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It is di±cult but crucial for minutiae extraction and pseudo minutiae deletion of low quality

¯ngerprint images in auto ¯ngerprint identi¯cation systems. Traditional methods based on

thinning images or gray-level images are, however, susceptible to noise. Reference 14 indicated
that principal curves based ¯ngerprint minutiae extraction was feasible to overcome the

drawback, but the extended polygonal line (EPL) principal curves algorithm used in the paper

extracted the principal curves ine®ectively. As the ¯ngerprint data sets are usually large, the

original EPL principal curves algorithm is time-consuming. Meanwhile, scattered ¯ngerprint
data lead to the deviation of ¯ngerprint skeleton. In this paper, the algorithm is modi¯ed, and a

¯ngerprint minutiae extraction and pseudo minutiae detection method based on principal

curves is proposed. Experimental results show that the modi¯ed EPL principal curves algorithm
outperforms the original EPL algorithm both in e±ciency and quality, and the proposed min-

utiae extraction method outperforms the methods proposed by Miao under noise conditions.

Keywords : Principal curves; skeletonization; ¯ngerprint minutiae extraction; pseudo minutiae

detection.

1. Introduction

The uniqueness of ¯ngerprints is determined by the characteristics and the re-

lationships of local ridges, which are also called minutiae.6 Minutiae are local
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discontinuities in terms of ridge endings and bifurcations of ridge °ow patterns that

constitute a ¯ngerprint. The ridge ending is de¯ned as the ridge point at which a

ridge terminates, while the ridge bifurcation is de¯ned as a point at which a single

ridge splits into two. These two types of minutiae have been considered by the

Federal Bureau of Investigation for the purpose of identi¯cation.22 The main task of

the ¯ngerprint minutiae extraction algorithm is to identify the quantity, type, pos-

ition and direction of the minutiae. In a traditional automatic ¯ngerprint identi¯-

cation system, ¯ngerprint minutiae are mainly extracted based on thinning images or

gray-level images.5,10,13,15,17,19,21,23 However, the thinning images and gray-level

images are a set of pixels. While looking at the image of a ¯ngerprint, it is often

regarded as a collection of curves instead of a set of pixels. Furthermore, traditional

methods based on thinning images or gray-level images are sensitive to noise pixels.

Therefore, we try to ¯gure out a method to depict ¯ngerprint images with a col-

lection of curves rather than a set of pixels. In the paper, we employ principal curves

to describe the structural information of ¯ngerprint, since they can re°ect the gen-

uine structure of a data set.20,21,26 Currently, considerable work has been reported

concerning the applications of principal curves.7,20,28 The de¯nition of principal

curves is provided by Hastie and Stuetzle as a set of self-consistent smooth curves

which pass through the \middle" of a multidimensional probability distribution or

data cloud.4,18,25 Considering a ¯ngerprint as a data cloud, a set of principal curves

can be used to extract the skeleton of the ¯ngerprint with the following advantages:

(1) Since principal curves are self-consistent smooth curves, they can be employed

to form a ¯ngerprint skeleton from a set of pixels, and the skeleton can describe

the ¯ngerprint information more accurately. For example, the endings and

directions of the skeleton can be used to identify the pseudo minutiae.

(2) Some useful information, such as the topology, etc., can be perceived from

principal curves. With the information, the ¯ngerprint minutiae and veins can

be extracted easily.

(3) Principal curves contain the global ¯ngerprint information, such as the infor-

mation of adjacent principal curves, involving direction, length, location, etc.,

which can bene¯t for ¯ngerprint feature extracting and matching.

Although our previous work indicated that principal curves based ¯ngerprint

minutiae was feasible,14 the original principal curves algorithm proposed by Kegl 8,9

cannot extract the ¯ngerprint skeleton e®ectively. Since a ¯ngerprint dataset is

usually large, the original principal curves algorithm is time-consuming. At the same

time, scattered ¯ngerprint data cause the deviation of ¯ngerprint skeleton. In order

to address the two problems, the penalty function, ¯tting-smoothing step and pro-

jection step of the original algorithm are improved. Furthermore, a feature extrac-

tion algorithm based on modi¯ed principal curves is proposed. Experimental results

demonstrate that the modi¯ed EPL principal curve algorithm is much more e±cient.

The obtained ¯ngerprint skeleton is more accurate than the original one. The feature
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extraction algorithm based on modi¯ed principal curves shows better performances

than the method proposed by Miao14 and the traditional algorithms based on

thinning and gray-level images.

The rest of the paper is organized as follows. In Sec. 2, the modi¯ed EPL principal

curve algorithm is introduced, and a comparison between the modi¯ed algorithm and

the original one is also given. In Sec. 3, the approach of minutiae extraction and

pseudo minutiae elimination is provided in detail. In Sec. 4, the experimental results

and analysis are presented. Lastly, in Sec. 5, the main conclusions are covered.

2. De¯nition of Principal Curves and Modi¯ed
EPL Principal Curve Algorithm

2.1. De¯nition of principal curves

Hastie and Stuetzle de¯ned a principal curve, and emphasized its self-consistency

property (property 3) as follows.4,25

De¯nition 1. The smooth curve fðsÞ is a principal curve if and only if:

(1) fðsÞ does not intersect itself,
(2) fðsÞ has ¯nite length inside any bounded subset of Rd,

(3) fðsÞ is self-consistent, i.e. fðsÞ ¼ E½XjsfðXÞ ¼ s�, and

sfðXÞ ¼ sup s : jjX � fðsÞjj ¼ inf
�
jjY � fð�Þjj

n o
ð1Þ

The de¯nition indicates that any point of a principal curve is the conditional

expectation of those points that project to this point, and a principal curve satis¯es

the property of self-consistency. The theoretical foundation of a principal curve

is a low-dimensional nonlinear manifold embedded in a high-dimensional space.25

Principal curves are a nonlinear generalization of principal component analysis.

Figure 1 shows a ¯rst principal component line and a principal curve.8 Compared
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Fig. 1. (a) First principal components, (b) principal curves.
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with corresponding ¯rst principal component, two obvious advantages of a principal

curve can be observed. Firstly, a principal curve can keep more information of data;

and secondly, it can describe the outline of primitive information better. However,

Hastie and Stuetzle's principal curves cannot depict ¯ngerprint skeletons directly.

From the work of Zhang,26,27 we learn that the extended polygonal line (EPL)

algorithm can deal with the dataset which are concentrated along a highly curved or

self-intersecting curve. In this paper, therefore, EPL principal curves algorithm is

employed to describe ¯ngerprint skeletons.

2.2. Modi¯ed EPL principal curves algorithm

The EPL principal curves algorithm is proposed by Kegl to extract the skeleton of

digit images. Since a ¯ngerprint dataset is di®erent from a digit dataset, in the

experiment of extracting the ¯ngerprint skeleton, we ¯nd that the EPL principal

curves algorithm is time-consuming and cause the deviation of ¯ngerprint skeleton.

In this paper, the EPL principal curves algorithm is modi¯ed to solve the

problems. In this section, the EPL principal curves algorithm is introduced and

analyzed based on which the modi¯ed EPL principal curves algorithm is presented.

2.2.1. EPL principal curves algorithm

In this paper, we adopt EPL principal curves algorithm proposed by Kegl8,9 to

extract the skeleton of ¯ngerprints. The algorithm contains the following mains

steps:

Step 1 (Initialization). A thinning algorithm is adopted to obtain the approximate

initial skeleton of a ¯ngerprint image. The initial skeleton captures the approximate

topology of the ¯ngerprint, and it roughly follows the medial axis of the ¯ngerprint.

However, it is not smooth and usually contains a number of spurious branches and

inadequate structural elements. The skeleton is denoted by GVS which consists of V

and S, where V ¼ fv1; . . . ; vmg is a set of vertices, and S ¼ fðvi1; vj1Þ; . . . ; ðvik; vjkÞg ¼
fsi1;j1; . . . ; sik;jkg, 1 � i1; j1; . . . ; ik; jk � m is a set of edges, such that sij is a line

segment that connects vi and vj.

Step 2 (Fitting-smoothing). Iteratively ¯t and smooth the skeleton by repeatedly

projecting data point and optimizing vertex until convergence is achieved, while

keeping the skeleton approximately equidistant from the contours of the ¯ngerprint.

Step 2.1 (Projection). Given a data set Xn ¼ fx1; . . . ;xng, scan the whole skeleton

for every data point xi, the data point xi is partitioned into \the nearest neighbor

regions" according to which segment or vertex projects. This step is time-consuming,

since thousands of scans are required.

Step 2.2 (Optimization). Every vertex vi in the skeleton is optimized by using a

gradient method to adjust the positions of vertexes and segments for ¯nding a local

1246 H. Zhang, D. Miao & C. Zhong
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minimum of EðGÞ.8 The penalized distance function EðGÞ is:
EðGÞ ¼ �ðGÞ þ �P ðGÞ ð2Þ

�ðGÞ ¼ 1

n

Xn
i¼1

�ðxi;GÞ ð3Þ

P ðGÞ ¼ 1

m

Xm
i¼1

PvðviÞ ð4Þ

Step 2.3. If the adjusted skeleton meets the convergent condition, go to Step 3, and

otherwise go to Step 2.1.

Step 3 (Restructuring). Rectify the structural imperfections of the skeleton graph

by deleting short paths and small loops to get more accurate skeleton.

Step 4 (Fitting-smoothing). This step is the same as Step 2.

Note that in Step 2.2, �ðGÞ is the average squared distance of all points Xn from

GVS . P ðGÞ is a penalty on the total curvature of the skeleton. The smaller the value

of�ðGÞ, the better GVS ¯ts the data. On the contrary, the smaller the value of P ðGÞ,
the smoother GVS is. � is a penalty coe±cient that determines the trade-o® between

the accuracy of the approximation and smoothness of the curves. �ðxi;GÞ is the

Euclidean squared distance between a point xi and the nearest point of the skeleton

to xi. n is the number of the data points. PvðviÞ8 is the curvature penalty at vertex vi.

m is the number of vertices. In general, PvðviÞ is small if line segments incident to vi
join smoothly at vi.

2.2.2. EPL principal curves algorithm analysis

As a special information carrier, the ¯ngerprint dataset has a lot of speci¯c

characteristics. When the original EPL principal curves algorithm is used to extract

the ¯ngerprint skeleton, those speci¯c characteristics may cause several problems as

follows:

(1) A ¯ngerprint image contains large volume of information, and consists of

thousands of data points. When EPL algorithm is applied, all the data points

can be considered as candidates of skeleton vertices. Consequently, the original

EPL algorithm is time-consuming.

(2) The data distribution in a ¯ngerprint image is very scattered. In other words,

the ratio of skeleton vertex number to the data point number, which is denoted

as �, is small. In general, the value of � is between 4 and 6, sometimes even only

between 2 and 3. This indicates that only a small number of data points on

average are involved in detecting skeleton vertices, and result in the deviation of

the adjusted skeleton.
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2.2.3. The improved EPL principal curve algorithm

In order to address the problems, ¯rstly, Vertices-Merge step is added between the

Initialization Step and the Projection Step. The reason is as follows: (a) A ¯ngerprint

image includes thousands of vertices, and the Vertices-Merge step can e®ectively

reduce the number of vertices which need to be adjusted. As a result, the e±ciency of

the algorithm is improved. (b) Vertices-Merge step increases the proportion of data

points to skeleton vertices. More data points on average are involved in adjusting a

skeleton vertex so that the deviation of skeleton can be controlled to a certain degree.

Secondly, considering the scattered distribution of ¯ngerprint data points, the

Projection Step of original algorithm is modi¯ed. The step only scans certain areas of

the vertices around the data points instead of the whole skeleton. It costs much less

time than the original Projection Step. Furthermore, according to the distribution of

¯ngerprint data points, the penalized distance function EðGÞ is rede¯ned in Vertex-

Optimization Step. DðGÞ is introduced to reduce the skeleton deviation. Since DðGÞ
only involves simple additions, it is more e±cient than P ðGÞ which uses a triangle

function.

Finally, in terms of the topology of a ¯ngerprint, Step 4 of the original approach is

deleted. Two reasons are given as below: (a) The ¯tting-smoothing step is the most

time-consuming part in a principal curve algorithm. Since an ideal skeleton can be

generated after the ¯rst ¯tting-smoothing step, it does not need to do this step twice.

(b) Short branches and small enclosures are common in the topology of a ¯ngerprint.

In the restructuring step, they are deleted. If we do another ¯tting-smoothing

step based on the restructured skeleton, it will sabotage the skeleton. One of the

experimental results is shown in Fig. 2. The °ow chart of the improved principal

graph algorithm is shown in Fig. 3. The modi¯ed algorithm is composed of the

following steps:

Step 1. The Initialization Step: The step is the same as Step 1 of the original EPL

principal curve algorithm.

Step 2. Vertices-Merge Step: The step merges the adjacent vertices in terms of

distance and curvature. The distance criterion makes sure that a number of vertices

are retained within a certain area coverage, while the curvature criterion is set to

reduce the number of vertices merged in the area of a big curvature.

Step 2.1. Merging based on distance criterion: vl and vr are the left adjacent

vertex and the right adjacent vertex of the vertex v respectively. We denote

the distance between v and vl by dðvl; vÞ ¼ jjvl � vjj. Let dt denote threshold.

For every vertex v in G, if dðvl; vÞ þ dðv; vrÞ < 3dt or dðvl; vÞ=dðv; vrÞ > 4

or dðvl; vÞ=dðv; vrÞ < 0:25, then vl and vr are connected, and v is removed. Threshold

dt is computed by

dt ¼
1

n

Xn
i¼1

dðvi;GÞ ð5Þ

1248 H. Zhang, D. Miao & C. Zhong
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Step 2.2. Merging based on curvature criterion: We denote the directional angle of vl
and v by �vlv; let � denote the included angle contained by vectors vlv and vvr,

where � is smaller than �. If �� � < 20�, then vl and vr are connected, and v is

removed.

Modified Projection

Vertices Optimization 
Based on New Penalty Function

Convergence?

Yes

No

Start

Initialization

Vertices-Merge

Restructuring

End

Fitting-Smoothing

Fig. 3. The °ow-chart of the modi¯ed algorithm.

Fig. 2. Bad skeletons caused by the second ¯tting-and-smoothing after deleting the short branch.
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Step 3. The Fitting-smoothing Step: Compared with Step 2 of the original

algorithm, we improve the Projection Step and rede¯ne the penalized distance

function.

Step 3.1. The Improved Projection Step: Due to the scattered ¯ngerprint data dis-

tribution, the step only scans certain areas of the vertices around the data point xi

and partitions it into the nearest neighborhood region instead of the whole skeleton.

A data point belongs to a ¯ngerprint line data whose width is normally 4 to 5 pixels.

Since the skeleton passes through the middle of a ¯ngerprint line data, we only need

to search the area near the ¯ngerprint line to ¯nd its \Voronoi partition." In our

experiment, we set the width of 30 pixels which leads to good results.

Step 3.2. The Improved Vertex Optimization Step: We rede¯ne the penalized dis-

tance function EðGÞ:
EðGÞ ¼ �ðGÞ þ �DðGÞ ð6Þ

DðGÞ ¼ 1

m

Xm
i¼1

X
x2Vi[Si

�ðx; viÞ ð7Þ

Step 3.3. Judge whether the adjusted skeleton meets the convergent condition,

that is whether a local minimum of EðGÞ is found. If true, go to Step 4, else go to

Step 3.1.

Step 4. The Restructuring Step: The step is the same as the restructuring step of

the original algorithm.

Step 5. End.

Note that, in Step 3.2, we modify the second component of EðGÞ, DðGÞ is a

rede¯ne penalty function on the total curvature of the skeleton, where, Vi denotes a

set of points whose projection point is vi; Si denotes a set of points whose projection

in edge si and point vi is an endpoint of edge si, �ðxi; viÞ is the Euclidean squared

distance of a point xi and vertex vi.

3. The Approach for Minutiae Extraction and Pseudo
Minutiae Elimination

Before an e®ective minutiae extraction and pseudo minutiae elimination algorithm

is constructed, we introduce some preprocesses on the ¯ngerprint image, which

include ¯ltering and binarization. In the paper, we apply the enhancement algorithm

proposed by Lin et al.12 to enhance images followed by binaralization algorithm. As

mentioned above, among various minutiae, ridge bifurcations and ridge endings can

determine the uniqueness of ¯ngerprint. As the degree of a ridge bifurcation is 3 and

the degree of a ridge ending is 1, we add the vertices whose degree is 1 or 3 to a

minutiae point set. Then the pseudo minutiae which are caused by a broken ¯n-

gerprint ridge or two misconnected ¯ngerprint ridges are deleted. Finally, a convex

1250 H. Zhang, D. Miao & C. Zhong
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hull algorithm is adopted to delete the pseudo minutiae close to the border of ¯n-

gerprint. The main steps are described as follows:

Step 1. Sample a Fingerprint Image.

Step 2. Preprocess the Fingerprint Image.

Step 3. Find Principal Curves. The modi¯ed EPL principal curve algorithm is u-

sed to obtain the principal curves, which can be served as the skeleton of a ¯nger-

print.

Step 4. Extract Minutiae. A ¯ngerprint skeleton consists of many ¯ngerprint ridges.

A ¯ngerprint ridge can be regarded as an undirected graph GVS which consists of V

and S. According to the de¯nition of ¯ngerprint minutiae, if the degree of vertex vi is

equal to 1 or 3, then vi belongs to minutiae. Traversing all ¯ngerprint ridges, we

obtain the set of minutiae A ¼ fvijdðviÞ ¼ 1; or; dðviÞ ¼ 3g, where dðviÞ denotes the
degree of vertex vi.

Step 5. Eliminate Pseudo Minutiae. In this step, three kinds of pseudo minutiae are

detected and deleted from the set of minutiae A.

Step 5.1. In the set A, for each vi whose degree is equal to 1, if vertex vj ði 6¼ jÞ
satis¯es the following conditions 1�5, then, vi and vj are pseudo Ridge endings. vi
and vj are deleted from the set A. For example, Figs. 4(a)�4(c) belong to this kind

of pseudo minutiae.

(1) dðvjÞ ¼ 1

(2) connect ðvi; vjÞ ¼ false

(3) dist ðvi; vjÞ � maxDist1

(4) ABSðABSðAngleðviÞ � AngleðvjÞÞ � �Þ < �=9þ ð�=6Þ � ð1� distðvi; vjÞ=
maxDist1Þ

(5) ABSðAngleðviÞ � Angleðvi; vjÞÞ < �=6þ ð�=3Þ � ð1� distðvi; vjÞ=maxDist1Þ
Step 5.2. In the set A, for each vertex vi, if vertex vj ði 6¼ jÞ satis¯es the following

conditions (1)�(2), vi and vj are pseudo minutiae. vi and vj are deleted from the

set A. For example, Figs. 4(d)�4(h) belong to this kind of pseudo minutiae.

(1) connect ðvi; vjÞ ¼ true

(2) dist ðvi; vjÞ � maxDist2

Step 5.3. For each data point xiðxi 2 XÞ, where X is a set of boundary points of the

¯ngerprint. The convex hull HðXÞ is calculated as follows:

HðXÞ ¼
Xk
i¼1

�ixijxi 2 X; �i 2 R; �i � 0;
Xk
i¼1

�i ¼ 1; k ¼ 1; 2; . . .

( )
ð8Þ

Step 5.4. For each vi (vi 2 A), if vertex vi satis¯es the following conditions (1)�(2),

vi is pseudo minutiae. vi is deleted from the set A. For example, Fig. 4(i) belongs to

Fingerprint Minutiae Extraction and Pseudo Minutiae Detection 1251
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this kind of pseudo minutiae.

(1) ðdðviÞ ¼ 1Þ \ ðdistðvi;HÞ � maxDist3Þ
(2) ðdðviÞ 6¼ 1Þ \ ðdistðvi;HÞ � maxDist4Þ

Step 6. End. A is the ¯ngerprint minutiae set.

Note that, in Step 4, V ¼ fv1; . . . ; vmg is a set of vertices, and S ¼ fðvi1; vj1Þ; . . . ;
ðvik; vjkÞg ¼ fsi1;j1; . . . ; sik;jkg; 1 � i1; j1; . . . ; ik; jk � m is a set of edges, such that

sij is a line segment that connects vi and vj. We say that two vertices are adjacent

or neighbors if there is an edge connecting them. The edge sij ¼ ðvi; vjÞ is said to

be incident with the vertices vi and vj. The vertices vi and vj are also called the

endpoints of sij . The degree of a vertex is the number of edges incident with it. In

Steps 5.1�5.4, dðviÞ is the degree of vertex vi; connect ðvi; vjÞ denotes whether the
vertex vi and vj are connected, connect ðvi; vjÞ ¼ true implies that vi and vj are

connected, connect ðvi; vjÞ ¼ false implies that vi and vj are not connected; dist

ðvi; vjÞ is the Euclidian distance between vertex vi and vj; dist ðvi;HÞ is the minimum

Fig. 4. Removal of the most common Pseudo Minutiae.
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distance between vertex vi and convex hull HðXÞ; Angle ðviÞ is the direction angle of

vertex vi whose degree is 1; Angle ðvi; vjÞ is the direction angle of arbitrary vector vi
and vj; maxDist1, maxDist2, maxDist3, maxDist4 are threshold values, in this

paper we denote aw as the average width of ¯ngerprint lines, and by experiments

we ¯nd that the e®ect is the best when maxDist1 ¼ 20� aw; maxDist2 ¼ 20� aw;

maxDist3 ¼ 16; maxDist4 ¼ 8;

In Step 4, we ¯rst extract minutiae using the information of the principal curves,

and then we initialize the minutiae set. In Step 5, we delete three following kinds

of pseudo minutiae: (1) A pair of ridge endings caused by a broken ¯ngerprint ridge.

(2) A pair of ridge bifurcations caused by two misconnected ¯ngerprint ridges.

(3) The minutiae close to the boundary of ¯ngerprint. Several of the experimental

results are shown in Fig. 4.

In particular, during the process of minutiae extraction based on principal curves,

all the parameters and functions mentioned above can be acquired from principal

curves information, which is the signi¯cant advantage. Though the principal curves

algorithm is more time-consuming than the thinning algorithms, the information

which ¯ngerprint principal curves contains can be used to extract minutiae more

e±ciently and conveniently.

4. Experimental Results and Analysis

4.1. Experimental results

Ourmethodology is tested on several standard databases. The databases used include:

(1) DB1 of FVC2002,3 (2) DB4 of FVC2002,3 (3) FERET databases,1 (4) DB1 of

FVC2000,2 (5) DB2 of FVC2000.2 For each database, one set of good quality images

and one set of bad quality images were manually selected. Each set consists of 100

pieces of images. Good quality images have few bridges and breaks; ridges and valleys

alternate and °ow in a locally constant direction. On the contrary, in bad quality

images, even after enhancement, ridges are not strictly continuous; parallel ridges are

not well separated; a lot of creases and bruises exist. Even enhancement algorithms

cannot repair them all. The Gabor algorithm was used to enhance various qualities of

¯ngerprint images.12,16 Fingerprint minutiae detected by algorithms were compared

manually with the minutiae presented in the enhanced images. The experimental

result shows the improved EPL principal curves algorithm is better in e±ciency and

quality than the original algorithm, and our minutiae extraction method outperforms

the methods proposed by Miao. The results of intermediate stages and the detected

minutiae features for a low quality ¯ngerprint are shown in Fig. 5. The performance

comparisons of this paperwith othermethods in several databases are given inTable 1.

4.2. Performance analysis

The performance of the proposed method is analyzed in the steps for obtaining

¯ngerprint principal curves and extracting minutiae, respectively.

Fingerprint Minutiae Extraction and Pseudo Minutiae Detection 1253
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. The step for obtaining ¯ngerprint principal curves

—The algorithm is implemented on DELL E7200, Intel CORE 2, WinXP, 2.47 gHz.

The average running time of the improved algorithm taken for ¯ngerprint prin-

cipal curves extraction is 0.72 seconds on several standard databases, while that of

(a)

(b)

(c)

Fig. 5. Results of various stages in minutiae extraction tested on low quality images.
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the original EPL principal curves algorithm is about 1.87 seconds. Therefore, the

algorithm proposed in this paper is more e±cient than the original one.

—To compare the results of proposed algorithm, we implemented the original

algorithms to get the ¯ngerprint's skeleton which includes a set of principal

curves. The results of these two algorithms are shown in Fig. 6. By a pairwise

comparison, we observe that the skeletons extracted by the improved algorithm

can re°ect the structures of ¯ngerprint better than the ones generated by the

(d)

(e)

Fig. 5. (Continued)

Table 1. Comparison with Ref. 14 in bad quality ¯ngerprint images.

Performance Indicators

DBS Method A(%) A 0(%) Missing(%) False(%) Exchanged(%)

FVC 2002 DB1� Proposed method 85.36 87.51 4.52 7.97 2.15

DB2 Method of

Miao et al.,14
83.32 87.53 4.49 7.98 4.21

FVC 2000 DB1� Proposed method 85.41 87.53 4.58 7.89 2.12

DB2 Method of

Miao et al.,14
83.22 87.53 4.60 7.87 4.31

FERET Proposed method 89.68 91.04 3.32 5.64 1.36
databases Method of

Miao et al.,14
87.15 91.02 3.31 5.67 3.87
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original algorithm. The principal curves in set (a)–(d) have smoother lines, higher

accuracy, and are less error-prone than the ones in set (e)–(h).

. The step of the minutiae extraction and pseudo minutiae elimination

In the experiment, we can obtain more accurate results of the minutiae

extraction based on principal curves within a short running time. Three advan-

tages over other methods based on original principal curves, gray-level image and

thinning image are as follows:

—The average running time for our minutiae extraction algorithm is 41.76ms,

far better than 0.18 s,23 0.177 s11 and 47.87ms.14 The reason is that the pro-

duced principal curves contain more information that can bene¯t the extracting

minutiae, and from which pseudo minutiae is deleted. Additionally, searching

for the original ¯ngerprint image repeatedly which is time-consuming is

avoided.

—As for the evaluation of minutiae extraction, we can use the accuracy rate (A) and

(A 0) described below

A ¼ 1� dþ f þ x

mþ d� f
ð9Þ

A 0 ¼ 1� dþ f

mþ d� f
ð10Þ

where A is the accuracy rate, d is the number of missing minutiae, f is the

number of false minutiae, x is the number of minutiae owing to exchange of

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. (a)�(d) are the skeletons extracted by the modi¯ed EPL principal curves algorithm while (e)�(h)

are the skeletons extracted by the original algorithm.
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ridge ending and bifurcation minutiae (called error of type), and m is the

number of minutiae obtained by our algorithm. ðmþ d� fÞ is the number of

minutiae that are contained in the ¯ngerprint, ðdþ f þ xÞ is the number of all

misidenti¯ed minutiae (including error of type), d=ðmþ d� fÞ is the missing

rate, f=ðmþ d� fÞ is false acceptance rate, x=ðmþ d� fÞ is exchanged rate. A 0

is the accuracy rate without x, ðdþ fÞ is the number of all misidenti¯ed

minutiae (not including error of type). The statistics in Table 1 shows that

even for bad quality ¯ngerprinting images, our total error is within acceptable

limits. The reason is that the extracted skeletons are the result of ¯ngerprint

data optimization, and it can describe the minutiae more accurately than

that extracted from thinning images and gray-level images. And based on the

vertex out-degree direction and convex hull of the ¯ngerprint, the broken and

border pseudo minutiae can be respectively di®erentiated, as shown in Fig. 7.

Our minutiae extraction is based on principal curves, and the minutiae infor-

mation is a part of the skeleton topology information. Thus, it does not need to

judge the type of the minutiae, which accelerates the speed of minutiae

extraction. Furthermore, we can extract the minutiae e±ciently unless the

skeleton topology is severely sabotaged. Though the minutiae extraction14 is

also based on principal curves, the original principal curves algorithm results in

the skeleton's deviation and being misconnected, which causes a lower accuracy

rate of minutiae.

—Concerning the capability of anti-noise, the minutiae results of the proposed

algorithm cannot be a®ected by the huge noisy ¯ngerprint images which do not

have large amount of connected components after ¯ltering, while for those which

have large amount of connected components after ¯ltering, the number of

extracted minutiae decreases relatively, and the number of lost minutiae increa-

ses. The reason is that when there is a large scale of connected components in the

¯ltered image, the extracted skeletons have a corresponding net structure, so the

similar minutiae in the net structure are deleted based on the judging condition of

the connected pseudo minutiae. However, the connected components are cen-

tralized around the core area of ¯ngerprint where a limited number of minutiae

exists. As a result, the in°uence on authentic minutiae extraction is limited.

(a) (b)

convex hull

c

(c)

Fig. 7. The minutiae extraction based on principal curves. Small circles are minutiae.
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5. Conclusions

The original EPL principal curve algorithm is modi¯ed based on the features of

¯ngerprint data, and is applied for ¯ngerprint minutiae extraction. Experimental

results indicate that the improved algorithm can obtain smoother, higher accuracy

and less error-prone ¯ngerprint skeletons within a short running time, and the

minutiae extraction method based on principal curves is obtained. The improved

EPL principal curves is more accurate than the method.14 So the proposed algorithm

is more feasible in practical applications. Our future work will focus on the following

three points: (1) The time complexity of algorithms needs to be further reduced. The

proposed algorithm takes more computational cost in ¯nding principal curves than in

extracting minutiae. For instance, we will try to reduce the complexity by improving

our algorithm to parallel algorithm. (2) The methods for di®erentiating pseudo min-

utiae need to be improved. The proposed method for the classi¯cation and the

detection of pseudo minutiae is similar to traditional methods, and consequently the

improvement of minutiae accuracy rate is small. If the information implied in skel-

etons, especially the skeleton topology and the relation between skeletons, can be fully

used, then the improvement of accuracy would be greater. (3) Using the ¯ngerprint

skeletons as a feature of ¯ngerprint for ¯ngerprint matching will also be considered.
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