramaswamy et al., 2000). In addition,
on the cancer data set, we add the results of RNN-based outlier
detection method for comparison. These results can be found in
the work of Harkins, He, Willams, and Baxter (2002), Willams,
Baxter, He, Harkins, and Gu (2002).

For distance-based method and KNN algorithm, in order to cal-
culate the distance between any two objects, we adopt the overlap
metric in rough set theory, which is defined as follows:

Definition 4. Given an information system IS = (U;A;V; f), let x,
y 2 U be any two objects between which we shall calculate the
distance. The overlap metric in rough set theory is defined as

Dðx; yÞ ¼ fa 2 A : aðxÞ– aðyÞgj j
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Table 3
Neighborhood parameters of annealing data set.

Attribute label Parameter Parameter value

4 q4 5
5 q5 10
9 q9 200
33 q33 0.2
34 q34 300
35 q35 800
37 q37 50
Other labels qa 0

Table 4
Experimental result in annealing dataset.

Top ratio (number of objects) Number of rare class included (coverage)

NED KNN DIS

10% (80) 51 (27%) 21 (11%) 33 (17%)
15% (105) 67 (35%) 30 (16%) 44 (23%)
20% (140) 81 (43%) 41 (22%) 61 (32%)
25% (175) 84 (44%) 58 (31%) 77 (41%)
30% (209) 92 (48%) 62 (33%) 84 (44%)

Table 5
Experimental result in Wisconsin breast cancer dataset.

Top ratio (number of objects) Number of rare class inc

NED

1% (4) 4 (10%)
2% (8) 7 (18%)
4% (16) 14 (36%)
6% (24) 19 (49%)
8% (32) 26 (67%)
10% (40) 31 (79%)
12% (48) 36 (92%)
14% (56) 38 (97%)
16% (64) 39 (100%)
18% (72) 39 (100%)
20% (80) 39 (100%)
28% (112) 39 (100%)
where D: U � U ? [0,1] is a function from U � U to the non-nega-
tive real number, and jMj denotes the cardinality of set M.

Furthermore, in our experiment, for the KNN algorithm, the
results were obtained by using the fourth nearest neighbor
(Ramaswamy et al., 2000) and the overlap metric in rough set the-
ory defined above.

4.1. Annealing data

The first is the Annealing data set, which can be found in the UCI
machine learning repository (Bay, 1999). It contains 798 instances
(or objects) with 38 attributes (including the class attribute). The
798 instances are partitioned into five classes. Class 3 has the larg-
est number of instances. The remained classes are regarded as rare
classes for they are small in size.

Aggarwal and Yu (2001) proposed a practicable way to test the
effectiveness of an outlier detection method (Angiulli & Pizzuti,
2002; He et al., 2005). That is, we can run the outlier detection
method on a given data set and test the percentage of points which
belonged to one of the rare classes (Aggarwal considered those
kinds of class labels which occurred in less than 5% of the data
set as rare labels (Angiulli & Pizzuti, 2002)). Points belonged to
the rare class are considered as outliers. If the method works well,
we expect that such abnormal classes would be over-represented
in the set of points found.

In our experiment, data in the Annealing data set is input into
an information table SL = (U;A;V; f), where U contains all the 798
instances of Annealing data set and A contains 37 attributes of
Annealing data set (not including the class attribute). Since the
neighborhood parameters are needed by NED, the corresponding
parameters are illustrated in Table 3. These parameters were deter-
mined based on a small number of preliminary runs. The experi-
mental results are summarized in Table 4.

Table 4 shows the results produced by the NED algorithm
against the KNN algorithm and DIS algorithm. Here, the top ratio
is ratio of the number of objects specified as top-k outliers to that
of the objects in the dataset. The coverage is ratio of the number of
detected rare classes to that of the rare classes in the dataset. For
example, we let NED algorithm find the top 80 outliers with the
top ratio of 10%. By examining these 80 points, we found that 51
of them belonged to the rare classes. In contrast, when we ran
the KNN algorithm on this dataset, we found that only 21 of 80
top outliers belonged to rare classes.

From Table 4, the performance of the NED algorithm outper-
formed that of the KNN algorithm and the DIS algorithm in all
the five cases, especially, when the top ratio is relative small, the
NED algorithm worked much better. Anneal dataset has not only
discrete data, but also continue data. The experiment shows that
the NED algorithm is suitable to mixed data.
luded (coverage)

DIS KNN RNN

4 (10%) 4 (10%) 3 (8%)
7 (18%) 7 (18%) 6 (15%)
14 (36%) 13 (33%) 11 (28%)
21 (54%) 20 (51%) 18 (46%)
28 (72%) 27 (69%) 25 (64%)
32 (82%) 32 (82%) 30 (77%)
36 (92%) 38 (97%) 35 (90%)
39 (100%) 39 (100%) 36 (92%)
39 (100%) 39 (100%) 36 (92%)
39 (100%) 39 (100%) 38 (97%)
39 (100%) 39 (100%) 38 (97%)
39 (100%) 39 (100%) 39 (100%)
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4.2. Wisconsin breast cancer data

The Wisconsin breast cancer dataset is found in the UCI
machine learning repository (Bay, 1999). The data set contains
699 instances with 9 attributes. Here we follow the experimental
technique of Harkins et al. by removing some of the malignant
instances to form a very unbalanced distribution (Angiulli &
Pizzuti, 2002). The resultant dataset had 39 (8%) malignant
instances and 444 (92%) benign instances.

Data in the Wisconsin breast cancer data set is also input into an
information table SW = (U;A;V; f), where U contains all the 483 in-
stances of the data set and A contains nine attributes of the data set
(not including the class attribute). We consider detecting outliers
(malignant instances) in SW. Since the dataset is discrete, the
parameters for NED are set to 0. The experimental results are sum-
marized in Table 5.

Table 5 is similar to Table 4. From Table 5, we can see that for
the Wisconsin breast cancer dataset, the NED performs better than
RNN method, and a litter weaker than KNN and DIS. In fact, the
performance of NED is more suitable to continue dataset than dis-
crete dataset.

5. Conclusion and future work

Outlier detection is becoming critically important in many
areas. In order to deal with not only discrete data but also continue
data set, we proposed a new definition of the traditional distance
metrics by considering neighborhood information. A measure for
identifying the significance of an outlier is also presented. Further-
more, we give the neighborhood-based algorithm for discovering
outliers. The experimental results show that our approach outper-
formed existing methods on identifying meaningful and interest-
ing outliers for mixed dataset.

In the future work, for the neighborhood-based outlier detec-
tion algorithm, we shall consider using rough set feature select
method to reduce the features while preserving the performance
of it. For the performance of the computation of our method, we
will sort all objects according to a given order on values of feature
to improve the computational complexity.
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