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Rough k-means clustering describes uncertainty by assigning some objects to more than one cluster.
Rough cluster quality index based on decision theory is applicable to the evaluation of rough clustering.
In this paper we analyze rough k-means clustering with respect to the selection of the threshold, the value
of risk for assigning an object and uncertainty of objects. According to the analysis, clusters presented as
interval sets with lower and upper approximations in rough k-means clustering are not adequate to
describe clusters. This paper proposes an interval set clustering based on decision theory. Lower and
upper approximations in the proposed algorithm are hierarchical and constructed as outer-level approx-
imations and inner-level ones. Uncertainty of objects in out-level upper approximation is described by
the assignment of objects among different clusters. Accordingly, ambiguity of objects in inner-level upper
approximation is represented by local uniform factors of objects. In addition, interval set clustering can be
improved to obtain a satisfactory clustering result with the optimal number of clusters, as well as optimal
values of parameters, by taking advantage of the usefulness of rough cluster quality index in the evalu-
ation of clustering. The experimental results on synthetic and standard data demonstrate how to con-
struct clusters with satisfactory lower and upper approximations in the proposed algorithm. The
experiments with a promotional campaign for the retail data illustrates the usefulness of interval set
clustering for improving rough k-means clustering results.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Cluster analysis is a widely used technique in data mining and
are applied to diverse areas. The main objective in cluster analysis
is to categorizes unlabeled objects into several clusters such that
the objects belonging to the same cluster are more similar than
those belonging to different clusters. Sometimes, it is impossible
to assign an object to exactly one cluster. Rough sets as one of soft
computing methodology is capable of handling such challenge in
data mining. In the past years, rough set based variations of
k-means clustering (Asharaf, Shevade, & Murty, 2005; Hirano &
Tsumoto, 2005; Lingras & West, 2004; Nguyen, 2007; Peters,
Skowron, Suraj, Rzasa, & Borkowski, 2002) have been proposed.

In rough k-means clustering clusters are represented as interval
sets with lower and upper approximations. The lower approxima-
tion is a subset of the upper approximation. The objects in the low-
er approximations belong certainly to the clusters. The objects in
the upper approximations may belong to other clusters. Because
an object that does not belong to any lower approximations is
members of at least two upper approximations. However, some
objects in the lower approximations may be farther from the cen-
troid of the cluster they belong to than other objects in the same
lower approximations.
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Quality of clustering is an important issue in application of clus-
tering techniques. Rough cluster quality index (Lingras, Chen, &
Miao, 2009) is constructed by considering various loss functions
based on decision theory. It is taken as a function of total risk for
grouping objects using a clustering algorithm. Rough cluster qual-
ity index is applicable to both rough clustering and crisp clustering.
Moreover, it helps determine optimal number of clusters, as well as
an important parameter called threshold in rough clustering.

This paper analyzes the selection of the threshold in rough k-
means clustering, the value of risk for assigning an object and
uncertainty of objects. According to the analysis, an interval set
clustering algorithm based on decision theory is proposed. Lower
and upper approximations in the proposed algorithm are hierar-
chical and constructed as outer-level approximations and inner-
level ones. Uncertainty of objects in out-level upper approximation
is described by the assignment among different clusters. Accord-
ingly, ambiguity of objects in inner-level upper approximation is
represented by local uniform factors. In addition, interval set clus-
tering can obtain a satisfactory clustering result with the optimal
number of clusters, as well as optimal values of parameters, by tak-
ing advantage of the usefulness of rough cluster quality index in
the evaluation of clustering.

The structure of the paper is as follows. In Section 2 we intro-
duce rough k-means clustering and rough cluster quality index
based on decision theory. In Section 3 we investigate the selection
of the threshold in rough k-means clustering, the value of risk for
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assigning an object and uncertainty of objects. According to the
analysis we propose an interval set clustering algorithm based on
decision theory. The experiments on synthetic data, standard data
and the retail data are presented in Section 5. The paper concludes
with a summary in Section 6.

2. Literature review

First, we describe the notations that will appear in this section.
Let X = {X,...,X,} be a finite set of objects. Assuming that the ob-
jects are represented by m-dimensional vectors. A classifying
scheme classifies n objects into k categories C = {c,...,C}. We
use the term category instead of class or cluster to emphasize the
fact that it can be used in supervised and unsupervised learning.
For a clustering scheme (CS), such as crisp clustering and rough
clustering, C is the set of clusters. And each of the clusters ¢; is rep-
resented by an m-dimensional vector, which is the centroid or
mean vector for that cluster.

This section also introduce some notations related to rough set.
The notion of rough set was proposed by Pawlak (1982), Pawlak
(1984), Pawlak (1992) and Pawlak et al. (1988). Let E an equiva-
lence relation on X. The pair apr = (X,E) is called an approximation
space. Any subset A C X may be represented by its lower and
upper approximations. The lower approximation apr(A) is the un-
ion of all the elementary sets which are subsets of A, and the upper
approximation apr(A) is the union of all the elementary sets which
have a non-empty intersection with A. We call bnd(A) = apr(A)—
apr(A) is the boundary region of A.

2.1. Rough k-means clustering

Lingras and West incorporated rough set into k-means cluster-
ing, which requires the addition of the concept of lower and upper
bounds (Lingras & West, 2004). This section describes a refined
version of the original proposal (Lingras, 2007; Lingras, Hogo, &
Snorek, 2004; Peters, 2006). The following equation is used to cal-
culate the centroids of clusters that needs to be modified to include
the effects of lower as well as upper bounds. The modified centroid
calculations for rough clustering are then given by:

Zz capri@) ¥ Zx cnd(ey ™
O X gy~ + Db X iy
for apr(c;) # ¢ and bnd(c;) # 0,
. ZileE(Ei)il
G =< T (1)
for apr(c;) # ¢ and bnd(c;) = 0,
Zilcbnd(q)zl
bnd(c;)|
for apr(c;) = ¢ and bnd(c;) # 0,

where w;+ wp=1 and 1 <i < n. The parameters w; and w, corre-
spond to the relative importance of lower and upper bounds. The
next step is to design criteria to determine whether an object
belongs to the upper and lower bound of a cluster. For any object
vector, X/(1 <1< n), let d(%,¢;) be the distance between itself and
the centroid of cluster ¢. The ratio d(X;,¢)/d(%,¢), 1<i, j<Kk,
are used to determine the membership of X; (Lingras et al., 2004; Pe-
ters, 2006). Let d(X;,¢;) =minid(¥X,¢) and T, = {j:d(X,c;)/
d(X;,¢;) > threshold and i # j}.

1. If T, # 0, % € apr(c;), Vj € T,. Furthermore, ¥; is not part of any
lower bound.
2. Otherwise, if T, = 0, X € apr(Cy).

The rough k-means algorithm, described above, depends on
three parameters @, w, and threshold. It should be emphasized

that approximation space apr is not defined based on any prede-
fined relation on the set of objects. The upper and lower bounds
are constructed based on the criteria described above. Though it
is not possible to verify all the properties of rough set for rough
k-means clustering, it can be easily shown that the resulting upper
and lower approximations in fact follow important rough set the-
oretic properties as follows:

(P1) An object can be part of at most one lower approximation
(P2) X € apr(Ci) = X € apr(ci)
(P3) An object x; is not part of any lower approximation

)

X| belongs to two or more upper approximations.
2.2. Rough cluster quality based on decision theory

So far most cluster validity indices are proposed to evalu-
ate crisp and fuzzy clustering (Bezdek & Pal, 1995; Bezdek & Pal,
1998; Davies & Bouldin, 1979; Dunn, 1973; Dunn, 1974). There is
an evaluation measure proposed by Lingras et al. (2009) for rough
clustering at present. Under the decision theoretic framework
(Lingras, Chen, & Miao, 2008; Yao, 2003; Yao, 2007), Lingras et al.
proposed a cluster validity indices for rough clustering.

Rough cluster quality considered various loss functions for
assigning an object and clustering scheme. The definitions are
given as follows:

2.2.1. Cluster core

Let core(¢;) be the core of the cluster ¢;, which is used to calcu-
late the centroid of the cluster. Any x; € core(c}) can not belong to
other clusters. Therefore, core(c;) can be considered the best repre-
sentation of ¢; to a certain extent.

2.2.2. Risk for assigning an object to clusters

For a given clustering scheme CS, let b;(CS, ;) be the action that
assigns the object X; to a cluster or a group of clusters. (Note that an
object may not belong to a single cluster under rough clustering.)
The risk associated with the assignment will then be given as
R(b;(CS, x1)|%)). R(b;(CS,%)|x;) is obtained assuming that the condi-
tional probability P(cj|x) is proportional to the similarity between
X and core(C;).

2.2.3. Group risk for clustering scheme

Given a clustering scheme (CS) and a group of objects
€= {Xi,..., Xz}, we define R(CS,c) as the group risk for ¢ under a
clustering scheme, given by:

R(CS,€) = > R(b;(CS, X)|x).

xjec

Therefore, the cluster validity indices for a clustering scheme

(CS) can be taken as the function of group risk, defined as follows:

k
=Y R(CS,C) Z R(b
i=1

Obviously, the smaller the value of the total risk, the better a
clustering scheme is. The objective is to minimize R(CS) in order
to obtain the optimal number of clusters for a clustering scheme
(CS).

Crisp clustering is a special case of rough clustering. The pro-
posed risk measure for crisp clustering can be expressed as follows:

k
;R(CC apr(c >

CS X[

ZR (CC, core(&;))

k
i=1

k
ZR (CC,apr(c,))

i=1
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Rough cluster quality index is an evaluation measure for rough
clustering as well as crisp clustering. This is the first measure that
takes into account special features of rough clustering that allow
for an object to belong to more than one cluster. The measure is
shown to be useful in determining important aspects of a cluster-
ing exercise such as determining the appropriate number of clus-
ters and size of boundary region (in case of rough clustering).
Such a cluster validity measure can be useful in further theoretical
development in clustering.

3. Comments on rough k-means clustering

Rough k-means clustering describes uncertainty of objects by
assigning objects in the boundary region to more than one cluster.
In order to have a close look at the assignments of objects and the
value of risk for the assignments for rough k-means clustering, we
analyze the selection of the threshold, uncertainty of objects in the
boundary region and the value of risk for assigning an object, with
the following example.

Example 1. Let X = {%;,...,%} and C = {¢1,C,}. The distribution
of objects is shown in Fig. 1. For simplify the figure, we drop the
notation X; (5 < i < 20) from Fig. 1, if no confusion arises. Accord-
ing to the distribution, sixteen objects ¥; (5 < i < 20) are expected
to form two groups with different densities, but four objects
X (1 <i<4) are comparatively far from these groups.

3.1. The selection of the threshold

There is limitation of the selection of the threshold. According to
the definition of the T; in rough k-means clustering, objects lie in
between two clusters tend to be in the boundary region. If the
threshold is at a very small value, such as 0.1, some objects close
to the centroids of clusters are assigned to the boundary region
by mistake. However, when the threshold is at a reasonable value,
some objects in the lower approximation seem isolated comparing
to other objects in the same lower approximation. Therefore, the
threshold together with T, is not adequate enough to decide the
boundary region for rough k-means clustering. It can be explained
by the following example.

Example 1(a). We performed rough k-means clustering on the
objects in Fig. 1 with k=2 and w;=0.75 for different thresholds.
Fig. 2(a) presents the clustering result when the value of the
threshold changes from 0.9 to 0.8. When the value of threshold
decreases from 0.7 to 0.5 the clustering result is shown in Fig. 2(b).
In the figures, the dashed line outlines the upper approximation of
each cluster, and the solid line describes the lower approximation
of each cluster. It can be seen from Fig. 2(a) that no objects in the
boundary region when the value of the threshold changes from 0.9
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Fig. 2. Rough clustering with change in threshold.

to 0.8. Since the upper approximations are the same as the
lower approximations. We can get a reasonable clustering result
shown in Fig. 2(b) when the threshold changes from 0.7 to 0.5.
However, x; and X, are isolated in the corresponding lower
approximations they belong to. It is noted that the clustering
result is unacceptable when threshold <0.5. For example, two
objects x; and X; (5 < i,j < 20) are in the boundary region when
threshold = 0.3.

3.2. Uncertainty of objects in the boundary region

First, let us look at definitions of lower approximation and
upper approximation in rough set. Assuming that U is the universe
and Y is a subset of U. Let R be an equivalence relation on U. The
lower approximation and upper approximation of Y are denoted
as apr(Y) and apr(Y), respectively. Accordingly, the boundary re-
gion of Y is defined as BNk(Y) = apr(Y) — apr(Y). Objects in BNg(Y)
can be explained as these objects those do not definitely belong to
Y or ~Y (namely U — Y) according to R. According to the definition,
it is uncertain that an object in BNk(Y) definitely belong to Y even if
the object only appear in BNg(Y) instead of BNy(Z) (Z C U and
Z #Y). Therefore, uncertainty in rough set can be explained as
follows:

Objects in BNg(Y) do not definitely belong to Y.
¥

(1) Objects belong to at least two subsets of U including Y.

(2) Objects do not belong to any other subset of U but the degree
to Y objects belong is uncertain.

In rough k-means clustering, clusters are represented as interval
sets with lower and upper approximations. Let X = {¥;,...,%,} be
the set of objects and C = {¢,,...,¢x} be the set of clusters. The
lower approximation and upper approximation of ¢; is denoted
as apr(c;) and apr(c;), respectively. Accordingly, the boundary re-
gion of ¢; is defined as bnd(¢;) = apr(c;) — apr(c;). It is noted that
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Table 1

The value of risk for assigning an object in Fig. 2(b).
The value of risk (0,0.13] 0.233 0.267
Object X; (3<i<20) X1 X

uncertainty of objects in the boundary region of clusters is de-
scribed by assigning objects to more than one cluster. However,
according to analysis of ambiguity in rough set, it is not adequate
to describe uncertainty of objects for the boundary region in rough
k-means clustering. Therefore, interval set representation of clus-
ters in rough k-means clustering need to be improved. It can be ex-
plained by the following example.

Example 1(b). As can be seen from Fig. 2(b), X7 is in the lower
approximation of ¢j. However, X7 is rather isolated comparing to
other objects in the same lower approximation. Therefore, it is
difficult to make sure that x definitely belong to ¢ though xj
certainly do not belong to ¢;.

Therefore, similar to rough set, uncertainty of objects for rough
clustering can be expressed as follows:

An object ¥, in bnd(¢;) does not definitely belong to ¢;.

(U1) %, belongs to at least two clusters including c;.
(U2) %, does not belong to any other cluster but the degree to ¢; X;
belongs is uncertain.

3.3. The value of risk for assigning an object

In practice, objects comparatively isolated in lower approxima-
tions have greater values of risk than other objects. It can be ex-
plained by Example 1(c) as follows:

Example 1(c). For the good clustering result shown in Fig. 2(b), the
value of risk for assigning an object is presented in Table 1. The
value of risk for assigning X; or X, is greater than that for assigning
any other object. The bigger the value of risk for assigning an
object, the worse the assignment is. Therefore, it is not a good
decision to assign X; and X, to lower approximations of ¢; and ¢,,
respectively.

Therefore, lower and upper approximations in rough k-mean
clustering are not adequate to describe uncertainty of objects. It
suggests to discover a solution that is adequate to describe uncer-
tainty of objects in rough k-means clustering.

4. Interval set clustering

Based on the analysis above, one-level lower and upper approx-
imations for rough k-means clustering are not adequate enough to
describe uncertainty of objects. According to uncertainty of objects
for rough clustering analyzed above, we propose an interval set
clustering. Since clusters are represented as interval sets with
two-level lower and upper approximations, the proposed algo-
rithm is adequate to describe uncertainty in categorizing objects.

4.1. Definitions and properties

For defining our framework we will assume existence of a hypo-
thetical clustering scheme, CS, that partitions a set of objects
X = {%,...,%,} into clusters CS = {Ci,...,C,} (Lingras et al., 2009)
and each cluster is represented by the cluster centroid
C; (1 <i< k). Clustering algorithms such as k-means approximate
the actual clustering. For a given clustering scheme CS, let
b;(CS, ;) be the action that assigns the object X; to a cluster or a

group of clusters. The risk associated with the assignment will then
be given as R(b;(CS,X))|¥;). For simplicity, we will use R(X;) as a
shorthand for R(b;(CS, X)|¥;). We will start with formal definitions
for interval set clustering.

4.1.1. Set of clusters similar to an object X,

For every object, x;, we define a non-empty set T; of all the clus-
ters that are similar to x;. Clearly, T; C CS. We will use x; — T to de-
note the fact that object x; is similar to all the elements of set T;.

The definition of the similarity will depend on a given applica-
tion. For an object X;, we can specify T, given that CS is rough
k-means clustering (RC) proposed by Lingras and West (2004) as
follows:

d(X;, ;) = minyd(%, C), 2)
T, = {t:d(X,¢)/d(X),¢;) > threshold and i # t}. (3)

4.1.2. Object and cluster outer similarity
Given T, for object X;, the outer similarity between object X; and
cluster ¢; is defined as follows:

SilMouer () = | T TG €T (4)
outerth 0, otherwise.

4.1.3. Outer upper and lower approximations

If an object x; is assigned to a set T, then the object belongs to
the outer upper approximations of all clusters ¢; € T). If —T)—=1,
then X, belongs to the outer lower approximation of the only
C; € T;. Please note that when |T)| =1, {¢;} = T,. Therefore, outer
upper (aprouer) and outer lower (apry,.r) approximation of each
category ¢; can be defined as follows:

Wouter(a’) = {)m )?l - le(-:;‘ € T[}, (5)
@outer((?i) = {)2” ii - T{, {a} = Tl} (6)

We cannot test all the properties of rough set theory. However,
it can be easily shown that the outer upper and lower approxima-
tions in fact follow important rough set theoretic properties.

(P1) An object can be part of at most one outer lower
approximation

(P2) Xi € apTourer(Ci) = Xi € aPTouter (Ci)

(P3) An object x; is not part of any outer lower approximation

X; belongs to two or more outer upper approximations

Accordingly, the boundary region of ¢; is defined as follows:
bndauter(a) = Wcuter(a) - %ourer(a‘)- (7)

It can be easily shown that uncertainty of objects in the outer
boundary region in fact follow (U1) in Section 3.2. For an object
X, uncertainty of X with respect to an cluster ¢;, denoted as
Uouter (X1, Ci), can be expressed as follows:

1

outer( b l) Slmouter(xl«,ci)

8)

Uouter (X1, Ci) describes the probability that X, belongs to any
other cluster instead of ¢;. However, Simgye. (X, ¢;) defines the prob-
ability that % only belong to ¢;. Hence, the bigger the outer
similarity between X, and ¢;, the smaller uncertainty between X;
and ¢ is.

Objects in the outer lower approximations of clusters are con-
fined to belong to only one cluster. In order to have a close look
at the degree to a cluster such an object belongs, we define the
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inner upper and lower approximations for each cluster. A cluster
with the inner upper and lower approximations make a clear line
between objects that are totally similar to the cluster with those
that are not. We begin with the notations of the uniform objects.

4.1.4. Uniform objects

Let X; be an object, X, is an uniform object if X; belongs to at most
one cluster. Given T, for X;, uniform object X can be defined as
follows:

X| € aprouer(Ci) and T, = {Ci}. 9)

4.1.5. Uniform h-distance of an uniform object %,

Let X; and X, be two uniform objects and T, is the set of all the
clusters that are similar to X;. For any positive integer h, the uni-
form h-distance of %), denoted as h-distance (X)), is defined as the
distance d(X),X;) between X, and X; such that:

(1) )_ét € @uuter(a’) and TI = {Ez}
(ii) For at least h objects X; € X (1 <t <nAt=i) it holds that
d(%,X;) < d(%,%;), and
(iii) For at most h — 1 objects X, € X (1 <t <nAt#1i) it holds
that d()?,-,)?t) < d()?l,ij)

4.1.6. Uniform h-distance neighborhood of an uniform object %,

Given the h-distance of an uniform object X, the h-distance
neighborhood of ¥, contains every uniform object whose distance
from ¥, is not greater than h-distance (), i.e., Ni_gistancex,) (%) =
{X: € G| d(%,%:) < h — distance(X;) At #1 A T, = {C;}}. These uni-
form objects X, are called the h-nearest neighbors of ;.

Whenever no confusion arises, the notation Nj_gisances) (X1) iS
simplified as Nj(X)). Note that the h — distance(X)) is well defined
for any positive integer h. The cardinality of N,(¥)) is no less than
h. Based on the notations above, we give the following definitions
to discover objects that are different from their local neighbor-
hoods according to the values of risks.

4.1.7. Reachable risk of an uniform object X w.r.t. N,(%))
Let R(X;) be the risk for assigning X, to clusters. For any integer h,
the reachable risk of object X, with respect to N, (%)) is defined as

(X € Nu(%)). (10)

Note that the reachable risk of an object X; is defined based on
the risk for assigning an object in Nj(X;). Because the risk for
assigning an object is obtained assuming that the conditional prob-
ability P(c;|x;) is proportional to the similarity between the object
and core(c;). We can get the following property:

reach-risky, (%)) = max{R(x;), R(X)}

Property 1. If two objects ¥; and X; are similar, the value of R(¥;) is
close to that of R(¥;).

Since the higher the value of the risk, the worse the assignment
is in the clustering scheme. If any object X; in Nj(¥;) is far away
from object X;, then the reachable risk of object ¥; is quite different
from that of ;. However, if they are sufficiently close, the reachable
risk of object X; is close to that of ;. The reason is that in doing so,
the statistical fluctuations of risk for all the X;’s close to X; can be
significantly reduced. The strength of this smoothing effect can
be controlled by the parameter h.

4.1.8. Local reachable risk of an object X;
Given a positive integer h, the local reachability risk of X; based
on h-nearest neighborhoods of ¥; is defined as

L Ygen, ) reach-riskn(X;)
Iy (%) = =2 M ‘)Nh(g”

(11)

The local reachable risk of an object X; is the average reachable
risk based on the h-nearest neighborhoods of X;. According to
Property 1, the local reachable risk of an object X; may be close
to R(X;). The more suitable the value of h, the more similar the
reachable risks for objects within the same neighborhood are.

4.1.9. Local uniform factor of an object X; based on reachable risk
Given a positive integer h, the local uniform factor of X; based on
reachable risk is defined as

Iy (%)

- Z“' Np(X) 1 (v
1

The uniform factor of object X; captures the degree to which X;
uniform with its neighborhoods based on the value of risk. It is
the average of the ratio of the local reachable risk of X; and those
of X;'s h-nearest neighbors. It is easy to see that the lower X;’s local
reachable risk is, and the higher the local reachable risk of X;’s
h-nearest neighbors, the greater the LUF value of X; is. We can
get the following property of LUF.

Property 2. The closer to 1 the value of LUF(%;), the more the
distribution of x; is uniform with the objects in its neighborhood.

The interpretation of Property 2 is as follows. Let ¢; be a cluster.
Let reach-risk-min denote the minimum reachable risk of objects in
Ct, ie., reach-risk-min = min{reach-risk(x;)|x; € ¢;}. Similarly, let
reach-risk-max denote the maximum reachable risk of objects in
¢.. Then the local reachable risk of X;, as the definition, is <
reach-risk-max and > reach-risk-max. Let e be defined as (reach-
risk-max/reach-risk-min — 1). By the definition of LUF, we have
reach-risk-min/reach-risk-max < LUF(X;) < reach-risk-max/reach-
risk-min. Hence, for all objects X; € C;, such that 1/(1+e) <
LUF(%;) < (1 +e). Let us consider that ¢; is a tight cluster and &; is
deep inside the cluster. It forces the LUF of X; to be close to 1.

According to Property 2, the value of ||[LUF,(X;) — 1]| is used to
capture the degree to which X; uniform with its neighborhoods.
To return to Example 1, summary of |LUF4(X;) — 1| for objects be-
long to the lower approximations in Fig. 2(b) is shown in Table 2.
Both the value of ||LUF4(X;) — 1| and that of ||LUF4(X;) — 1| are
comparatively high and greater than the value of |[LUF4(X;)—
1| (3 < i< 20). Hence it is not a good decision to take the action
of assigning ¥; and X, to the lower approximations of ¢; and ¢,
respectively.

LUF have the characteristic of focusing on the evaluation of the
action of assigning an object to clusters in a clustering scheme. In
comparison with rough k-means clustering, interval set clustering
constructs satisfactory lower and upper approximations by taking
advantage of the characteristic of LUF.

4.2. Interval set clustering

Based on the definitions above, interval set clustering proceeds
as follows:

Table 2

Summary of ||[LUF4(;) — 1]| for objects in Fig. 2(b).
||ILUF4(%;) — 1]| (0,0.1] (0.1,0.2] (0.2,0.3] (0.3,04] (0.4,0.5] (0.5,+c0)
Number of objects 7 6 1 0 2
Object % (3<i<20) X1, X
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Input: Data set X, the number of clusters (k), w,, threshold, h and
threshold,,.
Step 1: Get original clusters with lower approximations and upper
approximations denoted as follows:

OL(C) = {apr'(é:) -+ apr' (&) },
OU(C) = {apr'(@) -+ apF'(C)}-

e Step 1.1: Perform rough k-means clustering for different
selections of parameters.
e Step 1.2: Evaluate rough k-means clustering by rough
cluster quality index for the best selection of parameters
k, w; and threshold.
Step 2: Calculate LUF for objects in lower approximations accord-
ing to the value of h.
Step 3: Determine the new lower approximations and upper
approximations by considering LUF of objects in lower
approximations where threshold,, is a given value:

apr(c;) = {55,-\55,- € apr'(¢) A LUF, (%) < thresholdh},
apr(c;) = apr (@) U (apr'(€) — apr(c) ).

Step 4: Obtain satisfactory clusters with lower approximations
and upper approximations denoted as follows:

L(C) = {apr(cy) -~ apr(Ci)}.
U(C) = {apr(cy) - --apr(cy)}.

Step 5: According to Eq. (1), we calculate the new centroids for
clusters.

The properties of lower approximations and upper approxima-
tions in interval set clustering can be obtained as follows:

(P1) An object can be a member of at most one lower
approximation.

(P2) X € apr(Ci) = X € apr(Gy).

(P3) An object that does not belong to any lower approximation
is member of at least one upper approximation.

Interval set clustering has the same properties (P1) and (P2) as
rough k-means clustering. However, interval set clustering has the
property (P3) that an object that does not belong to any lower
approximation may belong to one or more than one upper approx-
imation. It exactly match the properties of upper approximations
in rough sets.

We perform interval set clustering on the data in Example 1.
Assuming the clustering result of rough k-means clustering is
shown in Fig. 2(b). The final clusters in interval set clustering with
h=4 and threshold, = 0.4 are shown in Fig. 3. In the figure, the
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Fig. 3. Interval set clustering.

dashed line outlines the upper approximation of each cluster,
and the solid line describes the lower approximation of each clus-
ter. It shows that X¥; and X, are assigned to the upper approxima-
tions of ¢; and ¢, respectively in interval set clustering. However,
both of the two objects are members of lower approximations in
rough k-mean clustering. It matches the fact that ¥; and X, are far-
ther away from the centroids of clusters they belong to than any
other objects in the lower approximations of their corresponding
clusters. Hence interval set clustering constructs more satisfactory
lower and upper approximations than rough k-means clustering.

5. Study data and design of the experiment

We apply interval set clustering to three kinds of data sets, syn-
thetic data set, a standard data set and a retail store’s data set, to
demonstrate how to construct clusters with more satisfactory low-
er and upper approximations. We design the experiments on each
data set as follows:

Step 1. Perform crisp clustering with different number of clusters
on the data set. Determine the optimal number of clusters
according to the change in rough cluster quality index.

Step 2. Perform rough clustering with the optimal number of clus-
ters with different threshold on the data set. Determine the
optimal threshold according to the change in rough cluster
quality index. Moreover, we discover how rough cluster
quality index varies for different number of clusters with
the optimal threshold. Note that we set ; at a value of
0.75 in the experiments.

Step 3. Present the number of objects for different ||[LUF,(X;) — 1||
in the table to find the optimal values for h and threshold,,.
Note that we repeat the experiment five times to get the
average number of objects with the same parameters for
each h.

Because rough cluster quality index is proved to find the opti-
mal values for the number of clusters and threshold in rough clus-
tering (Lingras et al., 2009). We focus on Step 3 to discover
satisfactory lower and upper approximations in interval set
clustering.

5.1. Synthetic data

In order to visualize the data, we limit the synthetic data to
two-dimensional space. As can be seen from Fig. 4, there are 68 ob-
jects and three clusters can be identified in the figure. It seems that
eight objects do not belong to any particular cluster. We performed
crisp clustering and rough clustering on the synthetic data set.
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Fig. 4. Synthetic data.
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Fig. 5. Synthetic data: cluster index for crisp clustering for different number of
clusters.
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Fig. 6. (a) Synthetic data: cluster index for rough clustering for different number of
clusters. (b) Synthetic data: change in cluster index for rough clustering with
threshold.

We perform crisp clustering and rough clustering on the syn-
thetic data set. Fig. 5 shows how the cluster index varies for differ-
ent number of clusters for crisp clustering. Similar trend can also
be found for rough clustering in Fig. 6(a) with threshold = 0.7.
Fig. 6(b) shows how changing the value of threshold can affect
the index of clustering with k = 3. Similar to the analysis in Lingras
et al. (2009), it is reasonable to use the value of threshold = 0.7 and
set k = 3. A satisfactory rough clustering with k=3, w;=0.75 and
threshold = 0.7 is presented in Fig. 7(a).

In order to discover the optimal values for h and Threshold;, the
change in the number of objects in lower approximations for
|ILUF,(X;) — 1|| with different h is presented in Table 3. Because
the value of h can not be too high or too small, the h values were
changed from 2 to 10 in the table. When the h reaches a value
of 5 or 6, three objects in lower bounds have very high values of
ILUF,(X;) — 1| that is greater than 0.4. However, the values of
|ILUF(X;) — 1|| for the other 60 objects in lower approximations
are small and not greater than 0.2. It indicates a great change in
the number of objects in lower approximations with different
|ILUF,(X;) — 1|| when h=5 or h=6. Comparatively, more objects
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Fig. 7. (a) Synthetic data: rough clustering. (b) Synthetic data: interval set
clustering.

Table 3
Synthetic data: the number of objects in lower approximations for ||LUF,(¥;) — 1|| with
k=3 and threshold = 0.7.

h ILUFR (%) — 1|
(0,01] (0.1,02] (0.2,03] (03,04] (04,0.5] (0.5,+00)

2 32 15 4 3 1 8
3 36 20 0 2 1 4
4 44 12 2 0 1 3
5 53 7 0 0 1 2
6 50 10 0 0 1 2
7 54 6 0 1 1 1
8§ 51 8 1 1 1 1
9 54 6 0 1 1 1

10 53 7 0 1 1 1

have the value of || LUF,(X;) — 1|| that is close to 0 when h = 5. There-
fore, the optimal values for h is 5 and it is reasonable to use a value
of threshold;, between 0.2 and 0.4. The interval set clustering with
k=3, h=5 and threshold, = 0.3 is presented in Fig. 7(b). It shows
that three objects were changed into the members of lower
approximations of the clusters they belong to.

5.2. Wisconsin breast cancer data

In this section, we use a standard real world data set that is
tested for clustering by other researchers such as Xie, Raghavan,
Dhatric, and Zhao (2005). Wisconsin breast cancer databases were
obtained from the University of Wisconsin Hospitals, Madison by
Mangasarian and Wolberg (1990). This data set contains 699 in-
stances that fall into two classes: benign (458 instances) and
malignant (241 instances). Each instance is represented by nine
attributes, all of which are scaled to a [1,10] range. However, 16 in-
stances have attributes that have missing values. After eliminating
the 16 instances, the number of instance was 683.

Fig. 8 shows the variation in rough cluster quality index as we
change the number of clusters in the k-means crisp clustering. Sim-
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Fig. 8. Breast cancer data: cluster index for crisp clustering for different number of
clusters.
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Fig. 9. (a) Breast cancer data: cluster index for rough clustering for different
number of clusters. (b) Breast cancer data: change in cluster index for rough
clustering with threshold

ilar to the analysis in Lingras et al. (2009), it suggests that two can
be an optimal value for k. The variation in quality index for differ-
ent values of threshold is shown in Fig. 9(b) with k = 2. There is a
sharp drop in quality index when the threshold is reduced from
0.75 to 0.5. Therefore, threshold = 0.75 can be used as an appropri-
ate value. The changes in quality index for different number of
clusters with threshold = 0.75 is shown in Fig. 9(a). It shows similar
trend with Fig. 8.

As discussed above, 683 instances are grouped into two clus-
ters. The threhsold in rough clustering was set at 0.75. In order to
discover the optimal values of h and Threshold,, we have a close

Table 4
Breast cancer data: the number of objects in lower approximations for |LUF,(X;) — 1|
with k =2 and threshold = 0.75.

h ILUFR (%) — 1|
(0,01] (0.1,02] (0.2,03] (0.3,04] (04,05]  (0.5,+00)
5 492 104 42 8 3 0
10 482 83 63 17 3 1
15 475 91 48 26 7 2
20 470 94 47 22 14 2
25 477 82 55 18 14 3
30 481 74 57 17 17 3

look at the values of ||LUF(X;) — 1]| for instances in lower approxi-
mations. The change in the number of objects in lower approxima-
tions for ||[LUF(X;) — 1| with different h is presented in Table 4.
Because the value of h can not be too high or too small, the h values
were changed from 5 to 30 in the table. We can see a rapid decline
in the number of objects when the value of ||[LUF,(X;) — 1| increases
from the values in the range of (0,0.1] to those in the range of
(0.1,0.2]. The rapid decline is obvious when the value of h is greater
than 5. However, there is not too much difference on the change of
the number of clusters with different h values. Therefore, the selec-
tion of threshold,, is flexible. We can choose a value that is greater
than 5, such as 10, for h. threshold,, can be set at a value in the range
of (0.2,0.5] depending on the requirements. An interval set cluster-
ing result with h = 10 and Threshold;, = 0.1 is presented in Table 5. It
shows the number of objects in lower approximation, upper

Table 5
Breast cancer data: the number of objects in interval set clustering with h =10 and
thresholdy, = 0.1.

Area ¢ G
Lower approximation 286 196
Upper approximations 475 242
Re-assigned objects in upper approximations 155 12
Boundary region 189 46

22000

21000

20000
S
£ 19000
=

18000

17000

16000 1 1 1 1 1 1
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Fig. 10. Retail data: change in cluster index for interval set clustering with
threshold.

Table 6
The retail data: the number of objects in lower approximations for | LUF(X;) — 1|| with
k=7 and threshold = 0.7.

h ILUFR (%) — 1|
(0,01] (0.1,02] (0.2,03] (03,04] (0.4,05] (0.5 +c0)
5 4645 29 4 4 0 3
10 4622 43 4 3 0 1
15 4621 41 5 2 2 1
20 4636 50 7 1 1 1
25 4476 36 4 3 0 1
30 4570 45 5 2 0 1
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Table 7
The retail data: the number of objects in interval set clustering with h =10 and threshold, = 0.1.
Area ¢ Gy C3 Cy Cs Cs ¢;
Lower approximations 3323 754 332 99 66 35 12
Upper approximations 3899 1515 673 233 201 101 34
Re-assigned objects in upper approximations 6 9 5 6 13 5 7

approximation and boundary region for each cluster. The re-
assigned objects illustrates the number of objects in each cluster
just belong to one upper approximation. Therefore, 155 objects
are just in the upper approximation of ¢; though they partly belong
to ¢;. And it is also difficult to make sure that 12 objects definitely
belong to ¢, though they just in the upper approximation of ¢,.

5.3. The retail data

The real data comes from a real world data set belonging to a
small retail chain. Lingras et al. described the real data in detail
in Lingras et al. (2009). Use of rough cluster quality index measure
to derive an appropriate clustering scheme for a promotional cam-
paign in a retail store was also proposed in Lingras et al. (2009).
Moreover, a two-tier promotional campaign targeted at the
customers in the first and second highest spending clusters is pro-
vided in detail based on the modified loss function for the action b;.
The loss function for all the actions b; such that ¢ € b; is as follows:
Iz, (b|6)) = (8100 — §; x 1.1 x 0.3) x ————+=

if E,‘ S bk; (12)

Jz,(b|6)) = (8100 — Sy x 1.1 x 0.3) x ——— if C; ¢ by. (13)
The loss function for all the actions b; such that ¢,_; € b; and

Cx ¢ b; is modified as follows:

Jz, (b1 |G = ($50 — S; x 1.05 x 0.3) x % if ¢ € by_q;
k-1
(14)
e (be A [E) = b1 =0 o
% (b 1[6) = (850 — Sy x 1.05 x 0.3) x bl if ¢ ¢ bi_y.
—1
(15)

The loss functions for the remaining actions b; that do not assign
customers to either ¢, or ¢,_; remain unchanged.

According to the experiments in Lingras et al. (2009), it is rea-
sonable to set the number of clusters to be between five and seven.
The number of clusters is set at the value of seven in our experi-
ments. Because we use the threshold that is no more than one in
rough clustering, the optimal value of threshold need to be re-
decided in our experiments. Fig. 10 shows the variation in rough
cluster quality index as threshold changes from 0.6 to 0.9 for
k =7. When threshold is at a value of 0.7, there is a local minima
suggesting that 0.7 is a reasonable value.

The change in the number of objects in lower approximations
for ||LUF(X;) — 1|| with different h is presented in Table 6. The h
values were changed from 5 to 30 in the table. We can see a rapid
decline in the number of objects when the value of ||[LUF,(%;) — 1|
increases from the values in the range of (0,0.1] to those in the
range of (0.1,0.2]. The rapid decline suggests that 0.1 is a reason-
able value for threshold,. However, there is not too much difference
on the change of the number of objects for different values of h.
Therefore, the selection of h is flexible. We can choose a value that
is greater than 5, such as 10, for h. An interval set clustering result
with h =10 and Threshold, = 0.1 is presented in Table 7. The re-
assigned objects illustrates the number of objects in each cluster
just belong to one upper approximation. Therefore, interval set

clustering improves rough k-means clustering with more satisfac-
tory interval set representation of clusters.

6. Summary and conclusions

This paper describes an interval set clustering algorithm based
on rough k-means clustering and rough cluster quality index. The
proposal generates original clusters with lower approximations
and upper approximations by taking rough clustering as the first
step. Rough cluster quality index is then used to adjust lower
approximation and upper approximation for each cluster by
selecting the optimal number of clusters and the appropriate va-
lue for threshold. Because LUF have the characteristic of focusing
on the evaluation of the action of assigning an object to clusters
in a clustering scheme. Interval set clustering adjusts the assign-
ment of objects in lower approximations by considering the LUF
for each objects. An objects in the lower approximation with the
LUF value that is not close to one may be not a member of the
lower approximation. We assign such an object to the boundary
region instead of the lower approximation of the cluster. There-
fore, interval set clustering can obtain satisfactory clusters with
lower and upper approximations so that an object that does not
belong to any lower approximation may be a member of only
one upper approximation. The proposal was successfully test in
three experiments (synthetic data, a standard data and the retail
data). Further work will focus on the evaluation of interval set
clustering and its comparison with rough clustering and other
clustering scheme.
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