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Abstract—This paper presents a hierarchical feature 
extraction and classification method for electroencephalogram 
(EEG) hidden information mining. It consists of supervised 
learning for fewer features, hierarchical knowledge base (HKB) 
construction and classification test. First, the discriminative rules 
and the corresponding background conditions are extracted by 
using autoregressive method in combination with the 
nonparametric weighted feature extraction (NWFE) and k-
nearest neighbor. Second, through ranking the discriminative 
rules according to validation test correct rate, a hierarchical 
knowledge base HKB is constructed. Third, given an EEG 
sequence, it chooses one or several discriminative rules from the 
HKB using the up-bottom search strategy and calculates 
classification accuracy. The experiments are carried out upon 
real electroencephalogram (EEG) recordings from five subjects 
and the results show the better performance of our method. 

Index Terms—Electroencephalogram, feature extraction, EEG 
classification, discriminative rule, hierarchical knowledge base. 

I.  INTRODUCTION 
The electroencephalogram (EEG) signal is believed to 

contain considerable information with regard to mental activity. 
By recording and analyzing EEG signals from scalp, more 
brain's mental activities patterns can be mined. One of 
important research fields bases on security testing such as 
guilty knowledge tests, deception detection, lie detection or 
concealed information tests [1-6]. The applications may 
involve criminal justice and counterterrorism. For example, 
P300-based EEG signal analysis can determine the presence or 
absence of specific details such as a crime or group affiliation 
stored in investigator's brain and this method has been 
suggested as an alternative approach for conventional 
polygraph [7]. 

Usually, application of pattern recognition approach on 
EEG signal includes following steps: signal acquisition, 
preprocessing, feature extraction, feature selection and 
classification. In this study, an important step is extraction of   
relevant features of EEG signals which containing necessary 
information of EEG signals. Recently, much attention has been 
paid to feature extraction methods for EEG. Polat [8]  used 
discrete fourier transform (DFT) and Subasi [9] used discrete 
wavelet transform (DWT) as the extraction methods. 
Morphological features, frequency features and wavelet 
features were defined and evaluated for lie detection in [10]. 

Autoregressive (AR) model [11], band power [12] and fractal 
dimension [13] to extract features from recorded signals were 
also considered and applied on EEG signals. The problem is 
that the analysis of EEG signals from channels often results in 
high-dimensional data vectors including all spatiotemporal 
information. With large increases in dimensionality, processing 
time will increase significantly. In addition, the number of 
samples available for training is relatively small compared to 
their dimensionality. Thus, an open question is how to map the 
high dimensional feature space into a lower dimensional space 
while maintaining signal information and get an accurate 
classification results in a short time? This is especially useful 
for an EEG-based communication system (brain-computer 
interface, BCI) designs as it can reduce the complexity of the 
classification problem and increase the information transfer 
rate in BCI applications. Inspired by human problem solving, 
hierarchical features extraction and classification make human 
decision-making adapt to the changeable real world. Therefore, 
in our EEG signal analysis, the open question can be 
represented by how to form a hierarchical feature space and 
what level of it is sufficient to predict accurately the related 
information from high-dimensional EEG signals.   

In this study, we proposed a hierarchical feature extraction 
and classification method for EEG hidden information mining 
including three stages: supervised learning, hierarchical 
knowledge base construction and classification test. The 
autoregressive (AR) method in combination with the 
nonparametric weighted feature extraction (NWFE) [14-15] 
method were employed for feature extraction. In order to 
evaluate the validate of the method, similar to other recognition 
methods, this paper included a paradigm for conducting the test 
and recording brain signals for analyzing the records to detect 
the target from non-targets. The scenario in the test was a mock 
attention (birthday) which was similar to paradigms used in 
other studies on lie detection. Finally, k-nearest neighbor (k-
NN) classifier was implemented on the data. Experimental 
results showed the performance include classification accuracy  
and runtime of our method. Under ten-fold cross validation, the 
average classification accuracy can achieve up to 89.1%.

II. SYSTEM ARCHITECTURE 
In pattern classification applications, EEG-based BCI 

technology has huge applicable potentials since the 
corresponding recording method for EEG signals is relatively 
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convenient, inexpensive, harmless and possesses a high 
temporal resolution [16]. However, the demerit of recording 
EEG signal such as low signal-noise rate and low spatial 
resolution makes the improving of classification accuracy 
become a challenging aim for researchers. On the other hand, 
the information transfer rates is another key factor for 
evaluating the performance of a BCI system which means the 
processing time should be decreased. Generally, many methods 
report a good classification accuracy while also need to long 
time for training in order to get a test optimization. Inspiration 
from human cognition, fast or real-time decision-making with 
environment is more useful instead of exhaustive search for 
getting global optimization. From [17], we know that the local 
information is important, and from analysis of human cognition, 
hierarchical features extraction and classification [18-19] also 
investigated in our study.  

A. Supervised learning 
Learning set is fed into for extracting discriminative rules. 

It is well known that feature extraction is a crucial step 
affecting both performance and computation time of 
classification systems in pattern recognition applications. 
Nonparametric weighted feature extraction (NWFE) [14] is one 
of the useful tools for solving this problem. The main ideas of 
NWFE are putting different weights on every sample to 
compute the “weighted means” and compute the distance 
between samples and their weighted means as their “closeness” 
to boundary, and then define nonparametric between-class and 
within-class scatter matrices which put large weights on the 
samples close to the boundary and de-emphasize those samples 
far from the boundary. In order to reduce the space of features, 
autoregressive (AR) coefficients are computed by Burg’s 
method using points of the original EEG signals.  

An autoregressive model with time-varying coefficients p  
is defined by 
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where �  dist a,  b  denotes the Euclidean distance from a  to 
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The optimal features f are the f  eigenvectors with largest 
f  eigenvalues of the following matrix: 
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Two advantages of using the nonparametric scatter matrices 
mentioned in [14] are: First, they are generally of full rank. 
Second, the nonparametric nature of scatter matrices reduces 
the effects of outliers and works well even for non-normal 
datasets. 

B. Hierarchical knowledge base (HKB) construction 
HKB = <F, K, R>, which is a 3-tuple where F is the  feature 

set; K is the number of neighbors with the same classification. 
It corresponds background references called K-domain, and 
parameter R between 0 and 1 represents the ability of correct 
classifying under F and K.  

The construction algorithm is as follows.  

1) Using equation (1) to extract AR coefficients for all 
learning samples. 

2) Divide  learning set LS into M subsets. 
3) Select one of subsets to validation test set VTS, and the 

others to validation learning set VLS. 
4) Validation feature set F = � .
5) Select a column from VLS and add it to F. 
6) Divide VLS to Target class and Non-target class. 
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7) Calculate NW
wS  and NW

bS  for each class using 
equation (2) and equation (3), respectively. 

8) Calculate the optimal features f  using equation (7). 

9) Calculate class probability R using KNN classifier 
(using the Euclidean distance) and record the corresponding 
best K value. Thus, a piece of discriminative rule DRi = <R, F, 
K> is obtained. 

10) Repeat 5-9 until all feature columns from VLS been 
added to F. 

11) Repeat 3-10 for all subsets. 
12) Sort all DRi to HKB = <R, F, K> by R in descending 

order. 
13) Return HKB. 

Note that the goal of this algorithm is not to learn a 
functional relation, but a set of discriminative rules, then 
through ranking the discriminative rules according to class 
probability R, a hierarchical knowledge base HKB was 
constructed. The different size of feature set F and the 
different K value with the corresponding class probability R 
make ways to scale of feature number for predicting the 
classification results.  

C. Classification test 
In order to evaluate the learning algorithm, a testing 

algorithm can be performed according to the following steps. 
1) Load the HKB. 
2) Select a testing sample from test set TS. 
3) Test feature set F’ = � .
4) Select a discriminative rule DRi from HKB using the 

up-bottom search strategy and add it to F’. 
5) Calculate class probability R’ by using test feature set 

F’ and KNN classifier. 
6) Record the best R’ and the corresponding class label 

of the sample. 
7) Repeat 4-6 for all DRi. 
8) Repeat 2-7 for all testing sample. 
9) Calculate classification accuracy (Acc) 
10) Return Acc. 

To sum up, the main idea of this algorithm is to assign a 
label to a sample using a set of previously assessed 
discriminative rules on the best feature level. 

III. EXPERIMENTS AND RESULTS 

A. Materials
The data [20] used in this paper were recorded during a 

simple oddball test (an autobiographical paradigm). Each 
subject was asked to say 5 numbers, and one of them was his 
birth year (such as: 1980, 1981, 1983, 1986 and 1984). The 
subject didn't say his birth date till the end of experiment. The 

numbers were displayed to the subject randomly and with 30 
repetitions (Totally 5*30 numbers displayed to the subject in 
each experiment). Each number displayed 1 second and 
between the numbers, the screen is empty for 2 second. The 
signals were recorded at frontal (Fz), central (Cz), and parietal 
(Pz) electrode positions from 10-20 international system. 

All sites were referenced to the linked mastoids. Vertical 
EOG was also recorded for blink artifact detection. EEG 
signals were digitally sampled with 256 Hz frequency. To 
provide an idea of the nature of the signals distribution, Figure 
1 gives an illustration of the EEG recorded including target and 
non-target stimulus on channel Pz from one of the subjects. 

Figure 1. An illustration of the EEG signals recorded on channel Pz from 
one of the subjects before feature extraction. The time horizon is one second 
and thus includes 256 sampling points. The vertical axis is the voltage value in 

V. Blue points represent target stimulus, i.e. subject’s birth year. Blue points 
are not the target stimulus. 

B. Pre-processing 
Before constructing a HKB and the cross validation, several 

preprocessing operations were applied to the data. First, using 
MATLAB software offline, all data were digitally filtered in 
the 0.3-30 Hz range. This is the frequency range which is used 
typically in P300-based concealed information detection 
studies [21]. Second, normalization methods were applied to 
EEG signals for reducing large measurement noise or high 
variability. In our experiments, four different normalization 
methods were tested, respectively.  

1) Min-max normalization 1 (minmax[0+1]) 

 
min( )
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D
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�
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�
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where  is the normalized data matrix, is the natural data 
matrix and U  and 

'D D
L  are the upper and lower normalization 

bound. The equation maps the data matrix into a bound 
between 0 and 1.  

2) Min-max normalization 2 (minmax[-1+1]) 
Above equation maps the data matrix into a bound 

between -1 and 1. 
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3) Nonliear normalization (log) 
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4) Zero-mean normalization (z-score) 
 ' ( ) /D D D a� � , (10) 

where D  is the mean of the natural data matrix D  and a  is 
the standard deviation of the same data matrix.  

Third, the continuous EEG signals were separated into 
several epochs. Each epoch is a one-second long. Epochs 
containing eye blinks in EOG channel above 400
v were 
discarded. 

C. Experimental results 
All the experiments of this section were done over five  

subjects. In order to evaluate the performance of our proposed 
method, k-fold cross-validation method was employed. In the 
present work, we let k = 10, that is to say, the data from each 
subject was divided into ten subsets randomly, one of the 
subsets was used as the test set and the other nine subsets were 
put together to form a learning sets. Then this procedure was 
repeated ten times and the average classification accuracy was 
computed. According to several experimental test runs, the 
order in autoregressive method was chosen at six.  

In Table I, we report the average accuracy and runtimes1 
for all of possible combinations of channels across five 
subjects. It shows that there is no apparent difference in 
runtimes. However, the channel Pz performs the best 
classification accuracy and the accuracy does not improve  
with the number of channels.    

TABLE I. AVERAGE ACCURACY OBTAINED AND TOTAL RUNTIMES (IN 
MINUTES) SPENT ACROSS FIVE SUBJECTS BY TESTED CHANNELS  

Channel Accuracy Runtimes 

Fz 0.830 21.298 

Pz 0.838 21.832 

Cz 0.836 21.281 

Fz, Pz 0.825 21.354 

Fz, Cz 0.817 21.221 

Pz, Cz 0.820 21.141 

Fz, Pz, Cz 0.818 21.153

 
In Table II, the average classification accuracy obtained by 

using min-max normalization (minmax[0+1], minmax[-1+1]), 
nonliear normalization (log) and zero-mean normalization (z-
score), respectively. Based on the results, we can see that the 
minmax[-1+1] and log methods are competitive in accuracy 
than other normalization methods in the present study.   

                                                           
1 These runtimes were obtained using an Intel Pentium Dual CPU E2140 @ 
1.60GHz, 1GB RAM. 

Finally, we select channel Pz as the target channel, 
minmax[-1+1] as the normalization method for classification. 
We use 10-fold cross-validation and the results shows in table 
III. Subject 1 gives the best classification accuracy 93.6% and 
the whole average classification accuracy can achieve up to 
89.1% which can be applied in BCI system in future. In 
addition, the total runtime is also acceptable in real-time 
applications. 

TABLE II. AVERAGE ACCURACY RESULTS USING FIVE DIFFERENT 
NORMALIZATION METHODS 

Normalization 
Subject Minmax 

[0+1] 
Minmax 
[-1+1] log z-score 

s1 0.797  0.801  0.806  0.803  

s2 0.810  0.833  0.811  0.815  

s3 0.835  0.851  0.855  0.852  

s4 0.869  0.858  0.864  0.835  

s5 0.787  0.834  0.826  0.784  

Average 0.819  0.835  0.832  0.818  

 

TABLE III. FINAL CLASSIFICATION RESULTS 

Subject No. of Samples Accuracy

s1 144 0.936  

s2 278 0.822  

s3 245 0.850  

s4 115 0.918  

s5 145 0.929  

Average  0.891  

 

IV. CONCLUSION 
In this study, we developed a simple and feasible 

hierarchical feature extraction and classification method. 
Using autoregressive method to acquire fewer feature space of 
EEG signals and in combination with the nonparametric 
weighted feature extraction, a hierarchical knowledge base was 
constructed. Finally, the proposed method was successfully 
applied to EEG signals for the hidden information mining. The 
classification accuracy and runtime can be acceptable in real-
time applications. 
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