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a b s t r a c t

Methods of fuzzy rule extraction based on rough set theory are rarely reported in incomplete interval-
valued fuzzy information systems. This paper deals with such systems. Instead of obtaining rules by attri-
bute reduction, which may have a negative effect on inducting good rules, the objective of this paper is to
extract rules without computing attribute reducts. The data completeness of missing attribute values is
first presented. Two different approximation methods are then defined. Two algorithms based on the two
approximation methods, called MRBFA and MRBBA are proposed for rule extraction. The two algorithms
are evaluated by a housing database from UCI. The experimental results show that MRBFA and MRBBA
achieve better classification performances than the method based on attribute reduction.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A basic issue in a rule-based system is extracting rules for clas-
sification or inference. Rules can be obtained from available data.
Rough-set data analysis uses only internal knowledge, avoids
external parameters, and does not rely on prior model assumptions
such as probabilistic distribution in statistical methods, basic prob-
ability assignment in Dempster–Shafer theory. Its basic idea is to
search for an optimal attribute set to generate rules through an
objective knowledge induction process.

The classical rough set theory developed by Pawlak (1982) is
used only to describe crisp sets. In order to describe a fuzzy con-
cept in a crisp approximation space, Dubois and Prade (1987,
1990) extended the basic idea of rough sets and got a new model
named rough fuzzy sets. This new model has been proven a prom-
ising tool for pattern recognition, data mining, and knowledge dis-
covery (Asharafa & Murty, 2003, 2004; Bhatt & Gopal, 2005; Gong,
Sun, & Chen, 2008; Greco, Inuiguchi, & Slowinski, 2006; Jiang, Wu,
& Chen, 2005; Miao, Li, & Fan, 2005; Radzikowska & Kerre, 2002;
Rajen & Gopal, 2005; Richard & Qiang, 2002; Sankar, 2004; Shen
& Chouchoulas, 2002; Wang, 2003). There exist symbolic values,
real values or interval values in a practical database (Richard &
Qiang, 2002). For example, current, ID, temperature, time and volt-
age, such kinds of data are often described by interval values. How-
ever, the traditional rough fuzzy set theory cannot deal with these
ll rights reserved.
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kinds of data effectively. Extending the rough fuzzy set theory of
Dubois to a wider application is necessary. As a generalization of
Zadeh’s fuzzy set, the notion of interval-valued fuzzy sets was
put forward for the first time by Gorzalczany (1988) and Turksen
(1986). As to a fuzzy set, the interval-valued membership is easier
to be determined than the single-valued one. Interval-valued fuzzy
set theory has been applied to the fields of approximate inference,
signal transmission, etc. Due to the complementarity between
interval-valued fuzzy sets and rough sets, interval-valued rough
fuzzy sets that combined interval-value fuzzy set with rough set
was proposed. The definition of interval-valued rough fuzzy sets
together with some important properties was put forward by Gong
et al. (2008), a method of knowledge discovery was presented sub-
sequently for interval-valued fuzzy information systems. The
method classifies each object in a decision class according to its
maximal membership represented by a fuzzy interval. However,
suppose that the condition attribute set includes m attributes, then
the antecedent of the rule must include m conditions, overfull con-
ditions may reduce the classification accuracy and the applicability
of the rules. Moreover, two memberships represented by fuzzy
intervals are incomparable when one interval is nested in the
other, then decision rules cannot be generated in this case. Aside
from (Gong et al., 2008), few studies on fuzzy rule extraction are
based on rough sets in interval-valued fuzzy information systems.
It is necessary to establish a practical model for fuzzy rule
extraction in interval-valued fuzzy information systems. The
model should satisfy the following requirements: firstly the com-
putational complexity of the model can be effectively reduced;
secondly the applicability of extracted rules is preferable; thirdly
rules can be generated when one interval is nested in the other.

http://dx.doi.org/10.1016/j.eswa.2011.04.003
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The objective of attribute reduction is to reduce fuzzy attributes
and learn fuzzy rules from fuzzy samples. Various attribute reduc-
tion methods have been proposed (Bhatt & Gopal, 2005; Deng,
Chen, Xu, & Dai, 2007; Hu & Yu, 2004; Hu, Yu, & Xie, 2006, 2007;
Jensen & Shen, 2004, 2007; Moshkov, Skowron, & Suraj, 2008; Shen
& Jensen, 2004; Tsang, Chen, Tsang, Lee, & Yeung, 2005; Tsang,
Chen, Yeung, Wang, & Lee, 2008; Wang, Ha, & Chen, 2005, 2007,
2008; Zhao, Tsang, Wang, Chen, & Yeung, 2006; Zhou & Wu,
2008) in rough fuzzy sets and fuzzy rough sets. In general, attribute
reduction should be obtained before rule extraction (Pawlak,
1982). Since interval-valued rough fuzzy set theory is a generaliza-
tion of traditional rough fuzzy set theory, it is natural to extract
rules based on attribute reduction in such systems. However, this
paper does not intend to obtain rules based on attribute reduction
due to the following reasons. Usually, attribute reduction methods
can be classified into three types: one based on the positive region
(Bhatt & Gopal, 2005; Jensen & Shen, 2004, 2007; Shen & Jensen,
2004), one based on the discernibility matrix (Tsang et al., 2005,
2008; Wang et al., 2005; Zhang, Wu, Liang, & Li, 2001), and another
based on entropy (Hu & Yu, 2004; Hu et al., 2006, Hu, Xie, & Yu,
2007). For example, Jensen and Shen (2007), Shen and Jensen
(2004) conducted pioneering studies on attribute reduction based
on a positive region and proposed an attribute reduction algorithm.
An obvious limitation is that the algorithm may not be convergent
on many real data sets or the selected attributes are unreliable.
Moreover, the computational complexity of the algorithm often in-
creases exponentially with the increase of input variable number
and the data pattern size (Bhatt & Gopal, 2005). Bhatt and Gopal
(2005) developed Shen’s algorithm by improving the definition of
the lower approximation operator on a compact computational do-
main. However, the dependency degree of a selected reduct may be
larger than that of the entire attribute set due to the computing
method of the positive region (Tsang et al., 2008). This is unreason-
able according to the fact that more attributes will offer better
approximations in a rough set framework (Tsang et al., 2008).
Tsang et al. (2005, 2008) proposed an algorithm using a discernibil-
ity matrix to compute all attribute reducts. However, the computa-
tion complexity is NP-hard (Wang et al., 2005). Hu and Yu (2004,
2006) proposed an attribute reduction method based on informa-
tion entropy. The attribute reduction concept is not constructed
using existing fuzzy approximation operators (Yeung, Chen, Tsang,
Lee, & Wang, 2005), and it is difficult to study the structure of attri-
bute reduction (Zhao et al., 2006). Each attribute reduction method
has its property. At the same time, each one has some flaws also.
Therefore, rule extraction based on attribute reduction may be
faulty sometimes. This paper intends to avoid the attribute reduc-
tion process and establish the structure of the approximation by
introducing granulation order, then extract rules based on it.

From the viewpoint of granular computing,, a concept is de-
picted by both the upper and lower approximations under static
granulation in the interval-valued rough fuzzy set theory defined
by Gong et al. (2008). Provided the granulation is unchangeable,
no matter whether the granulation is too fine or too coarse may
be unacceptable. Excessively fine granulation may increase the
time and cost, while an excessively coarse one may not satisfy
requirements. We consider describing a concept under dynamic
granulation. This means that a proper granulation family can be se-
lected to describe a target concept according to the practical
requirements. The notion of a granulation order was introduced
in Liang, Qian, Chu, Li, and Wang (2005), Qian (2008). The objective
of this paper is to find a novel method of rule extraction without
computing attribute reduction in interval-valued fuzzy informa-
tion systems. Based on the granulation order, two approximation
methods in interval-valued rough fuzzy sets are proposed. A se-
quence of granulation spaces from coarse to fine can be obtained
through adding one condition attribute at a time. Then the upper
and lower approximations of forward approximation can be ob-
tained under the given granulation order. Based on the forward
approximation, a rule extraction algorithm named MRBFA is de-
signed. Its characteristic is that the universe dwindles gradually
and the approximation precision increases monotonously as the
granulation order becomes longer. Thus the computational com-
plexity of the algorithm can be effectively reduced. In the similar
way, a sequence of granulation spaces from fine to coarse can be
determined through deleting one condition attribute at a time.
Then the upper and lower approximations of backward approxi-
mation are defined under the given granulation order. As an appli-
cation of the backward approximation, an algorithm called MRBBA
is proposed for decision-rule extraction from an interval-valued
fuzzy decision table. The main characteristic of MRBBA is that
much simpler rules can be extracted by keeping the approximation
precision invariant.

The rest of this paper is organized as follows. Section 2 briefly
introduces related notions of interval-valued fuzzy sets and inter-
val-valued rough fuzzy sets. In Section 3, an algorithm is presented
for data completeness in interval-valued fuzzy information sys-
tems. In Section 4, the forward approximation is proposed and
important properties are obtained. A rule extraction algorithm
called MRBFA based on the forward approximation is then de-
signed, an example is illustrated. In Section 5, backward approxi-
mation is presented, and useful properties are deduced. For an
interval-valued fuzzy set, its convergence degree is defined and
proven to increase in a granulation order. A new rule extraction
algorithm called MRBBA based on the backward approximation is
proposed and illustrated. In Section 6, the performance of MRBFA
and MRBBA are evaluated by a housing database from the UC Irvine
Machine Learning Repository (UCI). Section 7 concludes the paper.

2. Preliminaries

In this section, for our further development, we briefly review
the basic concepts of interval-valued fuzzy sets and interval-valued
rough fuzzy sets.

2.1. Interval-valued fuzzy sets

Let I be a closed unit interval, i.e., I = [0,1]. Let [I] = {a = [a�, a+]:
a� 6 a+, a�, a+ 2 I}. For "a 2 I, define ā = [a,a], it is obvious that
a 2 [I].
Definition 1. If ai 2 [I], i 2 J, J = {1,2, . . . ,m}, define
(1) _
i2J
½a�i ; aþi � ¼ ½_i2J

a�i ; _
i2J

aþi �;

(2)
î2J
½a�i ; aþi � ¼ ½î2J

a�i ;
î2J

aþi �;

(3) ½a�i ; aþi �
c ¼ ½1� aþi ;1� a�i �.

In particular, for ai 2 [I], i = 1, 2, we define
(4) a1 ¼ a2 () a�1 ¼ a�2 ; aþ1 ¼ aþ2 ;
(5) a1 6 a2 () a�1 6 a�2 ; aþ1 6 aþ2 ;
(6) a1 < a2, a1 6 a2, a1 – a2;
(7) a16wa2 () a�1 þ aþ1 6 a�2 þ aþ2 ; aþ1 � a�1 6 aþ2 � a�2 ;
(8) a1 < wa2, a1 6 wa2, a1 – a2.

Definition 2. Let X be an ordinary non-empty set, the mapping A:
X ? [I] is called an interval-valued fuzzy set on X. The set of
interval-valued fuzzy sets on X is denoted by FI(X).

Similar to fuzzy sets, the operators # , \, [, and the comple-
ment of interval-valued fuzzy sets are defined as follows. For
A,B 2 FI(X), A # B means A(x) 6 B(x) for "x 2 X, (A \ B)(x) =
^ {A(x),B(x)}, (A [ B)(x) = _ {A(x),B(x)}, (�A)(x) = 1 � A(x).
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Definition 3. If A 2 FI(X), let A(x) = [A�(x),A+(x)], where x 2 X, then
two fuzzy sets A�: X ? I, and A+: X ? I are called lower fuzzy set
and upper fuzzy set about A, respectively.
2.2. Interval-valued rough fuzzy sets

Let U be a non-empty finite universe, R be an equivalence rela-
tion onU. [x]R is the equivalence class containing x.

Definition 4 Gong et al. (2008). For any interval-valued fuzzy set
F, the lower and upper approximations of F about the approxima-
tion space (U,R) are defined as follows:

laprRðFÞðxÞ ¼ inf
y2½x�R

lFðyÞ ¼ ½laprRðF�ÞðxÞ;laprRðFþÞðxÞ�

¼ ½ inf
y2½x�R

lF� ðyÞ; inf
y2½x�R

lFþ ðyÞ�;

laprRðFÞðxÞ ¼ sup
y2½x�R

lFðyÞ ¼ ½laprRðF�ÞðxÞ;laprRðFþÞðxÞ�

¼ ½sup
y2½x�R

lF� ðyÞ; sup
y2½x�R

lFþ ðyÞ�:

If for any x 2 U; laprRðFÞðxÞ ¼ laprRðFÞðxÞ, then the interval-valued fuz-

zy set F is definable about (U,R). Otherwise the interval-valued fuz-
zy set F is rough about (U,R), and F is called an interval-valued
rough fuzzy set.

If F is an ordinary fuzzy set of universe U, then F� = F+. Therefore,
the interval-valued rough fuzzy set degenerates into a classical
rough fuzzy set.

3. Data completeness in interval-valued fuzzy information
systems

Data completeness in interval-valued fuzzy information sys-
tems is the usual prerequisite for rule extraction. The process of
converting an incomplete interval-valued fuzzy information sys-
tem into a complete one, namely complementing the missing attri-
bute values with specified values via some techniques, is called the
completeness of incomplete interval-valued fuzzy information sys-
tem. Multiple methods have been proposed for classical incom-
plete information systems (Grzymala-Busse & Hu, 2001;
Grzymala-Busse & Grzymala-Busse, 2007; Kononenko, Bratko, &
Roskar, 198; Qin, 2005; Wang, 2001; Zhu, Zhang, & Fu, 2004). A
simple method is to either delete objects that miss their attribute
values or replace their values with the most common one. The sec-
ond method is based on probability statistics, e.g., Bayes method
and multivariate linear regression analysis method. A Bayesian for-
mula is used to determine the probability distribution of the miss-
ing value over the possible values (Kononenko et al., 198). This
method either chooses the most likely value or divides the object
into fractional objects, each with one possible value weighted
according to the probabilities. In application, due to the vast
state-space of data set, it’s difficult to determine the probability
distribution. Thus, the traditional statistical technique may not
be the best choice. The third method is based on a classical rough
sets theory, such as the rough set theory-based incomplete data
analysis approach (ROUSTIDA) (Wang, 2001; Zhu et al., 2004).
The basic principle is to make the missing attribute values of the
objects are consistent to the ones of the other similar objects, i.e.
to reduce the differences between attribute values as possible.
For ROUSTIDA, the attribute differences between different objects
are reflected by a discernibility matrix, and missing values are re-
placed with those of indiscernibly objects. We present the data
completeness method based on ROUSTIDA in allusion to interval-
valued fuzzy information system.
Let S = (U, C [ D) be an interval-valued fuzzy information sys-
tem with decision attributes, we call S an interval-valued fuzzy
decision table, where the condition attributes in C are crisp data,
and the decision attributes in D are fuzzy interval numbers, U
and C are denoted as: U = {x1,x2, . . . ,xn}, C = {a1,a2, . . . ,am} and
jUj = n, jCj = m.

Definition 5. Let S = (U,C [ D) be an interval-valued fuzzy infor-
mation system, its discernibility matrix is a n � n square matrix
M(C) = {M(i, j)}n�n, 1 6 i 6 n = jUj. The matrix unit is defined as
follows:
Mði; jÞ ¼ fk : ðakðxiÞ – akðxjÞÞ and ðakðxiÞ – �Þ and ðakðxjÞ – �Þg;
k ¼ 1;2; . . . ;m; i; j ¼ 1;2; . . . ;n:
Definition 6. Let S = (U, C [ D) be an interval-valued fuzzy infor-
mation system, missing attribute set MASi of object xi, indiscernible
object set NSi for object xi and the set of objects with missing attri-
bute values MOS in interval-valued fuzzy information system S are
defined as:

MASi ¼ fk : akðxiÞ ¼ �; k ¼ 1;2; . . . ;mg; NSi ¼ fj : Mði; jÞ
¼ ;; i – j; j ¼ 1;2; . . . ;ng;

MOS ¼ fi : MASi – ;; i ¼ 1;2; . . . ;ng:

Because of multiple missing data and their different distribu-
tions, supplement of the missing data may not be achieved after
a single computation of initial discernibility matrix. It may need
repeatedly compute the discemibility matrix and analyze com-
pleteness. Many transient information systems are generated in
the supplement process.

The initial interval-valued fuzzy information system specified
as S0, and the object set is fx0

i g, the corresponding discernibility
matrix is M0, the missing attribute set of xi

0is MAS0
i , the indiscern-

ible object set is NS0
i . Let Sr be the information system after rth

completeness analysis, and its object set is fxr
ig, the corresponding

discernibility matrix is Mr, the missing attribute set of xi
ris MASr

i , its
indiscernible object set is NSr

i . A completeness algorithm for
incomplete interval-valued fuzzy information system is given as
follows:

Input: incomplete information system S0 = (U0, C [ D)
Output: complete information system Sr = (Ur, C [ D)
(1) Compute M0, MAS0

i and MOS0. Let r = 0;
(2) 2.1 For "i 2MOSr, compute NSr

i ;
2.2 Generate Sr+1:

2.2.1 For i R MOSr, let akðxrþ1
i Þ ¼ akðxr

i Þ; k ¼ 1;2; . . . ;m;

2.2.2 For all i 2MOSr, make loops for all k 2 MASr
i :

2.2.2.1 If jNSr
i j ¼ 1, let j 2 NSr

i , if akðxr
j Þ ¼ �, then

akðxrþ1
i Þ ¼ �; otherwise akðxrþ1

i Þ ¼ akðxr
j Þ;

2.2.2.2 Otherwise
(i) If 9j0 2 NSr

i and j1 2 NSr
i , with the condition

ðakðxr
j0
Þ–�Þ ^ ðakðxr

j1
Þ–�Þ ^ ðakðxr

j1
Þ–akðxr

j0
ÞÞ, then akðxrþ1

i Þ ¼ �;
(ii) Otherwise, if 9j0 2 NSr

i , with the condition ðakðxr
j0
Þ–�Þ,

then akðxrþ1
i Þ ¼ akðxr

j0
Þ;

(iii) Otherwise, akðxrþ1
i Þ ¼ �;

2.3 If Sr+1 = Sr, go to (3); otherwise compute Mr+1, MASrþ1
i and

MOSr+1; Let r = r + 1; go to (2);
(3) If there are still missing data in the information system,
combination completeness approach is adopted for further
process;
(4) The end.
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The computation complexity of Step 2.2 depends on the distri-
bution and quantity of the missing data. Usually, the missing data
comprise of only a small portion of total data, so the computation
complexity is relative low. In Step 2.3, the corresponding discern-
ibility matrix of information system Mr+1 is needed, according to
Definition 5, mn(n � 1)/2 times of computation is required.

To illustrate the operation of the algorithm, an example is given
here. The data set comes from Table 4.1 in Gong et al. (2008). In the
data set, there are no missing data. The author generates randomly
some missing values with certain ratio to get an incomplete infor-
mation system denoted as Table 1. Table 1 is an incomplete inter-
val-valued fuzzy information system with 5 missing data, where
U = {x1,x2, . . . ,x10} is a set of objects, C = {a1,a2,a3} is a condition
attribute set, the decision attribute d is fuzzy, separated into three
linguistic terms F1, F2, F3 and F1, F2, F3 are interval-valued fuzzy
sets. Missing data are represented by *.

According to the algorithm, the completed interval-valued fuz-
zy information system S1 is shown in Table 2. It can be seen from
Table 2, all the missing data are completed after one time of
computation.

By comparing Table 2 with Table 4.1 in Gong et al. (2008), one
can easy see that Table 2 is the same as Table 4.1 in Gong et al.
(2008). The example shows that the algorithm fully utilize the laws
suggested by the data in information systems, and it can easily pro-
cess completeness analysis of an incomplete information system,
thus it can be adopted as a pretreatment method in data mining.
4. Forward approximation in interval-valued rough fuzzy sets

4.1. The concept of forward approximation

In interval-valued rough fuzzy sets (IVRF) theory defined by
Gong et al. (2008), the concept is described by the upper and lower
approximations under static granulation. However, the fixed gran-
ulation may limit the application of IVRF. A sequence of granula-
tion spaces from coarse to fine can be obtained through adding
one condition attribute at a time. Then the upper and lower
Table 1
An incomplete interval-valued fuzzy information system S0.

U a1 a2 a3 F1 F2 F3

x1 2 1 3 [0.7, 0.9] [0.15, 0.2] [0.4, 0.5]
x2 3 2 1 [0.3, 0.5] [0.5, 0.7] [0.35, 0.4]
x3 ⁄ 1 3 [0.7, 0.8] [0.3, 0.4] [0.1, 0.2]
x4 2 2 3 [0.15, 0.2] [0.5, 0.8] [0.2, 0.3]
x5 1 ⁄ 4 [0.05, 0.1] [0.2, 0.3] [0.65, 0.9]
x6 1 1 2 [0.1, 0.2] [0.35, 0.5] [1.0, 1.0]
x7 ⁄ 2 1 [0.25, 0.4] [1.0, 1.0] [0.3, 0.4]
x8 1 1 4 [0.1, 0.2] [0.25, 0.4] [0.5, 0.6]
x9 2 1 ⁄ [0.45, 0.7] [0.25, 0.3] [0.2, 0.3]
x10 3 ⁄ 1 [0.05, 0.1] [0.8, 0.9] [0.05, 0.2]

Table 2
A completed interval-valued fuzzy information system S1.

U a1 a2 a3 F1 F2 F3

x1 2 1 3 [0.7, 0.9] [0.15, 0.2] [0.4, 0.5]
x2 3 2 1 [0.3, 0.5] [0.5, 0.7] [0.35, 0.4]
x3 2 1 3 [0.7, 0.8] [0.3, 0.4] [0.1, 0.2]
x4 2 2 3 [0.15, 0.2] [0.5, 0.8] [0.2, 0.3]
x5 1 1 4 [0.05, 0.1] [0.2, 0.3] [0.65, 0.9]
x6 1 1 2 [0.1, 0.2] [0.35, 0.5] [1.0, 1.0]
x7 3 2 1 [0.25, 0.4] [1.0, 1.0] [0.3, 0.4]
x8 1 1 4 [0.1, 0.2] [0.25, 0.4] [0.5, 0.6]
x9 2 1 3 [0.45, 0.7] [0.25, 0.3] [0.2, 0.3]
x10 3 2 1 [0.05, 0.1] [0.8, 0.9] [0.05, 0.2]
approximations of a target concept under the given granulation or-
der can be obtained.

The notion of granulation order was introduced by Liang et al.
(2005), Qian (2008): let S = (U,A) be an information system, where
U is a non-empty set of finite objects (the universe), A is a non-
empty finite set of attributes and P,Q 2 2A. Define a partial relation
� as follows: P � Q (Q � P) if and only if, for every Pi 2 U/P, there
exists Qj 2 U/Q such that Pi # Qj, where U/P = {P1,P2, . . . ,Pm} and
U/Q = {Q1,Q2, . . . ,Qn} are equivalence classes induced by P and Q.

A partition induced by an equivalence relation provides a gran-
ulation space for describing a target concept. Let Ri 2 2A

(i = 1,2, . . . ,n) be a family of equivalence relations with R1 � R2 �
	 	 	 � Rn(R1 � R2 � 	 	 	 � Rn), the sequence of granulation spaces
from coarse to fine (from fine to coarse) determined by Ri 2 2A

(i = 1,2, . . . ,n) is named a granulation order. The upper and lower
approximations of forward approximation under a granulation
order are defined as follows.

Definition 7. Let S = (U, A) be an information system, F be an
interval-valued fuzzy set of U and P = {R1,R2, . . . ,Rn} be a family of
attribute sets with R1 � R2 � 	 	 	 � Rn(Ri 2 2A, i = 1,2 . . . ,n), P-upper
approximation aprPðFÞ and P-lower approximation aprP(F) of
forward approximation of F are defined as:

laprP ðFÞðxÞ ¼ ½laprP ðF�ÞðxÞ;laprP ðFþÞðxÞ� ¼ ½ sup
x2½x�Rn

lF� ðxÞ; sup
x2½x�Rn

lFþ ðxÞ�;
laprP ðFÞðxÞ ¼ ½laprP ðF�ÞðxÞ;laprP ðFþÞðxÞ�

¼

½infx2U1=R1lF� ðxÞ; infx2U1=R1lFþ ðxÞ�; x 2W1

	 	 	
½infx2Un=RnlF� ðxÞ; infx2Un=RnlFþ ðxÞ�; x 2Wn

½infx2Unþ1=RnlF� ðxÞ; infx2Unþ1=RnlFþ ðxÞ�; x 2 Unþ1

8>>><
>>>:

;

where U1 ¼ U; Ui ¼ Ui�1 � Wi�1 ði ¼ 2; 3; . . . ; n þ 1Þ; Wi�1 ¼
fxjlaprRi�1

ðFÞðxÞ ¼ ½infx2Ui�1=Ri�1
lF� ðxÞ; infx2Ui�1=Ri�1

lFþ ðxÞ�P ½g�;gþ�g ¼
fxjinfx2Ui�1=Ri�1

lF� ðxÞP g�; infx2Ui�1=Ri�1
lFþ ðxÞP gþg, where g�,

g+ 2 [0.5,1] and g = [g�, g+] 2 [I] is a suitable threshold.
The boundary BNP(F) of F is defined as:

lBNPðFÞðxÞ ¼ ½ sup
y2½x�Rn

lF� ðyÞ ^ ð1� infy2½x�Rn
lFþ ðyÞÞ; sup

y2½x�Rn

lFþ ðyÞ

^ ð1� infy2½x�Rn
lF� ðyÞÞ�:
Remark 1. The main idea of Definition 7 is that in the coarsest
granulation space decided by R1, delete those objects whose
decision class can be determined and obtain updated universe
U1 �W1. In the coarser granulation space determined by adding a
condition attribute, for the updated universe U1 �W1, delete the
objects whose decision class can be determined and update the
universe again. This process is repeated until the updated universe
becomes an empty set or there is no condition attribute can be
added. Although approximation operators are equivalent to the
ones in Definition 4, the structure of approximation operators in
Definition 7 reflects the granulation spaces changing from coarse
to fine. Definition 7 shows that the universe dwindles as the
granulation space becomes fine. This helps reduce computational
complexity.
Remark 2. Upper and lower approximations are not symmetrical.
In many applications, computing the upper approximation is not
always necessary. For simplicity, the upper approximation opera-
tor is not represented in a structural form.

Definition 7 shows that a target fuzzy concept is approached by
the upper approximation aprPðFÞ and variable lower approxima-
tion aprP(F). In the process of approximate classification, there
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usually exists incompatibility between the approximate classifica-
tion result and the decision class due to the unavoidable roughness
of problem description. The closer the lower approximation aprP(F)
is to F, the higher the compatibility between the approximate clas-
sification result and the decision class. The result of the forward
approximation is that the universe is decomposed into a union of
several subsets, i.e., U = W1 [W2 [ 	 	 	Wn [ Un+1. Each subset is lo-
cated in different granulation levels, and it is the maximal subset
satisfies the given threshold in the corresponding granulation.
The number of ‘‘[’’ quantitatively reflects the compatible extent
between the approximate classification result and decision class.

Theorem 1. Let S = (U,A) be an information system, F be an interval-
valued fuzzy set of U and P = {R1,R2, . . . ,Rn} be a family of attribute sets
with R1 � R2 � 	 	 	 � Rn(Ri 2 2A, i = 1,2 . . . ,n). Let Pi = {R1,R2, . . . ,Ri},
then for "Pi, (i = 1,2, . . . ,n), the following properties hold:

aprPðFÞ# F # aprPðFÞ; ð1Þ

aprP1 ðFÞ# aprP2 ðFÞ# 	 	 	 # aprPnðFÞ; ð2Þ

BNP1 ðFÞ 
 BNP2 ðFÞ 
 	 	 	 
 BNPn ðFÞ: ð3Þ
Proof. It should be noted that laprP ðFÞðxÞ ¼ laprRn ðFÞ
ðxÞ in essence.

Then laprP ðFÞðxÞ ¼ laprRn ðFÞ
ðxÞ 6 lFðxÞ 6 laprRn ðFÞ

ðxÞ ¼ laprP ðFÞðxÞ, for
"x 2 U. That is aprPðFÞ# F # aprPðFÞ.

To prove (2), we prove aprP1 ðFÞ# aprP2 ðFÞ firstly.

laprP1
ðFÞðxÞ

¼
½infx2U1=R1lF� ðxÞ; infx2U1=R1lFþ ðxÞ�; x 2W1;

½infx2U2=R1lF� ðxÞ; infx2U2=R1lFþ ðxÞ�; x 2 U2 ¼ U1 �W1;

�

laprP2
ðFÞðxÞ

¼
½infx2U1=R1 lF� ðxÞ; infx2U1=R1 lFþ ðxÞ�; x2W1;

½infx2U2=R2 lF� ðxÞ; infx2U2=R2 lFþ ðxÞ�; x2W2 #U2 ¼U1�W1;

½infx2U3=R2 lF� ðxÞ; infx2U3=R2 lFþ ðxÞ�; x2U3 ¼U2�W2 ¼U1�W1�W2:

8>><
>>:

Obviously, when x 2W1; laprP1
ðFÞðxÞ ¼ laprP2

ðFÞðxÞ; otherwise,
laprP1

ðFÞðxÞ 6 laprP2
ðFÞðxÞ. That is, for "x 2 U, laprP1

ðFÞðxÞ 6 laprP2
ðFÞðxÞ.

Thus we can obtain that aprP1 ðFÞ# aprP2 ðFÞ. Similarly, we can
show the other inequalities. Therefore, aprP1 ðFÞ# aprP2 ðFÞ# 	 	 	
# aprPn ðFÞ.

To prove (3), we prove BNP1 ðFÞ 
 BNP2 ðFÞ firstly.

lBNP1
ðFÞðxÞ ¼ ½ sup

y2½x�P1

lF� ðyÞ ^ ð1� infy2½x�P1
lFþ ðyÞÞ; sup

y2½x�P1

lFþ ðyÞ

^ ð1� infy2½x�P1
lF� ðyÞÞ�;

lBNP2
ðFÞðxÞ ¼ ½ sup

y2½x�P2

lF� ðyÞ ^ ð1� infy2½x�P2
lFþ ðyÞÞ; sup

y2½x�P2

lFþ ðyÞ

^ ð1� infy2½x�P2
lF� ðyÞÞ�:

It is clear that ½x�P1

 ½x�P2

, then supy2½x�P1
lF� ðyÞP supy2½x�P2

lF� ðyÞ,
infy2½x�P1

lFþ ðyÞ 6 infy2½x�P2
lFþ ðyÞ, therefore, ðsupy2½x�P1

lF� ðyÞ^
ð1� infy2½x�P1

lFþ ðyÞÞÞP ðsupy2½x�P2
lF� ðyÞ ^ ð1� infy2½x�P2

lFþ ðyÞÞ; Simi-

larly, we can show ðsupy2½x�P1
lFþ ðyÞ ^ ð1� infy2½x�P1

lF� ðyÞÞÞP
ðsupy2½x�P2

lFþ ðyÞ ^ ð1� infy2½x�P2
lF� ðyÞÞ, Thus, lBNP1

ðFÞðxÞP lBNP2
ðFÞðxÞ,

that is BNP1 ðFÞ 
 BNP2 ðFÞ. Analogously, the other inequalities can
be proven. h

Theorem 1 states that the lower approximation enlarges as the
granulation order becomes longer by adding equivalence relations.
To describe the uncertainty of concepts under a granulation or-
der, the approximation precision is defined as follows.

Definition 8. Let S = (U,A) be an information system, F be an
interval-valued fuzzy set of U and P = {R1,R2, . . . ,Rn} be a family of
attribute sets with R1 � R2 � 	 	 	 � Rn (Ri 2 2A,i = 1,2 . . . ,n). The
approximation precision aP(F) is defined as
aPðFÞ ¼ aPðF�Þ ^ aPðFþÞ ¼
P

x2UlaprP ðF�ÞðxÞP
x2UlaprP ðF�ÞðxÞ

^
P

x2UlaprP ðFþÞðxÞP
x2UlaprP ðFþÞðxÞ

where F – ;.
Theorem 2. Let S = (U,A) be an information system, F be an interval-
valued fuzzy set of U and P = {R1,R2, . . . ,Rn} be a family of attribute sets
with R1 � R2 � 	 	 	 � Rn (Ri 2 2A, i = 1,2 . . . ,n). Let Pi = {R1,R2, . . . ,Ri},
then for "Pi, (i = 1,2, . . . ,n), we have

aP1 ðFÞ 6 aP2 ðFÞ 6 	 	 	 6 aPn ðFÞ:
Proof. For "x 2 U, laprP1
ðF�ÞðxÞ ¼ supx2½x�R1

lF� ðxÞP supx2½x�R2
lF� ðxÞ ¼

laprP2
ðF�ÞðxÞP 	 	 	P laprPn ðF

�ÞðxÞ. Moreover, it is clear from Theorem

1 that laprP1
ðF�ÞðxÞ 6 laprP2

ðF�ÞðxÞ 6 	 	 	 6 laprPn ðF
�ÞðxÞ, thus according

to Definition 8, we can easily obtain aP1 ðF
�Þ 6 aP2 ðF

�Þ 6 	 	 	
6 aPn ðF

�Þ. Similarly, we can show aP1 ðF
þÞ 6 aP2 ðF

þÞ 6 	 	 	 6
aPn ðF

þÞ. Therefore, aP1 ðFÞ 6 aP2 ðFÞ 6 	 	 	 6 aPn ðFÞ.

The approximation precision is introduced to the forward
approximation in order to describe the uncertainty of a target
concept under a granulation order. Theorem 2 states that the
approximation precision aP(F) increases as the granulation order
becomes longer. h
4.2. Fuzzy rule extraction algorithm based on forward approximation

In the rough fuzzy set theory, rule extraction is usually per-
formed under uniform granulation, so the dynamic property is
deficient in the process of rule extraction. However, we often need
to extract rule dynamically according to the user’s requirements in
practical application. In a decision table, granulation is mainly re-
flected as the hierarchy relation between condition and decision
attribute sets. The forward approximation approaches a target con-
cept by the change in granulation, which can fully embody this
hierarchy relation. The universe dwindles gradually and the
approximation precision increases monotonously as the granula-
tion order becomes longer. Thus the computational complexity of
the algorithm is effectively reduced. Based on the forward approx-
imation, a rule extraction algorithm called MRBFA is proposed.

Definition 9. Let S = (U,C [ D) be a decision table, where C is a set
of condition attributes,D is a set of interval-valued fuzzy decision
attributes. The positive region of D with regard to C is defined as:
lposC ðDÞðxÞ ¼ sup
F2U=D

laprC ðFÞðxÞ ¼ ½ sup
F2U=D

laprC ðF�ÞðxÞ; sup
F2U=D

laprC ðFþÞðxÞ�:

The dependency degree cC(D) of C with regard to D is defined as:

cCðDÞ ¼

P
x2U sup

F2U=D
laprC ðF�ÞðxÞ þ

P
x2U sup

F2U=D
laprC ðFþÞðxÞ

2jUj :

Based on the forward approximation, we propose a rule extrac-
tion algorithm.
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4.2.1. Algorithm MRBFA (mining rules based on the forward
approximation)

Input:decision table with interval-valued fuzzy decision attri-
bute S = (U,C [ D)
Output:decision rules.
(1) For "c 2 C, compute the dependency degree c{c}(D), let
cfc1gðDÞ ¼maxfcfcgðDÞjc 2 Cg and P1 = {c1};
(2) U/D = {F1,F2, . . . ,Fd}, where, Fk (k = 1,2, . . . ,d) is an interval-
valued fuzzy set;
(3) Let P = {P1},U1 = U,Rule0 = Rule = ;, i = 1;
(4) Let Wi ¼ [d

k¼1fxjlaprP ðF�k Þ
ðxÞ ¼ infx2Ui=Pi

lF�k
ðxÞP g�;laprP ðFþk Þ

ðxÞ ¼ infx2Ui=Pi
lFþ

k
ðxÞP gþg. If Wi – ;, then for "x 2Wi, put

desPðxÞ ! desFk
ðxÞðk ¼ 1;2; . . . ; dÞ into Rule0. Let Rule =

Rule [ Rule0 and Ui+1 = Ui �Wi;
(5) If C � P = ; and Ui+1 – ;, then for "x 2 Ui+1, let T ¼
fxjlaprP ðFÞðxÞPwgg ¼ [d

k¼1fxjlaprP ðF�k Þ
ðxÞ þ laprP ðFþk Þ

ðxÞ P g� þ gþ;
laprP ðFþk Þ

ðxÞ � laprP ðF�k Þ
ðxÞP gþ � g�g. For "x 2 T, put desPðxÞ !

desFk
ðxÞ ðk ¼ 1;2; . . . ; dÞ into Rule, go to (8);

(6) If Ui+1 = ;, go to (8);
(7) For "c 2 C � P, compute cP[{c} (D), let
cP[fc2gðDÞ ¼maxfcP[fcgðDÞjc 2 C � Pg. Let Pi+1 = Pi [ {c2},
P = P [ Pi+1, i = i + 1, go to (4);
(8) Output Rule.

Remark 3. In Step (4), g = [g�, g+] is a threshold and g�,
g+ 2 [0.5,1]. In general, more conditions must be satisfied in the
rules and the applicability of the rules decreases with the increase
of g. That is, g determines the granulation of the fuzzy rules to
some extent. The selection of g is determined by the actual
requirement provided by the user.

Remark 4. In Step (4), desP(x) is the antecedent of the rule, and
desFk

ðxÞ is the consequent. For example, ‘‘If a3 is 1 Then d is F2’’,
where, ‘‘a3 is 1’’ is desP(x), ‘‘d is F2’’ is desFk

ðxÞ.
According to MRBFA, one can extract a family of decision

rules with granulations changing from coarse to fine. The dy-
namic classification results can approximate the decision classifi-
cation as much as possible. MRBFA not only fully considers the
potential community characters among objects, but also pos-
sesses high efficiency. The time complexity to extract rules is
polynomial.

In Step (1), the time complexity for computing cc(D) is
O(jCjjUj2).
In Step (2), the time complexity for computing U/D is O(jUj2).
In Step (4), the time complexity for computing Wi is O(jPikUij2).
In Step (5), the time complexity for computing T is O(jCkUi+1j2).
In Step (7), the time complexity for computing cP[{c}(D) is
O(jC � Pij(jPij + 1)jUi+1j2).

From Steps (4) to (7), jCj is the maximum value of the circle
times. Therefore, the time complexity is

XjCj
i¼1

ðOðjPijjUij2Þ þ OðjCjjUiþ1j2Þ þ OðjC � PijðjPij þ 1ÞjUiþ1j2ÞÞ: ð�Þ

It is obvious that jPij 6 jCj, jUij 6 jUj, jUi+1j < jUj, thus, the time com-
plexity of (⁄) is smaller than O(jCj3jUj2). Other Steps will not be con-
sidered because that their time complexities are all constants. Thus
the time complexity of the algorithm MABFA is

OðjCjjUj2Þ þ OðjUj2Þ þ
XjCj
i¼1

ðOðjPijjUij2Þ þ OðjCjjUiþ1j2Þ

þ OðjC � PijðjPij þ 1ÞjUiþ1j2ÞÞ 6 OðjCj3jUj2Þ:
Usually, the time complexity of the rule extraction algorithm
based on attribute reduction is O(jCj3jUj2), MRBFA is much smaller
due to the universe dwindles gradually.

Remark 5. The main differences between MRBFA and the method
based on attribute reduction include two aspects. First, rule
extraction is based on a granulation order; thus, the adverse
effects of attribute reduction are excluded as much as possible.
Second, the time complexity of the model is effectively reduced
because of the dwindling universe.
4.3. An example

To illustrate the operation of MRBFA, an example is given here.
The decision table comes from Table 2. where U = {x1,x2, . . . ,x10} is
a set of objects, C = {a1,a2,a3} is a condition attribute set, d is a deci-
sion attribute, separated into three linguistic terms F1,F2,F3 and
F1,F2,F3 are interval-valued fuzzy sets.

According to MRBFA, compute the dependency degrees of
a1,a2,a3 with regard to d respectively. We can obtain
cfa1gðdÞ ¼

83
200 ; cfa2gðdÞ ¼

69
200 ; cfa3gðdÞ ¼

92
200.

Hence, P1 = {a3} and P = {P1}, U1 = U. For U1/a3 = {{x1, x3, x4, x9},
{x2, x7, x10}, {x5, x8}, {x6}},

when x 2 fx1; x3; x4; x9g : laprP ðF�1 Þ
ðxÞ ¼ 0:15;

laprP ðFþ1 Þ
ðxÞ ¼ 0:2; laprP ðF�2 Þ

ðxÞ ¼ 0:15; laprP ðFþ2 Þ
ðxÞ ¼ 0:2;

laprP ðF�3 Þ
ðxÞ ¼ 0:1; laprP ðFþ3 Þ

ðxÞ ¼ 0:2;

when x 2 fx2; x7; x10g : laprP ðF�1 Þ
ðxÞ ¼ 0:05; laprP ðFþ1 Þ

ðxÞ ¼ 0:1;

laprP ðF�2 Þ
ðxÞ ¼ 0:5; laprP ðFþ2 Þ

ðxÞ ¼ 0:7;

laprP ðF�3 Þ
ðxÞ ¼ 0:05; laprPðFþ3 Þ

ðxÞ ¼ 0:2;

when x 2 fx5; x8g : laprP ðF�1 Þ
ðxÞ ¼ 0:05; laprP ðFþ1 Þ

ðxÞ ¼ 0:1;

laprP ðF�2 Þ
ðxÞ ¼ 0:2; laprP ðFþ2 Þ

ðxÞ ¼ 0:3;

laprP ðF�3 Þ
ðxÞ ¼ 0:5; laprP ðFþ3 Þ

ðxÞ ¼ 0:6;

when x 2 fx6g : laprP ðF�1 Þ
ðxÞ ¼ 0:1; laprP ðFþ1 Þ

ðxÞ ¼ 0:2;

laprP ðF�2 Þ
ðxÞ ¼ 0:35; laprP ðFþ2 Þ

ðxÞ ¼ 0:5;

laprP ðF�3 Þ
ðxÞ ¼ 1:0; laprP ðFþ3 Þ

ðxÞ ¼ 1:0:

Let g = [g�,g+] = [0.5,0.6]. Notice that for x 2 {x2,x7,x10},
laprP ðF�2 Þ

ðxÞ ¼ 0:5 P g�; laprPðFþ2 Þ
ðxÞ ¼ 0:7 P gþ;

x 2 fx5; x8g;laprPðF�3 Þ
ðxÞ ¼ 0:5 P g�; laprPðFþ3 Þ

ðxÞ ¼ 0:6 P gþ; x 2 {x6},
laprP ðF�3 Þ

ðxÞ ¼ 1:0 P g�; laprPðFþ3 Þ
ðxÞ ¼ 1:0 P gþ, then we have

W1 ¼ fx2; x5; x6; x7; x8; x10g;
Rule ¼ fr1 : desfa3gðx2; x7; x10Þ ! desF2 ðxÞ;
r2 : desfa3gðx5; x8Þ ! desF3 ðxÞ;
r3 : desfa3gðx6Þ ! desF3 ðxÞg and U2 ¼ U1 �W1 ¼ fx1; x3; x4; x9g:

For C � P – ; and U2 – ;, continue to compute the dependency de-
grees of the rest attributes a1, a2 with respect to D. It should be
noted that the computation of the dependency degree is based on
the updated U2, we obtain cfa1 ;a3gðDÞ ¼

140
800 ; cfa2 ;a3gðDÞ ¼

475
800. So

choose a2 as c2, P2 = {a2, a3} and P = {a2, a3}. U2/P = {{x1, x3, x9}, {x4}}.

when x 2 fx1; x3; x9g : laprP ðF�1 Þ
ðxÞ ¼ 0:45; laprP ðFþ1 Þ

ðxÞ ¼ 0:7;

laprP ðF�2 Þ
ðxÞ ¼ 0:15; laprP ðFþ2 Þ

ðxÞ ¼ 0:2; laprP ðF�3 Þ
ðxÞ ¼ 0:1;

laprP ðFþ3 Þ
ðxÞ ¼ 0:2;
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when x 2 fx4g : laprP ðF�1 Þ
ðxÞ ¼ 0:15; laprP ðFþ1 Þ

ðxÞ ¼ 0:2;

laprP ðF�2 Þ
ðxÞ ¼ 0:5; laprP ðFþ2 Þ

ðxÞ ¼ 0:8; laprPðF�3 Þ
ðxÞ ¼ 0:2;

laprP ðFþ3 Þ
ðxÞ ¼ 0:3;

Notice that for x 2 fx4g; laprPðF�2 Þ
ðxÞ ¼ 0:5 P g�; laprP ðFþ2 Þ

ðxÞ ¼
0:8 P gþ; then W2 = {x4} and Rule ¼ fr1 : desfa3gðx2; x7; x10Þ !
desF2 ðxÞ; r2 : desfa3gðx5; x8Þ ! desF3 ðxÞ; r3 : desfa3gðx6Þ ! desF3 ðxÞ; r4 :

desfa2 ;a3gðx4Þ ! desF2 ðxÞg and U3 = U2 �W2 = {x1, x3, x9}. For C � P – ;
and U3 – ;, the last attribute a1 is added to P, that is P = {a1,a2, a3}.
Then U3 /P = {{x1, x3, x9}}.

when x 2 {x1, x3, x9}: laprP ðF�1 Þ
ðxÞ ¼ 0:45; laprP ðFþ1 Þ

ðxÞ ¼ 0:7;

laprP ðF�2 Þ
ðxÞ ¼ 0:15; laprP ðFþ2 Þ

ðxÞ ¼ 0:2; laprP ðF�3 Þ
ðxÞ ¼ 0:1; laprP ðFþ3 Þ

ðxÞ ¼

0:2.
It is clear that W3 = ; and U4 = U3. Because of C � P = ; and

U4 – ;, for x 2 U4 = {x1, x3, x9}, laprP ðF�1 Þ
ðxÞ þ laprP ðFþ1 Þ

ðxÞ ¼ 0:45þ
0:7 P g� þgþ ¼ 0:5þ 0:6; laprP ðFþ1 Þ

ðxÞ �laprP ðF�1 Þ
ðxÞ ¼ 0:7� 0:45 P

gþ � g� ¼ 0:6� 0:5; that is laprP ðF1ÞðxÞPwg, then T = {x1, x3, x9}

and r5 : desfa1 ;a2 ;a3gðx1; x3; x9Þ ! desF1 ðxÞ is added to Rule. The algo-
rithm stopped and rules are obtained as follows:

Rule ¼ fr1 : desfa3gðx2; x7; x10Þ ! desF2 ðxÞ; namely: If a3 is 1 Then
d is F2 and laprP ðF2ÞðxÞP ½0:5; 0:7�; r2 : desfa3gðx5; x8Þ ! desF3 ðxÞ;
namely: If a3 is 4 Then d is F3 and laprP ðF3ÞðxÞP ½0:5;0:6�;
r3 : desfa3gðx6Þ ! desF3 ðxÞ, namely: If a3 is 2 Then d is F3 and
laprP ðF3ÞðxÞ ¼ ½1:0;1:0�; r4 : desfa2 ;a3gðx4Þ ! desF2 ðxÞ, namely: If a2 is

2 and a3 is 3. Then d is F2 and laprP ðF2ÞðxÞP ½0:5;0:8�;
r5 : desfa1 ;a2 ;a3gðx1; x3; x9Þ ! desF1 ðxÞ, namely: If a1 is 2, a2 is 1 and
a3 is 3 Then d is F1 and laprP ðF1ÞðxÞP ½0:45;0:7�g.

5. Backward approximation in interval-valued rough fuzzy sets

The main purpose of the forward approximation is extending
the interval-valued rough fuzzy sets approximation from static
granulation to dynamic one, and approaching a target concept by
the change of granulation. Through the forward approximation,
one can extract a family of fuzzy decision rules with granulations
changing from coarse to fine. In some applications, however, the
approximation precision is restricted by the decision requirements
or preference of decision makers (Qian, 2008). An obvious problem
is extracting simpler rules based on keeping the approximation
precision invariant. The forward approximation appears unsuitable
for this purpose. Therefore, the backward approximation in inter-
val-valued rough fuzzy sets is proposed.

In the process of the backward approximation, the objects need-
ing to be further investigated in the universe are considered as the
next researched objective. Then a sequence of expressions with dif-
ferent granulation levels can be generated. In the family of equiv-
alence relations, the backward approximation can not only
effectively reduce the knowledge granules describing the inter-
val-valued fuzzy set, it also fully mines potential community char-
acteristics among objects based on keeping the approximation
precision invariant.

5.1. The concept of backward approximation

Let S = (U, A) be an information system, F be an interval-valued
fuzzy set of U and P = {R1,R2, . . . ,Rn} be a family of attribute sets
withR1 � R2 � 	 	 	 � Rn (Ri 2 2A, i = 1,2 . . . ,n). So the sequence of
attribute sets Ri 2 2A (i = 1,2, . . . ,n) can determine a sequence of
granulation spaces from fine to coarse. The upper and lower
approximations of backward approximation are defined under a
granulation order.
Definition 10. Let S = (U,A) be an information system, F be an
interval-valued fuzzy set of U and P = {R1,R2, . . . ,Rn} be a family of
attribute sets withR1 � R2 � 	 	 	 � Rn(Ri 2 2A, i = 1,2 . . . ,n). Let
Pi = {R1,R2, . . . ,Ri}, Pi-upper approximation aprPi

ðFÞ and Pi-lower
approximation aprPi

ðFÞ of Pi-backward approximation of F are
defined as

laprPi
ðFÞðxÞ ¼ ½laprPi

ðF�ÞðxÞ;laprPi
ðFþÞðxÞ� ¼ ½ sup

x2½x�R1

lF� ðxÞ; sup
x2½x�R1

lFþ ðxÞ�;
laprPi
ðFÞðxÞ ¼ ½laprPi

ðF�ÞðxÞ;laprPi
ðFþÞðxÞ�

¼
½_j

h¼1 inf
x2½x�Rh

lF� ðxÞ;_
j
h¼1 inf

x2½x�Rh

lFþ ðxÞ�; if 9j

½ inf
x2½x�R1

lF� ðxÞ; inf
x2½x�R1

lFþ ðxÞ�; otherwise

8><
>:

where, j ¼ maxftjlaprRt ðFÞ
ðxÞ ¼ ½infx2½x�Rt

lF� ðxÞ; infx2½x�Rt
lFþ ðxÞ� P

½f�; fþ�; 1 6 t 6 ig, f�, f+ 2 [0.5,1] and f = [f�, f+] 2 [I] is a suitable
threshold.

The boundary BNP(F) of F is defined as:

lBNPi
ðFÞðxÞ ¼ ½ sup

y2½x�[Ri2Pi
Ri

lF� ðyÞ ^ ð1� inf
y2½x�[Ri2Pi

Ri

lFþ ðyÞÞ; sup
y2½x�[Ri2Pi

Ri

lFþ ðyÞ

^ ð1� inf
y2½x�[Ri2Pi

Ri

lF� ðyÞÞ�:
Remark 6. The backward approximation is concentrated on the
change in the construction of the target concept. The main idea of
Definition 10 is that the number of equivalence classes used to
describe the target concept reduced as the granulation order
becomes longer. That is, new equivalence classes under different
granulations are induced by combining known equivalence classes.
Although the upper and lower approximation operators are
equivalent to the ones in Definition 4, the backward approximation
emphasizes the change in the construction of the target concept.
The structure of the approximation operators reflects the granu-
lation spaces changing from fine to coarse.
Remark 7. Notice that the upper and lower approximations are
not symmetrical. For the sake of conciseness, the upper approxi-
mation operator is not denoted in structural form. Moreover, com-
puting the upper approximation is not always necessary in many
applications. In MRBBA (Section 5.2) only the lower approximation
operator is used. Of course, one can also represent the upper
approximation operator same as the structure of the lower one.
Remark 8. f = [f�, f+] is a threshold and f�, f + 2 [0.5,1]. In general,
more conditions must be satisfied in the rules, and the applicability
of the rules decreases with increasing f. That is, f ascertains the
granulation of the fuzzy rules to some extent. The selection of f
is determined by actual requirement provided by user.

Definition 10 shows that a target concept can be approached by
the upper approximation aprPi

ðFÞ and the variable lower approxi-
mation aprPi

ðFÞ. In particular, when i = n, we denote aprPn ðFÞ as
aprPðFÞ and aprPn ðFÞ as aprP(F). aprPðFÞ and aprP(F) are called P-
upper approximation and P-lower approximation of P-backward
approximation of F, respectively.

Theorem 3. Let S = (U,A) be an information system, F be an interval-
valued fuzzy set of U and P = {R1,R2, . . . ,Rn} be a family of attribute sets
with R1 � R2 � 	 	 	 � Rn(Ri 2 2A, i = 1,2 . . . ,n). Let Pi = {R1, R2, . . . ,Ri},
then for "Pi, (i = 1,2, . . . ,n), the following properties hold:

aprP1 ðFÞ ¼ aprP2 ðFÞ ¼ 	 	 	 ¼ aprPn ðFÞ; ð4Þ
aprPi

ðFÞ# F # aprPi
ðFÞ; ð5Þ
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Proof. For "Pi, if there exists a j, then laprPi
ðFÞðxÞ ¼ ½_

j
h¼1infx2½x�Rh

lF� ðxÞ;_
j
h¼1infx2½x�Rh

lFþ ðxÞ� ¼ ½infx2½x�R1
lF� ðxÞ; infx2½x�R1

lFþ ðxÞ� ¼
laprR1

ðFÞðxÞ; if there does not exist a j, then laprPi
ðFÞðxÞ ¼

½infx2½x�R1
lF� ðxÞ; infx2½x�R1

lFþ ðxÞ� ¼ laprR1
ðFÞðxÞ. Therefore, one can

obtain aprP1 ðFÞ ¼ aprP2 ðFÞ ¼ 	 	 	 ¼ aprPn ðFÞ ¼ aprR1 ðFÞ, that is (4).
Moreover, laprPi

ðFÞðxÞ ¼ laprR1
ðFÞðxÞ ¼ ½infx2½x�R1

lF� ðxÞ; infx2½x�R1

lFþ ðxÞ�6 ½lF� ðxÞ;lFþ ðxÞ�¼lFðxÞ6 ½supx2½x�R1
lF� ðxÞ;supx2½x�R1

lFþ ðxÞ�¼

laprPi
ðFÞðxÞ . Thus, aprPi

ðFÞ# F # aprPi
ðFÞ.

For "i, lBNPi
ðFÞðxÞ ¼ ½supy2½x�[Ri2Pi

Ri
lF� ðyÞ ^ ð1� infy2½x�[Ri2Pi

Ri
lFþ ðyÞÞ;

supy2½x�[Ri2Pi
Ri
lFþ ðyÞ ^ ð1 � infy2½x�[Ri2Pi

Ri
lF� ðyÞÞ� ¼ ½supy2½x�R1

lF� ðyÞ^

ð1 � infy2½x�R1
lFþ ðyÞÞ; supy2½x�R1

lFþ ðyÞ ^ ð1 � infy2½x�R1
lF� ðyÞ� ¼

lBNR1
ðFÞðxÞ. Then (6) is proved.

This completes the proof. h

Theorem 3 states that the lower and upper approximations of P-
backward approximation remain invariant as the granulation order
becomes longer.

Theorem 4. Let S = (U,A) be an information system, F be an interval-
valued fuzzy set of U and P = {R1,R2, . . . ,Rn} be a family of attribute sets
with R1 � R2 � 	 	 	 � Rn(Ri 2 2A, i = 1,2 . . . ,n). Let Pi = {R1,R2, . . . ,Ri},
then for "Pi, (i = 1,2, . . . ,n), the following properties hold:

aP1 ðFÞ ¼ aP2 ðFÞ ¼ 	 	 	 ¼ aPnðFÞ;

where aPi
ðFÞ ¼ aPi

ðF�Þ ^ aPi
ðFþÞ ¼

P
x2U

laprPi
ðF�ÞðxÞP

x2U
laprPi

ðF�ÞðxÞ
^
P

x2U
laprPi

ðFþÞðxÞP
x2U

laprPi
ðFþÞðxÞ

is
approximation precision.

Proof. It follows from Definition 10 that
aprP1 ðFÞ ¼ aprP2 ðFÞ ¼ 	 	 	 ¼ aprPn ðFÞ ¼ aprR1 ðFÞ. Then for "x 2 U,
laprPi

ðF�ÞðxÞ ¼ laprP2
ðF�ÞðxÞ ¼ 	 	 	 ¼ laprPn ðF

�ÞðxÞ,
laprPi

ðFþÞðxÞ ¼ laprP2
ðFþÞðxÞ ¼ 	 	 	 ¼ laprPn ðF

þÞðxÞ. And from Theorem 3,
we can obtain that aprP1 ðFÞ ¼ aprP2 ðFÞ ¼ 	 	 	 ¼ aprPn ðFÞ, then for
"x 2 U, laprPi

ðF�ÞðxÞ ¼ laprP2
ðF�ÞðxÞ ¼ 	 	 	 ¼ laprPn ðF

�ÞðxÞ, laprPi
ðFþÞðxÞ ¼

laprP2
ðFþÞðxÞ ¼ 	 	 	 ¼ laprPn ðF

þÞðxÞ. Therefore, aP1 ðFÞ ¼ aP2 ðFÞ ¼ 	 	 	 ¼
aPn ðFÞ. This completes the proof. h

Definition 11. Let S = (U,A) be an information system, R 2 2A be a
subset of attributes ofA, C = {F1, F2, . . . ,Fm} be a fuzzy partition of U,
whereFk (k = 1,2, . . . ,m) is an interval-valued fuzzy set. Lower and
upper approximations of C with respect to R are defined by

aprRC ¼ aprRðF1Þ; aprRðF2Þ; . . . ; aprRðFmÞ
n o

;

aprRC ¼ faprRðF1Þ; aprRðF2Þ; . . . ; aprRðFmÞg:
The target fuzzy concept is described by equivalence classes. For

the given universe U, the equivalence classes are determined by R.
So the lower and upper approximations of C have a close relation-
ship with R. We need to define a new measure to evaluate the con-
vergence of Cwith respect to R, which is helpful in understanding
the construction of the lower approximation.

Definition 12. Let S = (U,A) be an information system, R 2 2A be a
subset of attributes of A and C = {F1,F2, . . . ,Fm} be a fuzzy partition
of U, whereFk (k = 1,2, . . . ,m) is an interval-valued fuzzy set.
Convergence degree of C with respect to R is defined as:

CðR;CÞ ¼ CðR;C�Þ ^ CðR;CþÞ

¼
Xm

k¼1

jF�k j
jUj

Xsk

j¼1

p2ðF�j
k Þ

 !
^

Xm

k¼1

jFþk j
jUj

Xsk

j¼1

p2ðFþj
k Þ

 !
;

where, jF�k j ¼
P

x2UlF�k
ðxÞ, jFþk j ¼

P
x2UlFþ

k
ðxÞ, pðF�j

k Þ ¼
jF�j

k
j

jF�k j
,

pðFþj
k Þ ¼

jFþj
k
j

jFþ
k
j. sk is the number of equivalence classes that satisfied

laprRðFkÞðxÞ ¼ ½infx2½x�RlF�k
ðxÞ; infx2½x�RlFþ

k
ðxÞ�P ½f�; fþ� ¼ f. Let MRk ¼

f½x�RjlaprRðFkÞðxÞ ¼ ½infx2½x�RlF�k
ðxÞ; infx2½x�RlFþ

k
ðxÞ�P ½f�; fþ� ¼ f; x 2

Ug, then sk = jMRkj.

Remark 9. Without loss of generality, one can assume that
MRk ¼ fA1;A2; . . . ;Askg, where, Aj ¼ ½xtj �R; j ¼ 1;2; . . . ; sk; tj 2 f1;2;
. . . ; jUjg then convergence degree is denoted as
CðR;CÞ ¼ CðR;C�Þ ^ CðR;CþÞ

¼
Xm

k¼1

P
x2UlF�k

ðxÞ
jUj

Xsk

j¼1

P
x2Aj

lF�k
ðxÞP

x2UlF�k
ðxÞ

 !2
0
@

1
A

^
Xm

k¼1

P
x2UlFþ

k
ðxÞ

jUj
Xsk

j¼1

P
x2Aj

lFþ
k
ðxÞP

x2UlFþ
k
ðxÞ

 !2
0
@

1
A:
Remark 10. If C = {F}, then

CðR;CÞ ¼ CðR;C�Þ ^ CðR;CþÞ ¼
Xs

j¼1

p2ðF�jÞ
 !

^
Xs

j¼1

p2ðFþjÞ
 !

¼ 1

jF�j2
Xs

j¼1

X
x2½xtj

�R

lF� ðxÞ

0
@

1
A

2
0
B@

1
CA

^ 1

jFþj2
Xs

j¼1

X
x2½xtj

�R

lFþ ðxÞ

0
@

1
A

2
0
B@

1
CA:
Definition 13. Let S = (U,A) be an information system,
C = {F1,F2, . . . ,Fm} be a fuzzy partition of U, where Fk

(k = 1,2, . . . ,m) is an interval-valued fuzzy set. P = {R1,R2, . . . ,Rn}
be a family of attribute sets with R1 � R2 � 	 	 	 � Rn (Ri 2 2A,
i = 1,2 . . . ,n). Let Pi = {R1,R2, . . . ,Ri}, convergence degree of C with
respect to P is defined as:

CðP;CÞ ¼ CðP;C�Þ ^ CðP;CþÞ

¼
Xm

k¼1

jF�k j
jUj

Xsk

j¼1

p2ðF�j
k Þ

 !
^

Xm

k¼1

jFþk j
jUj

Xsk

j¼1

p2ðFþj
k Þ

 !
;

where, jF�k j ¼
P

x2UlF�k
ðxÞ, jFþk j ¼

P
x2UlFþ

k
ðxÞ, pðF�j

k Þ ¼
jF�j

k
j

jF�k j
, pðFþj

k Þ ¼
jFþj

k
j

jFþ
k
j ,

sk = —MPk—, MPk ¼ f
Sjx

h¼1½x�Rh
jjx ¼maxftjlaprRt ðFkÞðxÞ ¼ ½infx2½x�Rt

lF�k
ðxÞ;

infx2½x�Rt
lFþ

k
ðxÞ�P ½f�; fþ�gg.

Remark 11. Without loss of generality, one can assume that
MPk ¼ fA1;A2; . . . ;Askg, where, Aj ¼ ½xtj �RIj

; j ¼ 1;2; . . . ; sk; Ij 2 f1;2;
. . . ;ng; tj 2 f1;2; . . . ; jUjg, then convergence degree is repre-
sented as

CðP;CÞ ¼ CðP;C�Þ ^ CðP;CþÞ

¼
Xm

k¼1

P
x2UlF�k

ðxÞ
jUj

Xsk

j¼1

P
x2Aj

lF�k
ðxÞP

x2UlF�k
ðxÞ

 !2
0
@

1
A

^
Xm

k¼1

P
x2UlFþ

k
ðxÞ

jUj
Xsk

j¼1

P
x2Aj

lFþ
k
ðxÞP

x2UlFþ
k
ðxÞ

 !2
0
@

1
A:



Y. Cheng, D. Miao / Expert Systems with Applications 38 (2011) 12249–12261 12257
Remark 12. If C = {F}, then CðP;CÞ ¼ CðP;C�Þ ^ CðP;CþÞ ¼

ð
Ps

j¼1p2ðF�jÞÞ ^
Ps

j¼1p2ðFþjÞ
� �

¼ 1
jF�j2

Ps
j¼1ð

P
x2Aj

lF� ðxÞÞ
2

� �
^

1
jFþj2

Ps
j¼1ð

P
x2Aj

lFþ ðxÞÞ
2

� �
, where Aj ¼ ½xtj �RIj

.

Theorem 5. Let S = (U,A) be an information system, F be an interval-
valued fuzzy set of U and P = {R1,R2, . . . ,Rn} be a family of attribute sets
withR1 � R2 � 	 	 	 � Rn(Ri 2 2A, i = 1,2 . . . ,n). Let Pi = {R1,R2, . . . ,Ri},
then for "Pi (i = 1,2, . . . ,n), the following property holds:

CðP1; FÞ 6 CðP2; FÞ 6 	 	 	 6 CðPn; FÞ:
Proof. Suppose 1 6 a < b 6 n, MPak ¼ fA1;A2; . . . ;Amg, MPbk ¼ fB1;

B2; . . . ; Bng. Obviously, MPak # MPbk and m > n. Then there may exist
a partition {C1,C2, . . . ,Cn} of {1,2, . . . ,m} such that Bt ¼S

l2Ct
Al; t ¼ 1;2; . . . ;n. Therefore, one can obtain CðPb; FÞ ¼ CðPb;

F�Þ ^ CðPb; F
þÞ ¼ 1

jF�j2
Psb

t¼1ð
P

x2Bt
lF� ðxÞÞ

2
� �

^ 1
jFþj2

Psb
t¼1ð

P
x2Bt

lFþ ðxÞÞ
2

� �
¼

1
jF�j2

Psb
t¼1ð

P
x2
S

l2Ct
Al
lF� ðxÞÞ

2
� �

^ 1
jFþj2

Psb
t¼1ð

P
x2
S

l2Ct
Al
lFþ ðxÞÞ

2
� �

¼

1
jF�j2

Psb
t¼1ð

P
l2Ct

P
x2Al

lF� ðxÞÞ
2

� �
^ 1

jFþj2
Psb

t¼1ð
P

l2Ct

P
x2Al

lFþ ðxÞÞ
2

� �
P

1
jF�j2

Psb
t¼1

P
l2Ct
ð
P

x2Al
lF� ðxÞÞ

2
� �

^ 1
jFþj2

Psb
t¼1

P
l2Ct
ð
P

x2Al
lFþ ðxÞÞ

2
� �

Þ ¼

1
jF�j2

Psa
l¼1ð

P
x2Al

lF� ðxÞÞ
2

� �
^ 1

jFþj2
Psa

l¼1ð
P

x2Al
lFþ ðxÞÞ

2
� �

¼

CðPa; F
�Þ ^ CðPa; F

þÞ ¼ CðPa; FÞ.
Thus C(P1,F) 6 C(P2,F) 6 	 	 	 6 C(Pn,F). h

Theorem 6. Let S = (U,A) be an information system,
C = {F1,F2, 	 	 	 , Fm} be a fuzzy partition of U, where Fk (k = 1,2, 	 	 	 ,m)
is an interval-valued fuzzy set. P = {R1,R2, . . . ,Rn} be a family of
attribute sets with R1 � R2 � 	 	 	 � Rn(Ri 2 2A, i = 1,2 . . . ,n). Let-
Pi = {R1,R2, . . . ,Ri}, then for "Pi, (i = 1,2, . . . ,n), the following property
holds:

CðP1;CÞ 6 CðP2;CÞ 6 	 	 	 6 CðPn;CÞ:
Proof. It follows from Theorem 5 that C(P1, Fk) 6 C(P2,
Fk) 6 	 	 	 6 C(Pn, Fk) for "Fk (k 6m). Suppose 1 6 a < b 6 n, then
C(Pa, Fk) 6 C(Pb, Fk). Therefore, we can obtain that CðPa;CÞ ¼
ð
Pm

k¼1
jF�k j
jUj
Psk

j¼1p2ðF�j
k ÞÞ ^ ð

Pm
k¼1

jFþk j
jUj
Psk

j¼1p2ðFþj
k ÞÞ ¼ ð

Pm
k¼1

jF�k j
jUj 	 CðPa;

F�k ÞÞ ^ ð
Pm

k¼1
jFþk j
jUj 	 CðPa; Fþk ÞÞ 6 ð

Pm
k¼1

jF�k j
jUj 	 CðPb; F�k ÞÞ ^ ð

Pm
k¼1

jFþk j
jUj 	

CðPb; F
þ
k ÞÞ ¼ CðPb;CÞ. Thus C(P1,C) 6 C(P2,C) 6 	 	 	 6 C(Pn ,C). h

Theorem 6 shows that the convergence degree of C with respect
to Pi increases as the granulation order becomes longer. New
equivalence classes under different granulations are induced by
combining some known equivalence classes. Thus the number of
equivalence classes for describing the target concept is reduced.
This suggests a new idea to describe a target concept with as few
equivalence classes as possible based on keeping the approxima-
tion precision invariant. This may have potential applications in
the interval-valued rough fuzzy set theory, such as the description
of multi-target concepts, approximation classification, and rule
extraction.
5.2. Fuzzy rule extraction algorithm based on backward approximation

Interval-valued rough fuzzy sets theory is used to mine some
fuzzy decision rules in the form of ‘‘if . . ., then . . .’’ from an
interval-valued fuzzy decision tables. More exactly, the fuzzy
decision rules say that if condition attributes have some given
values, then decision attributes have the other given values. In
this section, as an application of the backward approximation,
we apply this approach to fuzzy-decision-rule extraction. In view
of the backward approximation is based on dynamic granulation,
the decision classification induced by decision attributes can be
regarded as target concepts, and the condition attribute sets
can be used to construct a granulation order. Based on the back-
ward approximation, a rule extraction algorithm called MRBBA is
designed.

Let S = (U,C [ D) be a decision table, for "c 2 C, the significance

of c with respect to D is defined as: sigD
C ðcÞ ¼ cCðDÞ � cC�fcgðDÞ,

where cCðDÞ ¼
P

x2U
supF2U=DlaprC ðF

�ÞðxÞþ
P

x2U
supF2U=DlaprC ðF

þÞðxÞ

2jUj .

5.2.1. Algorithm MRBBA (mining rules based on the backward
approximation)

Input: decision table S = (U,C [ D)
Output: decision rules.

(1) Compute decision classes U/D = {F1,F2, . . . ,Fd}, where, Fk

(k = 1,2, . . . ,d) is an interval-valued fuzzy set;
(2) Let Rule = ;, P1 = {{C1}}, j = 1, C1 = C;
(3) For "c 2 Cj, compute the significance sigD

Cj
ðcÞ. Let

B ¼ fc0jsigD
Cj
ðc0Þ ¼minfsigD

Cj
ðcÞ; c 2 Cjgg. If jBj– 1, then let

cfc0gðDÞ ¼minfcfcgðDÞ; c 2 Bg;
(4) Let Cj+1 = Cj � {c0}, Pj+1 = Pj [ {{Cj+1}};
(5) j = j + 1. If j < jCj, go to (3); Otherwise, go to (6);
(6) Let k = 1;
(7) Let P = Pj. Compute aprP(Fk), MPk;
(8) Put every decision rule desð½x�Þ ! desFk

ðxÞ into Rule, where
[x] 2MPk;

(9) k = k + 1. If k 6 d, go to (7); otherwise, go to (10);
(10) let T ¼

Sd
k¼1fxjlaprP ðFkÞðxÞPwf; ½x�P R MPkg ¼

Sd
k¼1fxjlaprP ðF�k Þ

ðxÞþ

laprP ðFþk Þ
ðxÞ P f� þ fþ; laprP ðFþk Þ

ðxÞ � laprP ðF�k Þ
ðxÞ P fþ � f�;

½x�P R MPkg. For "x 2 T, put desPðxÞ ! desFk
ðxÞ ðk ¼ 1;2; . . . ; dÞ

into Rule.
(11) Output Rule.

Remark 13. In Step (8), des([x]) represents the antecedent of the
rule, and desFk

ðxÞ is the consequent. Such as ‘‘If a3 is 1 Then d is
F2’’, where, ‘‘a3 is 1’’ is des([x]), ‘‘disF2’’ is desFk

ðxÞ.
The time complexity to extract rules is polynomial.
In Step (1), the time complexity for computing a decision parti-

tion is O(jUj2).
In Step (3), the time complexity for computing a significance is

O(jCj kUj2), then the time complexity of computing sigD
Cj
ðcÞ for

"c 2 Cj is O(jCjj2jUj2). The time complexity to choose the minimum
of significances is O(jCjj). In Steps (3) – (5), sincejCj � 1 is the max-
imum value for the circle times, the time complexity to construct Pj

is
PjCj�1

j¼1 ðOðjCjj2jUj2Þ þ OðjCjjÞÞ ¼
PjCj�1

j¼1 OðjCjj2jUj2Þ þ
PjCj�1

j¼1 OðjCjjÞ ¼
OðjCj2jUj2 þ ðjCj � 1Þ2jUj2 þ ðjCj � 2Þ2jUj2 	 	 	 þ 22jUj2Þ þOðjCj þ ðjCj�
1Þ þ 	 	 	 þ 2Þ ¼

O
1
6
ð2jCj3 þ 3jCj2 þ jCjÞ � 1

� �
jUj2

� �
þ O

1
2
ðjCj2 þ jCj � 2Þ

� �

¼ OðjCj3jUj2Þ
In Step (7), the time complexity for computing aprP(Fk), MPk is
O(jCkUj2).

In Step (8), the time complexity for putting each decision rule
into rule base is O(jMPkj).
In Step (10), the time complexity for computing T is O(jCkUj2).
In Step (11), the time complexity is O(jUj).
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In Steps (7) – (9), d is the circle times. Therefore, the time com-
plexity of the algorithm MRBBA is OðjUj2Þþ OðjCj3jUj2ÞþPd

k¼1ðOðjCjjUj
2Þ þ OðjMPkjÞÞ þ OðjCjjUj2Þþ OðjUjÞ ¼ OðjCj3jUj2Þ.

The time complexity of this algorithm can be reduced to
O(jCj3jUjlog2jUj) of a classigication is computed using the ranking
technique.

Remark 14. The differences between MRBBA and the method
based on attribute reduction include two aspects. First, rule
extraction is based on a granulation order, so the adverse effects
of attribute reduction are excluded as much as possible with
avoiding the attribute reduction process; secondly, MRBBA can
extract much simpler decision rules based on keeping the approx-
imation precision invariant.
5.3. An example

In order to discuss the application of MRBBA, an example is
given. The dataset given in Table 2 is reused. Where
U = {x1,x2, . . . ,x10} is a set of objects, C = {a1,a2,a3} is a condition
attribute set, d is a decision attribute, separated into three linguis-
tic terms F1,F2,F3 and F1,F2,F3 are interval-valued fuzzy sets.

According to MRBBA, granulation order is constructed firstly.
Compute the significances of a1, a2, a3 with regard to D,
respectively. For C1 = C = {a1, a2, a3}, one can obtain
sigD

C1
ða1Þ ¼ 0; sigD

C1
ða2Þ ¼ 335

2000 ; sigD
C1
ða3Þ ¼ 9

200 ; thus c0 = a1,
C2 = C1 � {a1} = {a2, a3}, P2 = {C1, C2}.

For C2, one can obtain sigD
C2
ða2Þ ¼ 335

2000 ; sigD
C2
ða3Þ ¼ 565

2000. Since
sigD

C2
ða2Þ < sigD

C2
ða3Þ, thus C3 = C2 � {a2} = {a3}, P3 = {C1, C2,

C3} = {{a1, a2, a3}, {a2, a3}, {a3}} and P = P3.
Let f = [0.5,0.6]. From the definition of the backward approxi-

mation, one can obtain
laprP ðF1Þðx1Þ ¼ ½0:45;0:7�; laprP ðF1Þðx2Þ ¼ ½0:05;0:1�; laprP ðF1Þðx3Þ ¼ ½0:45;0:7�; laprP ðF1Þðx4Þ ¼ ½0:15;0:2�;

laprP ðF1Þðx5Þ ¼ ½0:05;0:1�; laprP ðF1Þðx6Þ ¼ ½0:1;0:2�; laprP ðF1Þðx7Þ ¼ ½0:05;0:1�; laprPðF1Þðx8Þ ¼ ½0:05;0:1�;

laprP ðF1Þðx9Þ ¼ ½0:45;0:7�; laprP ðF1Þðx10Þ ¼ ½0:05; 0:1�;

MPF1 ¼ ;;
laprP ðF2Þðx1Þ ¼ ½0:15;0:2�; laprP ðF2Þðx2Þ ¼ ½0:5 _ 0:5 _ 0:5;0:7 _ 0:7 _ 0:7�; laprP ðF2Þðx3Þ ¼ ½0:15;0:2�;

laprP ðF2Þðx4Þ ¼ ½0:5 _ 0:5;0:8 _ 0:8�; laprP ðF2Þðx5Þ ¼ ½0:2;0:3�; laprP ðF2Þðx6Þ ¼ ½0:35;0:5�; laprP ðF2Þðx7Þ ¼ ½0:5 _ 0:5 _ 0:5;0:7 _ 0:7 _ 0:7�;

laprP ðF2Þðx8Þ ¼ ½0:2;0:3�; laprPðF2Þðx9Þ ¼ ½0:15; 0:2�; laprPðF2Þðx10Þ ¼ ½0:5 _ 0:5 _ 0:5;0:7 _ 0:7 _ 0:7�;

MPF2 ¼ ffx2; x7; x10g; fx4gg:
laprP ðF3Þðx1Þ ¼ ½0:1;0:2�; laprPðF3Þðx2Þ ¼ ½0:05;0:2�; laprP ðF3Þðx3Þ ¼ ½0:1;0:2�; laprP ðF3Þðx4Þ ¼ ½0:2;0:3�;

laprP ðF3Þðx5Þ ¼ ½0:5 _ 0:5 _ 0:5;0:6 _ 0:6 _ 0:6�; laprP ðF3Þðx6Þ ¼ ½1:0 _ 1:0 _ 1:0;1:0 _ 1:0 _ 1:0�; laprP ðF3Þðx7Þ ¼ ½0:05;0:2�;

laprP ðF3Þðx8Þ ¼ ½0:5 _ 0:5 _ 0:5;0:6 _ 0:6 _ 0:6�; laprP ðF3Þðx9Þ ¼ ½0:1;0:2�; laprP ðF3Þðx10Þ ¼ ½0:05;0:2�;

MPF3 ¼ ffx5; x8g; fx6gg:
Moreover, for x 2 {x1, x3, x9}, laprP ðF�1 Þ
ðxÞþ

laprP ðFþ1 Þ
ðxÞ ¼ 0:45þ 0:7 P f� þ fþ ¼ 0:5þ 0:6,

laprP ðFþ1 Þ
ðxÞ � laprP ðF�1 Þ

ðxÞ ¼ 0:7� 0:45 P fþ � f� ¼ 0:6� 0:5 and
½x1�P R MPFk

; ½x3�P R MPFk
; ½x9�P R MPFk

, k = 1, 2, 3. Therefore
T = {x1,x3,x9}. Decision rules can be obtained as follows:

Rule ¼ fr10 : desfa3gðx2; x7; x10Þ ! desF2 ðxÞ; namely: if a3 is 1 Then
d is F2 and laprP ðF2ÞðxÞP ½0:5;0:7�; r20 : desfa2 ;a3gðx4Þ ! desF2 ðxÞ;
namely: If a2 is 2 anda3 is 3 Then d is F2 and
laprP ðF2ÞðxÞP ½0:5;0:8�; r03 : desfa3gðx5; x8Þ ! desF3 ðxÞ, namely: If a3

is 4 Then d is F3 and laprP ðF3ÞðxÞP ½0:5;0:6�;
r04 : desfa3gðx6Þ ! desF3 ðxÞ; namely: if a3 is 2 Then d is F3 and
laprP ðF3ÞðxÞ ¼ ½1:0;1:0�;r50 : desfa1 ;a2 ;a3gðx1; x3; x9Þ ! desF1 ðxÞ, namely:

If a1 is 2, a2 is 1 and a3 is 3. Then d is F1 and
laprP ðF1ÞðxÞP ½0:45;0:7�g.

By comparing r01, r02, r03, r04 and r05 with r1, r4, r2, r3 and r5 in
Section 4.3 respectively, one can easy see that the decision rules
extracted from MRBFA and MRBBA are the same.

6. Experiments analysis

6.1. Comparison with the rule extraction method in Gong et al. (2008)

Methods of fuzzy rule extraction based on rough set theory are
rarely reported in interval-valued fuzzy information systems. A
representative work is found in Gong et al. (2008). The essential
of the method in Gong et al. (2008) is to classify each object to cor-
responding decision classes according to its maximal membership
denoted by a fuzzy interval. However, suppose that the condition
attribute set includes m attributes, then the antecedent of the rule
must include m conditions, overfull conditions may reduce the
classification accuracy and the applicability of the rules. Moreover,
two memberships denoted by fuzzy intervals are incomparable
when one interval is nested in the other, then decision rules cannot
be generated in this case.

In order to compare MRBFA and MRBBA with the method in
Gong et al. (2008), the dataset given in Table 2 is reused. Using
the knowledge discovery method in Gong et al. (2008), the decision
rules are generated as follows (Gong et al., 2008):

Rule 1: IF (a1,a2,a3) = (2, 1, 3) THEN d is F1, the precision of the
decision is [0.45,0.7];
Rule 2: IF (a1,a2,a3) = (3,2,1) THEN d is F2, the precision of the
decision is [0.5,0.7];
Rule 3: IF (a1,a2,a3) = (2,2,3) THEN d is F2, the precision of the
decision is [0.5,0.8];
Rule 4: IF (a1,a2,a3) = (1,1,4) THEN d is F3, the precision of the
decision is [0.5,0.6];
Rule 5: IF (a1,a2,a3) = (1,1,2) THEN d is F3, the precision of the
decision is [1.0,1.0].



Y. Cheng, D. Miao / Expert Systems with Applications 38 (2011) 12249–12261 12259
By comparing the above rules with the ones in Sections 4.3 and
5.3, one can easy see that Rule 1 is the same as Rule r5 and r05, Rule 2
corresponds to r1 and r01, Rule 3 corresponds to r4 and r02, Rule 4 cor-
responds to r2 and r03, Rule 5 corresponds to r3 and r04. However,
conditions satisfied by Rules 2, 3, 4, 5 are far more than the ones
of rules generated by MRBFA and MRBBA. Therefore, rules gener-
ated by MRBFA and MRBBA possess more broad applicability.
Moreover, for MRBFA and MRBBA, decision rules can be generated
when an interval is nested in the other due to Step (5) in MRBFA
and Step (10) in MRBBA.
6.2. A practical application

In this section, rules are extracted using MRBFA and MRBBA,
respectively. Considering that MRBFA, MRBBA mainly deal with
the information systems with both crisp condition and interval-
valued fuzzy decision attributes, but there is almost no any dataset
satisfies the above conditions in existing public database, we need
to perform some pretreatments to existing public dataset. We se-
lect the dataset ‘‘housing’’ from UCI Machine Learning database
(http://www.ics.uci.edu/�mlearn/MLRepository.html) to imple-
ment our proposed methods and extract fuzzy rules (experiment
is performed on a 400 MHz Pentium Server with 512 MB of mem-
ory, running windows xp. Algorithms were coded in Matlab7.1).
There are 12 continuous condition attributes, 1 binary-valued con-
dition attribute ‘‘CHAS’’ and a continuous class attribute ‘‘MEDV’’ in
this database. There is no missing attribute value. Pretreatments
include the discretization of condition attributes, the fuzzification
of decision attributes and the conversion of a fuzzy set to an inter-
val-valued fuzzy set.
Table 3
Classification accuracies of MRBFA, MRBBA and KD.

The number of objects in training set The number of objects in test set M

506 506 M
M
M
M
M
M
K

425 81 M
M
M
M
M
M
K

350 156 M
M
M
M
M
M
K

250 256 M
M
M
M
M
M
K

150 356 M
M
M
M
M
M
K

The discretization of condition attributes is implemented by
equal frequency scaler (Wang, 2001). A simple algorithm (Yuan &
Shaw, 1995) is used to generate a triangular membership function
defined as follows:

T1ðxÞ ¼
1; x 6 m1;

ðm2 � xÞ=ðm2 �m1Þ; m1 < x < m2;

0; m2 6 x;

8><
>:
TkðxÞ ¼
1; x P mk;

ðx�mk�1Þ=ðmk �mk�1Þ; mk�1 < x < mk;

0; x 6 mk�1;

8><
>:
TiðxÞ ¼

0; x P miþ1;

ðmiþ1 � xÞ=ðmiþ1 �miÞ; mi 6 x 6 miþ1;

ðx�mi�1Þ=ðmi �mi�1Þ; mi�1 < x < mi:

0; x 6 mi�1

8>>><
>>>:

:

The slopes of the triangular membership functions are selected
such that adjacent membership functions cross at the membership
value 0.5. In this case, the only parameter to be determined is the
set of kcenters M = {mi, i = 1,2, . . . ,k}. The centers mi can be calcu-
lated using Kohonen’s feature-maps algorithm (Kohonen, 1988).

Decision attributes have been fuzzified for the dataset
‘‘housing’’. A construction theorem is used to construct an inter-
val-valued fuzzy set from a fuzzy set (Liu, 2000). Then an inter-
val-valued fuzzy information system can be obtained. There are
506 objects, 13 discrete condition attributes and an interval-valued
fuzzy decision attribute that includes three interval-valued attri-
bute values, every attribute value is an interval-valued fuzzy set
ethod Training accuracy (%) Testing accuracy (%)

RBFA(g� = 0.5, g+ = 0.55) 0.65834 0.65834
RBFA(g� = 0.5, g+ = 0.52) 0.68415 0.68415
RBFA(g� = 0.5, g+ = 0.5) 0.73577 0.73577
RBBA(f� = 0.5, f+ = 0.55) 0.65333 0.65333
RBBA(f� = 0.5, f+ = 0.52) 0.67756 0.67756
RBBA(f� = 0.5, f+ = 0.5) 0.72369 0.72369

D 0.99290 0.99290

RBFA(g� = 0.5, g+ = 0.55) 0.69529 0.52383
RBFA(g� = 0.5, g+ = 0.52) 0.72647 0.58617
RBFA(g� = 0.5, g+ = 0.5) 0.75824 0.66852
RBBA(f� = 0.5, f+ = 0.55) 0.68934 0.52870
RBBA(f� = 0.5, f+ = 0.52) 0.71894 0.59852
RBBA(f� = 0.5, f+ = 0.5) 0.75647 0.67149

D 0.97754 0.34568

RBFA(g� = 0.5, g+ = 0.55) 0.69957 0.53923
RBFA(g� = 0.5, g+ = 0.52) 0.75571 0.62564
RBFA(g� = 0.5, g+ = 0.5) 0.81814 0.68564
RBBA(f� = 0.5, f+ = 0.55) 0.69637 0.53983
RBBA(f� = 0.5, f+ = 0.52) 0.75429 0.62282
RBBA(f� = 0.5, f+ = 0.5) 0.81286 0.69154

D 0.96882 0.33974

RBFA(g� = 0.5, g+ = 0.55) 0.70600 0.55438
RBFA(g� = 0.5, g+ = 0.52) 0.75800 0.62438
RBFA(g� = 0.5, g+ = 0.5) 0.82200 0.70609
RBBA(f� = 0.5, f+ = 0.55) 0.69300 0.55007
RBBA(f� = 0.5, f+ = 0.52) 0.75400 0.62688
RBBA(f� = 0.5, f+ = 0.5) 0.81643 0.70134

D 0.96800 0.29688

RBFA(g� = 0.5, g+ = 0.55) 0.78333 0.59157
RBFA(g� = 0.5, g+ = 0.52) 0.81333 0.65562
RBFA(g� = 0.5, g+ = 0.5) 0.87333 0.73124
RBBA(f� = 0.5, f+ = 0.55) 0.78311 0.59361
RBBA(f� = 0.5, f+ = 0.52) 0.80667 0.65932
RBBA(f� = 0.5, f+ = 0.5) 0.88903 0.74825

D 0.97333 0.22753

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
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Fig. 1. Testing accuracy. —h—: MRBFA(g� = 0.5, g + = 0.55); —h—: MRBFA
(g� = 0.5, g+ = 0.52); —⁄—: MRBFA(g� = 0.5, g+ = 0.5); —⁄—: MRBBA(n� = 0.5,
n+ = 0.55);—O—: MRBBA(n� = 0.5, n+ = 0.52); —O—: MRBBA(n� = 0.5, n+ = 0.5); —: KD.
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on the data set. Rule extraction on interval-valued fuzzy data is
then performed using the three methods: MRBFA and MRBBA,
the algorithms proposed in Gong et al. (2008) (denoted as KD).

The classification accuracy (including training accuracy and
testing accuracy) is used for the evaluation of the three algorithms.
The selected dataset is firstly divided into two parts: the training
set composed of some randomly chosen samples, and the test set
composed of the remainder. Table 3 enumerated part training accu-
racies and testing accuracies corresponding to different sizes of
data sets and different thresholds. Thresholds g and f can be con-
sidered as the parameters to control the granularity of fuzzy rules.
We take the values of g and f from [0.5,0.5] to [1.0,1.0] with Step
0.01. The classification accuracies vary with the thresholds. Gener-
ally, [0.5,0.5] � [0.5,0.7] is a candidate range for g and f, where
both training and testing accuracies obtain good classification
performance. Table 3 shows that two facts: (1) the classification
accuracies of MRBFA and MRBBA are almost equivalent; (2)the
training accuracies of KD are more than that of MRBFA and MRBBA,
however, the testing accuracies of KD are far less than that of
MRBFA and MRBBA. Such as, for the data set that includes 150
training samples and 356 test samples, the average classification
accuracy obtained for MRBFA (g� = 0.5, g+ = 0.5) are 87.333%
(training accuracy) and 73.124% (testing accuracy), for MRBBA
(f� = 0.5, f+ = 0.5) are 88.903% and 74.825%. For KD, the accuracy
is 97.333% using the training data, 22.753% for the test data. The
objective of learning is to extract rules that can be used to predict
the logical implication as accurate as possible when applied to
new examples, so testing accuracy is an important criterion to eval-
uate a rule extraction method. Though the rules obtained by KD
have better classification accuracies with reference to the training
data set, their generalization ability are rather low since perfect
match of condition attribute values is generally difficult. It can be
seen from Table 3 that the testing accuracies of KD are almost under
35% (only when the test set is the same as the training set, the
testing accuracy is 99.29%, which is equivalent to the training
accuracy), it’s unpractical in application. Taking one with another,
MRBFA and MRBBA outperforms KD. More intuitionistic compari-
sons can be found in Fig. 1.

7. Conclusions

This paper presents two fuzzy rule extraction methods for inter-
val-valued fuzzy information systems. The main advantages of the
methods cover four aspects: firstly, rule extraction is based on a
granulation order, so the adverse effects of attribute reduction
are excluded as much as possible; secondly, for MRBFA, computa-
tional consumption can be reduced effectively as the domain grad-
ually narrows; thirdly, the applicability of the extracted rules by
using MRBFA and MRBBA is more broader than the ones obtained
by KD; finally, rules can still be generated when one interval is
nested in the other. The examples explain the operation mecha-
nism of the rule extraction algorithms and the experiment results
show that the two algorithms are reasonable and effective.
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