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a b s t r a c t

In this study, a hierarchical electroencephalogram (EEG) classification system for epileptic seizure detec-
tion is proposed. The system includes the following three stages: (i) original EEG signals representation
by wavelet packet coefficients and feature extraction using the best basis-based wavelet packet entropy
method, (ii) cross-validation (CV) method together with k-Nearest Neighbor (k-NN) classifier used in the
training stage to hierarchical knowledge base (HKB) construction, and (iii) in the testing stage, computing
classification accuracy and rejection rate using the top-ranked discriminative rules from the HKB. The
data set is taken from a publicly available EEG database which aims to differentiate healthy subjects
and subjects suffering from epilepsy diseases. Experimental results show the efficiency of our proposed
system. The best classification accuracy is about 100% via 2-, 5-, and 10-fold cross-validation, which indi-
cates the proposed method has potential in designing a new intelligent EEG-based assistance diagnosis
system for early detection of the electroencephalographic changes.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Brain is one of the most vital organs of humans, controlling the
coordination of human muscles and nerves. Epilepsy, sometimes
referred to as a seizure disorder, is a brain disorder that involves
neuronal networks and is characterized predominantly by recur-
rent and unpredictable interruptions of normal brain function,
called epileptic seizures (Fisher et al., 2005). It was estimated that
approximately one in every 100 persons will experience a seizure
at some time in their life (Iasemidis et al., 2003). Although the
diagnosis of epilepsy is clinical, the scalp electroencephalogram
(EEG) is the most widely accepted test for the diagnosis of epilepsy
(Güler, Übeyli, & Güler, 2005; Güler & Übeyli, 2005; Polat & Günes�,
2007, 2008; Subasi, 2007). Careful analysis the EEG records can
provide valuable insight into the detection of epileptiform dis-
charges. Through the electroencephalographic records, developing
a detection system using computers has long been under study for
several years (Gabor & Seyal, 1992; Glover, Raghaven, Ktonas, &
Frost, 1989; Nigam & Graupe, 2004; Webber, Litt, Lesser, Fisher,
& Bankman, 1993). An ideal epileptic detection system is the one
that has 100% seizure detection rate along with 0% false positive
rate (i.e., the rate of mis-classified healthy volunteer).
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General pattern recognition approach on EEG signals for detec-
tion of electroencephalographic changes includes pre-processing,
feature extraction, feature selection/dimensionality reduction and
classification. A feature extraction is the determination of a feature
or a feature vector from a pattern vector (Cvetkovic, Übeyli, &
Cosic, 2008). Since the EEG is a time-varying and space-varying
nonstationary signal, this made both wavelet transform (WT) and
wavelet packet transform (WPT) excellent candidates for feature
extraction from such data. Many literatures have demonstrated
that WPT is one of the most promising methods to extract features
from the EEG signals (Adeli, Zhou, & Dadmehr, 2003; Ocak, 2009;
Yang, Yan, Yan, & Wu, 2006; Yildiz, Akin, Poyraz, & Kirbas, 2009).
The first challenge in this study about EEG signal processing is
how to choose features that best characterize the nonstationary
EEG signals. The best basis selection provides a means for choosing
the features which are best for classification based on Shannon
entropy. In this study, the best basis-based wavelet packet entropy
feature extraction algorithm was first proposed.

In real life, fast or real-time decision-making is more important
instead of getting global optimization in human cognition. The
mental processing based on prior knowledge or experience always
needs not complex computing. An interesting idea is that there are
many different decision-making levels on which one can choose
and utilize them to generate actions. Therefore, the second chal-
lenge is how to store the experiences or rules during learning or
training stage, and which level is sufficient for decision-making
in the testing stage. More recently, granular computing which
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Fig. 1. Scheme of the locations of surface electrodes according to the international
10–20 system. Names of the electrode positions are derived from their anatomical
locations (Andrzejak et al., 2001).
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recognizes and exploits the knowledge present in data at various
levels of resolution has become an emerging computing paradigm
of information processing (Lin, 2003; Yao, 2000; Yao & Yao, 2002).

Motivated by ideas from EEG signal processing and granular
computing theory, in this study, we propose a system to classifica-
tion of EEG signals. The proposed system has three stages. (1)
Original signals are represented by WPT, and then the best basis-
based wavelet packet entropy method was applied for feature
extraction. (2) In the training stage, cross-validation (CV) method
together with k-Nearest Neighbor (k-NN) classifier was used for
hierarchical knowledge base (HKB) construction. During each vali-
dation process, the obtained optimal k-values with the best classi-
fication accuracies as the discriminative rules were stored and
reorganized. (3) In the testing stage, to categorize a new sample
into either epileptic or normal class, k-NN classifier using discrim-
inative rules from HKB was used to calculate the similarity
between the new sample and the corresponding k training process
samples, respectively, and then uses the class labels of the k most
similar neighbors to predict the class of the new sample.

In order to trade off between classification reliability level and
classification performance to EEG signals, a threshold minimal con-
fidence level (MCL) was introduced. In this study, the reject option
in the testing stage was also been considered because by setting
the threshold MCL, only samples with a high confidence (i.e., great-
er than or equal to MCL) are indeed classified. In other words, those
samples outside the boundaries of the known classes or from the
ambiguity region between classes are rejected. Experiments were
carried out upon a publicly available EEG database. The objective
was to discriminate recordings from healthy volunteers with eyes
open and epilepsy patients during epileptic seizures. Our experi-
mental results on the proposed method could able to achieve sig-
nificant improvements.

The organization of the paper is as follows. In Section 2, we
briefly describe the data set of the EEG signals used in our study,
and then we explain the proposed method with subsections. In
Section 3, experimental results and discussion are given. Finally,
we conclude the study in Section 4.
0 5 10 15 20 25
−200

−100

0

100

200

A
m

pl
itu

de
 (

µV
)

Exemplary EEG time series from Set A

0 5 10 15 20 25
−2000

−1000

0

1000

2000

Time (sec)

A
m

pl
itu

de
 (

µV
)

Exemplary EEG time series from Set E

Fig. 2. Examples of two different sets of EEG signals taken from different subjects.
2. Materials and methods

2.1. EEG data description

A publicly available EEG database (EEG time series) was exper-
imented with in this study. This session will give a short descrip-
tion and refer to Andrzejak et al. (2001) for further details. The
complete data set consists of five sets (denoted A-E) each contain-
ing 100 single channel EEG segments of 23.6 s duration. These seg-
ments were selected and cut out from continuous multi-channel
EEG recordings after visual inspection for artifacts, e.g., due to
muscle activity or eye movements. Sets A and B consisted of seg-
ments taken from surface EEG recordings that were carried out
on five healthy volunteers using a standardized electrode place-
ment scheme (see Fig. 1). Volunteers were relaxed in an awake
state with eyes open (A) and eyes closed (B), respectively. Sets C,
D, and E originated from EEG archive of presurgical diagnosis.
The EEGs from five patients were selected, all of whom had
achieved complete seizure control after resection of one of the hip-
pocampal formations, which was therefore correctly diagnosed to
be the epileptogenic zone. Segments in set D were recorded from
within the epileptogenic zone, and those in set C from the hippo-
campal formation of the opposite hemisphere of the brain. While
sets C and D contained only activity measured during seizure free
intervals, set E only contained seizure activity. All EEG signals were
recorded with the same 128-channel amplifier system, using an
average common reference. The data were digitized at 173.61 sam-
ples per second using 12 bit resolution. Band-pass filter settings
were 0.53–40 Hz (12 dB/oct) (Andrzejak et al., 2001). In this study,
we used two dataset (A and E) of the complete dataset. Typical
EEGs from Set A and E are depicted in Fig. 2.

2.2. The proposed method

2.2.1. WPT representation of EEG signals
The wavelet packet transform (WPT) can be viewed as a gener-

alization of the classical wavelet transform, which provides a mul-
ti-resolution and time–frequency analysis for non-stationary EEG
data. The wavelet packet transform generates the full decomposi-
tion tree, as depicted in Fig. 3. A low (L) and high (H) pass filter
is repeatedly applied to the function f, followed by decimation by
2, to produce a complete subband tree decomposition to some de-
sired depth. The low- and high-pass filters are generated using
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Fig. 3. Illustration of the wavelet packet decomposition. The wavelet transform
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use of an additive cost function to determine the optimal basis for data
compression. An example of a possible best basis is shown using white ovals.
(Figure adapted from Jones et al., 2002).
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orthogonal basis functions (Jones, Begleiter, Porjesz, Wang, &
Chorlian, 2002). Because WPT not only decomposes the approxi-
mations of the signal but also details, it holds the important
information located in higher frequency components than WT in
certain applications. Therefore, in this study the first representa-
tion studied is composed of the WPT coefficients.

A wavelet packet is represented as a function (Shinde & Hou,
2004):

wi
j;kðtÞ ¼ 2�j=2wið2�jt � kÞ; ð1Þ

where i is the modulation parameter, j is the dilation parameter and
k is the translation parameter. i = 1,2, . . . , jn, and n is the level of
decomposition in wavelet packet tree.

The wavelet wi is obtained by the following recursive
relationships:

w2i ¼ 1ffiffiffi
2
p

X1
�1

hðkÞwi t
2
� k

� �
; ð2Þ
w2iþ1 ¼ 1ffiffiffi
2
p

X1
�1

gðkÞwi t
2
� k

� �
: ð3Þ

Here wi is called as a mother wavelet and the discrete filters h(k)
and g(k) are quadrature mirror filters associated with the scaling
function and the mother wavelet function (Daubechies, 1992).

The wavelet packet coefficients ci
j;k corresponding to the signal

f(t) can be obtained as,

ci
j;k ¼

Z 1

�1
f ðtÞwi

j;kðtÞdt ð4Þ

provided the wavelet coefficients satisfy the orthogonality condi-
tion. The wavelet packet component of the signal at a particular
node can be obtained as

f i
j ðtÞ ¼

X1
k¼�1

ci
j;kw

i
j;kðtÞdt: ð5Þ

The extracted wavelet coefficients provide a compact represen-
tation that shows the energy distribution of the signal in time and
frequency. In order to further reduce the dimensionality of the ex-
tracted feature vectors, statistics over the set of the wavelet coeffi-
cients was used (Güler & Übeyli, 2005; Tzanetakis, Essl, & Cook,
2001). The following statistical features were used to represent
the time–frequency distribution of the EEG signals in this study:
� Maximum of the absolute values of the coefficients in each sub-
band.
� Minimum of the absolute values of the coefficients in each sub-

band.
� Mean of the absolute values of the coefficients in each sub-

band.
� Standard deviation of the coefficients in each subband.

2.2.2. Wavelet packet entropy and best basis selection
The number of decompositions from a signal in different ways

may be very large. An exhaustive search for the optimal decompo-
sition is not feasible, given the large number of possible binary sub-
trees decompositions. Therefore, it is necessary to find an optimal
decomposition by using a convenient algorithm. The best basis
selection provides a means for choosing the features which are best
for classification based on various criteria. The selection process is
based on either (1) best representation of a given class of signals,
or (2) best distinction between classes (Ubeyli & Guler, 2007). En-
tropy is a common method in many fields, especially in signal pro-
cessing applications. Commonly, there are several useful entropy
types such as Shannon, log energy, sure, threshold, etc. (Coifman
& Wickerhauser, 1992) for calculating the lowest cost basis. Here
only one of the most attractive cost functions Shannon entropy
(Shannon, 1948) was employed which is a measure of signal com-
plexity to wavelet coefficients generated by WPT where larger
entropy values represent higher process uncertainty and therefore
higher complexity. In Rosso et al. (2001), wavelet entropy can pro-
vide useful information about the underlying dynamical process
associated with the signal. The entropy ‘E’ must be an additive
information cost function such that E(0) = 0 and

EðsÞ ¼
X

i

EðsiÞ: ð6Þ

The entropy for the observed signal in lp norm with p P 1 can be ex-
pressed as

EðsiÞ ¼ jsijp; ð7Þ

and

EðsÞ ¼
X

i

jsijp: ð8Þ

The Shannon entropy is defined as

EðsÞ ¼ �
X

i

s2
i log s2

i

� �
; ð9Þ

where si represents coefficients of signal s in an orthonormal basis.
If the entropy value is greater than one, the component has a poten-
tial to reveal more information about the signal and it needs to be
decomposed further in order to obtain simple frequency component
of the signal (Ekici, Yildirim, & Poyraz, 2008; Shinde & Hou, 2004).
By using the entropy, it gave a useful criterion for comparing and
selection the best basis.

2.2.3. The procedure of feature extraction
Given the EEG signals, the best basis-based wavelet packet en-

tropy feature extraction is obtained by performing the following
steps:

(a) Select a wavelet function W and specify the decomposition
level L.

(b) Calculate the sample mean SM.
(c) Decompose SM at the specified level with the selected wave-

let function, and return a wavelet packet tree T. Let Bl,k be the
set of WPT basis vector, 0 6 l < L, 1 6 k 6 2L � 1.

(d) Calculate energies El,k for all subbands using Eq. (9).
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(e) Set the initial basis B ¼ fBL�1;1;BL�1;2; . . . ;Bl;k; . . . ; BL�1;2L�1g
related to the subbands at the bottom level.

(f) Compare the entropy of a parent node El,k with the sum of
the entropy of two child nodes (El+1,2k�1 + El+1,2k). If El,k 6

(El+1,2k�1 + El+1,2k), then replace Bl+1,2k�1 and Bl+1,2k by Bl,k in
B; else set El,k = (El+1,2k�1 + El+1,2k), i.e., assign the sum of the
children’s entropy to the parent node.

(g) Repeat (f) for the next higher level until the root is reached.
(h) Select a sample from training set.
(i) Decompose the sample to L using W.
(j) Calculate wavelet coefficients in the corresponding best

basis B.
(k) Calculate Max, Min, Mean and Standard deviation of the

wavelet coefficients to form a 4-dimension feature.
(l) Repeat steps (h)–(k) for all samples.

The wavelet packet decomposition of the EEG signals was
implemented by using the MATLAB software package (MATLAB
version 7.0 with WPT toolbox). Using the above procedure, 4-
dimension features are extracted from EEG signals.

2.2.4. k-NN classifier
In pattern recognition community, the k-Nearest Neighbor (k-

NN) classifier is a popular method owing to its simplicity, inter-
pretability and good performance (Cunningham & Delany, 2007).
This method is a supervised learning method which is to find the
set of k nearest neighbors in the training set to a test sample x0

and then classifier x0 as the most frequent class among the k neigh-
bors. In the present study, k-NN classifier is used to categorize each
new sample into either healthy subjects or subjects suffering from
epilepsy diseases class.

2.2.5. Hierarchical classification system
Using the same features for classification of decision-making in

different surroundings may result in different results. For example,
imagine that you are a teacher evaluating a student. Test subject
achievement of each student may be one of the important features
to put forward the accomplishment evaluation. But in reality, only
this information is insufficient because other students’ studying
status, i.e. subject achievements, are indispensable. It means there
must have other information as the background references. There-
fore, a distinguishing object must have a set of features and the
corresponding background reference information. Moreover, it
should be note that different feature set and the corresponding
background reference information would result in different confi-
dence for decision-making. Based on the above observation, we
shall give definitions to characterize.

Definition 1 (Discriminative rule). A discriminative rule DR is a
3-tuple defined as follows:

DR ¼ ðF;K;RÞ; ð10Þ

where F is the set of features, K is the number of nearest neighbors
in a k-NN classifier which corresponding to the background refer-
ence, and R represents the degree of confidence for classification
under F and K, 0 6 R 6 1.
Average Classification Results: 
Healthy or Epileptic seizure

Classification 
Accuracy Rejection Rate

Fig. 4. The flow chart of the proposed system.
Definition 2 (Hierarchical knowledge base). Let DR = (F,K,R) be a
discriminative rule. A hierarchical knowledge base HKB is defined
as a sequence:

HKB ¼ h. . . ;DRi;DRj; . . .i; ð11Þ

such that for 1 6 i, j 6 n, Acc(DRi) P Acc(DRj), where Acc(DR) indi-
cates the classification accuracy by using DR. n is the number of dis-
criminative rules at HKB. From the above definitions, we can see
that a hierarchical knowledge base is composed of all discriminative
rules reorganized on different classification accuracy levels.

There is another phenomena linked to training stage, in practice
not all samples in a training set are useful for classifiers; maybe
some are noisy or redundant. Therefore, it is convenient to discard
irrelevant instances from training set by setting R which represents
degree of confidence for classification in Definition 1. This process
is similar to prototype selection (Sanchez, Pla, & Ferri, 1997).
Through this process, the size of training set is cut down which
could be useful for reducing the time consuming in the training
stage, particularly for large datasets. It is known that people
making decision in real life not always base on full confidence,
especially in some emergency situations or given imperfect
information. In order to describe quantitatively the degree of
confidence, we introduce a concept: minimal confidence level
(MCL). It is a threshold (decimal between 0 and 1). Since the
feature information from training samples rarely meets the
standard of perfection and complete, what we need to do is to
ignore the imperfections, that is, to continue training operation as
if the information were sound and complete. This implies that the
decision-making from the training set might be inaccurate,
namely, few 100% confidence for classification. However, if the
confidence level is too low or below a certain threshold, the result
can be discarded. Therefore, setting the value of MCL needs more
careful. Obviously, the higher MCL, the stricter requirements with
the correct result is, and vice versa.

Based on above study, we proposed a hierarchical classification
system illustrated in Fig. 4. The system consists of three main
parts: (i) extract features by using the best basis-based wavelet
packet entropy feature extraction, (ii) during the training stage, the
discriminative rules and the corresponding background reference
so-called k-domain (the optimal value of k) are extracted and
reorganized (sorting all discriminative rules by R in descending
order) using cross-validation for constructing a hierarchical
knowledge base (HKB), (iii) in the testing stage, by selecting the
top-ranked discriminative rules from the HKB according to the up-
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bottom search strategy, compute classification accuracy for those
recognizable samples, and rejection rate for those unrecognizable
samples. This process repeated until the classification accuracy is
greater than or equal to minimal confidence level (MCL). Finally,
the Training and Test part repeat in Fig. 4, and the average
classification results are used to evaluate the performance of the
proposed system.
30
Wrongly classified
Rejected
3. The experimental results

In this section, we present the performance measure methods
used to evaluate the proposed method. Finally, we give the exper-
imental results and discuss our observations.

3.1. Performance measure

Two performance measures are used for the evaluation of EEG
signals classification. One is commonly used average classification
accuracy, which is defined as

Acc ¼ Ncorrect

Ntotal

� �
; ð12Þ

where Ncorrect is the number of correctly classified samples for those
recognizable samples, and Ntotal is the number of all testing samples.

In the testing stage, reject rate for unrecognizable samples are
also used as the other performance measure because the new sam-
ple may belong to one of the classes but is hard to classify with a
minimal confidence level MCL.

Rr ¼ Nunrecogniable

Ntotal

� �
; ð13Þ

where Nunrecogniable is the number of unrecognizable samples.

3.2. Results and discussion

All the experiments of this section were done over 100 EEG time
series of 4096 samples for each class from Set A and E mentioned in
Section 2.1. There were two diagnosis classes: healthy and a pa-
tient who is subject to possible epileptic seizure. Classification re-
sults of the system were reported by using m-fold cross-validation
method. That is to say, the data from each set was randomly parti-
tioned into m complementary subsets, one of the subsets was used
as the validation set and the other nine subsets were put together
to form a training sets. Then in order to reduce variability, this pro-
cedure was repeated m times and the average classification results
were computed. In our experiment study, all the obtained results
were presented by using 2-, 5- and 10-fold cross-validation. The
class distribution of the samples in the training set and testing
set is summarized in Table 1.

In this present work, five wavelet functions (represented in the
MATLAB Wavelet toolbox) in common use, such as Daubechies,
Table 1
Class distribution of the samples in the training and test data sets.

Class m-fold cross-validation Training set Testing set Total

Epileptic 800 800 1600
Normal m = 2 800 800 1600
Total 1600 1600 3200

Epileptic 1280 320 1600
Normal m = 5 1280 320 1600
Total 2560 640 3200

Epileptic 1440 160 1600
Normal m = 10 1440 160 1600
Total 2880 320 3200
Coiflets, Symlets, Discrete Meyer Wavelet, Biorthogonal and its re-
verse version, were examined and compared with decomposition
level of 3. Our experiments showed that: (1) in Daubechies family
of wavelets, the Db1 type of wavelet provided the best classifica-
tion results; (2) Coiflet with order 4 (coif4) and the Symlet with or-
der 7 (sym7) showed best results among the Coiflet and Symlet
families of orthogonal wavelets, respectively; (3) in case of bior-
thogonal types of wavelets, bior1.1 and bior 2.6 provided best com-
pression results where as in case of reverse type of biorthogonal
wavelets rbio3.1 provided better compression results; (4) Dmey
wavelet of Discrete Meyer was also examined. In order to investi-
gate the effect of these wavelets, tests were carried out and the re-
sults including number of wrongly classified and rejected for
different wavelet by using 2-fold cross-validation which are shown
in Fig. 5. One can see that the dmey wavelet offers lower wrongly
classified and rejected than the others, and the coif4 is marginally
higher than the dmey. Hence, the dmey wavelet was chosen for
this application.

From Tables 2–4, the number of correctly classified, wrongly
classified and rejected were tested by varying the MCL from 0 to
1 with 2-, 5- and 10-fold cross-validation, respectively. We can
see that the best result is 100% correctly classified with 0 rejected
samples. As expected, the number of rejected samples reaches its
maximum value when MCL equals to 1. The possible explanation
is that the confidence level is the highest in this point in which
only samples with the highest probability of being correctly classi-
fied are indeed classified (i.e., it prefers to reject more samples
rather than classify them). What’s more, the peak values of the
number of correctly classified appear at the middle region instead
of both ends. In Table 5, the average performance was achieved by
using 2-, 5-, and 10-fold cross-validation, respectively. It can be
seen that 10-fold cross-validation achieves the best performance.
The reason for this could be there are more training samples in this
test. However, the difference is small and the average accuracy is
above 99% which demonstrated the generalization ability of our
method. Besides, it can be seen that, unlike other classification sys-
tems, the proposed system not only provides the accuracy of the
classifier, but also the corresponding degree of confidence.

Finally, we have compared our results with previous results re-
ported by earlier methods. Table 6 gives the classification accura-
cies of our method and previous methods. As we can see from
these results, our method obtained better classification accuracy.

It should be noted that we chose k-Nearest Neighbor (k-NN) as
classifier in this study. One of the important considerations is that
k is a variant of k-NN classifier which can be used to represent the
background reference simply for each cross-validation procedure.
Moreover, compared to other classifier methods such as Bayesian
classifier, k-NN does not rely upon prior probability, and it is
0
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db1 coif4 sym7 demy bior1.1 bior2.6 rbio3.1

Fig. 5. The number of wrongly classified and rejected obtained for different wavelet
when the EEG signals were classified using the proposed method.



Table 2
Classification of test samples by 2-fold cross-validation for the different MCL.

MCL 2-fold cross-validation

Total samples Correctly classified Wrongly classified Rejected

0 1600 1595 5 0
0.1 1600 1595 5 0
0.2 1600 1600 0 0
0.3 1600 1593 7 0
0.4 1600 1595 5 0
0.5 1600 1598 2 0
0.6 1600 1593 7 1
0.7 1600 1597 3 0
0.8 1600 1600 0 0
0.9 1600 1590 10 9
1 1600 1528 72 71

Table 3
Classification of test samples by 5-fold cross-validation for the different MCL.

MCL 5-fold cross-validation

Total samples Correctly classified Wrongly classified Rejected

0 640 638 2 0
0.1 640 638 2 0
0.2 640 637 3 0
0.3 640 640 0 0
0.4 640 639 1 0
0.5 640 639 1 0
0.6 640 639 1 0
0.7 640 637 3 0
0.8 640 639 1 0
0.9 640 640 0 0
1 640 608 32 31

Table 4
Classification of test samples by 10-fold cross-validation for the different MCL.

MCL 10-fold cross-validation

Total samples Correctly classified Wrongly classified Rejected

0 320 319 1 0
0.1 320 318 2 0
0.2 320 318 2 0
0.3 320 319 1 0
0.4 320 320 0 0
0.5 320 319 1 0
0.6 320 319 1 0
0.7 320 319 1 0
0.8 320 319 1 0
0.9 320 319 1 0
1 320 307 13 12

Table 5
The obtained average classification accuracy and the corresponding reject rate for
classification of EEG signals with m-fold cross-validation.

Measures m-fold cross-validation

m = 2 m = 5 m = 10

Accuracy (%) 99.355 99.420 99.449
Reject rate (%) 0.469 0.457 0.381

Table 6
Our method’s classification accuracy for classification of EEG signals with classifica-
tion accuracies obtained by other methods.

Author (Year) Method Acc (%)

Güler et al. (2005) Recurrent neural networks 96.79
Subasi (2007) Wavelet-ME 95
Subasi (2007) Wavelet-MLPNN 93.6
Güler and Übeyli (2005) Wavelet-ANFIS 98.68
Polat and Günes� (2007) FFT-decision tree classifier (10 x FC) 98.72
Polat et al. (2008) AIRS-PCA-FFT 100
Our study Proposed system based on HKB 99 � 100
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computationally efficient. As for the issue of poor run-time perfor-
mance when need to determine value of parameter k (number of
nearest neighbors), if the training set is large, is not such a problem
these days with the computational power that is available. In this
paper, we varied k-value from 1 to 10 for reducing the computation
cost. For another parameter similarity metric, Euclidean distance
was used to measure the similarity between two objects.
The introduced parameter MCL gives a flexible implementation
of the discriminative rule selecting from HKB for classification, and
it also provides a measure of the confidence of the classification,
especially when this classification is used in critical health applica-
tions such as epileptic detection. However, there is another open
question that is how to choose the optimal MCL, our consideration
is that it relies on the actual applications data. In general, our
observation is the peak values of the best accuracy appear at the
middle region instead of both ends. It means that not the lower
or higher of MCL, the better the accuracy is.
4. Conclusion

In this paper, we implemented the best basis-based wavelet
packet entropy feature extraction method in the training stage to
acquire fewer feature spaces of EEG signals, and in combination
with the cross-validation, a hierarchical knowledge base (HKB)
was constructed. In the testing stage, the discriminative rules from
HKB were chose for final classification according to minimal con-
ference level (MCL). The proposed method was successfully applied
to EEG signals for the epileptic detection. The results including
classification accuracy and reject rate showed that the proposed
system can effectively detect possible epileptic seizure patients
from the healthy. The average classification performance was gen-
erally superior to or near to some literatures. Especially, using
cross-validation the best accuracy can achieve 100%. As we have
known, the diagnosis of epilepsy by experts’ complete visual anal-
ysis is a tedious and costly approach. Our proposed system using
EEG can provide an important assistant to physicians, thus to make
their decisions on their patients. Future work will consider other
more exotic classifiers such as support vector machines, neural
networks or other hybrid pattern classifiers.
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