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Feature selection is a key issue in the research on rough set theory. However, when handling large-scale
data, many current feature selection methods based on rough set theory are incapable. In this paper, two
novel feature selection methods are put forward based on decomposition and composition principles. The
idea of decomposition and composition is to break a complex table down into a master-table and several
sub-tables that are simpler, more manageable and more solvable by using existing induction methods,
then joining them together in order to solve the original table. Compared with some traditional methods,
the efficiency of the proposed algorithms can be illustrated by experiments with standard datasets from
UCI database.
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1. Introduction

As the capability of acquiring and storing information increases,
more and more features (attributes) and objects (instances) are
involved in pattern recognition, machine learning and data mining.
Thus, there are a lot of irrelevant or redundant features for a target
task. It is known that superfluous features will confuse the learning
algorithms and deteriorate mining performance (Guyon, 2003; Yu
& Liu, 2004). Hence feature selection becomes increasingly essen-
tial in practical applications. The motivation of feature selection
is to reduce the cost of acquiring and storing features and speed
up learning algorithm.

Rough set theory, proposed by Greco, Inuiguchi, and Slowinski
(2006), Hu, Liu, and Yu (2008), Parthal¢in and Shen (2009), Pawlak
(1982), and Yang and Yang (2008, 2009), is a valid mathematical
tool to deal with imprecise, uncertain, and vague information. It
has been widely applied in many fields such as machine learning
(Swiniarski & Skowron, 2003), data mining (Liu & Motoda, 1998),
and pattern recognition (Pawlak, 1982). Feature selection is one
of the most fundamental problems in rough set theory (also called
attribute reduction). Researchers have proposed various ap-
proaches for feature selection (Liu & Motoda, 1998; Miao & Wang,
1997; Oh, Lee, & Moon, 2004; Wang, 2001). These approaches can
be generally divided into three categories which are methods
based on discernibility matrix (Wang, 2001), methods based on po-
sitive region (Wang, 2001) and methods based on information en-
tropy (Miao & Wang, 1997). All feature selection methods are
available for smaller tables. However, in the information age, data
is automatically collected and therefore the database can be quite
ll rights reserved.
large, such as medicine data, astronomy data, the stock market
data and many other areas. The growth of the size of data and
number of existing databases far exceed the ability of humans to
analyze this data. We may gain worse performance even get no re-
sult when dealing with large-scale data with traditional feature
selection methods based on rough set theory.

The main motivation of this study is to design a method that
can deal with massive and complicated real-world problems, we
present a decomposition and composition method. The idea of
decomposition and composition (Cheng & Wang, 2009; Maimon
& Rokach, 2005; Rokach, 2006) is to break down a large and com-
plex task into several simpler and more manageable sub-tasks that
can be solved by using existing induction methods. Their results
will be jointed together in the sequel in order to solve the original
problem. The decomposition and composition approach can make
the original task easier and less time consuming. And it is fre-
quently used in statistics (Fischer et al., 1995), operations research
(He, Strege, Tolle, & Kusiak, 2000) and engineering (Kusiak, 2000).
There are a few works in data mining using decomposition and
composition methodology such as decomposition and composition
of incomplete information systems (Bazan, Latkowski, & Szczuka,
2006; Zhang, 2007), and decomposition and composition in mul-
ti-agent systems (Nguyen, Nguyen, & Skowron, 1999). However,
some decomposition and composition methods may result in the
loss of information or distortion of original data and knowledge,
and can even lead to the original data mining system un-minable.

To avoid these shortcomings of decomposition and composition
in data mining, we should choose the appropriate decomposition
and composition method. Han and Kamber (2006) introduces mul-
tirelational data mining using keys to link multiple tables, further-
more, there is the same expression in database. There is no any the
loss of information or distortion of original data and knowledge
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when we convert a single table into multirelational tables. There-
fore we break down a large-scale decision table into a master-table
and several sub-tables. The master-table is composed of a set of
decision features and several joint features which are the key
words in sub-tables. The sub-table is made up of a subset of condi-
tion features. Then we join their solutions together in order to
solve the problem with the original table. In order to compare with
classical methods, numerous experiments can be done using some
standard datasets from UCI database. Experimental results show
that the proposed algorithms in this paper can improve the compu-
tational efficiency, especially to large-scale database. Finally, we
discuss the complexity and the suit number of sub-tables.

The rest of the paper is organized as follows. In Section 2, basic
definitions and properties are shown. In Section 3, two novel fea-
ture selection methods and an algorithm to compute the core
based on decomposition and composition are introduced respec-
tively. Some experiments and analysis are presented in Section 4.
Finally, conclusions and future works are given in Section 5.

2. Basic notions

For the convenience of description, some basic definitions and
properties are introduced here at first.

2.1. Basic definitions

We assume that feature selection discussed in this paper is per-
formed in a decision table.

Definition 1 (Decision table). A decision table is defined as
T ¼ hU;C [ D;V ; f i, where U is a non-empty finite set of objects,
called universe; C is a set of all condition features (also called
conditional attributes) and D is a set of decision features (also
called decision attributes); V ¼

S
a2C[DVa; Va is a set of feature

values of feature a; and f : U � ðC [ DÞ ! V is an information
function such that f ðx; aÞ 2 Va for every x 2 U; a 2 C [ D.
Definition 2 (Equivalence relation). Let B # C [ D; B induces an
equivalence (indiscernibility) relation on U as shown:

INDðBÞ ¼ fðx; yÞ 2 U � Uj8b 2 B; bðxÞ ¼ bðyÞg: ð1Þ
Table 1
Definition 3 (Partition). The family of all equivalence classes of
INDðBÞ, i.e., the partition induced by B, is denoted as:

U=INDðBÞ ¼ f½xi�B : xi 2 Ug; ð2Þ

where ½xi�B is the equivalence class containing xi. All the elements in
½xi�B are equivalent (indiscernible) with respect to B. Equivalence
classes are elementary sets in rough set theory.
A original decision table.

U a1 a2 a3 a4 d

1 1 1 1 0 1
2 1 0 1 1 1
3 0 0 0 1 0
4 1 0 1 0 1
Definition 4 (Lower approximation and upper approximation). Let
X # U and B # C, the lower and upper approximations of X with
respect to B, denoted by BX and BX, respectively, are defined as:

BX ¼ [f½xi�Bj½xi�B # Xg; ð3Þ
BX ¼ [f½xi�Bj½xi�B \ X – ;g: ð4Þ
Table 2
A master-table.

U b1 b2 d

1 b1
1 b1

2
1

2 b2
1 b2

2
1

3 b3
1 b3

2
0

4 b2
1 b1

2
1

Definition 5 (Degree of dependency of feature). The degree of
dependency of D on C can be defined as:

cCðDÞ ¼ jPOSCðDÞj=jUj; ð5Þ

where POSCðDÞ ¼ [X2U=DCX is called the positive region of the parti-
tion U=D with respect to C, and it is the set of all samples that can be
certainly classified as belonging to blocks of U=D using C.
Definition 6 (Significance of feature). The significance of a 2 C � B
on the basis of B with respect to D is defined as:

SIGcða;B;DÞ ¼ cB[fagðDÞ � cBðDÞ: ð6Þ
Definition 7. CorefWjjj 6 rg is the set of reducts, Core is defined as:

Core ¼ \j6rWj: ð7Þ

We break down a decision table into a master-table and several
sub-tables. The master-table consists of a set of decision features
and several joint features which are the keywords in sub-tables.
The sub-table is composed of a subset of condition features.
Definition 8 (Sub-table, master-table and mid-table). Given a deci-
sion table T ¼ hU;C [ D;V ; f i.
� A sub-table is defined as TBi ¼ hUBi ;Bi [ fbig;VBi ; f Bi i, where U is
a non-empty unique finite set of objects, called universe;
Bi # C; i ¼ 1;2; . . . ;m; C ¼ [m

i¼1Bi and Bi \ Bj ¼ ;; i – j. bi is a
joint feature which join the sub-table to the master-table
and it is a keyword in TBi ; VBi

bi
¼ bk

i ; k ¼ 1;2; . . . ; p; VBi ¼
S

a2Bi
VBi

a ; VBi
a is a set of feature values of feature a; and

f Bi : UBi � Bi ! VBi is an information function such that
f Bi ðx; aÞ 2 VBi

a for every x 2 UBi ; a 2 Bi.
� A master-table is defined as TS ¼ hU; S [ D;VS; f Si, where U is a

non-empty finite set of objects, called universe; S ¼ [m
i¼1fbig is

a set of all joint features and D is a set of decision features;
VS ¼

S
a2S[DVS

a; VS
a is a set of feature values of feature a; and

f S : U � ðS [ DÞ ! VS is an information function such that
f Sðx; aÞ 2 VS

a for every x 2 U; a 2 S [ D.
� A mid-table is defined as TMi ¼ hU;Mi [ D;VMi ; f Mi i; i ¼

1;2; . . . ;m, where U is a non-empty finite set of objects, called

universe; Mi ¼ ðS n fbigÞ [ Bi and D is a set of decision features;

VMi ¼
S

a2Mi[DVMi
a ; VMi

a is a set of feature values of feature a; and

f Mi : U � ðMi [ DÞ ! VMi is an information function such that
f Mi ðx; aÞ 2 VMi

a for every x 2 U; a 2 Mi [ D.
Example 1. Table 1 is a decision table, we decompose it into one
master-table (Table 2) and two sub-tables (Tables 3 and 4). Com-
bine Tables 2 and 3 to compose a mid-table Table 5. Similarly,
Table 6 comes from Tables 2 and 4. Their relationship is shown
in Fig. 1. A decision table (Table 1), one master-table (Table 2)
and two mid-tables (Tables 5 and 6) can be converted by two
sub-tables (Tables 3 and 4).



Table 3
The first sub-table.

b1 a1 a2

b1
1

1 1

b2
1

1 0

b3
1

0 0

Table 4
The second sub-table.

b2 a3 a4

b1
2

1 0

b2
2

1 1

b3
2

0 1

Table 5
The first mid-table.

U a1 a2 b2 d

1 1 1 b1
2

1

2 1 0 b2
2

1

3 0 0 b3
2

0

4 1 0 b1
2

1

Table 6
The second mid-table.

U b1 a3 a4 d

1 b1
1

1 0 1

2 b2
1

1 1 1

3 b3
1

0 1 0

4 b2
1

1 0 1

Fig. 1. The relationship of the original decision table, the master-table, the sub-
tables and the mid-tables.
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2.2. Basic properties

The following are some properties according to the above defi-
nition. Assume a decision system T ¼ hU;C [ D;V ; f i, sub-tables
TBi ¼ hUBi ;Bi [ fbig;VBi ; f Bi i; i ¼ 1;2; . . . ;m, a master-table TS ¼
hU; S [ D;VS; f Si, mid-tables TMi ¼ hU;Mi [ D;VMi ; f Mi i; i ¼ 1;2; . . . ;

m. Some properties are described as follows.

Property 1. The significance of a 2 C � B on the basis of B # C with
respect to D in the original decision table T is greater than zero, that is
SIGcða;B;DÞ > 0, iff the condition feature a in T is indispensable, that is
POSðB[fagÞðDÞ–POSðBÞðDÞ.
Property 2. The significance of a 2 C � B on the basis of B # C with
respect to D in the original decision table T is greater than zero, that
is SIGcða;B;DÞ > 0, iff the condition feature a in T belongs to Core, that
is a 2 Core.
Property 3. The positive region in the master-table TS is equivalent to
the positive region in the original decision table T, that is POSðSÞðDÞ ¼
POSðCÞðDÞ.
Proof. The intersection of an equivalence (indiscernibility)
relation is still an equivalence (indiscernibility) relation. S is a
combination of C. The partition induced by C (the family of
all equivalence classes) is equivalent to the partition
induced by S, that is U=INDðSÞ ¼ U=INDðCÞ, therefore POSðSÞðDÞ ¼
POSðCÞðDÞ. h
Corollary 1. The positive region in the mid-table TMi is equivalent to
the positive region in the original decision table T, that is
POSðMiÞðDÞ ¼ POSðCÞðDÞ.
Property 4. The joint feature bi in the master-table TS is dispensable,
that is POSðSnfbigÞðDÞ ¼ POSðSÞðDÞðSIGcðbi; S� fbig;DÞ ¼ 0Þ, iff the con-
dition feature set Bi in the original decision table T corresponding to
the joint feature bi is dispensable, that is POSðCnBiÞðDÞ ¼ POSðCÞðDÞ
ðSIGcðBi;C � Bi;DÞ ¼ 0Þ.
Proof. According to Definition 8, bi is a combination of Bi. The
partition induced by S� fbig (the family of all equivalence classes)
is equivalent to the partition induced by C � Bi, that is
U=INDðS� fbigÞ ¼ U=INDðC � BiÞ, therefore POSðSnfbigÞðDÞ ¼ POSðCnBiÞ

ðDÞ. According to Property 3, POSðSÞðDÞ ¼ POSðCÞðDÞ. Therefore if
POSðSnfbigÞðDÞ ¼ POSðSÞðDÞ, then POSðCnBiÞðDÞ ¼ POSðCÞðDÞ. And vice
versa. h
Corollary 2. The condition feature a in the mid-table TMi is dispens-
able, that is 9a 2 Bi; POSðMinfagÞðDÞ ¼ POSðMiÞðDÞðSIGcða;Mi � fag;
DÞ ¼ 0Þ, iff the condition feature a in the original decision table
T is dispensable, that is POSðCnfagÞðDÞ ¼ POSðCÞðDÞðSIGcða;C � fag;
DÞ ¼ 0Þ.
Corollary 3. If the joint feature bi in the master-table TS is
indispensable (a core feature), that is POSðSnfbigÞðDÞ– POSðSÞðDÞ
ðSIGcðbi; S� fbig;DÞ > 0Þ, then a subset A in the condition feature
set Bi corresponding to the joint feature bi is indispensable (core
features) in the original decision table T, that is A # Bi;

POSðCnAÞðDÞ– POSðCÞðDÞðSIGcðA;C � A;DÞ > 0Þ.
Corollary 4. If the condition feature a in the mid-table TMi is indis-
pensable (a core feature), that is POSðMinfagÞðDÞ– POSðMiÞðDÞ
ðSIGcða;Mi � fag;DÞ > 0Þ, then the condition feature a in the original
decision table T is indispensable (a core feature), that is
POSðCnfagÞðDÞ– POSðCÞðDÞðSIGcða;C � fag;DÞ > 0Þ.

These properties will be applied in following methods.
3. The feature selection methods based on decomposition
and composition

In this section we introduce the strategy of decomposition and
composition at first. Then two feature selection methods and an
approach of computing core based on decomposition and composi-
tion are proposed.
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Finding all reducts is NP-hard problem. However, it is usually
enough for most practical applications to find one of the re-
ducts. The feature selection methods of this paper are to find
a reduct.

3.1. The strategy of decomposition and composition

The strategy of decomposition and composition can affect the
efficiency dramatically. If there is not an appropriate strategy of
decomposition and composition, some decomposition and compo-
sition methods may result in the loss of information or distortion
of original data and knowledge, and can even lead to the original
data mining system un-minable.

In general, the number of the condition features is relatively
large comparing to the number of the decision features, therefore
we only decompose the condition features into sub-tables and do
not process the decision features. If there are a lot of decision fea-
tures, we can break them down into sub-tables similarly. In this
paper, our strategy of decomposition and composition is to
decompose the condition features into several subsets and con-
nect these subsets with some new features called joint features.
The joint features and the set of decision features form the mas-
ter-table. Every subset and the joint feature construct the sub-ta-
ble. In the algorithm, we combine each sub-table with the
master-table to compose a mid-table. Actually, we only combine
condition features and do not change data table itself. So our
methods will not lead to loss of data or incorrect information
after decomposition and composition. The approach of decompo-
sition for conditional features is also different. Two strategies are
described as follows.

� Random strategy: The random strategy is that the condition fea-
tures of the original decision table are divided equally among
sub-tables randomly.
� Heuristic strategy: Firstly, we compute the significance of

condition features. If there are indispensable condition fea-
tures, they are put into one sub-table and the remaining condi-
tion features are decomposed equally into other sub-tables.
Otherwise they are divided equally among sub-tables
randomly.

3.2. The feature selection method based on decomposition
and composition-random strategy

We employ random strategy to design a reduction algorithm.
Suppose that the number of sub-tables is k. First, we break the ori-
ginal decision table down into one master-table and k sub-tables.
The condition features of the original decision table are divided
equally among k sub-tables. The joint feature and a subset of con-
dition features compose a sub-table. The master-table is made up
of a set of decision features and k joint features that are the key
words in sub-tables.

Then if the joint feature in master-table is dispensable, we can
delete the joint feature in master-table and combine the same ob-
jects (Properties 3 and 4) to decide the next joint feature. Other-
wise, we combine a sub-table with the master-table to compose
a mid-table, if the condition feature in the mid-table is dispensable,
we can delete the condition feature in the mid-table and combine
the same objects (Corollaries 1 and 2), or else continue the next
loop. Finally, a reduction can be found.

We show the feature selection method based on decomposition
and composition-random strategy in Algorithm 1.

Algorithm 1. Feature selection method based on decomposition
and composition-random strategy (FSDC-RS)
Input: A decision table T ¼ hU;C [ D;V ; f i. The number of sub-
tables is k.

Output: Feature selection REDðDÞðCÞ.
S S S
1.
 Break T down into one master-table T ¼ hU; S [ D;V ; f i

and sub-tables TBi ¼ hUBi ;Bi [ fbig;VBi ; f Bi i; i ¼ 1;2; . . . ; k.

2.
 REDðDÞðCÞ  C; i 1.

3.
 While i <¼ k do

4.
 Begin

5.
 If POSðSnfbigÞðDÞ ¼ POSðSÞðDÞ, then

6.
 Begin

7.
 S S� fbig;

8.
 REDðDÞðCÞ  REDðDÞðCÞ � Bi;

9.
 Combine the same objects;

10.
 End

11.
 Else

12.
 Begin

13.
 Combine TMi with TBi and TS; j cardðBiÞ;

14.
 While j > 0 do

15.
 Begin

16.
 If 9a 2 Bi; POSðMinfagÞðDÞ ¼ POSðMiÞðDÞ, then

18.
 Begin

19.
 Bi  Bi � fag;

20.
 REDðDÞðCÞ  REDðDÞðCÞ � fag;

21.
 Combine the same objects;

22.
 End

23.
 j j� 1;

24.
 End

25.
 End

26.
 i iþ 1

27.
 End

28.
 Return REDðDÞðCÞ.
Actually, the condition features of a decision table are divided

into several parts. We process every part instead of every condition
feature. Every part is substituted by a joint feature. In other words,
jCj condition features of a decision table are compressed to k joint
features of the master-table. If the joint feature is dispensable, the
condition feature set corresponding to the joint feature is dispens-
able and can be deleted once. Each feature in this condition feature
set does not need to be checked again. Even though the joint
feature is indispensable, we need to convert a master-table and a
sub-table into a mid-table, the scale of the mid-table is reduced a
lot. Compare with jCj, the number of features of the mid-table is
ðjCj=kÞ þ k, which is very small. Hence our methods achieved
significant saving on the computation time. In the best case, we
can get a reduction only by checking k joint features of the
master-table. The minimum time complexity of FSDC-RS is
OðjNj2 � ðkþ jDjÞ2Þðk� jCjÞðjNj is the number of objects, jCj is the
number of condition features and jDj is the number of decision fea-
tures). In the worst case, we have to process ðjCjkÞ þ k features of
the mid-table to achieve a reduction. The maximum time
complexity of FSDC-RS is OðjNj2 � ððjCjkþ kÞ þ jDjÞ2Þ. The average
time complexity of traditional methods is OðjNj2 � ðjCj þ jDjÞ2Þ.
The maximum time complexity of FSDC-RS is far less than the
average time complexity of traditional methods. Therefore, the
performance of FSDC-RS is better than other traditional
approaches.
3.3. The feature selection method based on decomposition and
composition-heuristic strategy

However, the probability of deleting joint features once
is low on account of the absence of heuristic information,



N. Jiao et al. / Expert Systems with Applications 37 (2010) 7419–7426 7423
thus we present another feature selection method based on
decomposition and composition using heuristic strategy. In
this paper, the significance of features is taken into account
heuristic information. We calculate the significance of condi-
tion features. The condition features whose significances are
greater than zero are indispensable, and they are core features
at the same time. We put the indispensable features in
one sub-table. The remainder is equally divided into other
sub-tables.

First of all, we compute the significance of condition fea-
tures in original decision table to find indispensable condition
features. According to Property 2, the indispensable condi-
tion features are core features. The traditional methods of
core consume a lot of time. Hence we introduce a novel
method of calculating core based on decomposition and
combination.

We assume that the number of sub-tables is k. We decompose
the original decision table into one master-table and k sub-tables.
The condition features of the original decision table are divided
equally among k sub-tables. If the joint feature in master-table is
indispensable (Properties 1–3 and Corollary 3), we compose a
mid-table with a sub-table and the master-table. If the condition
feature in mid-table is indispensable (Corollaries 1 and 4), it is a
core feature, or else continues the next loop. At last, we get all
the core features.

The method of calculating core based on decomposition and
composition is shown in Algorithm 2.

Algorithm 2. The method of computing core based on decompo-
sition and composition (CCDC)
Input: A decision table T ¼ hU;C [ D;V ; f i. The number of sub-
tables is k.

Output: Core denoted by COREðDÞðCÞ.

S S S
1.
 Break T down into one master-table T ¼ hU; S [ D;V ; f i
and sub-tables TBi ¼ hUBi ;Bi [ fbig;VBi ; f Bi i; i ¼ 1;2; . . . ; k.
2.
 COREDðCÞ ¼ ;; i 1.

3.
 While i <¼ k do

4.
 Begin

5.
 If SIGcðbi; S� fbig;DÞ > 0, then

6.
 Begin

7.
 Compose TMi with TBi and TS; j cardðBiÞ;

8.
 While j > 0 do

9.
 Begin

10.
 If 9a 2 Bi; SIGcða;Mi � fag;DÞ > 0, then

11.
 COREDðCÞ  COREDðCÞ [ fag;

12.
 j j� 1;

13.
 End

14.
 End

15.
 i iþ 1

16.
 End

17.
 Return COREðDÞðCÞ.
According to the above computing core method, core is put into
the first sub-table and others are decomposed equally into k� 1
sub-tables. Initial condition starts at the second joint feature.
Repeat the same procedure as FSDC-RS algorithm, all selected fea-
tures consist of a feature selection.

As analyzed above, we have the following algorithm for feature
selection based on decomposition and composition using heuristic
strategy.
Algorithm 3. Feature selection method based on decomposition
and composition-heuristic strategy (FSDC-HS)

Input: A decision table T ¼ hU;C [ D;V ; f i. The number of sub-
tables is k.

Output: Feature selection REDðDÞðCÞ.

1.
 According to CCDC algorithm, calculate core in T.

2.
 If COREDðCÞ–;, then

3.
 Begin

4.
 If POSðB1ÞðDÞ–POSðCÞðDÞ, then

5.
 Begin

6.
 B1  COREðDÞðCÞ

7.
 Break T down into one master-table

TS ¼ hU; S [ D;VS; f Si and sub-tables
TBi ¼ hUBi ;Bi [ fbig;VBi ; f Bi i; i ¼ 1;2; . . . ; k.
8.
 i 2.

9.
 End

10.
 Else

11.
 Begin

12.
 REDðDÞðCÞ  COREðDÞðCÞ.

13.
 Return REDðDÞðCÞ.

14.
 End

15.
 End

16.
 Else

17.
 Begin

18.
 Break T down into one master-table

TS ¼ hU; S [ D;VS; f Si and sub-tables
TBi ¼ hUBi ;Bi [ fbig;VBi ; f Bi i; i ¼ 1;2; . . . ; k.
19.
 i 1.

20.
 End

21.
 REDðDÞðCÞ  C.

22.
 While i <¼ k do

23.
 Begin

24.
 If POSðSnfbigÞðDÞ ¼ POSðSÞðDÞ, then

25.
 Begin

26.
 S S� fbig;

27.
 REDðDÞðCÞ  REDðDÞðCÞ � Bi;

28.
 Combine the same objects;

29.
 End

30.
 Else

31.
 Begin

32.
 Compose TMi with TBi and TS; j cardðBiÞ;

33.
 While j > 0 do

34.
 Begin

35.
 If 9a 2 Bi; POSðMinfagÞðDÞ ¼ POSðMiÞðDÞ, then

36.
 Begin

37.
 Bi  Bi � fag;

38.
 REDðDÞðCÞ  REDðDÞðCÞ � fag;

39.
 Combine the same objects;

40.
 End

41.
 j j� 1;

42.
 End

43.
 End

44.
 i iþ 1

45.
 End

46.
 Return REDðDÞðCÞ.
Clearly, FSDC-HS is almost the same as FSDC-RS algorithm ex-
cept the decomposition strategy. Although the chance of deleting
joint features of FSDC-HS once is higher than FSDC-RS algorithm,
the procedure of computing core will increase the computation
time. The time complexity of FSDC-HS involves two parts which
are the time complexity of CCDC and time complexity of rest pro-
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cedures. In the best case, there is no core feature in CCDC algorithm
and a reduction can be obtained only by checking k joint features of
the master-table in the rest procedures. The minimum time
complexity of FSDC-HS is OðjNj2 � ðkþ jDjÞ2 þ jNj2 � ðkþ jDjÞ2Þ ¼
Oð2 � ðjNj2 � ðkþ jDjÞ2ÞÞ � OðjNj2 � ðkþ jDjÞ2Þðk� jCjÞ (jNj is the
number of objects, jCj is the number of condition features and jDj
is the number of decision features). In the worst case, there are
core features in each sub-table of CCDC and we have to check
ðjCj=kÞ þ k features of the mid-table to achieve a reduction in
remaining steps. The maximum time complexity of FSDC-HS is
OðjNj2 � ððjCj=kþkÞþ jDjÞ2þjNj2 � ððjCj=kþkÞþ jDjÞ2Þ¼Oð2 � ðjNj2 �
ððjCj=kþ kÞ þ jDjÞ2ÞÞ � OðjNj2 � ððjCj=kþ kÞ þ jDjÞ2Þ. Similarly, the
average time complexity OðjNj2 � ðjCj þ jDjÞ2Þ of traditional meth-
ods is higher than the maximum time complexity of FSDC-HS.
Therefore, FSDC-HS can get better performance than other classical
methods.

If distributed and parallel technique is adopted, the running
time of our methods can be shortened.

4. Experiments

In this section, we show that our feature selection methods
based on decomposition and composition can reduce the computa-
tion complexity significantly. Firstly, we evaluate the proposed
methods by comparing with four traditional methods on seven
various datasets from UCI database (these datasets can be down-
loaded at http://www.ics.uci.edu), for which we show our methods
can ease the computation complexity on different datasets. The
second experiment uses Insurance-Company-Benchmark dataset
with different features. We perform the experiment to discover
the tendency of running time for different methods as features
are increased gradually. In the third experiment, we select different
objects on Connect-4 dataset. We repeat the experiment to find the
trend of execution time for several approaches as objects are added
one by one. The last subsection contains the analysis on the suit
number of sub-tables.

4.1. A comparative experiment on seven datasets

In order to test the validity of the algorithm, we compare the
proposed methods with four classical algorithms for feature selec-
tion. They are described as follows: General feature selection algo-
rithm (General); Feature selection algorithm based on positive
region (Positive) (computing core firstly and appending the most
important feature according to significance of features until
achieving reduction); Feature selection algorithm based on infor-
mation entropy (Entropy); Feature selection algorithm based on
discernibility matrix (Matrix). According to FSDC-RS and FSDC-HS
Table 7
Comparison of efficiencies of different feature selection algorithms.

Dataset General Positive

Audiology (Standardized)
(69C,1D,226O)

12S 44S

Breast-Cancer-Wisconsin (Diagnostic)
(31C,1D,569O)

3S 6S

Connect-4
(42C,1D,67557O)

287S 1651S

Insurance-Company-Benchmark
(COIL 2000) (85C,1D,9822O)

190S 1706S

Madelon
(499C,1D,4400O)

1 1

Optical Recognition of Handwritten Digits
(64C,1D,1796O)

15S 44S

SPECT-Heart
(44C,1D,267O)

6S 15S
algorithms of this paper, we suppose the number of sub-tables is
four. We perform the experiments on publicly available datasets
from UCI database (these datasets can be downloaded at http://
www.ics.uci.edu). Datasets Breast-Cancer-Wisconsin (Diagnostic),
SPECT-Heart, Ayduikigt-standard, Madelon, Connect-4, Optdigits
and Insurance-Company-Benchmark are used to test. The experi-
ment results are shown in Table 7. The leftmost column consists
of dataset names. A brief description is below the datasets (C: con-
dition feature; D: decision feature; O: object). The rest columns
present running time of different algorithms (its unit is second
and the abbreviation is S) which is average of repeating 10 times
experiments. 1 means that the running time is more than
43,200 s (12 h).

When there are missing values in datasets, these values are
filled with mean values for continuous features and majority val-
ues for nominal features (Grzymala-Busse & Grzymala-Busse,
2005). If the datasets are numerical, all continuous features are dis-
cretized using Equal Frequency per Interval (Grzymala-Busse,
2002).

As listed in Table 7, general feature selection algorithm (Gen-
eral) outperforms other three classic feature selection methods.
The performance of feature selection algorithm based on positive
region (Positive) is worse than that of general feature selection
algorithm (General). The performance of feature selection algo-
rithm based on information entropy (Entropy) is the worst. Feature
selection algorithm based on discernibility matrix (Matrix) is less
time consuming for small dataset while this algorithm gain worse
performance even get no result for large-scale dataset. FSDC-RS
and FSDC-HS have been shown to be superior to other methods.
At the same time, by Table 7, we can also observe that FSDC-RS
algorithm has a higher computational performance as compared
to FSDC-HS algorithm, which is analyzed in Section 3. The proce-
dure of computing core of FSDC-HS algorithm will increase the
computation time.
4.2. An experiment on Insurance-Company-Benchmark dataset with
different features

The second experiment is performed on Insurance-Company-
Benchmark dataset which has 86 features and 9822 objects. We se-
lect bottom 20, 30, 40, 50, 60, 70 and 86 features from this dataset
respectively. We use four classical approaches and the feature
selection algorithms given in this paper to test these data. Accord-
ing to our two methods we break the datasets down into one mas-
ter-table and four sub-tables.

From Fig. 2, we can see the comparison of efficiencies of various
methods as features increasing gradually. As depicted in Fig. 2,
FSDC-RS and FSDC-HS outperform other methods. The running
Entropy Matrix FSDC-RS FSDC-HS

286S 14S 9S 10S

45S 200S 2S 3S

1 1 111S 131S

1 1 44S 64S

1 1 41S 55S

1 1 4S 10S

109S 6S 1S 3S

http://www.ics.uci.edu
http://www.ics.uci.edu
http://www.ics.uci.edu


Fig. 2. The comparison of performances of different features on Insurance-
Company-Benchmark dataset.

Fig. 3. The comparison of performances of different objects on Connect-4 dataset.

Fig. 4. The comparison of performances of different sub-tables on seven datasets
with FSDC-RS.

Fig. 5. The comparison of performances of different sub-tables on seven datasets
with FSDC-HS.
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time of our methods increases slightly as features increasing grad-
ually. However, other methods consume much more time. There is
no execution time of feature selection algorithm based on discern-
ibility matrix (Matrix) because it is always equal to1. The time of
feature selection algorithm based on information entropy (Entro-
py) is 1 when the number of features is greater than 70.
4.3. An experiment on Connect-4 dataset with different objects

We do another experiment on Connect-4 dataset which has 43
features and 67,557 objects. We select top 200, 2000, 4000, 6000,
8000 and 10,000 objects from this dataset. Four classic approaches
and our methods are used to test these data. The number of sub-ta-
bles is the same as the above experiments.

Fig. 3 shows the comparison of efficiencies of various algo-
rithms based on different size of objects. As depicted in Fig. 3,
FSDC-RS and FSDC-HS can achieve better performance than other
methods. The execution time of feature selection algorithm based
on discernibility matrix (Matrix) is1 when the number of objects
is more than 2000.

4.4. Analysis of experiment results

In this subsection, we empirically discuss the suit number of
sub-tables. The number of sub-tables will affect the efficiency.
The seven datasets in Section 4.1 are used to test again. We repeat-
edly evaluate the methods of this paper with different number of
sub-tables. The experiment results are shown in Figs. 4 and 5.

As shown in Figs. 4 and 5, we find the number of sub-tables
cannot be neither too large nor too small. At the same time, the
execution time is less when the number of sub-tables is between
3 and 7. Although we cannot decide the most suit number of
sub-tables at the beginning, the running time of our methods is
relatively small compared to other four classic feature selection
approaches (Table 7).
5. Conclusions

Feature selection is an important task in rough set theory.
Existing methods do not perform very well on large datasets. In
this paper, we introduce some novel decomposition and composi-
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tion methods for rough set feature selection and core calculation.
The purpose of decomposition and composition is to break a
complex table down into smaller, simpler and more manageable
sub-tables that are solvable by using existing methods, then
joining them together to solve the initial table. In order to test
the validity of the algorithm, we have done numerous experiments.
Firstly, we compare the methods of this paper with four classic
methods on seven standard datasets from UCI database. Secondly,
we use Insurance-Company-Benchmark dataset with different fea-
tures. And different objects on Connect-4 dataset are selected to
perform the third experiment. Experimental results demonstrate
that our methods are efficient for various datasets. Finally, a dis-
cussion about the suit number of sub-tables is shown.

There are two directions for future work. The first one is to
develop other efficient algorithms based on decomposition and
composition for feature selection. The second one is to focus on
how to exactly make sure the number of sub-tables.
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