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a b s t r a c t

Decision rules mining is an important technique in machine learning and data mining. It has been studied
intensively during the past few years. However, most existing algorithms are based on flat dataset, from
which a set of decision rules mined may be very large for large scale data. Such a set of rules is not easily
understandable and really useful for users. Moreover, too many rules may lead to over fitting. Thus, an
approach to hierarchical decision rules mining is provided in this paper. It can mine decision rules from
different levels of abstraction. The aim of this approach is to improve the quality and efficiency of deci-
sion rules mining by combining the hierarchical structure of multidimensional data model and the tech-
niques of rough set theory. The approach follows the so-called separate-and-conquer strategy. It can not
only provide a method of hierarchical decision rules mining, but also the most important is that it can
reveal the fact that there exists property-preserving among decision rules mined from different levels,
which can further improve the efficiency of decision rules mining.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction Some researchers have noticed that hierarchical attribute val-
Decision rules mining is an important technique in data mining
and machine learning. It has been used widely in business, medi-
cine, finance, etc. A multitude of promising algorithms of decision
rules mining (Fernández & Menasalvas, 2001; Hirokane, Konishi,
Miyamoto, & Nishimura, 2007; Hong, Lin, Lin, & Wang, 2003; Hong,
Lin, & Lin, 2008; Hu & Cercone, 1997, 2001) has been developed
during the past few years. The aim of decision rules mining is to
find a good rule set, which has a minimum number of rules and
each rule should be as short as possible. We all know that each
row of a decision table specifies a decision rule that determines
decisions in terms of conditions. Thus, a set of decision rules mined
from a decision table with large scale data may be very large. Such
a set of rules are not easily understandable and really useful for
users. Moreover, too many rules may lead to over fitting.

In many applications, we note that it is difficult to discover
valuable patterns at low or primitive levels (raw data) due to the
sparsity of data. Decision rules mined at high levels of abstraction
may represent commonsense knowledge. Moreover, what may
represent common sense to one user may seem novel to another.
Therefore, it is necessary to have a framework of hierarchical deci-
sion rules mining to accommodate different user expectations or
applications.
ll rights reserved.
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ues exist impliedly in many real-world applications such as day,
month, quarter and year for Time attribute. Hu and Cercone
(1997, 2001) proposed a method to learn maximal-generalized
decision rules from databases by integrating discretization, gener-
alization, and rough set feature selection. Shan, Hamilton, and Cer-
cone (1995) presented a three-step GRG approach for learning
maximally general decision rules from large relational databases,
which includes information generalization, information reduction,
and rule generation. However, all of these algorithms are still pro-
cess data at single level although the hierarchical structure of data
was considered in advance.

Hong et al. (2003) proposed an algorithm to deal with the prob-
lem of producing a set of maximally general rules for coverage of
training examples with hierarchical attribute values using rough
sets. Hong et al. (2008) noticed that hierarchical attribute values
are sually predefined in real-world applications and can be repre-
sented by hierarchical trees, so they provided a method to derive
cross-level rules. Ziarko (2003) proposed a technique to create a
linearly structured hierarchy of decision tables through hierarchi-
cal methods of boundary area reduction. But these algorithms do
not have the ability to switch among different levels of abstraction
flexibility.

Riquelme, Aguilar, and Toro (2000) provided a new approach
HIDER (hierarchical decision rules) for learning rules in continuous
and discrete domains based on evolution algorithm. The algorithm
can produced a set of hierarchical rules. However, the limitation of
this algorithm is that the rules must be applied in a specific order.
Tsumoto (2002, 2003) examined closely the characteristics of
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medical experts’ rules and provided a new approach to extract
plausible rules, which consists of the following three procedures.
First, the characterization of decision attributes is extracted from
databases, and the classes are classified into several groups with
respect to the characterization. Then, two kinds of subrules, char-
acterization rules for each group and discrimination rules for each
class in the group are induced. Finally, those two parts are inte-
grated into one rule for each decision attribute. However, this algo-
rithm extracts hierarchical decision rules by joining the similar
rules, not by using the hierarchical attribute values.

With these observations, we note that multidimensional data
models provide a way to organize data at different levels of granu-
larity, which will be an effective data structure for processing hier-
archical data. Thus, an approach to mine hierarchical decision rules
is provided in this paper, it can switch among different granularities’
flexibility by combining the structure of multidimensional data
model (Pedersen & Jensen, 2001; Singh, Singh, & Suman, 2007)
and the techniques of rough set theory (Duoqian & Daoguo, 2008;
Pawlak, 1991; Wang, 2001; Zhang, Wu, & Liang, 2003).

Multidimensional data model is a variation of the relational
model that uses multidimensional structures to organize data
and express the relationships among data, in which the data are
presented as a data cube, which is a lattice of cuboids. A multidi-
mensional data model includes a number of dimensions that each
includes multiple levels of abstraction defined by concept hierar-
chies (Lu, 1997), where hierarchy is a way to organize data at dif-
ferent levels of granularity. This organization provides users with
the flexibility to view data from different perspectives. The best
advantage of multidimensional data model is that data can be visu-
alized and manipulated by a compact and easy-to-understand way.
Based on the hierarchical structure of the multidimensional data
model, it is possible to ‘‘scan” the given dataset at different levels
of abstraction. At each level, the techniques of rough sets can then
be used to discover and analyze significant patterns or rules.

Our algorithm follows the so-called separate-and-conquer strat-
egy (Furnkranz, 1999), which can improve the efficiency of decision
rules mining significantly. First, data are loaded in a data cuboid, and
then it is generalized along dimensions until it gets to the most ab-
stract level; thus, we can obtain data cuboid at the different abstract
levels. This can decrease the number of tuples greatly. Secondly,
data are processed by the top-down strategy and decision rules
are mined by the technique of rough set theory. Then, the relation-
ship of rules mined from different levels are analyzed, and we find
that there exists property-preserving among decision rules mined
from different levels of abstraction, that is, rules mined from differ-
ent levels follow the false-preserving principle, which can further
improve the quality and efficiency of hierarchical decision rules
mining. Finally, an algorithm of hierarchical rules mining is de-
signed, and we illustrate the procedure of this algorithm through
an example. This algorithm can not only mine rules from any level
of granularities to satisfy the need of users, but also improve the
quality and efficiency of decision rules mining greatly.

The rest of the paper is organized as follows. Some preliminaries
about rough set theory and multidimensional data model are re-
viewed in Section 2. In Section 3, the technique of data generaliza-
tion based on multidimensional data model is introduced. In
Section 4, the relation of decision rules mined from different levels
of abstraction is analyzed, then an algorithm of hierarchical deci-
sion rules mining is proposed, and an example is given to illustrate
the algorithm of hierarchical decision rules mining. Finally, the
conclusion is given and the future works are pointed out.

2. Preliminaries

In this section, we will review some notions of rough set theory
and multidimensional data model.
2.1. Rough set theory

Rough set theory was introduced by Pawlak as a mathematical
tool to deal with imprecision, uncertainty or vague knowledge in
artificial intelligence applications. It was used to discover data
dependencies, data reduction, data mining, and rule extraction
from databases, etc. Rough set theory is based on the ability to
classify the observed and measured data, and some methods based
on rough set theory are applied to deal with decision.

In this section, we will first review some basic notions of rough
set theory, which can also be referred to Pawlak (1991, 2005) and
Pawlak and Skowron (2007).

2.1.1. Indiscernibility relation
The starting point of rough set theory is the indiscernibility

relation, which is generated by information about objects of inter-
est. The indiscernibility relation expresses the fact that due to lack
of information (or knowledge), we are unable to discern some ob-
jects by employing available information. This means that, in gen-
eral, we are unable to deal with each particular object, but we have
to consider granules (clusters) of indiscernible objects as a funda-
mental basis in rough set theory.

An information system is a quadruple IS ¼ ðU;A;V ; f Þ, where U
is a non-empty finite set of objects, called the universe, and A is
a non-empty finite set of attributes, V ¼ [a2AVa, where Va is the va-
lue set of a, called the domain of a; f is an information function
from U to V , which assigns particular values from domains of attri-
butes to objects such that faðxiÞ 2 Va for all xi 2 U and a 2 A.

Let IS ¼ ðU;A;V ; f Þ be an information system. For every subset of
attributes B # A and B – ;, then \B (intersection of all equivalence
relations belong to B) that is also an equivalence relation, and will
be denoted by INDðBÞ, which is defined by

xINDðBÞy if and only if aðxÞ ¼ aðyÞ; for every a 2 B;

where aðxÞ denotes the value of attribute a for object x.
The family of all equivalence classes of INDðBÞ, i.e., the partition

determined by B, will be denoted as U=INDðBÞ, or simply U=B; ½x�B
denotes the block of the partition U=B containing x; moreover,
½x�INDðBÞ ¼ \R2B½x�R.

2.1.2. Lower and upper approximations
The indiscernibility relation will be further used to define basic

concepts of rough set theory. Suppose we are given an information
system IS ¼ ðU;A;V ; f Þ, with each subset X # U and an equivalence
relation R 2 A, we associate two subsets:

RX ¼ [fx 2 Uj½x�R # Xg; RX ¼ [fx 2 Uj½x�R \ X – ;g

called the R-lower and R-upper approximate of X respectively.
Assuming P and Q are equivalence relations over U, then P-po-

sitive region of Q is the set of all objects of the universe U which
can properly be classified to classes of U=Q employing knowledge
expressed by the classification of U=P. It is defined by

POSPðQÞ ¼ [
X2Q

PX:

A positive region contains all patterns in U that can be classified in
attribute set Q using the information in attribute set P.

2.1.3. Attribute reduction
A special case of information system called decision table,

which is an information system of the form DT ¼ ðU;C [ D;V ; f Þ,
where D is a distinguished attribute called the decision, and the
elements of C are called conditions.

Given a decision table DT ¼ ðU;C [ D;V ; f Þ, for any
x; y 2 U; a 2 C, if aðxÞ ¼ aðyÞ, then dðxÞ ¼ dðyÞ, we will call this deci-
sion table is consistent, otherwise, it is inconsistent.
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In a decision table DT ¼ ðU;C [ D;V ; f Þ, there often exist some
condition attributes that do not provide any additional information
about the objects in U. So we should remove these attributes to re-
duce the complexity and cost of decision process.

Definition 1. Given a decision table DT ¼ ðU;C [ D;V ; f Þ; r 2 C, if
POSC�frgðDÞ ¼ POSCðDÞ, then r is a D-dispensable attribute in C,
otherwise, r is a D-indispensable attribute in C.

Definition 2. Given a decision table DT ¼ ðU;C [ D;V ; f Þ and an
attribute set P # C, if for 8r 2 P; POSP�frgðDÞ ¼ POSPðDÞ, then P is
independent with respect to D.

Definition 3. Given a decision table DT ¼ ðU;C [ D;V ; f Þ, an attri-
bute set P # C is a D-reduct of C if

ð1Þ POSC�frgðDÞ ¼ POSCðDÞ;
ð2Þ for 8r 2 P; POSP�frgðDÞ – POSPðDÞ:

The intersection of all D-reducts is called a D-core (core with re-
spect to D). Because the core is the intersection of all reducts, it is
included in every reduct. Thus, in a sense, the core is the most
important subset of attributes, since none of its elements can be re-
moved without affecting the classification ability of attributes.

2.1.4. Decision rules
Each object of a decision table determines a decision rule. A

decision rule /! w read ‘‘if / then w”, where / is called the ante-
cedent of the rule, and w is called the consequent of the rule.

Decision rules corresponding to some objects which have the
same condition part but different decision part, such rules are
called uncertain rules (inconsistent, nondeterministic, conflicting).
Otherwise, the rules are called certain (consistent, sure, determin-
istic) rules.

Several numerical quantities of interest can be associated with a
decision rule.

Definition 4. Given a decision table DT ¼ ðU;C [ D;V ; f Þ, the
number supxð/;wÞ ¼ j/ðxÞ \ wðxÞj will be called the support of the
decision rule /!xw, which is the number of objects satisfying
formula.

In some cases, it is not enough to know only the support of a
rule. What we want to know mostly is which elements support the
rule. So a supporting set is defined for a rule as follows.

Definition 5. Given a decision table DT ¼ ðU;C [ D;V ; f Þ; /! w is
a rule in DT , we will say that an object x 2 U supports rule /! w iff
x satisfies both / and w, we call the set consists of x satisfies both /
and w the supporting set of /! w and denote it as SSð/! wÞ.

A decision rule /! w may only reveal a part of the overall
picture of the decision system from which it was derived. It may
happen that the decision system contains objects that match the
rule’s antecedent / but that have a different value for the decision
attribute than the one indicated by the rule’s consequent w. Hence,
we are interested in the probability of the consequent w being
correct given /.

Definition 6. The certainty factor of a decision rule /! w is
defined as cerð/! wÞ ¼ j/ðxÞ \ wðxÞj=j/ðxÞj.

Obviously, if cerð/! wÞ ¼ 1, then the decision rule is certain,
otherwise, it is uncertain.
2.2. Multidimensional data model

Multidimensional data model (Pedersen & Jensen, 2001; Singh
et al., 2007) is a variation of the relational model that uses multi-
dimensional structures to organize data and express the relation-
ships among data, in which the data are presented as a data
cube. A data cube, also known as a lattice of cuboid, defined by
dimensions (or dimension attributes) and numeric facts called
measures, allows data to be modeled and viewed from multiple
dimensions. A multidimensional data model includes a number
of dimension attributes that each includes multiple levels of
abstraction defined by concept hierarchies, where hierarchy is a
way to organize data at different levels of granularity. The ele-
ments of a dimension are called dimension value (or attribute va-
lue). Each such value belongs to a particular level. Measures in a
data cube are usually a numerical function, which was computed
by the operation of aggregate. It ‘‘lived” in cells defined uniquely
by combinations of dimension values from each of the dimension
in a data cube.

Data cube created for varying levels of abstraction are often re-
ferred to as cuboids, it is a lattice of cuboids. The cube created at
the lowest level of abstraction is referred to as the base cuboid. A
cube at the highest level of abstraction is the apex cuboid. For
the purpose of our discussion, we will always use the term data
cube to refer to a lattice of cuboids rather than an individual
cuboid.

This organization provides users with the flexibility to view
data from different granularities. Based on the hierarchical struc-
ture of multidimensional data model, it is possible to ‘‘scan” a data
table from different levels of abstraction. At each level, the tech-
niques of rough sets can then be used to discover and analyze sig-
nificant patterns or rules. There exist a number of OLAP (on-line
analytical processing) data cube operators to materialize these dif-
ferent views such as the operation of roll-up, drill-down, and slice
and dice, etc. The operations of roll-up and drill-down are inverses
of each other and make use of concept hierarchies and measures to
perform aggregations. They can also make us handle data at vari-
ous levels of abstraction flexibly. The operations of slice and dice
can make us handle data from different angles, and the structure
of a data cube provides us an intuitive way to generalize (or spe-
cialize) dimension values along one or more dimension attributes.

In a multidimensional data model, dimensions are hierarchical
by nature. For example, dimension Time can be described by the
dimension values: ‘Year’, ‘Quarter’, ‘Month’, and ‘Day’. Alterna-
tively, the dimension values of a dimension may be organized into
a lattice, which indicates a partial order for the dimension. That is,
the same Time dimension can have ‘Year’, ‘Quarter’, ‘Month’,
‘Week’, and ‘Day’ instead. With this scheme, the Time dimension
is no longer a hierarchy because some weeks in the year may be-
long to different months.

In existing literature, measures in a data cube are mostly
numerical data, which can also be other kinds of data such as spa-
tial, multimedia, or text data (Han & Kamber, 2006). However,
measures in our multidimensional data model are subsets of ob-
jects (an equivalence class induced uniquely by a combination of
dimension values from each of the dimension attributes in the data
cube). Consequently, the operation of aggregate in this multidi-
mensional data model is reduced to the union of some subsets.
That is, the measure in a cell at higher abstract level is equal to
the union of its child cells at lower abstract level. So this represen-
tation can reduce the data scale greatly by the operation of roll-up
along one or more dimensions. To our knowledge, this kind of mul-
tidimensional data model has not been reported in existing
literature.

In a multidimensional data model, we can choose one dimen-
sion as a decision dimension according to the need for problems
solving, and the others are conditional dimensions. Every dimen-
sion is composed of multiple levels, so we can classify the task of
hierarchical decision rules mining based on data cube into three
cases. (1) Keeping the decision dimension level unchanged and
making every conditional dimension level changeable. (2) Keeping



Table 1
Training dataset.

U Education-level Vocation Salary (unit: yuan)

1 Doctoral student Private enterprise Above 10000
2 Postgraduate student State-owned enterprise 6000–10000
3 Others Education Under 2000
4 Undergraduate Private enterprise 2000–6000
5 Undergraduate State-owned enterprise 2000–6000
6 Postgraduate student State-owned enterprise 2000–6000
7 Undergraduate State-owned enterprise 6000–10000
8 Undergraduate Civil servant 2000–6000
9 Doctoral student Education 2000–6000
10 Others State-owned enterprise 2000–6000
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all conditional dimension level unchanged and making decision
dimension level changeable. (3) Conditional dimension levels and
decision dimension level are all changeable. In this paper, we only
focus on the first case, and other cases will be studied in the future.

3. Data generalization

A flat data table usually be given in real-world applications,
from which the inherent hierarchical characteristics of data cannot
been reflected effectively. While multidimensional data model can
not only easily reflect the inherent hierarchical characteristics of
data, but also provide a more compact representation for data.
Moreover, we can obtain a compressed, high-level, generalized
data by the hierarchical structure of multidimensional data model.
So it is necessary to generalize the given flat data table to a multi-
dimensional structure, that is, to transform a flat data table to a
multidimensional data cube.

3.1. Concept hierarchy

We note that there exist some corresponding relations between
a decision table and a multidimensional data cube. Each attribute
in a decision table corresponds to a dimension attribute in a mul-
tidimensional data cube. Each concept hierarchy of an attribute in
a decision table corresponds to a concept hierarchy of a dimension
attribute in a multidimensional data cube. Each attribute value
corresponds to a dimension value. Each combination of attribute
values induces an equivalence class in a decision table, which
can also be induced uniquely by a combination of dimension val-
ues from each of the dimensions in a multidimensional data cube,
and this equivalence class induced from a combination of dimen-
sion values is placed in a cell of a multidimensional data cube.
The universe of a decision table corresponds to the measure of a
multidimensional data cube. Thus, a flat decision table corresponds
to a data cuboid in a multidimensional data cube.

Having understood the corresponding relation between a deci-
sion table and a multidimensional data cube, we will only discuss
concept hierarchy in multidimensional data model, which is also
suits for attributes in a decision table.

In a multidimensional data model, data are organized into mul-
tiple dimensions, and each dimension contains multiple dimension
values which form multiple abstract levels defined by concept
hierarchies. A concept hierarchy defines a certain generalization
relationships for dimension values in one or a set of dimensions.
When a flat data table was generalized along one or more dimen-
sions, and as a result, we will transform a large, low-level, detailed
data into a compressed, high-level, generalized data.

Concept hierarchies are used to express knowledge in concise
and high-level terms, which is usually in the form of tree. It can
also facilitate mining knowledge at multiple levels of abstraction.
In this paper, we assume that all concept hierarchies are simply
balanced tree. Concept hierarchy is an important tool for capturing
the generalization relations among objects and has been used in
many data mining applications such as multilevel association rules
mining, data warehouse, etc. As far as hierarchical decision rules
mining is concerned, there is usually more than one possible way
to build concept hierarchies for every dimension attribute because
of different users may have different preferences. So concept hier-
archies are usually built by combining the given dataset with some
relevant domain knowledge, or it can be given by domain experts
directly.

Concept hierarchies may also be defined by discretizing or
grouping values for a given dimension attribute, that is, discretiz-
ing numerical data into interval and grouping categorical dimen-
sion values into a generalized abstract concept. A total or partial
order can be defined among groups of values.
There also have some other methods to build concept hierar-
chies. Kuo and Huang (2005) and Kuo et al. (2006) provided a
method of building concept hierarchies by modifying the tradi-
tional hierarchical clustering algorithms.

In what follows, we will illustrate concept hierarchies through
an example.

Example 1. Build concept hierarchies for every attribute in Table 1.
Obviously, Table 1 is a flat data table, where the attribute ‘‘Salary”

can be treated as a decision attribute, and attributes ‘‘Education-
level” and ‘‘Vocation” are conditional attributes. So, every attribute
in Table 1 corresponds to a dimension in a multidimensional data
model, where the conditional attributes ‘‘Education-level” and
‘‘Vocation” correspond to conditional dimensions, and the decision
attribute ‘‘Salary” corresponds to decision dimension. Obviously
‘‘Education-level” and ‘‘Vocation” are categorical attributes, and
‘‘Salary” is a numerical attribute. To build concept hierarchies for
these dimensions, we should use the technique of discretizing for
dimension ‘‘Salary” and grouping for dimensions ‘‘Education-level”
and ‘‘Vocation”, respectively, according to relevant domain
knowledge.

We can build concept hierarchies structured as a tree for every
dimension attribute. In every concept hierarchy tree, the root is the
name of the dimension, leaves nodes are dimension values appear-
ing in the given dataset, and internal nodes represent generalized
dimension values of their child nodes.

As we all know, every attribute value determine an equivalence
class in the given data table, so a subset of objects can be attached
to every leaf node, it is an equivalence class determined by the
attribute value (dimension value). For every internal node in a con-
cept hierarchy tree, the subset of objects attached to it is equal to
the union of subsets attached to its child nodes, and it is also an
equivalence class. In essence, each node of a concept hierarchy is
a concept, the dimension value or a node’s label is its intent, and
the subset of objects attached to it is its extent.

In a concept hierarchy, each level can be labeled by a number k.
We stipulate that the level label of leaves nodes be assigned the
number zero, and the level label for each internal node is one plus
its child’s level label. In this case, the concepts at each level can be
called a concept at level k (see Fig. 1).

According to the relevant domain knowledge, we will build a
two-level concept hierarchical structure for dimensions ‘‘Educa-
tion-level” and ‘‘Vocation” as follows. Of course, not all of dimen-
sion hierarchies are necessarily to have the same depths in
general. For simplicity of notation, we denote dimension ‘‘Educa-
tion-level” as A, ‘‘Vocation” as B, and ‘‘Salary” as C, respectively.
Every node in a concept hierarchy is denoted by the symbol in
bracket near to it.

Concept hierarchies of all attributes in Table 1 are presented as
Fig. 1. With these concept hierarchies tree, we can transform a flat
data table to a multidimensional data cube.



Fig. 1. Concept hierarchies.

Fig. 2. Data cuboid corresponding concept hierarchies 0.

Fig. 3. Data cuboid corresponding concept hierarchies 1.
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3.2. Data transformation

Data transformation, also known as data consolidation, it is a
phase in which the selected data are transformed into forms appro-
priate for the mining procedure.

In reality, dataset often has characteristics of multidimension
and multilevel. However, the dataset we obtained is usually repre-
sented as a flat data table, which is difficult to reflect hierarchical
characteristics of data. In general, decision rules mined from differ-
ent level will have different value, and different users may also
have different preferences. Thus, we will transform a flat data table
to a multidimensional data cube to mine more valuable informa-
tion from the given dataset.

Multidimensional data model provides a tool to enhance data
with generalization along one or more dimensions. Generalizing
or enhancing data (Zhang, Zhang, & Yang, 2004) is critical in gen-
erating a dataset that is cleaner, clearer, and smaller than the ori-
ginal, which can improve the efficiency of decision rules mining
significantly. So, we should enhance information from raw data
to discover more valuable and high quality rules. The raw data
in a database is called at its primitive level, and the knowledge
is said to be at a primitive level if it is discovered by using raw data
only.

In addition, multidimensional data model also have some other
advantages. For example, it can provide multiple perspectives to
view data from multidimension and multilevel. A major benefit
of multidimensional data model is that it can provide a compact
and easy to understand way to visualize and manipulate data ele-
ments that have many interrelationships. The operations of roll-up
along concept hierarchies in a multidimensional data model can
reduce the data horizontally. Horizontal reduction is accomplished
by merging identical tuples after the substitution of a dimension
value by its higher level value in a pre-defined concept hierarchy
for categorical dimensions, or the discretization of numerical
dimensions. This can decrease the number of tuples greatly.

Multidimensional data model has widely been used in OLAP
during the past few years, which mainly tend to trend analysis.
Thus, measures in a data cube are usually numerical data. How-
ever, in this paper, we will mainly focus on the task of hierarchical
decision rules mining, the advantage of our multidimensional data
model is that measures in our data cube are subsets of objects,
which is an equivalence class induced uniquely by the combination
of dimension values from each of the dimensions in a data cube. So,
the operation of aggregate is reduced to union of subsets during
the course of roll-up. With rolling up along concept hierarchies
level by level, measures ‘‘lived” in cells will be merged step by step
until getting to the top most abstract level.

In what follows, we will illustrate the procedure of data trans-
formation through an example.

Example 2. According to concept hierarchies illustrated as Fig. 1,
transform the Table 1 to a multidimensional data cube.

We will transform Table 1 to a data cube after having under-
stood the corresponding relation between a relational table and a
multidimensional data cube. In this example, we will transform Ta-
ble 1 to a data cube by rolling-up along hierarchies of all condi-
tional dimensions simultaneously. The result of transformation
according to level zero for every conditional dimension is illus-
trated as Fig. 2.

We will further roll-up data cuboid illustrated as Fig. 2 along
every dimension attribute simultaneously, and we will obtain a
multidimensional data cuboid as Fig. 3 according to level 1 for
every conditional dimension.

The relational table corresponds to the multidimensional data
cuboid illustrated as Fig. 3 is Table 2. Because every dimension
attribute has rolled up to its top most abstract level, and thus the
data cuboid illustrated in Fig. 3 cannot be rolled up further. So,
we obtain a two-level multidimensional data model. How do we
mine hierarchical decision rules based on this multidimensional
data model? The solution can be found in the following section.

4. Hierarchical decision rules mining

In this section, an approach to hierarchical decision rules min-
ing is provided, which can mine rules from different levels of



Table 2
Data table corresponding to Fig. 3.

U Education-level Vocation Salary

{1,2} High Enterprise High
{3,8} Low Institution Low
{4,5,10} Low Enterprise Low
{6} High Enterprise Low
{7} Low Enterprise High
{9} High Institution Low
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abstraction. At each level, the techniques of rough sets can then be
used to discover significant patterns or rules.

The aim of decision rules mining is to find a concise rule set,
which has a minimum number of rules and each rule should be
as short as possible. To this end, we should first simplify the given
decision table, i.e., eliminate the irrelevant or superfluous attri-
butes and attribute values without losing essential information
about the original decision table. As a result, a set of concise and
meaningful rules will be produced. Then, we will mine decision
rules at different levels based on the hierarchical structure of mul-
tidimensional data model.

After the phase of data generalization mentioned above, we
adopt the top-down strategy to mine hierarchical decision rules
based on the multidimensional data model. The procedure of it
consists of the following two steps:

(1) Data reduction: attribute reduction and attribute value
reduction.

(2) Decision rules generation and analysis: generate decision
rules using rough sets and analyze the relationship among
decision rules mined from different levels of abstraction.

4.1. Data reduction

4.1.1. Attribute reduction
Attribute reduction is one of the most important concepts in

rough set theory. It has intensively been studied during the past
few years. As we all known, a decision table usually has more than
one reduct, which will induce different sets of rules. In practice, it
is always hoped to obtain the set of the most concise rules. There-
fore, people have been attempting to find a minimal reduct of a
decision table, which means that the number of attributes con-
tained in the reduct is minimal. Unfortunately, it has been proved
that finding a minimal reduct of a decision table is an NP-hard
problem (Wong & Ziarko, 1985). Thus, we have to seek a near-opti-
mal solution for attribute reduction. Heuristic reduction algo-
rithms are a good choice if time cost is considered.

To design an effective heuristic algorithm, the most important
thing is to effectively measure and then rank the relative signifi-
cance of different attributes in a decision system. The attribute sig-
nificance can be defined from different aspects. To the best of our
knowledge, existing heuristic reduction algorithms can be classi-
fied into three classes: among the first class of algorithms, the
attribute significance is defined based on positive region (Pawlak,
1991), the second class of algorithms is based on discernibility ma-
trix (Duoqian, 1997; Jue & Duoqian, 1998; Skowron & Rauszer,
1991); and the last class of algorithms is based on information en-
tropy (Duoqian & Guirong, 1999; Duoqian & Jue, 1997).

Of course, many attribute reduction algorithms have been pro-
vided not limited the above-mentioned things. So, in this paper, we
will not discuss algorithms of attribute reduction in detail.

4.1.2. Attribute value reduction
The process which the maximum number of condition attribute

values are removed without loosing essential information is called
attribute value reduction, and the resulting rule is called minimal
length. Computing minimal length rules is of particular importance
in knowledge discovery since they represent general patterns
existing in decision table.

Attribute reduction can only discard some redundant attributes
in decision table, but it cannot discard all of the redundant infor-
mation sufficiently. To this end, we can obtain a more simplified
decision table by further processing it. That is, we should discard
those redundant attribute values by performing value reduction.

When data are rolled up to the most abstract level in a multidi-
mensional model, the number of tuples will be decreased consider-
ably, in that many objects with same attribute values will be
merged into one. This can reduce the complexity of attribute value
reduction greatly. For the sake of simplicity, we assume that the set
of condition attributes is already reduced, i.e. there have no super-
fluous condition attributes in the decision table. There are some
algorithms for attribute value reduction in (Duoqian & Daoguo,
2008; Pawlak, 1991; Wang, 2001). So, we will not describe them
here.

4.2. Hierarchical decision rules analysis

Decision rules are generated easily after the procedure of data
reduction mentioned above. Each row of a decision table specifies
a decision rule that determines decisions in terms of conditions. So,
it will generate too many rules for large scale data.

Multidimensional data model provides an effective tool to re-
duce the amount of data. In a multidimensional data model, the
amount of data can be reduced greatly by the operation of roll-
up along one or more dimensions. In other words, more and more
non-empty cells in cuboids will be merged during the course of
rolling up, which will reduce the number of non-empty cells
greatly.

Given a decision table DT ¼ ðU;C [ D;V ; f Þ and all concept hier-
archies of its conditional attributes, we might call it the
ð0;0; . . . ;0Þth decision table as well, that is, all of conditional attri-
bute values are at leaves level of their concept hierarchies respec-
tively. The ð0;0; . . . ;0Þth decision table can also be denoted as

DT00 � � �0|fflfflfflffl{zfflfflfflffl}
m

¼ ðU00 � � �0|fflfflfflffl{zfflfflfflffl}
m

;C [ D; V
00 � � �0|fflfflfflffl{zfflfflfflffl}

m ; f00 � � �0|fflfflfflffl{zfflfflfflffl}
m

Þ;

where m is the number of conditional attributes, U00 � � � 0|fflfflfflffl{zfflfflfflffl}
m

is the

universe, C ¼ fC1;C2; . . . ; Cmg is the set of conditional attributes

and D is the decision attribute, V
00 � � �0|fflfflfflffl{zfflfflfflffl}

m is the domain of conditional

attributes, and f00 � � �0|fflfflfflffl{zfflfflfflffl}
m

is the information function from U00 � � �0|fflfflfflffl{zfflfflfflffl}
m

to

V
00 � � �0|fflfflfflffl{zfflfflfflffl}

m . We will denote the depth of concept hierarchy of C1 as
lðC1Þ, the depth of concept hierarchy of C2 as lðC2Þ, and the rest
may be deduced by analogy. Without loss of generality, we denote
a generalized decision table as

DTk1k2 ���km ¼ Uk1k2 ���km ; C [ D;Vk1k2 ���km ; fk1k2 ���km

� �

and call it the ðk1; k2; . . . ; kmÞth decision table, where
C ¼ fC1;C2; . . . ; Cmg is the set of conditional attributes and D is the
decision attribute, Uk1k2 ���km is the universe of the ðk1; k2; . . . ; kmÞth
decision table, Vk1k2 ���km ¼ [m

t¼1Vkt
t is the domain of the

ðk1; k2; . . . ; kmÞth decision table, where Vkt
t is the domain of Ct at

its kth level of its concept hierarchy, fk1k2 ���km is the information func-
tion from Uk1k2 ���km to Vk1k2 ���km .

For a decision table, when some of its attribute values are gen-
eralized to a higher level of abstraction, correspondingly, its
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universe will be reduced, its information function will be changed,
and thus, the decision table will also be changed. Thus, attributes
values with different degrees of abstraction will determine differ-
ent decision tables, or we can say that a decision table is deter-
mined uniquely by the degree of abstraction of attributes values.
So we will denote a decision table with different degrees of
abstraction only by the sequence of level labels of every condi-
tional attributes, e.g., we can denote the ðk1; k2; . . . ; kmÞth decision
table

DTk1k2 ���km ¼ ðUk1k2 ���km ;C [ D;Vk1k2 ���km ; fk1k2 ���km Þ

only by

ðk1; k2; . . . ; kmÞ;

which means that the combination of the domain of C1 at k1th level
of its concept hierarchy and the domain of C2 at k2th level of its con-
cept hierarchy, and the rest may be deduced by analogy.

We note that a new data cuboid will be produced once the roll-
up operation is performed, and the produced data cuboid can also
be transformed to a decision table. That is, a data cuboid at every
abstract level corresponds to a decision table; thus, we will call
the data cuboid corresponds to the ðk1; k2; . . . ; kmÞth decision table
the ðk1; k2; . . . ; kmÞth data cuboid. Or we can use the term ‘the
ðk1; k2; . . . ; kmÞth decision table’ and ‘the ðk1; k2; . . . ; kmÞth data cu-
boid’ exchangeably in what follows.

In order to analyze the relation of rules mined from data cuboid
with different degrees of abstraction, we will first give some defi-
nitions as follows.

Denote the ðk1; k2; . . . ; kmÞth data cuboid by DTk1k2 ���km ¼
ðUk1k2 ���km ;C [ D;Vk1k2 ���km ; fk1k2 ���kmÞ, where Uk1k2 ���km is the measure of
the ðk1; k2; . . . ; kmÞth data cuboid, C is conditional dimensions, D
is the decision dimension, Vk1k2 ���km is the domain of all conditional
dimensions at the ðk1; k2; . . . ; kmÞth level, and fk1k2 ���km is the infor-
mation function from Uk1k2 ���km to Vk1k2 ���km .

Definition 7. (Wille, 1992) A concept of the context ðG;M; IÞ is a
pair ðA;BÞ with A # G;B # M, and A0 ¼ B;B0 ¼ A, where

A0 ¼ fm 2 Mj gIm for all g 2 Ag;
B0 ¼ fg 2 Gj gIm for all m 2 Bg;

then we call ðA1;B1Þ is a subconcept of ðA2; B2Þ if and only if A1 # A2

(or B1 � B2) and denote it as ðA1;B1Þ 6 ðA2;B2Þ.

Definition 8. Given a decision table DT ¼ ðU;C [ D;V ; f Þ, where
C ¼ fC1;C2; . . . ; Cmg is the set of conditional dimension attributes,
for any Ct 2 C, denote the domain of Ct at the ith level in its concept
hierarchy as Vi

t , we will say that Vi
t is finer than Vj

t if and only if for
any a 2 Vi

t , there always exist b 2 Vj
t such that a is a subconcept of

b, and denote it as Vi
t 6 Vj

t .
Obviously, if i 6 j, then we have Vi

t 6 Vj
t . That is, when the

domain of Ci is rolled up along its concept hierarchy from a lower
level to a higher level, the values of Ci is generalized.

Definition 9. Given a decision table DT ¼ ðU;C [ D;V ; f Þ, where
C ¼ fC1;C2; . . . ; Cmg is the set of conditional dimension attributes,
denote the domain of C at ði1; i2; . . . ; imÞth data cuboid as Vi1 i2 ���im ,
we will say that Vi1 i2 ���im is finer than Vj1 j2 ���jm if and only if for any
k 2 f1;2; . . . ;mg, there always have Vik

k 6 Vjk
k , and we will denote

it as Vi1 i2 ���im
6 Vj1 j2 ���jm .

Definition 10. Given the ði1; i2; . . . ; imÞth data cuboid

DTi1 i2 ���im ¼ ðUi1 i2 ���im ;C [ D;Vi1 i2 ���im ; fi1 i2 ���im Þ

and the ðj1; j2; . . . ; jmÞth data cuboid
DTj1 j2 ���jm ¼ ðUj1j2 ���jm ; C [ D;Vj1j2 ���jm ; fj1 j2 ���jm Þ;

we will say that the measure Ui1 i2 ���im is finer than Uj1 j2 ���jm if and only
if for every X 2 Ui1 i2 ���im , there always exists Y 2 Uj1 j2 ���jm such that
X # Y , we denote it as Ui1 i2 ���im 6 Uj1 j2 ���jm .

Definition 11. Given the ði1; i2; . . . ; imÞth data cuboid

DTi1 i2 ���im ¼ ðUi1 i2 ���im ;C [ D;Vi1 i2 ���im ; fi1 i2 ���im Þ

and the ðj1; j2; . . . ; jmÞth data cuboid

DTj1 j2 ���jm ¼ ðUj1j2 ���jm ; C [ D;Vj1j2 ���jm ; fj1 j2 ���jm Þ;

if Vi1 i2 ���im
6 Vj1 j2 ���jm , then we will call data cuboid DTi1 i2 ���im is finer

than DTj1 j2 ���jm , and denote it as DTi1 i2 ���im 6 DTj1 j2 ���jm . If there exists
at least one dimension Ct 2 C such that Vit

t < Vjt
t , then we will say

that data cuboid DTi1 i2 ���im is strictly finer than DTj1 j2 ���jm and denote
it as DTi1 i2 ���im < DTj1 j2 ���jm .

Of course, the coarser/finer relation of data cuboids with differ-
ent degrees of abstraction is determined only by the granularity of
its dimension values. Consequently, the granularity of the measure
and corresponding information function can be induced from the
granularity of dimension values.

Property 1. Given the ði1; i2; . . . ; imÞth data cuboid

DTi1 i2 ���im ¼ ðUi1 i2 ���im ;C [ D;Vi1 i2 ���im ; fi1 i2 ���im Þ

and the ðj1; j2; . . . ; jmÞth data cuboid

DTj1 j2 ���jm ¼ ðUj1j2 ���jm ; C [ D;Vj1j2 ���jm ; fj1 j2 ���jm Þ

if i1 6 j1; i2 6 j2; . . . ; im 6 jm, then we have Vi1 i2 ���im
6 Vj1 j2 ���jm .

This property shows that the domain of C will become more ab-
stract when the domain of C is rolled up from a lower level
ði1; i2; . . . ; imÞ to a higher level ðj1; j2; . . . ; jmÞ.

Property 2. Given the ði1; i2; . . . ; imÞth data cuboid

DTi1 i2 ���im ¼ ðUi1 i2 ���im ;C [ D;Vi1 i2 ���im ; fi1 i2 ���im Þ

and the ðj1; j2; . . . ; jmÞth data cuboid

DTj1 j2 ���jm ¼ ðUj1j2 ���jm ; C [ D;Vj1j2 ���jm ; fj1 j2 ���jm Þ

if i1 6 j1; i2 6 j2; . . . ; im 6 jm, then we have Ui1 i2 ���im 6 Uj1 j2 ���jm .

This property shows that the lower the level of a data cuboid,
the finer the measure of this data cuboid. Or we can say that
non-empty cells in data cube will be merged when a data cuboid
is rolled up from a lower level of abstraction to a higher level of
abstraction.

Property 3. Given the ði1; i2; . . . ; imÞth data cuboid

DTi1 i2 ���im ¼ ðUi1 i2 ���im ;C [ D;Vi1 i2 ���im ; fi1 i2 ���im Þ

and the ðj1; j2; . . . ; jmÞth data cuboid

DTj1 j2 ���jm ¼ ðUj1j2 ���jm ; C [ D;Vj1j2 ���jm ; fj1 j2 ���jm Þ

if i1 6 j1; i2 6 j2; . . . ; im 6 jm, then we have DTi1 i2 ���im 6 DTj1 j2 ���jm .

This property indicates that the lower the level of a data cuboid,
the finer the data cuboid.

Property 4. Given a decision table DT ¼ ðU;C [ D;V ; f Þ, where
C ¼ fC1;C2; . . . ;Cmg is the set of conditional dimension attributes,
denote the set of data cuboids with different degree of abstraction as

DTS ¼ fDTk1k2 ���km j0 6 k1 6 lðC1Þ � 1; 0 6 k2 6 lðC2Þ � 1; . . . ; 0 6 km

6 lðCmÞ � 1g;
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where lðCtÞ denote the depth of concept hierarchy of dimension Ct.
Then, ðDTS;6Þ can be organized as a lattice, where the relation 6 is
the coarser/finer relation among data cuboids.

Proof. Obviously, the relation 6 is a partial order relation over
DTS, so ðDTS;6Þ is a poset. In order to prove the poset ðDTS;6Þ
can be organized as a lattice, we only need to prove that any two
elements of DTS have the supremum and infimum.

For any two data cuboids DTi1 i2 ���im ;DTj1 j2���jm
2 DTS, denote

DTi1 i2 ���im _ DTj1j2 ���jm
as the supremum of DTi1i2 ���im and

DTj1 j2���jm
; DTi1i2 ���im ^ DTj1 j2 ���jm

as the infimum of DTi1 i2 ���im and
DTj1 j2���jm

. If we set

ðk1k2 � � � kmÞ ¼ ðmaxfi1; j1gmaxfi2; j2g � � �maxfim; jmgÞ;
ðl1l2 � � � lmÞ ¼ ðminfi1; j1gminfi2; j2g � � �minfim; jmgÞ:

Then, we have

DTi1 i2 ���im _ DTj1j2 ���jm ¼ DTk1k2 ���km

and
DTi1 i2 ���im ^ DTj1j2 ���jm ¼ DTl1 l2 ���lm ;

that is, DTk1k2 ���km is the supremum of DTi1 i2 ���im and DTj1 j2 ���jm ; DTl1 l2 ���lm
is the infimum of DTi1 i2 ���im and DTj1 j2 ���jm . Thus, ðDTS;6Þ is a
lattice. h

Property 5. Given the ði1; i2; . . . ; imÞth data cuboid

DTi1 i2 ���im ¼ ðUi1 i2 ���im ;C [ D;Vi1 i2 ���im ; fi1 i2 ���im Þ

and denote its positive region as POSi1 i2 ���im , if i1 6 j1; i2 6 j2; . . . ; im 6 jm,
then we have POSj1 j2 ���jm # POSi1 i2 ���im . More generally, we have

POSðlðC1Þ�1Þ���ðlðCmÞ�1Þ # � � � # POS00 � � �0|fflfflfflffl{zfflfflfflffl}
m

;

where lðCtÞ denote the depth of concept hierarchy of dimension Ct.

This property indicates that the positive region is decrease
monotonously with the data cuboid drilled down from higher level
to lower level.

Property 6. Given the ði1; i2; . . . ; imÞth data cuboid

DTi1 i2 ���im ¼ ðUi1 i2 ���im ;C [ D;Vi1 i2 ���im ; fi1 i2 ���im Þ;

a rule induced from this data cuboid is certain if and only if the support-
ing set of the rule is included in the positive region of this data cuboid.

This result can be obtained easily by combining the definition of
certain rule and positive region of a data cuboid.

Property 7. Given the ði1; i2; . . . ; imÞth data cuboid

DTi1 i2 ���im ¼ ðUi1 i2 ���im ;C [ D;Vi1 i2 ���im ; fi1 i2 ���im Þ

and the ðj1; j2; . . . ; jmÞth data cuboid

DTj1j2 ���jm ¼ ðUj1 j2 ���jm ;C [ D;Vj1 j2 ���jm ; fj1 j2 ���jm Þ;
where DTi1 i2 ���im 6 DTj1 j2 ���jm , then certain decision rules mined from
DTj1 j2 ���jm remain certain in DTi1 i2 ���im .

Proof. A rule is certain if and only if it is induced from the lower
approximate of a concept. Obviously, if a rule is induced from the
positive region of a data cuboid, it must be a certain one. In other
words, if the supporting set of a rule is included in the positive
region of the data cuboid, it is certain.

Since DTi1 i2 ���im 6 DTj1 j2 ���jm
, namely, data cuboid DTi1 i2���im is finer

than DTj1 j2���jm
, so we have POSj1j2 ���jm

# POSi1 i2���im . According to
Property 6, we have that a rule is certain in DTj1 j2 ���jm

means that
the supporting set of this rule is included in POSj1 j2 ���jm

. So it is
included in POSi1 i2 ���im . Thus, the proposition holds. h
From Property 7, we find that there exists property preserving
among decision rules mined from different levels of abstraction,
which can be summarized as false-preserving principle (Ling & Bo,
2007). This can further improve the efficiency of decision rules
mining.

Property 8 (False-preserving principle). Given a base data cuboid
and its generalization at different levels of abstraction. If uncertain
rules cannot been mined from a coarser-grained data cuboid, then
they also cannot been mined from the base data cuboid. Especially,
if uncertain rules cannot been mined from the top most abstract level,
then we can say that the base data cuboid is consistent.
4.3. Algorithm and examples

Based on the above discussion, a decision table can be con-
structed based on the apex data cuboid, in which, the number of
objects will decrease greatly because many duplicative objects
with the same attribute values are merged. Thus, the number of
decision rules is also decreased greatly than that at the primitive
level. We call the decision table corresponds to the apex data cu-
boid the coarsest decision table.

In the coarsest decision table, each row of it determines a deci-
sion rule. Of course, redundant information maybe exists in this
decision table. So, we should further simplify it. Attribute reduc-
tion will eliminate redundant columns without losing the classifi-
cation ability. This can simplify the decision table vertically and
horizontally since some duplicative tuples will be merged. Attri-
bute value reduction will discard redundant attribute values on
the premise of keeping the classification ability unchanged. This
can make those rules mined from the simplified decision table
much fewer and shorter than the original decision table.

As it has been discussed in the previous section, rough set the-
ory is particularly well suited to deal with inconsistency in a deci-
sion table. If a decision table is inconsistent, then lower and upper
approximations of the decision classes are computed. For each
decision class, certain rules are generated from objects belonging
to its lower approximation. Uncertain rules are generated either
from the upper approximation or from the boundaries of this deci-
sion class. We also notice that certain rules indicate unique deci-
sion value while uncertain rules lead to a few possible decisions.

As Han (1995) noticed that: With the mining of rules at multiple
concept levels, similar rules could be generated at different concept
levels. Some of these rules can be considered as redundant and be
eliminated from the knowledge base to avoid the inclusion of many
superfluous rules. In principle, a rule is considered redundant if it does
not convey additional information and is less general than another
rule. Thus, to eliminate redundant decision rules effectively, our
algorithm of hierarchical decision rules mining follows the so-
called separate-and-conquer strategy (Furnkranz, 1999), which
has been coined by Pagallo and Haussler (1990), because of the
way of developing a theory that characterizes this learning strat-
egy: learn a rule that covers a part of the given training examples,
remove the covered examples from the training set (the separate
part) and recursively learn another rule that covers some of the
remaining examples(the conquer part) until no examples remain.

In our algorithm, we first load data into a pre-assigned multidi-
mensional data cube, roll-up along dimensions to the most ab-
stract level, and build the coarsest decision table from it; then
mine certain rules from this coarsest decision table, and remove
the supporting sets of certain rules from the universe; finally, drill
down along one or more dimensions to a lower level and recur-
sively mine other rules that support the remaining examples until
no examples remain or getting to the primitive level. Thus, the
output of our algorithm will include rules mined from different
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abstract levels. This can obtain not only generalized rules, but also
rules mined from various levels of abstraction.

For a fixed decision level, we adopt the top-down strategy start-
ing from the coarsest level of conditional dimensions to the finest
level. We have proved that certain rules mined from higher level
remain certain at lower level. So, we can save these certain rules
into a rule set and remove their supporting set from the current
universe; then drill down to a lower level and further process those
uncertain rules. The algorithm will terminate until no objects re-
main or getting to the primitive level.

The aim of this algorithm is to find a set of certain decision rules
which are concise to the greatest extent, that is, the number of
rules is as fewer as possible and the length of every rule is as short-
er as possible. Furthermore, this algorithm provides a way to mine
all certain rules with different degree of generalization from differ-
ent abstract levels.

To summarize, the procedure of hierarchical decision rules min-
ing from data cube is described as the following algorithm.

Algorithm (Hierarchical decision rules mining).

Input: A given decision table DT ¼ ðU;C [ D;V ; f Þ.
Output: A set of decision rules RS.
Step 1: Build concept hierarchies for every attribute in DT ,

choose a level in concept hierarchy of decision attribute,
and fix it in the whole algorithm.

Step 2: Transform the given decision table to a multidimen-
sional data cube by use of concept hierarchies con-
structed as above.

Step 3: Denote the decision table corresponds to the apex data
cuboid as
DTlðC1ÞlðC2Þ���lðCmÞ

¼ UlðC1ÞlðC2Þ���lðCmÞ; C [ D;VlðC1ÞlðC2Þ���lðCmÞ; flðC1ÞlðC2Þ���lðCmÞ

� �

set lðC1Þ þ lðC2Þ þ � � � þ lðCmÞ ¼ k; RS ¼ ;; U is the uni-
verse of the given decision table, where lðCtÞ is the depth
of concept hierarchy of Ct .
Table 3
Training dataset.

U Education-level Vocation Salary

1 Doctoral student Private enterprise High
2 Postgraduate student State-owned enterprise High
3 Others Education Low
4 Undergraduate Private enterprise Low
5 Undergraduate State-owned enterprise Low
6 Postgraduate student State-owned enterprise Low
7 Undergraduate State-owned enterprise High
8 Undergraduate Civil servant Low
9 Doctoral student Education Low
10 Others State-owned enterprise Low

Table 4
Dataset roll-up to concept level 1.

U Education-level Vocation Salary

1 High Enterprise High
2 High Enterprise High
3 Low Institution Low
4 Low Enterprise Low
5 Low Enterprise Low
6 High Enterprise Low
7 Low Enterprise High
8 Low Institution Low
9 High Institution Low
10 Low Enterprise Low
Step 4: Build the decision table DTk based on the data cuboid at
the kth level, set RSk ¼ ;.

Step 5: Simplify the decision table DTk (implement attribute
reduction and attribute value reduction), generate deci-
sion rules, combine those duplicative decision rules as
one, and merge their supporting set of the duplicative
decision rules.

Step 6: For every decision rules, if the certainty factor of a rule is
equal to 1, then it is a certain one. Otherwise, it is uncer-
tain.Save those certain decision rules to RSk and set
RS [ RSk to RS, that is, RS :¼ RS [ RSk. Compute the sup-
porting set SSðRSkÞ of RSk, set U � SSðRSkÞ to U.

Step 7: If U ¼ ; or k ¼ 0, then turn to step 8, otherwise,
k :¼ k� 1 (this means drill-down one level along one
dimension. In fact, we can drill-down multiple levels
along more dimensions simultaneously or according to
the need of users), then turn to step 4.

Step 8: Merge those rules induced from the remaining examples
to RS and output it. The algorithm is terminated.

This algorithm performs the following three main tasks:

(1) Data generalization. This task is accomplished by steps 1 and
2, which mainly focus on data transformation, that is, trans-
form the given flat decision table to a multidimensional data
cube, which provide a structure to process data at different
levels of abstraction.
(2) Data reduction. This task is completed by steps 4 and 5,
which can simplify the decision table at each level of
abstraction. It can make rules mined from this decision table
as shorter and fewer as possible.

(3) Mine certain rules and remove their supporting set from the
current universe at every level of abstraction.

Eventually, the algorithm returns a hierarchical certain rule set
with various degrees of abstraction and some uncertain rules at the
primitive level.

An example will be illustrated to demonstrate how the algo-
rithm works. The decision table is shown in Table 3, which contain
10 objects and two conditional attributes. We notice that there ex-
ists inconsistencies tuples in this dataset.

Example 3. Suppose a two-layer decision system is considered as
in Fig. 1. The training data used in this example is as Table 3.
Illustrate the procedure of algorithm by data Table 3.
(1) Build concept hierarchies for every attribute in Table 3 as illus-
trated in Fig. 1, and then transforming the Table 3 to a data

cuboid as Fig. 2.

Roll-up the data cuboid as illustrated in Fig. 2 along dimen-
sions ‘‘Educational-level” and ‘‘Vacation”, we will obtain the
data cuboid as Fig. 3.
For the data cuboid in Fig. 3, its corresponding decision table is
as Table 4.
After merged the duplicative objects of Table 4, we will obtain
a simplified table as Table 2.

(2) Compute the reduct of Table 2 or Table 4, a minimal reduct of
Table 2 or Table 4 is {Vocation}. Of course the core of it is also
{Vocation}.

Now, we have climbed to the top most abstract level due to its
two-level structure for this multidimensional data cube, and we
will mine decision rules begin from this most abstract level.



Table 5
Rules mined from Table 2 or Table 4.

Decision rules Supporting set Certainty factor

1 If Vocation = ‘‘Enterprise” then Salary = ‘‘High” {1,2,7} 0.5
2 If Vocation = ‘‘Enterprise” then Salary = ‘‘Low” {4,5,6,10} 0.5
3 If Vocation = ‘‘Institution” then Salary = ‘‘Low” {3,8,9} 1

Table 6
Remaining dataset.

U Education-level Vocation Salary

1 Doctoral student Private enterprise High
2 Postgraduate student State-owned enterprise High
4 Undergraduate Private enterprise Low
5 Undergraduate State-owned enterprise Low
6 Postgraduate student State-owned enterprise Low
7 Undergraduate State-owned enterprise High
10 Others State-owned enterprise Low
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(3) Rules mined from Table 2 are presented in Table 5. Rules
mined from the top most abstract level are presented in Table
5. We can see that there are only three items of decision rules,
which are fewer than the number of objects in the raw dataset.
These generalized rules will provide us more concise and easy-
to-understand information than the original dataset. Of
course, if you are unsatisfied with this result, you can proceed
to this procedure by drilling down to a lower level.

From Table 5, we know that the rule ‘‘If Vocation = ‘Institution’
then Salary = ‘Low”’ is a certain one, so its supporting set
{3,8,9} can be removed from the universe according to the
algorithm, and those uncertain rules are processed further
by drilling-down along all conditional dimensions to the next
level, which is the primitive level in this example.

(4) In this situation, the Table 3 is translated into the Table 6, a
minimal reduct of Table 6 is {Education-level,Vocation}, and
the core is also {Education-level,Vocation}.

(5) Rules mined from Table 6 are as follows.

Certain rules

(1) If Educational-level = ‘‘Doctoral student” then Salary =
‘‘High”

(2) If Educational-level = ‘‘Undergraduate” AND Vocation =
‘‘Private enterprise” then Salary = ‘‘Low”

(3) If Educational-level = ‘‘Others” then Salary = ‘‘Low”
Uncertain rules

(4) If Educational-level = ‘‘Postgraduate student” AND Voca-
tion = ‘‘State-owned enterprise” then Salary = ‘‘High”

(5) If Educational-level = ‘‘Postgraduate student” AND Voca-
tion = ‘‘State-owned enterprise” then Salary = ‘‘LOW”

(6) If Educational-level = ‘‘Undergraduate” AND Vocation =
‘‘State-owned enterprise” then Salary = ‘‘LOW”

(7) If Educational-level = ‘‘Undergraduate” AND Vocation =
‘‘State-owned enterprise” then Salary = ‘‘High”

(6) So, the final output is as follows.
Certain rules
(1) If Vocation = ‘‘Institution” then Salary = ‘‘Low”
(2) If Educational-level = ‘‘Doctoral student” then Salary =

‘‘High”
(3) If Educational-level = ‘‘Undergraduate” AND Vocation =

‘‘Private enterprise” then Salary = ‘‘Low”
(4) If Educational-level = ‘‘Others” then Salary = ‘‘Low”
Uncertain rules
(5) If Educational-level = ‘‘Postgraduate student” AND Voca-

tion = ‘‘State-owned enterprise” then Salary = ‘‘High”
(6) If Educational-level = ‘‘Postgraduate student” AND Voca-

tion = ‘‘State-owned enterprise” then Salary = ‘‘LOW”
(7) If Educational-level = ‘‘Undergraduate” AND Vocation =

‘‘State-owned enterprise” then Salary = ‘‘LOW”
(8) If Educational-level = ‘‘Undergraduate” AND Vocation =

‘‘State-owned enterprise” then Salary = ‘‘High”
We can see that the number of decision rules mined from data
cuboid at higher abstract level is much fewer than those mined
from lower level. In this example, there are only three items of
decision rules mined from the most abstract level, while there
are 10 items of decision rules mined from primitive level. Further-
more, we can mine all certain rules with different degrees of gen-
eralization from different abstract levels.
5. Conclusion and discussion

Decision rules mining is an important technique in machine
learning and data mining. It has been studied intensively during
the past few years. However, most existing algorithms are based
on flat data tables. Set of decision rules mined from flat data table
can be very large for large scale data. Such set of rules are not easy
to be understood.

In real-world applications, we notice that data are hierarchical
in nature. So, a method of hierarchical decision rules mining is pro-
vided in this paper, which aims to improve the quality and effi-
ciency of decision rules mining by combining the hierarchical
structure of multidimensional data model and the techniques of
rough set theory. This algorithm can not only output some general-
ized rules with different degree of generalization, but also reveal
the fact of property-preserving among decision rules mined from
different levels of abstraction.

Moreover, our algorithm will obtain different results for differ-
ent type of decision tables, i.e. consistent decision table and incon-
sistent tables. For a consistent decision table, the universe will be
reduced to an empty set when the algorithm gets to the finest le-
vel. That is, we can mine all certain rules with different degree of
generalization at different levels. While for an inconsistent deci-
sion table, the universe can not be an empty set when the algo-
rithm gets to the primitive level.
6. Future trends

Hierarchical structure of data has received much attention in
recent years. It has been used in many areas such as hierarchical
reduction, hierarchical text classification, etc. However, there has
not an effective representation and operations for hierarchical data
at present.

Multidimensional data model is a variation of the relational
model that uses multidimensional structures to organize data, and
the main advantage of it is that it offers a powerful way to represent
hierarchical structured data. Moreover, there are a number of typi-
cal data cube operations, which are very fit to hierarchical data.

Thus, based on the hierarchical structure of multidimensional
data model, there are some works need to be studied further in
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the forthcoming future, such as attribute reduction at multiple lev-
els, attribute value reduction at multiple levels, and hierarchical
approximate decision rules mining, etc. These will be paid close
attention by more and more researchers.
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