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Methods of fuzzy rule extraction based on rough set theory are rarely reported in incom-
plete interval-valued fuzzy information systems. Thus, this paper deals with such sys-
tems. Instead of obtaining rules by attribute reduction, which may have a negative
effect on inducting good rules, the objective of this paper is to extract rules without com-
puting attribute reducts. The data completeness of missing attribute values is first pre-
sented. Positive and converse approximations in interval-valued fuzzy rough sets are
then defined, and their important properties are discussed. Two algorithms based on
positive and converse approximations, namely, mine rules based on the positive approx-
imation (MRBPA) and mine rules based on the converse approximation (MRBCA), are pro-
posed for rule extraction. The two algorithms are evaluated by several data sets from the
UC Irvine Machine Learning Repository. The experimental results show that MRBPA and
MRBCA achieve better classification performances than the method based on attribute
reduction.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Interval-valued fuzzy rough sets

A basic issue in a rule-based system is extracting rules for classification or inference. The rough set approach uses only
internal knowledge, avoids external parameters, and does not rely on prior model assumptions such as probabilistic distri-
bution in statistical methods and basic probability assignment in the Dempster–Shafer theory. Its basic idea is to search for
an optimal attribute set to generate rules through an objective knowledge induction process.

The classical rough set theory developed by Pawlak [24,25] is used only to describe sets. We are interested in extend-
ing the rough set model of Pawlak in two ways. To describe crisp and fuzzy concepts, Dubois and Prade [5,6] extended
the basic idea of rough sets to a new model called fuzzy rough sets. This new model has been proven a promising tool
for pattern recognition, data mining, and knowledge discovery [1–7,9,13–17,22,23,26–29,32–40,43–47,49,51–53]. In addi-
tion, there are symbolic values, real values, or interval values in a practical database [34]. For example, data such as
current, ID, temperature, time, and voltage are often described by interval values. The traditional fuzzy rough set theory
effectively cannot deal with these kinds of data. Extending the rough set theory of Pawlak to a wider application is
. All rights reserved.
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necessary. Thus, the model of interval-valued fuzzy rough (IVFR) sets was developed [7,38]. Here, we review two studies
in this domain.

Sun et al. [38] defined IVFR sets and presented the attribute reduction method, which addresses interval-valued fuzzy
information systems with both crisp condition and interval-valued fuzzy decision attributes. The reduction process has three
steps: (1) computing the discernibility matrix of the information system; (2) searching the consistent set of the condition
attribute set; and (3) obtaining a reduct by computing the minimum consistent set. However, the definition of the discern-
ibility matrix is the same as that in the rough set theory by Pawlak, which means the discernibility matrix is effective only for
nominal attributes. When the condition attributes are numerical or fuzzy interval values, the reduction method is ineffective
because it cannot compute the discernibility matrix.

Gong et al. [7] proposed a knowledge discovery method for interval-valued fuzzy information systems. The method clas-
sifies each object in a decision class according to its maximal membership represented by a fuzzy interval. However, the meth-
od is designed for interval-valued fuzzy information systems with both crisp condition and interval-valued fuzzy decision
attributes. If the condition attribute set includes m attributes, then the antecedent of the rule must include m conditions; over-
full conditions may reduce the classification accuracy and the applicability of the rules. Two memberships represented by fuz-
zy intervals are incomparable when one interval is nested in the other; rules cannot be generated in this case.

Aside from [7,38], few studies on fuzzy rule extraction are based on rough sets in interval-valued fuzzy information sys-
tems. Establishing a more practical model for fuzzy rule extraction in interval-valued fuzzy information systems is necessary.
The model should satisfy the following three requirements. First, it can be applied to three types of interval-valued fuzzy
information systems, namely, (1) crisp condition and interval-valued fuzzy decision, (2) interval-valued fuzzy condition
and crisp decision, and (3) interval-valued fuzzy condition and decision. Second, the computational complexity of the model
should be relatively low. Third, rules can be generated when one interval is nested in the other.
1.2. Rule extraction in IVFR sets

Attribute reduction usually serves as a preparatory step before rule extraction [24], whose objective is to reduce attri-
butes and thus reduce the complexity of the rule extraction process. Various attribute reduction methods have been pro-
posed in rough sets and in fuzzy rough sets [2,4,12–16,23,37,39,40,43–45,52,53]. The IVFR set theory generalizes the
traditional fuzzy rough set theory; thus, extracting rules based on attribute reduction is natural. However, this paper does
not intend to extract rules based on attribute reduction due to the following reasons. Attribute reduction methods can be
classified into three types: one based on the positive region [2,15,16,37], one based on the discernibility matrix
[39,40,43,50], and another based on entropy [12–14]. For example, Shen and Jensen [16,37] conducted pioneering studies
on attribute reduction based on a positive region and proposed an attribute reduction algorithm. However, an obvious lim-
itation is the algorithm may not be convergent on many real data sets or the selected attributes are unreliable. Moreover, the
computational complexity of the algorithm often increases exponentially with increasing samples and attributes [2]. Bhatt
and Gopal [2] developed Shen’s algorithm by improving the definition of the lower approximation on a compact computa-
tional domain. However, the degree of dependency of a selected reduct may be larger than that of the entire attribute set due
to the computing method of the positive region [40]. This is unreasonable because more attributes will offer better approx-
imations in a rough set framework [40]. Tsang et al. [39,40] proposed an algorithm using a discernibility matrix to compute
all attribute reducts. However, the computational complexity is NP-hard [40]. Hu et al. [12,13] proposed an attribute reduc-
tion method based on information entropy. The attribute reduction concept is not constructed using existing fuzzy approx-
imation operators [47], and studying the structure of attribute reduction is difficult [49]. Each attribute reduction method
has its characteristics and flaws. Therefore, rule extraction based on attribute reduction may be faulty. This paper intends
to avoid the attribute reduction process and establish the structure of the approximation by introducing granulation order,
and then extracting rules based on it.

From the viewpoint of granular computing, a concept is described by the upper and lower approximations under static
granulation in the IVFR set, as defined by Sun [38]. Provided the granulation is unchangeable, it is unacceptable when the
granulation is too fine or too coarse. Excessively fine granulation may increase time and cost, while an excessively coarse
one may not satisfy requirements. We consider describing a concept under dynamic granulation. This means a proper gran-
ulation family can be selected to describe a target concept according to the practical requirement.

Granulation order in sets was introduced by Qian and co-workers [20,30]. In our study, a granulation order is extended to
fuzzy information systems. A positive granulation order is defined by adding one condition attribute at a time, which nat-
urally defines a positive approximation space. Given a positive approximation space, a fuzzy concept can be described by the
upper and lower approximations. Based on the positive approximation, a rule extraction algorithm called mine rules based
on the positive approximation (MRBPA) is proposed. It is characterized by a gradually dwindling universe and a monoto-
nously increasing approximation precision as the positive granulation order becomes longer. Thus, the computational com-
plexity of the algorithm can be reduced effectively. Similarly, a converse granulation order involves deleting one condition
attribute at a time, which defines a converse approximation space. Given a converse approximation space, a fuzzy concept
can be described by the upper and lower approximations. As an application of the converse approximation, an algorithm
called mine rules based on the converse approximation (MRBCA) is proposed for rule extraction. The main characteristic
of MRBCA is that much simpler rules can be extracted by keeping the approximation precision invariant.
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1.3. Outline

The rest of this paper is organized as follows. Section 2 briefly introduces related discussions about interval-valued fuzzy
sets and IVFR sets. In Section 3, an algorithm called completeness of missing attribute values in interval-valued fuzzy infor-
mation systems (CMAVIFIS) is presented for data completeness in interval-valued fuzzy information systems. In Section 4,
the positive approximation is proposed, and important properties are obtained. A rule extraction algorithm called MRBPA
based on the positive approximation is then designed; an example is illustrated. In Section 5, converse approximation is pre-
sented, and useful properties are deduced. The convergence degree of an interval-valued fuzzy set is defined and proven to
increase in a converse granulation order. A new rule extraction algorithm called MRBCA based on the converse approxima-
tion is proposed and illustrated. In Section 6, the performances of CMAVIFIS, MRBPA, and MRBCA are evaluated by several
data sets from the UC Irvine Machine Learning Repository (UCI). Section 7 concludes the paper.

2. Preliminaries

In this section, we briefly review the basic concepts of interval-valued fuzzy sets and IVFR sets.

2.1. Interval-valued fuzzy sets

As a generalization of Zadeh’s fuzzy set, interval-valued fuzzy sets was put forward for the first time by Gorzalczany [8]
and Turksen [41]. In a fuzzy set, interval-valued membership is easier to be determined than the single-valued one. The
interval-valued fuzzy set theory has been applied to the fields of approximate inference, signal transmission, and so on.
We first review some basic concepts.

Let I be a closed unit interval, i.e., I = [0,1]. Let [I] = {a = [a�,a+]ja� 6 a+,a�,a+ 2 I}. For "a 2 I, define �a ¼ ½a; a�, it is obvious
that a 2 [I].

Definition 1. If ai 2 [I], i 2 J, J = {1,2, . . . ,m}, define
ð1Þ _
i2J

a�i ; a
þ
i

� �
¼ _

i2J
a�i ; _

i2J
aþi

� �
; ð2Þ

î2J
a�i ; a

þ
i

� �
¼

î2J
a�i ;

î2J
aþi

� �
; ð3Þ a�i ; a

þ
i

� �c ¼ 1� aþi ;1� a�i
� �

:

In particular, for ai 2 [I], i = 1, 2, define
ð4Þ a1 ¼ a2 () a�1 ¼ a�2 ; aþ1 ¼ aþ2 ; ð5Þ a1 6 a2 () a�1 6 a�2 ; aþ1 6 aþ2 ; ð6Þ a1 < a2 () a1 6 a2; a1 – a2;

ð7Þ a16wa2 () a�1 þ aþ1 6 a�2 þ aþ2 ; aþ1 � a�1 6 aþ2 � a�2 ; ð8Þ a1<wa2 () a16wa2; a1 – a2:
Definition 2. Let X be an ordinary non-empty set, and the mapping A: X ? [I] is called an interval-valued fuzzy set on X. The
set of interval-valued fuzzy sets on X is denoted by FI(X).

Similar to fuzzy sets, the operators # , \, [, and the completeness of interval-valued fuzzy sets are defined as follows. For
A, B 2 FI(X), A # B means A(x) 6 B(x) for "x 2 X, (A \ B)(x) = ^{A(x),B(x)}, (A [ B)(x) = _{A(x),B(x)}, (�A)(x) = 1 � A(x).

Definition 3. If A 2 FI(X), let A(x) = [A�(x),A+(x)], where x 2 X, then two fuzzy sets A�: X ? I and A+: X ? I are called lower
fuzzy set and upper fuzzy set about A, respectively.
2.2. IVFR sets

Due to the complementarity between interval-valued fuzzy sets and rough sets, Sun [38] proposed a model called IVFR
sets. Let U be a non-empty finite universe. A binary interval-valued fuzzy subset R of U � U is called an interval-valued fuzzy
relation on U.

Definition 4 [38] . Let U be a non-empty finite universe. For the interval-valued fuzzy relation R(R 2 FI(U � U)) on the
universe U,

(1) R is reflexive, if Rðx; yÞ ¼ �1, for any x, y 2 U;
(2) R is symmetric, if R(x,y) = R(y,x), for any x, y 2 U;
(3) R is transitive, if R(x,z) P R(x,y) ^ R(y,z), for any x, y, z 2 U.

If R is reflexive, symmetric, and transitive, then R is an interval-valued fuzzy equivalence relation. [x]R is the fuzzy block
containing x. It is an interval-valued fuzzy set on U defined by l½x�R ðyÞ ¼ lRðx; yÞ for all y 2 U. The collection of all fuzzy blocks
is denoted as U/R.

Definition 5. [38] Let (U,R) be an interval-valued fuzzy information system, where R is an interval-valued fuzzy equivalence
relation on U. For any interval-valued fuzzy set F, the lower and upper approximations of F in the interval-valued fuzzy infor-
mation system (U,R) are defined as follows:
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laprRðFÞðxÞ ¼ inf
y2U

max �1� lRðx; yÞ;lFðyÞ
� �

¼ laprRðF�ÞðxÞ;laprRðFþÞðxÞ
h i

¼ inf
y2U

max 1� lRþ ðx; yÞ;lF� ðyÞ
� �

; inf
y2U

maxf1� lR� ðx; yÞ;lFþ ðyÞg
� �

;

laprRðFÞðxÞ ¼ sup
y2U

minflRðx; yÞ;lFðyÞg ¼ laprRðF�ÞðxÞ;laprRðFþÞðxÞ
h i

¼ sup
y2U

minflR� ðx; yÞ;lF� ðyÞg; sup
y2U

minflRþ ðx; yÞ;lFþ ðyÞg
" #

:

In view of lRðx; yÞ ¼ l½x�R ðyÞ, the lower and upper approximations can also be denoted as follows:
laprRðFÞðxÞ ¼ inf
y2U

maxf�1� l½x�R ðyÞ;lFðyÞg ¼ laprRðF�ÞðxÞ;laprRðFþÞðxÞ
h i

¼ inf
y2U

maxf1� l½x�Rþ ðyÞ;lF� ðyÞg; inf
y2U

maxf1� l½x�R� ðyÞ;lFþ ðyÞg
� �

;

laprRðFÞðxÞ ¼ sup
y2U

minfl½x�R ðyÞ;lFðyÞg ¼ laprRðF�ÞðxÞ;laprRðFþÞðxÞ
h i

¼ sup
y2U

minfl½x�R� ðyÞ;lF� ðyÞg; sup
y2U

minfl½x�Rþ ðyÞ;lFþ ðyÞg
" #

:

If for 8x 2 U;laprRðFÞðxÞ ¼ laprRðFÞðxÞ, then the interval-valued fuzzy set F is definable about (U,R). Otherwise, the interval-

valued fuzzy set F is rough about (U,R), and F is called an IVFR set.
If F is an ordinary fuzzy set of universe U, R is a fuzzy similarity relation, then F� = F+. Therefore, the IVFR set degenerates

into a classical fuzzy rough set.
3. Data completeness in interval-valued fuzzy information systems

Data completeness in interval-valued fuzzy information systems is the usual prerequisite for rule extraction. The process
of converting an incomplete interval-valued fuzzy information system into a complete one, i.e., complementing the missing
attribute values with specified values, is called the completeness of incomplete interval-valued fuzzy information systems.

Multiple completeness methods have been proposed [10,11,19,31,42,54]. A simple method is to either delete objects that
miss their attribute values or replace their values with the most common one. The second method is based on probability
statistics, e.g., Bayes method and multivariate linear regression analysis. Here, a Bayesian formula is used to determine
the probability distribution of the missing value [19]. This method either chooses the most likely value or divides the object
into fractional objects, each with one possible value weighted according to the probabilities. In application, determining the
probability distribution is difficult due to the vast state-space of the data set. Thus, the traditional statistical technique may
not be the best choice. The third method is based on a classical rough set theory such as the rough set theory-based incom-
plete data analysis approach (ROUSTIDA) [42,54] and the method based on value tolerance relation (VTR) [42]. For ROUST-
IDA, the attribute differences of objects are reflected by a discernibility matrix, and missing values are replaced with those of
indiscernible objects. However, ROUSTIDA may repeatedly compute the discernibility matrix and analyze completeness. The
time complexity of computing one discernibility matrix is O(jUj(jUj � 1)jCj/2) (C is the attribute set); thus, the time complex-
ity of ROUSTIDA is high. Moreover, many transient information systems are generated in the supplement process, which may
distort data [31]. For each object with missing values, VTR computes its tolerance class and complements missing values
with those of the object with maximal tolerance relation. The time complexity is O(jCkUkMOSj), where MOS is the set of ob-
jects with missing values. Generally, jMOSj is less than jUj. Thus, the time complexity of VTR is less than that of ROUSTIDA.
However, ROUSTIDA and VTR can only be used in information systems with nominal attribute values. Data in interval-valued
fuzzy information systems are numerical; thus, conventional methods should be extended to process the numerical attri-
butes directly. Considering the time complexity, we present a new data completeness method based on value tolerance rela-
tion for interval-valued fuzzy information systems.

Let S = (U,C [ D) be an interval-valued fuzzy information system with decision attributes. We call S an interval-valued
fuzzy decision table, where the condition attributes in C are represented by fuzzy interval numbers, and the decision attri-
butes in D are crisp or fuzzy interval numbers. U and C are denoted as U = {x1,x2, . . .,xn}, C = {a1,a2, . . . ,am}, and jUj = n, jCj = m.

Definition 6. The set of objects with missing attribute values is defined as MOS = {xijak(xi) = ⁄, ak 2 C}, where ⁄ denotes a
missing attribute value.
Definition 7. The similarity degree of xi and xj with regard to ak is defined as follows:
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simak
ðxi; xjÞ ¼ sim�ak

ðxi; xjÞ ^ simþak
ðxi; xjÞ ¼ 1� ja�k ðxiÞ � a�k ðxjÞj

maxða�k Þ �minða�k Þ

� 	
^ 1� jaþk ðxiÞ � aþk ðxjÞj

maxðaþk Þ �minðaþk Þ

� 	
;

where max(ak) and min(ak) are the maximum and minimum values of ak, respectively.
Definition 8. Based on the similarity degree, a tolerance relation with respect to condition attribute set C is defined as
follows:
SC ¼ fðxi; xjÞ 2 U � Uj8ak 2 C; simak
ðxi; xjÞP n _ akðxiÞ ¼ � _ akðxjÞ ¼ �g;
where n 2 [0,1] is a threshold.
Definition 9. The tolerance class of an object xi with respect to condition attribute set C is defined as follows:
TCðxiÞ ¼ fxjjðxi; xjÞ 2 SC ; xj – xig:
Definition 10. For any two objects xi, xj 2 U, if ak(xj) – ⁄, then the probability of xi is similar to xj with respect to ak is defined
as follows:
Pak
ðxi; xjÞ ¼

1
2

a�k ðxiÞmax � a�k ðxiÞmin

max a�k

 �

�min a�k

 �þ aþk ðxiÞmax � aþk ðxiÞmin

max aþk

 �

�min aþk

 �

 !
;

where a�k ðxiÞmax and a�k ðxiÞmin are the upper and lower limits of a�k ðxiÞ, respectively, satisfying sim�ak
ðxi; xjÞP n and

min a�k

 �

6 a�k ðxiÞ 6max aþk

 �

; the meanings of aþk ðxiÞmax and aþk ðxiÞmin are similar.
Definition 11. The probability of xi is similar to xj with respect to condition attribute set C, defined as follows:
Pðxi; xjÞ ¼
1
jCNj

X
ak2CN

Pak
ðxi; xjÞ;
where CN = {ak 2 C jak(xj) – ⁄}.
The coincidence degree of xi and xj is higher with larger P(xi,xj).
A completeness algorithm for an incomplete interval-valued fuzzy information system is proposed as follows.

Algorithm of CMAVIFIS
Input: incomplete interval-valued fuzzy decision table S = (U,C [ D)
Output: complete interval-valued fuzzy decision table

(1) Compute the set of objects with missing attribute values MOS;
(2) For "xi R MOS, let ak(xi) = ak(xi), ak 2 C;
(3) For "xi 2MOS,

3.1 Compute TC(xi);
3.1.1 If jTC(xi)j = 1, let xj 2 TC(xi), if ak(xj) = ⁄, then ak(xi) = ⁄; otherwise ak(xi) = ak(xj);
3.1.2 If jTC(xi)j– 1, exists singleton xj0 2 TCðxiÞ and satisfies the condition ðakðxj0 Þ – �Þ, then akðxiÞ ¼ akðxj0 Þ;
3.1.3 Otherwise, for "xj 2 TC(xi) and xj – xi, compute P(xi,xj). Let xjmax = {xjjP(xi,xjmax) = maxP(xi,xj)}, then

ak(xi) = ak(xjmax);

(4) If data are still missing in the decision table, the combination completeness method is adopted for further processing;
(5) The end.

The main idea of CMAVIFIS is to complete the missing values using those of the object with the maximal tolerance rela-
tion. In Step (1), the time complexity for computing MOS is O(jCkUj). In Step (3), the time complexity for computing TC(xi) is
O(jCkUj), and the total time complexity of Step (3) is O(jCkUkMOSj). Thus, the time complexity of CMAVIFIS is O(jCkUkMOSj).
Time complexity depends on the distribution and quantity of missing data. Usually, missing data comprise only a small por-
tion of total data; thus, time complexity is relatively low.

We present an example to illustrate the operation of CMAVIFIS. Table 1 is an incomplete interval-valued fuzzy decision
table, where U = {x1,x2, . . . ,x10} is a set of objects and C is a fuzzy condition attribute set that includes three attributes, a1, a2,
a3, each with corresponding linguistic terms, e.g., a1 has terms a11, a12 and a13, and a11, a12, a13 are interval-valued fuzzy sets.
The decision attribute d is also fuzzy and is separated into three linguistic terms, F1, F2, F3, and F1, F2, F3 are interval-valued
fuzzy sets. Missing data are represented by ⁄. In Table 1, each object x 2 U corresponds to a column, while each attribute a
corresponds to a row.



Table 1
An incomplete interval-valued fuzzy decision table.

U x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

C a1 a11 [0.2,0.3] [0.1,0.1] ⁄ [0.2, 0.2] [0.8,0.9] [0.5,0.6] ⁄ [0.7, 0.9] [0.2,0.3] [0.1,0.2]
a12 [0.5,0.6] [0.2,0.6] ⁄ [0.55,0.7] [0.3,0.4] [0.4,0.5] ⁄ [0.3, 0.4] [0.6,0.7] [0.2,0.3]
a13 [0.2,0.4] [0.5,0.7] ⁄ [0.3, 0.4] [0.1,0.2] [0.2,0.3] ⁄ [0.05,0.1] [0.3,0.4] [0.6,0.8]

a2 a21 [0.6,0.8] [0.2,0.4] [0.7,0.9] [0.2, 0.4] ⁄ [0.8,0.8] [0.3,0.3] [0.6, 0.8] [0.7,0.8] ⁄
a22 [0.3,0.4] [0.5,0.7] [0.3,0.4] [0.8, 0.9] ⁄ [0.1,0.3] [0.7,0.8] [0.3, 0.4] [0.4,0.4] ⁄

a3 a31 [0.1,0.1] [0.85,0.9] [0.05,0.1] [0.1, 0.2] [0.05,0.1] [0.1,0.3] [0.7,0.8] [0.1, 0.3] ⁄ [0.6,0.7]
a32 [0.2,0.3] [0.2,0.3] [0.1,0.2] [0.1, 0.25] [0.15,0.3] [0.6,0.7] [0.3,0.4] [0.2, 0.3] ⁄ [0.2,0.3]
a33 [0.7,0.8] [0.1,0.2] [0.7,0.75] [0.6, 0.6] [0.3,0.4] [0.2,0.3] [0.1,0.2] [0.3, 0.4] ⁄ [0.1,0.2]
a34 [0.3,0.4] [0.1,0.2] [0.2,0.3] [0.3, 0.35] [0.5,0.8] [0.1,0.2] [0.1,0.1] [0.6, 0.9] ⁄ [0.1,0.2]

D d F1 [0.7,0.9] [0.3,0.5] [0.7,0.8] [0.15,0.2] [0.05,0.1] [0.1,0.2] [0.25,0.4] [0.1, 0.2] [0.45,0.7] [0.05,0.1]
F2 [0.15,0.2] [0.5,0.7] [0.3,0.4] [0.5, 0.8] [0.2,0.3] [0.35,0.5] [1.0, 1.0] [0.25,0.4] [0.25,0.3] [0.8,0.9]
F3 [0.4,0.5] [0.35,0.4] [0.1,0.2] [0.2, 0.3] [0.65,0.9] [1.0,1.0] [0.3,0.4] [0.5, 0.6] [0.2,0.3] [0.05,0.2]

Table 2
A complete interval-valued fuzzy decision table.

U x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

C a1 a11 [0.2,0.3] [0.1,0.1] [0.2,0.3] [0.2, 0.2] [0.8,0.9] [0.5,0.6] [0.1,0.1] [0.7, 0.9] [0.2,0.3] [0.1,0.2]
a12 [0.5,0.6] [0.2,0.6] [0.6,0.7] [0.55,0.7] [0.3,0.4] [0.4,0.5] [0.2,0.6] [0.3, 0.4] [0.6,0.7] [0.2,0.3]
a13 [0.2,0.4] [0.5,0.7] [0.3,0.4] [0.3, 0.4] [0.1,0.2] [0.2,0.3] [0.5,0.7] [0.05,0.1] [0.3,0.4] [0.6,0.8]

a2 a21 [0.6,0.8] [0.2,0.4] [0.7,0.9] [0.2, 0.4] [0.6,0.8] [0.8,0.8] [0.3,0.3] [0.6, 0.8] [0.7,0.8] [0.3,0.3]
a22 [0.3,0.4] [0.5,0.7] [0.3,0.4] [0.8, 0.9] [0.3,0.4] [0.1,0.3] [0.7,0.8] [0.3, 0.4] [0.4,0.4] [0.7,0.8]

a3 a31 [0.1,0.1] [0.85,0.9] [0.05,0.1] [0.1, 0.2] [0.05,0.1] [0.1,0.3] [0.7,0.8] [0.1, 0.3] [0.1,0.1] [0.6,0.7]
a32 [0.2,0.3] [0.2,0.3] [0.1,0.2] [0.1, 0.25] [0.15,0.3] [0.6,0.7] [0.3,0.4] [0.2, 0.3] [0.2,0.3] [0.2,0.3]
a33 [0.7,0.8] [0.1,0.2] [0.7,0.75] [0.6, 0.6] [0.3,0.4] [0.2,0.3] [0.1,0.2] [0.3, 0.4] [0.7,0.8] [0.1,0.2]
a34 [0.3,0.4] [0.1,0.2] [0.2,0.3] [0.3, 0.35] [0.5,0.8] [0.1,0.2] [0.1,0.1] [0.6, 0.9] [0.3,0.4] [0.1,0.2]

D d F1 [0.7,0.9] [0.3,0.5] [0.7,0.8] [0.15,0.2] [0.05,0.1] [0.1,0.2] [0.25,0.4] [0.1, 0.2] [0.45,0.7] [0.05,0.1]
F2 [0.15,0.2] [0.5,0.7] [0.3,0.4] [0.5, 0.8] [0.2,0.3] [0.35,0.5] [1.0, 1.0] [0.25,0.4] [0.25,0.3] [0.8,0.9]
F3 [0.4,0.5] [0.35,0.4] [0.1,0.2] [0.2, 0.3] [0.65,0.9] [1.0,1.0] [0.3,0.4] [0.5, 0.6] [0.2,0.3] [0.05,0.2]
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According to CMAVIFIS, the set of objects with missing values is MOS = {x3,x5,x7,x9,x10}. Let n = 0.7.
For object x3, we have TC(x3) = {x1,x9}. Thus, jTC(x3)j– 1. Two elements in TC(x3) have values that are not ⁄. We need to

compute P(x3,x1) and P(x3,x9). According to Definitions 10 and 11, we obtain P(x3,x1) � 0.51 and P(x3,x9) � 0.53. In view of
P(x3,x1) 6 P(x3,x9), we have a11(x3) = a11(x9) = [0.2,0.3]; a12(x3) = a12(x9) = [0.6,0.7]; a13(x3) = a13(x9) = [0.3,0.4].

For x5 2MOS, TC(x5) = {x8}. jTC(xi)j = 1, we have a21(x5) = a21(x8) = [0.6,0.8]; a22(x5) = a22(x8) = [0.3,0.4].
Analogously, the other missing values are completed as follows:
a11ðx7Þ¼ a11ðx2Þ¼ ½0:1;0:1�; a12ðx7Þ¼ a12ðx2Þ¼ ½0:2;0:6�; a13ðx7Þ¼ a13ðx2Þ¼ ½0:5;0:7�;
a31ðx9Þ¼ a31ðx1Þ¼ ½0:1;0:1�; a32ðx9Þ¼ a32ðx1Þ¼ ½0:2;0:3�; a33ðx9Þ¼ a33ðx1Þ¼ ½0:7;0:8�; a34ðx9Þ¼ a34ðx1Þ¼ ½0:3;0:4�;
a21ðx10Þ¼ a21ðx7Þ¼ ½0:3;0:3�; a22ðx10Þ¼ a22ðx7Þ¼ ½0:7;0:8�:
The complete interval-valued fuzzy decision table is shown in Table 2.
The example shows that CMAVIFIS can easily process completeness analysis of an incomplete information system; thus, it

can be adopted as a pretreatment method in data mining. The application of CMAVIFIS is in Section 6.
4. Positive approximation in IVFR sets

From the viewpoint of granular computing in IVFR defined by Sun [38], the concept is described under static granulation,
i.e., a certain interval-valued fuzzy equivalence relation. However, we usually need to analyze and solve problems from mul-
tiviews and multilevels. Consider an extreme case. Suppose we select an interval-valued fuzzy equivalence relation R with
the finest granulation; i.e., each fuzzy block contains only one object. An interval-valued fuzzy set F can be effectively ex-
pressed in the granulation space determined by R. However, such expression is only a simple enumeration of F, and the com-
monness of the objects constituting F cannot be fully mined. The extreme case encourages us to find a model that not only
can effectively express F but also fully mines potential rules.

We review two existing methods to construct granulation. First, the universe can be divided according to the entire attri-
bute set and obtain a granulation space. However, some potential community characteristics among objects may be lost due
to excessively fine granulation. Second, instead of using the entire attribute set, a reduct set can divide the universe and
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obtain coarser granulation space. However, attribute reduction algorithms may have a negative effect on inducting good rules.
Furthermore, even rules are extracted based on the reduct set, once the reduct set is selected, the corresponding granulation is
determined. Solving problems in a uniform granulation inevitably makes granulation too fine or too coarse. Excessively fine
granulation will lose potential community characteristics among objects and increase time and cost. If the granulation is
too coarse, the target concept cannot be effectively expressed. Thus, we consider a model with a non-uniform granulation level,
i.e., analyze a given object with a family of interval-valued fuzzy equivalence relations rather than a single one.

An interval-valued fuzzy equivalence relation R corresponds to a granulation space. A partial order sequence
R1 � R2 � 	 	 	 � Rn corresponds to a sequence of spaces with granulations from fine to coarse. The changing process of gran-
ulation includes two cases: gradual refining and gradual coarsening. The former is used when a description of the object at a
finer granulation level is required. For a family of interval-valued fuzzy equivalence relations with R1 
 R2 
 	 	 	 
 Rn, the
process of describing the object using gradual refining granulation is called positive approximation. The latter is used when
excessively fine description leads to loss of community characteristics among objects. Accordingly, the process of describing
the object by using gradual coarsening granulation is called converse approximation.

In the process of the positive approximation, coarser granulation is first selected, and then objects whose decision class
can be determined in the corresponding granulation space are deleted. Thus, only the rest needs to be considered, namely,
objects whose decision class cannot be determined for the moment. In the finer granulation space with more detailed infor-
mation, objects whose decision class can be determined are deleted. Objects that require further investigation in the uni-
verse are considered the next research objectives each time. A sequence of expressions with different granulation levels
can then be generated. In family of interval-valued fuzzy equivalence relations, the positive approximation can effectively
express the given interval-valued fuzzy set by the least knowledge granules.

4.1. The concept of positive approximation

Granulation order in sets was introduced by Qian and co-workers [20,30]. To obtain granulation order in interval-valued
fuzzy information systems, we first extend the partial relation � on 2A. Let S = (U,A) be an interval-valued fuzzy information
system, where U is a non-empty set of finite objects (the universe), attributes in A are represented by fuzzy interval numbers,
and I, Q are subsets of A. Define a partial relation � as follows: I � Q(Q 
 I) if and only if, for every Ik 2 U/I, there exists Qj 2 U/
Q such that 8x 2 U; lI�k

ðxÞ 6 lQ�j
ðxÞ and lIþ

k
ðxÞ 6 lQþj

ðxÞ, where U=I ¼ I1 ¼ I�1 ; I
þ
1

� �
; I2 ¼ I�2 ; I

þ
2

� �
; . . . ; Im ¼ I�m; I

þ
m

� �� �
and

U=Q ¼ Q 1 ¼ Q�1 ;Q
þ
1

� �
; Q2 ¼ Q�2 ;Q

þ
2

� �
; . . . ;Qn ¼ Q�n ;Q

þ
n

� �� �
are fuzzy blocks induced by I and Q, respectively.

A fuzzy partition induced by an interval-valued fuzzy equivalence relation provides granulation space to describe a target
concept. Let Rk (k = 1,2, . . . ,n) be a family of interval-valued fuzzy equivalence relations with, R1 
 R2 
 	 	 	 
Rn. The sequence
of granulation spaces from coarse to fine, as determined by Rk (k = 1,2, . . . ,n), is called positive granulation order. The upper
and lower approximations of positive approximation in a positive granulation order are defined as follows.

Definition 12. Let S = (U,A) be an interval-valued fuzzy information system, F be an interval-valued fuzzy set of U, and
P = {R1,R2, . . . ,Rn} be a family of interval-valued fuzzy attribute sets with R1 
 R2 
 	 	 	 
 Rn, where Rk (k = 1,2, . . . ,n) is a subset
of A. P-upper approximation aprPðFÞ and P-lower approximation aprP(F) of positive approximation of F are defined as follows:
laprP ðFÞðxÞ ¼ ½laprP ðF�Þ;laprP ðFþÞ� ¼
"

sup
y2U

minfl½x�R�n
ðyÞ;lF� ðyÞg; sup

y2U
minfl½x�Rþn

ðyÞ;lFþ ðyÞg
#
;

laprP ðFÞðxÞ ¼ ½laprP ðF�Þ;laprPðFþÞ� ¼

inf
y2U

max 1� l½x�Rþ
1

ðyÞ;lF� ðyÞ
� 

; inf
y2U

max 1� l½x�R�
1

ðyÞ;lFþ ðyÞ
� � �

; x 2W1;

	 	 	
inf
y2U

max 1� l½x�Rþn
ðyÞ;lF� ðyÞ

� 
; inf

y2U
max 1� l½x�R�n

ðyÞ;lFþ ðyÞ
� � �

; x 2Wn;

inf
y2U

max 1� l½x�Rþ
nþ1

ðyÞ;lF� ðyÞ
� 

; inf
y2U

max 1� l½x�R�
nþ1

ðyÞ;lFþ ðyÞ
� � �

; x 2 Unþ1;

8>>>>>>><
>>>>>>>:
where l½x�Rk
ðyÞ ¼ lRk

ðx; yÞ; ðk ¼ 1;2; . . . ;nÞ; ½x�Rk
2 Uk=Rk ðk ¼ 1;2; . . . ;nÞ, especially ½x�Rnþ1

2 Unþ1=Rn and

U1 ¼ U; Ui ¼ Ui�1 � Wi�1 ði ¼ 2; 3; . . . ; n þ 1Þ; Wi�1 ¼ fxjlaprRi�1
ðFÞðxÞ ¼ ½infy2U maxf1 � l½x�Rþ

i�1

ðyÞ; lF� ðyÞg; infy2U max

f1 � l½x�R�
i�1

ðyÞ; lFþ ðyÞg� P ½g�; gþ�g ¼ fxjinfy2U maxf1 � l½x�Rþ
i�1

ðyÞ; lF� ðyÞg P g�; infy2U maxf1 � l½x�R�
i�1

ðyÞ; lFþ ðyÞg P gþg

g�, g+ 2 [0.5,1] and g = [g�,g+] 2 [I] is a suitable threshold.
The boundary BNP(F) of F is defined as follows:
lBNPðFÞðxÞ ¼ sup
y2U

min l½x�R�n
ðyÞ;lF� ðyÞ

�  !
^ 1� inf

y2U
max 1� l½x�R�n

ðyÞ;lFþ ðyÞ
� � 	

; sup
y2U

min l½x�Rþn
ðyÞ;lFþ ðyÞ

�  !"

^ 1� inf
y2U

max 1� l½x�Rþn
ðyÞ;lF� ðyÞ

� � 	#
:

The differentiation index of F in (U,A) is defined as follows:
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diffRk
ðFÞ ¼ 1

2

P
x2UlF� ðxÞP

x2UlF� ðxÞ þ
P

x2UlBNRk
ðF�ÞðxÞ

þ
P

x2UlFþ ðxÞP
x2UlFþ ðxÞ þ

P
x2UlBNRk

ðFþÞðxÞ

 !
:

Remark 1. The main idea of Definition 12 is that in the coarsest granulation space decided by R1, objects whose decision
class can be determined are deleted to obtain an updated universe, U1 �W1. In the coarser granulation space determined by
adding a condition attribute, for the updated universe U1 �W1, objects whose decision class can be determined are deleted,
and the universe is updated again. This process is repeated until the updated universe becomes an empty set or no condition
attribute can be added. Although approximation operators are equivalent to the ones in Definition 5, the structure of the
approximation operators reflects the granulation spaces changing from coarse to fine. Definition 12 shows that the universe
dwindles as the granulation space becomes fine. This helps reduce computational complexity.
Remark 2. Upper and lower approximations are not symmetrical. In many applications, computing the upper
approximation is not always necessary. For simplicity, the upper approximation operator is not represented in a structural
form.
Remark 3. If S = (U,A) is an information system with both crisp condition and interval-valued fuzzy decision attributes, and
Definition 12 is usable. Here, P = {R1,R2, . . . ,Rn} is a family of equivalence relations with R1 
 R2 
 	 	 	 
 Rn, and

l½x�R�
j

ðyÞ ¼ l½x�Rþ
j

ðyÞ ¼ l½x�Rj
ðyÞ ¼

1; y 2 ½x�Rj

0; y R ½x�Rj

(
; j ¼ 1;2; . . . ;nþ 1. Analogously, if S = (U,A) is an information system with both

interval-valued fuzzy condition and crisp decision attributes, Definition 12 is still effective. Here, F is a set of U, and
lF� ðyÞ ¼ lFþ ðyÞ ¼ lFðyÞ ¼
1; y 2 F;

0; y R F:

�

Remark 4. The differentiation index provides a quantitative depiction of the object. Clearly, 0 6 diffRk
ðFÞ 6 1. If diffRk

ðFÞ ¼ 1,
then we have BNRk

ðFÞ ¼£.

Definition 12 shows that a target fuzzy concept is approached by the upper approximation aprPðFÞ and variable lower
approximation aprP(F). In the process of approximate classification, the approximate classification result and the decision
class is usually incompatible due to the unavoidable roughness of the problem description. The closer the lower approxima-
tion aprP(F) is to F, the higher the compatibility between the approximate classification result and the decision class. The
result of the positive approximation is that the universe is decomposed into a union of several subsets, i.e.,
U = W1 [W2 [ 	 	 	Wn [ Un+1. Each subset is located in different granulation levels; the maximal subset satisfies the given
threshold in the corresponding granulation. The number of ‘‘[’’ quantitatively reflects the compatible extent between the
approximate classification result and the decision class.
Theorem 1. Let S = (U,A) be an interval-valued fuzzy information system, F be an interval-valued fuzzy set of U, and
P = {R1,R2, . . . ,Rn} be a family of interval-valued fuzzy attribute sets with R1 
 R2 
 	 	 	 
 Rn, where Rk (k = 1,2, . . . ,n) is a subset of
A. LetPi = {R1,R2, ,. . . ,Ri}. Then for "Pi, (i = 1,2, . . . ,n), the following properties hold:
aprPðFÞ# F # aprPðFÞ; ð1Þ
aprP1 ðFÞ# aprP2 ðFÞ# 	 	 	 # aprPn ðFÞ; ð2Þ
BNP1 ðFÞ � BNP2 ðFÞ � 	 	 	 � BNPn ðFÞ; ð3Þ
diffP1 ðFÞ 6 diffP2 ðFÞ 6 	 	 	 6 diffPnðFÞ: ð4Þ
Proof. laprP ðFÞðxÞ ¼ laprRn ðFÞ
ðxÞ. Then, laprP ðFÞðxÞ ¼ laprRn ðFÞ

ðxÞ 6 lFðxÞ 6 laprRn ðFÞ
ðxÞ ¼ laprP ðFÞðxÞ, for "x 2 U. That is,

aprPðFÞ# F # aprPðFÞ.

To prove (2), we prove aprP1 ðFÞ# aprP2 ðFÞ first.
laprP1
ðFÞðxÞ ¼

inf
y2U

max 1� l½x�Rþ
1

ðyÞ;lF� ðyÞ
� 

; inf
y2U

max 1� l½x�R�
1

ðyÞ;lFþ ðyÞ
� � �

; x 2W1;

inf
y2U

max 1� l½x�Rþ
1þ1

ðyÞ;lF� ðyÞ
� 

; inf
y2U

max 1� l½x�R�
1þ1

ðyÞg;lFþ ðyÞ
� � �

; x 2 U2 ¼ U1 �W1;

8>>><
>>>:
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laprP2
ðFÞðxÞ ¼

inf
y2U

max 1� l½x�Rþ
1

ðyÞ;lF� ðyÞ
� 

; inf
y2U

max 1� l½x�R�
1

ðyÞ;lFþ ðyÞ
� � �

; x 2W1;

inf
y2U

max 1� l½x�Rþ
2

ðyÞ;lF� ðyÞ
� 

; inf
y2U

max 1� l½x�R�
2

ðyÞ;lFþ ðyÞ
� � �

; x 2W2 # U2 ¼ U1 �W1;

½inf
y2U

maxf1� l½x�Rþ
2þ1

ðyÞ;lF� ðyÞg; inf
y2U

maxf1� l½x�R�
2þ1

ðyÞ;lFþ ðyÞg�; x 2 U3 ¼ U2 �W2 ¼ U1 �W1 �W2:

8>>>>>>>><
>>>>>>>>:
When x 2W1, laprP1
ðFÞðxÞ ¼ laprP2

ðFÞðxÞ; otherwise, laprP1
ðFÞðxÞ 6 laprP2

ðFÞðxÞ. That is, for "x 2 U, laprP1
ðFÞðxÞ 6 laprP2

ðFÞðxÞ. Thus,
aprP1 ðFÞ# aprP2 ðFÞ. Similarly, we can show other inequalities. Therefore, aprP1 ðFÞ# aprP2 ðFÞ# 	 	 	 # aprPn ðFÞ.

To prove (3), we prove BNP1 ðFÞ � BNP2 ðFÞ first.
lBNP1
ðFÞðxÞ ¼ sup

y2U
min l½x�P�

1

ðyÞ;lF� ðyÞ
�  !

^ 1� inf
y2U

max 1� l½x�P�
1

ðyÞ;lFþ ðyÞ
� � 	

; sup
y2U

min l½x�Pþ
1

ðyÞ;lFþ ðyÞ
�  !"

^ 1� inf
y2U

max 1� l½x�Pþ
1

ðyÞ;lF� ðyÞ
� � 	#

;

lBNP2
ðFÞðxÞ ¼ sup

y2U
min l½x�P�

2

ðyÞ;lF� ðyÞ
�  !

^ 1� inf
y2U

max 1� l½x�P�
2

ðyÞ;lFþ ðyÞ
� � 	

; sup
y2U

min l½x�Pþ
2

ðyÞ;lFþ ðyÞ
�  !"

^ 1� inf
y2U

max 1� l½x�Pþ
2

ðyÞ;lF� ðyÞ
� � 	#

:

Clearly, ½x�P1
� ½x�P2

, then supy2U min l½x�P�
1

ðyÞ; lF� ðyÞ
� 

P supy2U min l½x�P�
2

ðyÞ; lF� ðyÞ
� 

; infy2U max 1� l½x�P�
1

ðyÞ;
�

lFþ ðyÞg

6 infy2U max 1� l½x�P�
2

ðyÞ; lFþ ðyÞ
� 

. Therefore, supy2U min l½x�P�
1

ðyÞ;
��

lF� ðyÞgÞ^ 1� infy2U maxf1�l½x�P�
1

ðyÞ; lFþ ðyÞg
� 	

P

supy2U min l½x�P�
2

ðyÞ; lF� ðyÞ
� � 	

^ 1� infy2U max 1�l½x�P�
2

ðyÞ; lFþ ðyÞ
� � 	

. Similarly, we can show that supy2U min



l½x�Pþ
1

ðyÞ;lFþ ðyÞ
� 

Þ^ 1�infy2U max 1�l½x�Pþ
1

ðyÞ;lF� ðyÞ
� � 	

P supy2U min l½x�Pþ
2

ðyÞ;lFþ ðyÞ
� � 	

^ 1�infy2U max 1�l½x�Pþ
2

ðyÞ;
��

lF� ðyÞ
	

. Thus, lBNP1
ðFÞðxÞPlBNP2

ðFÞðxÞ, i.e., BNP1 ðFÞ�BNP2 ðFÞ. Analogously, the others can be proven. h

Based on BNP1 ðFÞ � BNP2 ðFÞ � 	 	 	 � BNPn ðFÞ, for "x 2 U, we obtain lBNP1
ðF�ÞðxÞP lBNP2

ðF�ÞðxÞP 	 	 	P lBNPn ðF
�ÞðxÞ, thenP

x2UlBNP1
ðF�ÞðxÞP

P
x2UlBNP2

ðF�ÞðxÞP 	 	 	P
P

x2UlBNPn ðF
�ÞðxÞ; therefore,

P
x2U

lF� ðxÞP
x2U

lF� ðxÞþ
P

x2U
lBNP1

ðF�ÞðxÞ
6

P
x2U

lF� ðxÞP
x2U

lF� ðxÞþ
P

x2U
lBNP2

ðF�ÞðxÞ

6 	 	 	6
P

x2U
lF� ðxÞP

x2U
lF� ðxÞþ

P
x2U

lBNPn ðF
�ÞðxÞ

. Analogously,
P

x2U
lFþ ðxÞP

x2U
lFþ ðxÞþ

P
x2U

lBNP1
ðFþÞðxÞ

6

P
x2U

lFþ ðxÞP
x2U

lFþ ðxÞþ
P

x2U
lBNP2

ðFþÞðxÞ
6 	 	 	 6

P
x2U

lFþ ðxÞP
x2U

lFþ ðxÞþ
P

x2U
lBNPn ðF

þÞðxÞ
,

i.e., diffP1 ðFÞ 6 diffP2 ðFÞ 6 	 	 	 6 diffPn ðFÞ.
Theorem 1 states that the lower approximation enlarges as the positive granulation order becomes longer by adding

interval-valued fuzzy equivalence relations. At the same time, the boundary set dwindles and the differentiation index
increases.

To describe the uncertainty of concepts in a positive granulation order, the approximation precision is defined as follows.

Definition 13. Let S = (U,A) be an interval-valued fuzzy information system, F be an interval-valued fuzzy set of U, and
P = {R1,R2, . . . ,Rn} be a family of interval-valued fuzzy attribute sets with R1 
 R2 
 	 	 	 
 Rn, where Rk (k = 1,2, . . . ,n) is a subset
of A. The approximation precision aP(F) is defined as follows:
aPðFÞ ¼ aPðF�Þ ^ aPðFþÞ ¼
P

x2UlaprP ðF�ÞðxÞP
x2UlaprP ðF�ÞðxÞ

^
P

x2UlaprPðFþÞðxÞP
x2UlaprPðFþÞðxÞ

:

Theorem 2. Let S = (U,A) be an interval-valued fuzzy information system, F be an interval-valued fuzzy set of U, and
P = {R1,R2, . . . ,Rn} be a family of interval-valued fuzzy attribute sets with R1 
 R2 
 	 	 	 
 Rn, where Rk (k = 1,2, . . . , n) is a subset
of A. Let Pi = {R1,R2, . . . ,Ri}, then for "Pi, (i = 1,2, . . . ,n), we have:
aP1 ðFÞ 6 aP2 ðFÞ 6 	 	 	 6 aPn ðFÞ:
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Proof. For 8x2U;laprP1
ðF�ÞðxÞ¼supy2U min l½x�R�

1

ðyÞ;lF� ðyÞ
� 

Psupy2U min l½x�R�
2

ðyÞ;lF� ðyÞ
� 

¼laprP2
ðF�ÞðxÞP 			PlaprPn ðF

�ÞðxÞ.

Moreover, Theorem 1 shows that laprP1
ðF�ÞðxÞ6laprP2

ðF�ÞðxÞ6 			6laprPn ðF
�ÞðxÞ; thus, according to Definition 13, we can easily

obtain aP1 ðF
�Þ6aP2 ðF

�Þ6 			6aPn ðF
�Þ. Similarly, aP1 ðF

þÞ6aP2 ðF
þÞ6 			6aPn ðF

þÞ. Therefore, aP1 ðFÞ6aP2 ðFÞ6 			6aPn ðFÞ. h

Theorem 2 states that aP(F) increases as the positive granulation order becomes longer.

4.2. Fuzzy rule extraction algorithm based on positive approximation

In the fuzzy rough set theory, rule extraction is usually performed under uniform granulation; thus, the dynamic property
is deficient in the process of rule extraction. However, extract rules need to be dynamically extracted according to user
requirements. In a decision table, granulation is mainly reflected as the hierarchy relation between condition and decision
attribute set. The positive approximation approaches a target concept by the change in granulation, which can fully embody
this hierarchy relation. Based on the positive approximation, a rule extraction algorithm called MRBPA is proposed.

Definition 14. Let S = (U,C [ D) be an interval-valued fuzzy decision table, where the condition attributes in C are
represented by fuzzy interval numbers, and the decision attributes in D are fuzzy interval numbers or crisp numbers. The
positive region of D with regard to C is defined as follows:
lposC ðDÞðxÞ ¼ sup
F2U=D

laprC ðFÞðxÞ ¼ sup
F2U=D

laprC ðF�ÞðxÞ; sup
F2U=D

laprC ðFþÞðxÞ
" #

:

The dependency degree cC(D) of C with regard to D is defined as follows:
cCðDÞ ¼

P
x2U sup

F2U=D
laprC ðF�ÞðxÞ þ

P
x2U sup

F2U=D
laprC ðFþÞðxÞ

2jUj :
Algorithm: MRBPA

Input: decision table with interval-valued fuzzy decision attributes S = (U,C [ D)
Output: decision rules

(1) For "c 2 C, compute the dependency degree c{c}(D), let cfc1gðDÞ ¼maxfcfcgðDÞjc 2 Cg and P1 = c1;
(2) U/D = {F1,F2, . . . ,Fd}, where Fk (k = 1,2, . . . ,d) is an interval-valued fuzzy set;

(3) Let P = {P1}, U1 = U, Rule0 = Rule = £, i = 1;
(4) Let Wi ¼

Sd
k¼1fxjlaprP ðF�k Þ

ðxÞ ¼ infy2U max 1� l½x�Pþ
i

ðyÞ;lF�k
ðyÞ

� 
P g�; laprP Fþ

kð ÞðxÞ ¼ infy2U max 1� l½x�P�
i

ðyÞ;
�

lFþ
k
ðyÞg

P gþ; x 2 Uig. If Wi – £, then for"x 2Wi, put desPðxÞ ! desFk
ðxÞ ðk ¼ 1;2; . . . ; dÞ into Rule0. Let Rule = Rule [ Rule0 and

Ui+1 = Ui �Wi;
(5) If C � P = £ and Ui+1 – £, then for "x 2 Ui+1, let T ¼ xjlaprP ðFÞðxÞPwg

n o
¼
Sd

k¼1 xjlaprP ðF�k Þ
ðxÞ þ laprP ðFþk Þ

ðxÞ
n

P g� þ gþ; laprP ðFþk Þ
ðxÞ � laprP ðF�k Þ

ðxÞP gþ � g�g. For "x 2 T, put desPðxÞ ! desFk
ðxÞ ðk ¼ 1;2; . . . ; dÞ into Rule, go to (8);

(6) If Ui+1 = £, go to (8);
(7) For "c 2 C � P, compute cP[{c} (D), let cP[fc2gðDÞ ¼maxfcP[fcgðDÞjc 2 C � Pg. Let Pi+1 = Pi [ {c2}, P = P [ Pi+1, i = i + 1, go to

(4);
(8) Output Rule.
Remark 5. In Step (4), g = [g�,g+] is a threshold, and g�, g+ 2 [0.5,1]. Generally, more conditions must be satisfied in the
rules, and the applicability of the rules decreases with increasing g. That is, g determines the granulation of the rules to some
extent. The selection of g is determined by the actual requirement provided by the user.
Remark 6. In Step (4), desP(x) is the antecedent of the rule, and desFk
ðxÞ is the consequent. For example, ‘‘If a3 is a31, then d is

F2’’, where ‘‘a3 is a31’’ is desP(x), ‘‘d is F2’’ is desFk
ðxÞ.

According to MRBPA, a family of rules can be extracted with granulation changing from coarse to fine. The dynamic clas-
sification results can approximate the decision classification closely. MRBPA not only fully considers the potential commu-
nity characteristics among objects but also possesses high efficiency. The time complexity to extract rules is polynomial.

In Step (1), for "c 2 C, the time complexity for computing cc(D) is O(jCkUj2).
In Step (2), the time complexity for computing U/D is O(jUj2).
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In Step (4), the time complexity for computing Wi is O(jPikUij2).
In Step (5), the time complexity for computing T is O(jCkUi+1j2).

In Step (7), the time complexity for computing cP[{c}(D) is O(jC � Pij(jPij + 1)jUi+1j2). From Steps (4) to (7), jCj is the max-
imum value of the circle times. Therefore, the time complexity is:
XjCj
i¼1

ðOðjPikUij2Þ þ OðjCkUiþ1j2Þ þ OðjC � PijðjPij þ 1ÞjUiþ1j2ÞÞ ð�Þ
Evidently, jPij 6 jCj, jUij 6 jUj, jUi+1j < jUj; thus, the time complexity of (⁄) is smaller than O(jCj3jUj2). Other steps
will not be considered because their time complexities are constant. Hence, the time complexity of the algorithm MRBPA
is:
OðjCkUj2Þ þ OðjUj2Þ þ
XjCj
i¼1

ðOðjPikUij2Þ þ OðjCkUiþ1j2Þ þ OðjC � PijðjPij þ 1ÞjUiþ1j2ÞÞ 6 OðjCj3jUj2Þ:
Generally, the time complexity of the rule extraction algorithm based on attribute reduction (RIA) is O(jCj3jUj2); MRBPA is
much smaller because the universe dwindles gradually.

Remark 7. The main differences between MRBPA and the method based on attribute reduction include two aspects. First,
rule extraction is based on a granulation order; thus, the adverse effects of attribute reduction are excluded as much as
possible. Second, the time complexity of the model is effectively reduced because of the dwindling universe.
4.3. An example
An example illustrates the MRBPA operation. The decision table is in Table 2, where U = {x1,x2, . . . ,x10} is a set of objects;
and C is a fuzzy condition attribute set that includes three attributes a1, a2, a3, each with corresponding linguistic terms, for
example, a1 has terms a11, a12 and, a13; and a11, a12, a13 are interval-valued fuzzy sets. The decision attribute d is fuzzy and is
separated into three linguistic terms, F1, F2, F3, and F1, F2, F3 are interval-valued fuzzy sets.

According to MRBPA, the dependency degrees of a1, a2, a3 can be computed with regard to d. We obtain
cfa1gðdÞ ¼

99
200 ; cfa2gðdÞ ¼

74
200 ; cfa3gðdÞ ¼

103
200.

Hence, P1 = {a3}, P = {P1} and U1/a3 = {a31,a32,a33,a34}. For x 2 a31, we have laprP F�1ð ÞðxÞ ¼ 0:25; laprP Fþ1ð ÞðxÞ ¼ 0:4;
laprP F�2ð ÞðxÞ ¼ 0:5; laprP Fþ2ð ÞðxÞ ¼ 0:7; laprP F�3ð ÞðxÞ ¼ 0:3; laprP Fþ3ð ÞðxÞ ¼ 0:4; forx 2 a32, we have laprP F�1ð ÞðxÞ ¼ 0:3; laprP Fþ1ð ÞðxÞ
¼ 0:4; laprP F�2ð ÞðxÞ ¼ 0:35; laprP Fþ2ð ÞðxÞ ¼ 0:5; laprP F�3ð ÞðxÞ ¼ 0:6; laprP Fþ3ð ÞðxÞ ¼ 0:7; for x 2 a33, we obtain laprP F�1ð ÞðxÞ
¼ 0:4; laprP Fþ1ð ÞðxÞ ¼ 0:4; laprP F�2ð ÞðxÞ ¼ 0:2; laprP Fþ2ð ÞðxÞ ¼ 0:3; laprP F�3ð ÞðxÞ ¼ 0:2; laprP Fþ3ð ÞðxÞ ¼ 0:3; for x 2 a34, we obtain

laprP F�1ð ÞðxÞ ¼ 0:1; laprP Fþ1ð ÞðxÞ ¼ 0:4; laprP F�2ð ÞðxÞ ¼ 0:2; laprP Fþ2ð ÞðxÞ ¼ 0:4; laprP F�3ð ÞðxÞ ¼ 0:5; laprP Fþ3ð ÞðxÞ ¼ 0:6.

Let g = [g�,g+] = [0.5,0.6]. For x 2 a31;laprP F�2ð ÞðxÞ ¼ 0:5 P g�; laprP Fþ2ð ÞðxÞ ¼ 0:7 P gþ; x 2 a32;laprP F�3ð ÞðxÞ ¼ 0:6 P g�;
laprP Fþ3ð ÞðxÞ ¼ 0:7 P gþ; x 2 a34;laprP F�3ð ÞðxÞ ¼ 0:5 P g�; laprP Fþ3ð ÞðxÞ ¼ 0:6 P gþ, then we have W1 = {x2,x5,x6,x7,x8,x10}, Ru-

le = {r1: If a3 is a31 then d is F2 and laprP ðF2ÞðxÞP ½0:5;0:7�; r2: If a3 is a32 then d is F3 and laprP ðF3ÞðxÞP ½0:6;0:7�; r3 : If a3 is

a34, then d is F3 and laprP ðF3ÞðxÞP ½0:5; 0:6�g and U2 = U1 �W1 = {x1,x3,x4,x9}.

For C � P – £ and U2 – £, continue to compute the dependency degrees of the rest of the attributes a1, a2 with respect to
d. The computation of the dependency degree is based on the updated U2. We obtain: cfa1 ;a3gðdÞ ¼

340
800 ; cfa2 ;a3gðdÞ ¼

455
800. Choose

a2 as c2, then P2 = {a2,a3}, P = {a2,a3} and U2/P = {a21 \ a33, a22 \ a33}. For x 2 a21 \ a33, we have laprP F�1ð ÞðxÞ ¼
0:45; laprP Fþ1ð ÞðxÞ ¼ 0:7; laprP F�2ð ÞðxÞ ¼ 0:2; laprP Fþ2ð ÞðxÞ ¼ 0:3; laprP F�3ð ÞðxÞ ¼ 0:2; laprP Fþ3ð ÞðxÞ ¼ 0:3; for x 2 a22 \ a33, we have

laprP F�1ð ÞðxÞ ¼ 0:4; laprP Fþ1ð ÞðxÞ ¼ 0:4; laprP F�2ð ÞðxÞ ¼ 0:5; laprP Fþ2ð ÞðxÞ ¼ 0:6; laprP F�3ð ÞðxÞ ¼ 0:4; laprP Fþ3ð ÞðxÞ ¼ 0:4. For

x 2 a22 \ a33; laprP F�2ð ÞðxÞ ¼ 0:5 P g�; laprP Fþ2ð ÞðxÞ ¼ 0:6 P gþ, then W2 = {x4} and Rule = {r1: If a3 is a31, then d is F2 and

laprP ðF2ÞðxÞP ½0:5;0:7�. r2: If a3 is a32, then d is F3 and laprP ðF3ÞðxÞP ½0:6;0:7�. r3: If a3 is a34, then d is F3 and

laprP ðF3ÞðxÞP ½0:5;0:6�; r4: If a3 is a33 and a2 is a22, then d is F2 and laprP ðF2ÞðxÞP ½0:5;0:6�g and U3 = U2 �W2 = {x1,x3,x9}.

For C � P – £ and U3 – £, the last attribute a1 is added to P, i.e., P = {a1,a2,a3}. Then, U3/P = {a12 \ a21 \ a33}.
When x 2 a12 \ a21 \ a33, we obtain laprP F�1ð ÞðxÞ¼ 0:45; laprP Fþ1ð ÞðxÞ¼ 0:7; laprP F�2ð ÞðxÞ¼0:3; laprP Fþ2ð ÞðxÞ¼0:4; laprP F�3ð ÞðxÞ

¼0:3; laprP Fþ3ð ÞðxÞ¼0:4.

Clearly, W3 = £ and U4 = U3. C � P = £ and U4 – £; then for x 2 U4 = {x1,x3,x9}, we obtain laprP F�1ð ÞðxÞ þ laprP Fþ1ð ÞðxÞ¼ 0:45þ 0:7 P g� þ gþ ¼ 0:5þ 0:6; laprP Fþ1ð ÞðxÞ � laprP F�1ð ÞðxÞ ¼ 0:7� 0:45 P gþ � g� ¼ 0:6� 0:5, i.e., laprP ðF1ÞðxÞPwg. Thus,

T = {x1,x3,x9} and r5: If a3 is a33, a2 is a21 and a1 is a12, then d is F1 and laprP ðF1ÞðxÞP ½0:45;0:7� is added to Rule. The algorithm

is stopped, and the rules are obtained as follows:
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Rule = {r1: If a3 is a31 Then d is F2 and laprP ðF2ÞðxÞP ½0:5;0:7�;
r2: If a3 is a32 Then d is F3 and laprP ðF3ÞðxÞP ½0:6;0:7�;
r3: If a3 is a34 Then d is F3 and laprP ðF3ÞðxÞP ½0:5;0:6�;
r4: If a3 is a33 and a2 is a22 Then d is F2 and laprP ðF2ÞðxÞP ½0:5; 0:6�;
r5: If a3 is a33, a2 is a21 and a1 is a12 Then d is F1 and laprP ðF1ÞðxÞP ½0:45;0:7�g.

5. Converse approximation in IVFR sets

The positive approximation approaches a target concept by the change in granulation. Due to the positive approximation,
the approximation precision aP(F) increases as the positive granulation order becomes longer, and a family of fuzzy rules
with granulation changing from coarse to fine can be obtained. However, in some applications, the approximation precision
is restricted by the decision requirements or preference of decision makers [30]. An obvious problem is extracting simpler
rules based on keeping the approximation precision invariant. The positive approximation appears unsuitable for this pur-
pose. Therefore, the converse approximation in IVFR sets is proposed.

In the process of the converse approximation, the objects that require further investigation in the universe are considered
the next research objectives. A sequence of expressions with different granulation levels can then be generated. In the family
of interval-valued fuzzy equivalence relations, the converse approximation can not only effectively reduce the knowledge
granules describing the interval-valued fuzzy set, it also fully mines potential community characteristics among objects
based on keeping the approximation precision invariant.

5.1. The concept of converse approximation

Let Rk (k = 1,2, . . . ,n) be a family of interval-valued fuzzy equivalence relations with R1 � R2 � 	 	 	 � Rn. The sequence of
granulation spaces from fine to coarse determined by Rk (k = 1,2, . . . ,n) is called converse granulation order. The upper
and lower approximations of converse approximation are defined as follows.

Definition 15. Let S = (U,A) be an interval-valued fuzzy information system, F be an interval-valued fuzzy set of U, and
P = {R1,R2, . . . ,Rn} be a family of interval-valued fuzzy attribute sets withR1 � R2 � 	 	 	 � Rn, where Rk (k = 1,2, . . . ,n) is a subset
of A. Let Pi = {R1,R2, . . . ,Ri}. Pi-upper approximation aprPi

ðFÞ and Pi-lower approximation aprPi
ðFÞ of Pi-converse approximation

of F are defined as follows:
laprPi
ðFÞðxÞ ¼ ½laprPi

ðF�ÞðxÞ;laprPi
ðFþÞðxÞ� ¼

"
sup
y2U

minfl½x�R�
1

ðyÞ;lF� ðyÞg; sup
y2U

minfl½x�Rþ
1

ðyÞ;lFþ ðyÞg
#
;

laprPi
ðFÞðxÞ¼½laprPi

ðF�ÞðxÞ;laprPi
ðFþÞðxÞ�¼

"
_
j

h¼1
inf
y2U

maxf1�l½x�Rþ
h

ðyÞ;lF� ðyÞg; _
j

h¼1
inf
y2U

maxf1�l½x�R�
h

ðyÞ;lFþ ðyÞg
#
; if 9j;

"
inf
y2U

maxf1�l½x�Rþ
1

ðyÞ;lF� ðyÞg;inf
y2U

maxf1�l½x�R�
1

ðyÞ;lFþ ðyÞg
#
; otherwise;

8>>>>><
>>>>>:
where j ¼max tjlaprRt ðF
�ÞðxÞ ¼ infy2U max 1� l½x�Rþ

t

ðyÞ;lF� ðyÞ
� 

P f�;laprRt ðF
þÞðxÞ ¼ infy2U max 1� l½x�R�

t

ðyÞ;
��

lFþ ðyÞ


P fþ;

1 6 t 6 i

; l½x�Rh

ðyÞ ¼ lRh
ðx; yÞ; f�; fþ 2 ½0:5;1� and f = [f�,f+] 2 [I] is a suitable threshold.

The boundary BNP(F) of F is defined as follows:
lBNPi
ðFÞðxÞ ¼ sup

y2U
min l½x�ð[Ri2Pi

RiÞ
� ðyÞ;lF� ðyÞ

�  !
^ 1� inf

y2U
maxf1� l½x�ð[Ri2Pi

RiÞ
� ðyÞ;lFþ ðyÞg

� 	
;

"

sup
y2U

minfl½x�ð[Ri2Pi
RiÞ
þ ðyÞ;lFþ ðyÞg

 !
^ 1� inf

y2U
max 1� l½x�ð[Ri2Pi

RiÞ
þ ðyÞ;lF� ðyÞ

� � 	#
:

The differentiation index of F in (U,A) is defined as follows:
diffPi
ðFÞ ¼ 1

2

P
x2UlF� ðxÞP

x2UlF� ðxÞ þ
P

x2UlBNPi
ðF�ÞðxÞ

þ
P

x2UlFþ ðxÞP
x2UlFþ ðxÞ þ

P
x2UlBNPi

ðFþÞðxÞ

 !
:
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Remark 8. The main idea of the converse approximation is that the number of fuzzy blocks used to describe the target
concept is reduced as the converse granulation order becomes longer. That is, new fuzzy blocks under different granulations
are induced by combining known fuzzy blocks. Although the approximation operators are equivalent to the ones in
Definition 5, the converse approximation emphasizes the change in the construction of the target concept. The structure of
the approximation operators reflects the granulation spaces changing from fine to coarse.
Remark 9. The upper and lower approximations are not symmetrical. In many applications, computing the upper approx-
imation is not always necessary. For simplicity, the upper approximation operator does not denote its structural form.
Remark 10. Definition 15 is still usable for information systems with both crisp condition and interval-valued fuzzy deci-
sion attributes, or for those with both interval-valued fuzzy condition and crisp decision attributes.
Remark 11. f = [f�,f+] is a threshold, and f�, f+ 2 [0.5,1]. Generally, more conditions must be satisfied in the rules, and the
applicability of the rules decreases with increasing f. That is, f determines the granulation of the fuzzy rules to some extent.
The selection of f is determined by the actual requirement provided by the user.
Remark 12. The differentiation index provides a quantitative depiction of the object. Clearly, 0 6 diffRk
ðFÞ 6 1. If diffRk

ðFÞ ¼ 1,
then we have BNRk

ðFÞ ¼£.
Definition 15 shows that a target concept can be approached by the upper approximation aprPi

ðFÞ and the variable lower
approximation aprPi

ðFÞ. In particular, when i = n, we denote aprPn ðFÞ as aprPðFÞ and aprPn ðFÞ as aprP(F). aprPðFÞ and aprP(F) are
called P-upper approximation and P-lower approximation of P-converse approximation of F, respectively.

Theorem 3. Let S = (U,A) be an interval-valued fuzzy information system, F be an interval-valued fuzzy set of U, and
P = {R1,R2, . . . ,Rn} be a family of interval-valued fuzzy attribute sets with R1 � R2 � 	 	 	 � Rn, where Rk (k = 1,2, . . . ,n) is a subset of
A. Let Pi = {R1,R2, . . . ,Ri}, then for "Pi, (i = 1,2, . . . ,n), the following properties hold:
aprP1 ðFÞ ¼ aprP2 ðFÞ ¼ 	 	 	 ¼ aprPnðFÞ; ð5Þ
aprPi

ðFÞ# F # aprPi
ðFÞ; ð6Þ

BNP1 ðFÞ ¼ BNP2 ðFÞ ¼ 	 	 	 ¼ BNPn ðFÞ; ð7Þ
diffP1 ðFÞ ¼ diffP2 ðFÞ ¼ 	 	 	 ¼ diffPnðFÞ: ð8Þ
Proof. For "Pi, if j exists, then laprPi
ðFÞðxÞ ¼ ½ _

j

h¼1
infy2U maxf1� l½x�Rþ

h

ðyÞ;lF� ðyÞg; _
j

h¼1
infy2U maxf1� l½x�R�

h

ðyÞ;lFþ ðyÞg� ¼
½infy2U maxf1� l½x�Rþ

1

ðyÞ;lF� ðyÞg; infy2U maxf1� l½x�R�
1

ðyÞ;lFþ ðyÞg� ¼ laprR1
ðFÞðxÞ; if j does not exist, then

laprPi
ðFÞðxÞ ¼ ½infy2U maxf1� l½x�Rþ

1

ðyÞ;lF� ðyÞg; infy2U maxf1� l½x�R�
1

ðyÞ;lFþ ðyÞg� ¼ laprR1
ðFÞðxÞ. Therefore, aprP1 ðFÞ ¼ aprP2 ðFÞ

¼ 	 	 	 ¼ aprPn ðFÞ ¼ aprR1 ðFÞ can be obtained, i.e., 5(5).

Moreover, laprPi
ðFÞðxÞ ¼ laprR1

ðFÞðxÞ 6 lFðxÞ 6 laprR1
ðFÞðxÞ ¼ laprPi

ðFÞðxÞ. Thus, aprPi
ðFÞ# F # aprPi

ðFÞ.

For 8i;lBNPi
ðFÞðxÞ ¼ supy2U min l½x�

[Ri2Pi
Rið Þ�
ðyÞ;lF� ðyÞ

( ) !
^ 1� infy2U max 1� l½x�

[Ri2Pi
Rið Þ�
ðyÞ;lFþ ðyÞ

( ) !
;

"

supy2U min l½x�ð[Ri2Pi
Ri Þ
þ ðyÞ;lFþ ðyÞ

� � 	
^ 1� infy2U max 1� l½x�ð[Ri2Pi

Ri Þ
þ ðyÞ;lF� ðyÞ

� � 	
� ¼ supy2U min l½x�R�

1

ðyÞ;lF� ðyÞ
� � 	�

^ 1� infy2U max 1� l½x�R�
1

ðyÞ;
��

lFþ ðyÞ
	

; supy2U min l½x�Rþ
1

ðyÞ;lFþ ðyÞ
� � 	

^ 1� infy2U max 1� l½x�Rþ
1

ðyÞ;lF� ðyÞ
� � 	

� ¼

lBNR1
ðFÞðxÞ. Then (7) is proven.

Based on BNP1 ðFÞ ¼ BNP2 ðFÞ ¼ 	 	 	 ¼ BNPn ðFÞ, for "x 2 U, we obtain lBNP1
ðF�ÞðxÞ ¼ lBNP2

ðF�ÞðxÞ ¼ 	 	 	 ¼ lBNPn ðF
�ÞðxÞ, thenP

x2UlBNP1
ðF�ÞðxÞ ¼

P
x2UlBNP2

ðF�ÞðxÞ ¼ 	 	 	 ¼
P

x2UlBNPn ðF
�ÞðxÞ. Therefore,

P
x2U

lF� ðxÞP
x2U

lF� ðxÞþ
P

x2U
lBNP1

ðF�ÞðxÞ
¼P

x2U
lF� ðxÞP

x2U
lF� ðxÞþ

P
x2U

lBNP2
ðF�ÞðxÞ

¼ 	 	 	 ¼
P

x2U
lF� ðxÞP

x2U
lF� ðxÞþ

P
x2U

lBNPn ðF
�ÞðxÞ

. Analogously,
P

x2U
lFþ ðxÞP

x2U
lFþ ðxÞþ

P
x2U

lBNP1
ðFþÞðxÞ

¼
P

x2U
lFþ ðxÞP

x2U
lFþ ðxÞþ

P
x2U

lBNP2
ðFþÞðxÞ

¼ 	 	 	 ¼
P

x2U
lFþ ðxÞP

x2U
lFþ ðxÞþ

P
x2U

lBNPn ðF
þÞðxÞ

; i.e., diffP1 ðFÞ ¼ diffP2 ðFÞ ¼ 	 	 	 ¼ diffPn ðFÞ.

This completes the proof. h

Theorem 3 states that the lower and upper approximations of P-converse approximation, the boundary set, and the dif-
ferentiation index remain invariant as the converse granulation order becomes longer.



Y. Cheng et al. / Information Sciences 181 (2011) 2086–2110 2099
Theorem 4. Let S = (U,A) be an interval-valued fuzzy information system, F be an interval-valued fuzzy set of U, and
P = {R1,R2, . . . ,Rn} be a family of interval-valued fuzzy attribute sets with R1 � R2 � 	 	 	 � Rn, where Rk (k = 1,2, . . .,n) is a subset of A.
Let Pi = {R1,R2, . . . ,Ri}, then for "Pi, (i = 1,2, . . . ,n), the following properties hold:
aP1 ðFÞ ¼ aP2 ðFÞ ¼ 	 	 	 ¼ aPnðFÞ;P P

where aPi

ðFÞ ¼ aPi
ðF�Þ ^ aPi

ðFþÞ ¼ x2U
laprPi

ðF�ÞðxÞP
x2U

laprPi
ðF�ÞðxÞ

^ x2U
laprPi

ðFþÞðxÞP
x2U

laprPi
ðFþÞðxÞ

is approximation precision.

Proof. It follows from Definition 15 that aprP1 ðFÞ ¼ aprP2 ðFÞ ¼ 	 	 	 ¼ aprPn ðFÞ ¼ aprR1 ðFÞ. Then for "x 2 U,
laprP1

ðF�ÞðxÞ ¼ laprP2
ðF�ÞðxÞ ¼ 	 	 	 ¼ laprPn ðF

�ÞðxÞ; laprP1
ðFþÞðxÞ ¼ laprP2

ðFþÞðxÞ ¼ 	 	 	 ¼ laprPn ðF
þÞðxÞ. From Theorem 3, we obtain

aprP1 ðFÞ ¼ aprP2 ðFÞ ¼ 	 	 	 ¼ aprPn ðFÞ, then for "x 2 U, laprP1
ðF�ÞðxÞ ¼ laprP2

ðF�ÞðxÞ ¼ 	 	 	 ¼ laprPn ðF
�ÞðxÞ; laprP1

ðFþÞðxÞ ¼ laprP2
ðFþÞðxÞ

¼ 	 	 	 ¼ laprPn ðF
þÞðxÞ. Therefore, aP1 ðFÞ ¼ aP2 ðFÞ ¼ 	 	 	 ¼ aPn ðFÞ.

This completes the proof. h
Definition 16. Let S = (U,A) be an interval-valued fuzzy information system, R be a subset of A, and any attribute in R be an
interval-valued fuzzy equivalence relation, C = {F1,F2, . . . ,Fm} be a fuzzy partition of U and Fk (k = 1,2, . . . ,m) be an interval-
valued fuzzy set. Lower and upper approximations of C with respect to R are defined as follows:
aprRC ¼ faprRðF1Þ; aprRðF2Þ; 	 	 	 ; aprRðFmÞg;
aprRC ¼ faprRðF1Þ; aprRðF2Þ; 	 	 	 ; aprRðFmÞg:
The target concept is described by fuzzy blocks. For the given universe U, the fuzzy blocks are determined by R. Thus, the
lower and upper approximations of C have a close relationship with R. We need to define a new measure to evaluate the
convergence of C with respect to R, which is helpful in understanding the construction of the lower approximation.
Definition 17. Let S = (U,A) be an interval-valued fuzzy information system, R be a subset of A, any attribute in R be an inter-
val-valued fuzzy equivalence relation, and C = {F1,F2, . . . ,Fm} be a fuzzy partition of U, where Fk (k = 1,2, . . . ,m) is an interval-
valued fuzzy set. The convergence degree of C with respect to R is defined as follows:
CðR;CÞ ¼ CðR;C�Þ ^ CðR;CþÞ ¼
Xm

k¼1

jF�k j
jUj

Xsk

j¼1

p2 F�j
k

� � !
^

Xm

k¼1

jFþk j
jUj

Xsk

j¼1

p2 Fþj
k

� � !
;

where jF�k j ¼
P

x2UlF�k
ðxÞ; jFþk j ¼

P
x2UlFþ

k
ðxÞ; pðF�j

k Þ ¼
jF�j

k
j

jF�k j
; pðFþj

k Þ ¼
jFþj

k
j

jFþ
k
j . sk is the number of blocks that satisfy

laprRðFkÞðxÞ ¼ infy2U max 1� l½x�Rþ ðyÞ;lF�k
ðyÞ

n o
; infy2U max 1� l½x�R� ðyÞ;lFþ

k
ðyÞ

n oh i
P f�; fþ
� �

¼ f. Let MRk ¼ ½x�RjlaprRðFkÞðxÞ
n

¼ infy2U max 1� l½x�Rþ ðyÞ;lF�k
ðyÞ

n o
; infy2U max 1� l½x�R� ðyÞ;lFþ

k
ðyÞ

n oh i
P ½f�; fþ� ¼ f; x 2 U


, where [x]R is determined by

l½x�R ðyÞ ¼ lRðx; yÞ, then sk = jMRkj.
Remark 13. Without losing generality, MRk ¼ fA1;A2; . . . ;Ask
g, can be assumed, where Aj ¼ ½xtj

�R; j ¼ 1;2; . . . ; sk;,
tj 2 {1,2, . . . , jUj}. The convergence degree is then denoted as follows:
CðR;CÞ ¼ CðR;C�Þ ^ CðR;CþÞ ¼
Xm

k¼1

P
x2UlF�k

ðxÞ
jUj

Xsk

j¼1

P
x2Aj

lF�k
ðxÞP

x2UlF�k
ðxÞ

 !2
0
@

1
A ^ Xm

k¼1

P
x2UlFþ

k
ðxÞ

jUj
Xsk

j¼1

P
x2Aj

lFþ
k
ðxÞP

x2UlFþ
k
ðxÞ

 !2
0
@

1
A:
Remark 14. If C = {F}, then CðR;CÞ ¼ CðR;C�Þ ^ CðR;CþÞ ¼
Ps

j¼1p2ðF�jÞ
� �

^
Ps

j¼1p2ðFþjÞ
� �

¼ 1
jF�j2

Ps
j¼1

P
x2½xtj

�R

��
lF� ðxÞ

�2�
^ 1

jFþj2
Ps

j¼1

P
x2½xtj

�R
lFþ ðxÞ

� �2
� 	

.

Definition 18. Let S = (U,A) be an interval-valued fuzzy information system, C = {F1,F2, . . . ,Fm} be a fuzzy partition of U, and
P = {R1,R2, . . . ,Rn} be a family of interval-valued fuzzy attribute sets with R1 � R2 � 	 	 	 � Rn, where Fk (k = 1,2, . . . ,m) is an
interval-valued fuzzy set, and Rk (k = 1,2, . . . ,n) is a subset of A. Let Pi = {R1,R2, . . . ,Ri}. The convergence degree of C with
respect to P is defined as follows:
CðP;CÞ ¼ CðP;C�Þ ^ CðP;CþÞ ¼
Xm

k¼1

jF�k j
jUj

Xsk

j¼1

p2 F�j
k

� � !
^

Xm

k¼1

jFþk j
jUj

Xsk

j¼1

p2 Fþj
k

� � !
;
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where jF�k j ¼
P

x2UlF�k
ðxÞ; jFþk j ¼

P
x2UlFþ

k
ðxÞ; p F�j

k

� �
¼ jF

�j
k
j

jF�k j
; p Fþj

k

� �
¼ jF

þj
k
j

jFþ
k
j ; sk ¼ jMPkj;MPk ¼

Sjx
h¼1½x�Rh

jjx

n
¼max tjlaprRt ðFkÞðxÞ

n
¼ infy2U max 1� l½x�Rþ

t

ðyÞ;lF�k
ðyÞ

� 
; infy2U max 1� l½x�R�

t

ðyÞ;lFþ
k
ðyÞ

� � �
P ½f�; fþ�


.

Remark 15. Without losing generality, MPk ¼ fA1;A2; . . . ;Ask
g can be assumed, where Aj ¼ ½xtj

�RIj
; j ¼

1;2; . . . ; sk; Ij 2 f1;2; . . . ;ng; tj 2 f1;2; . . . ; jUjg. The convergence degree is then represented as follows:0 1 0 1

CðP;CÞ ¼ CðP;C�Þ ^ CðP;CþÞ ¼

Xm

k¼1

P
x2UlF�k

ðxÞ
jUj

Xsk

j¼1

P
x2Aj

lF�k
ðxÞP

x2UlF�k
ðxÞ

 !2@ A ^ Xm

k¼1

P
x2UlFþ

k
ðxÞ

jUj
Xsk

j¼1

P
x2Aj

lFþ
k
ðxÞP

x2UlFþ
k
ðxÞ

 !2@ A:
Remark 16. If C = {F}, then: Xs
 ! Xs

 !

CðP;CÞ ¼ CðP;C�Þ ^ CðP;CþÞ ¼

j¼1

p2ðF�jÞ ^
j¼1

p2ðFþjÞ

¼ 1

jF�j2
Xs

j¼1

ð
X
x2Aj

lF� ðxÞÞ
2

0
@

1
A ^ 1

jFþj2
Xs

j¼1

X
x2Aj

lFþ ðxÞ

0
@

1
A

2
0
B@

1
CA;
where Aj ¼ ½xtj
�RIj

.

Theorem 5. Let S = (U,A) be an interval-valued fuzzy information system, F be an interval-valued fuzzy set of U, and
P = {R1,R2, . . . ,Rn} be a family of interval-valued fuzzy attribute sets with R1 � R2 � 	 	 	 � Rn, where Rk (k = 1,2, . . . , n) is a subset
of A. Let Pi = {R1,R2, . . . ,Ri}, then for "Pi (i = 1,2, . . . ,n), the following property holds:
CðP1; FÞ 6 CðP2; FÞ 6 	 	 	 6 CðPn; FÞ:
Proof. Suppose 1 6 a < b 6 n, MPak ¼ fA1;A2; 	 	 	 ;Amg, and MPbk ¼ fB1;B2; 	 	 	 ;Bng. Clearly, MPak # MPbk and m > n. Then, a par-
tition {C1,C2, . . . ,Cn} of {1,2, . . . ,m} may exist, such that Bt ¼

S
l2Ct

Al; t ¼ 1;2; . . . ;n. Therefore, the following can be obtained:
CðPb; FÞ ¼ CðPb; F
�Þ ^ CðPb; F

þÞ ¼ 1

jF�j2
Xsb

t¼1

X
x2Bt

lF� ðxÞ
 !2

0
@

1
A ^ 1

jFþj2
Xsb

t¼1

X
x2Bt

lFþ ðxÞ
 !2

0
@

1
A

¼ 1

jF�j2
Xsb

t¼1

X
x2
S

l2Ct
Al

lF� ðxÞ

0
B@

1
CA

20
B@

1
CA ^ 1

jFþj2
Xsb

t¼1

X
x2
S

l2Ct
Al

lFþ ðxÞ

0
B@

1
CA

20
B@

1
CA

¼ 1

jF�j2
Xsb

t¼1

X
l2Ct

X
x2Al

lF� ðxÞ
 !2

0
@

1
A

^ 1

jFþj2
Xsb

t¼1

X
l2Ct

X
x2Al

lFþ ðxÞ
 !2

0
@

1
AP

1

jF�j2
Xsb

t¼1

X
l2Ct

X
x2Al

lF� ðxÞ
 !2

0
@

1
A ^ 1

jFþj2
Xsb

t¼1

X
l2Ct

X
x2Al

lFþ ðxÞ
 !2

0
@

1
A
1
A

¼ 1

jF�j2
Xsa

l¼1

X
x2Al

lF� ðxÞ
 !2

0
@

1
A ^ 1

jFþj2
Xsa

l¼1

X
x2Al

lFþ ðxÞ
 !2

0
@

1
A ¼ CðPa; F

�Þ ^ CðPa; F
þÞ ¼ CðPa; FÞ:
Thus, C(P1,F) 6 C(P2,F)6 	 	 	 6C(Pn,F). h
Theorem 6. Let S = (U,A) be an interval-valued fuzzy information system, C = {F1,F2, . . . , Fm} be a fuzzy partition of U, where Fk

(k = 1,2, . . . , m) is an interval-valued fuzzy set, and P = {R1,R2, . . . ,Rn} is a family of interval-valued fuzzy attribute sets with
R1 � R2 � 	 	 	 � Rn, where Rk (k = 1,2, . . ., n) is a subset of A, which is an interval-valued fuzzy equivalence relation. Let-
Pi = {R1,R2, . . . ,Ri}, then for "Pi, (i = 1,2, . . . ,n), the following property holds:
CðP1;CÞ 6 CðP2;CÞ 6 	 	 	 6 CðPn;CÞ:
Proof. It follows from Theorem 5 that C(P1,Fk) 6 C(P2,Fk) 6 	 	 	 6 C(Pn,Fk) for "Fk(k 6m). Suppose 1 6 a < b 6 n, then

C(Pa,Fk) 6 C(Pb,Fk). Therefore, we obtain CðPa;CÞ ¼
Pm

k¼1
jF�k j
jUj
Psk

j¼1p2 F�j
k

� �� �
^
Pm

k¼1


 jFþ
k
j

jUj
Psk

j¼1p2 Fþj
k

� �
Þ ¼

Pm
k¼1

jF�k j
jUj 	 C Pa; F

�
k


 �� �
^
Pm

k¼1
jFþ

k
j

jUj 	C Pa;F
þ
k


 �� �
6
Pm

k¼1
jF�k j
jUj 	C Pb;F

�
k


 �� �
^
Pm

k¼1
jFþ

k
j

jUj 	C Pb;F
þ
k


 �� �
¼CðPb;CÞ. Thus, C(P1,C) 6 C(P2,C) 6 	 	 	 6 C(Pn,C). h
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Theorem 6 shows that the convergence degree of C with respect to Pi increases as the converse granulation order be-
comes longer. New blocks under different granulations are induced by combining known blocks; thus, the number of blocks
to describe the target concept is reduced. This suggests a new idea to describe a target concept with as few blocks as possible
based on keeping the approximation precision invariant. This may have potential applications in the IVFR set theory, such as
the description of multi-target concepts, approximation classification, and rule extraction.

5.2. Fuzzy rule extraction algorithm based on converse approximation

In this section, we apply the converse approximation to rule extraction. Converse approximation is based on dynamic
granulation. Thus, the decision classifications induced by decision attributes can be regarded as target concepts, and the con-
dition attribute sets can be used to construct a converse granulation order. The converse approximation approaches a target
concept by the change in granulation, which can fully embody the hierarchy relation between condition and decision attri-
bute sets. Based on the converse approximation, a rule extraction algorithm called MRBCA is designed.

Given a decision table S = (U,C [ D), for "c 2 C, the significance of c with respect to D is defined by

sigD
C ðcÞ ¼ cCðDÞ � cC�fcgðDÞ, where cCðDÞ ¼

P
x2U

supF2U=DlaprC ðF
�ÞðxÞþ

P
x2U

supF2U=DlaprC ðF
þÞðxÞ

2jUj .

Algorithm: MRBCA
Input: decision table S = (U,C [ D)
Output: decision rules

(1) Compute decision classes U/D = {F1,F2, . . . ,Fd}, where Fk (k = 1,2, . . . ,d) is an interval-valued fuzzy set;
(2) Let Rule = £, P1 = {{C1}}, j = 1, C1 = C;
(3) For "c 2 Cj, compute the significance sigD

Cj
ðcÞ. Let B ¼ c0jsigD

Cj
ðc0Þ ¼min sigD

Cj
ðcÞ; c 2 Cj

n on o
. If jBj– 1, then let

cfc0gðDÞ ¼ minfcfcgðDÞ; c 2 Bg;
(4) Let Cj+1 = Cj � {c0}, Pj+1 = Pj [ {{Cj+1}};
(5) j = j + 1. If j < jCj, go to (3); otherwise, go to (6);
(6) Let k = 1;
(7) Let P = Pj. Compute aprP(Fk), MPk;
(8) Put every decision rule desð½x�Þ ! desFk

ðxÞ into Rule, where [x] 2MPk;
(9) k = k + 1. If k 6 d, go to (7); otherwise, go to (10);

(10) Let T ¼
Sd

k¼1fxjlaprP ðFkÞðxÞPwf; ½x�P R MPkg ¼
Sd

k¼1fxjlaprP F�kð ÞðxÞ þ laprP ðFþk Þ
ðxÞP f� þ fþ;laprP Fþ

kð ÞðxÞ � laprP F�kð ÞðxÞP
fþ � f�; ½x�P R MPkg. For "x 2 T, put desPðxÞ ! desFk

ðxÞðk ¼ 1;2; . . . ; dÞ into Rule.
(11) Output Rule.

Remark 17. In Step (8), des([x]) is the antecedent of the rule, and desFk
ðxÞ is the consequent. ‘‘If a3 is a31, then d is F2,’’ where

‘‘a3 is a31’’ is des([x]), ‘‘d is F2’’ is desFk
ðxÞ.

The time complexity to extract rules is a polynomial.
In Step (1), the time complexity to compute a decision partition is O(jUj2).
In Step (3), the time complexity to compute significance is O(jCjkUj2), and the time complexity to compute sigD

Cj
ðcÞ for

"c 2 Cj is O(jCjj2jUj2). The time complexity to choose the minimum of significance is O(jCjj). In Steps (3)–(5), because jCj � 1
is the maximum value for the circle times, the time complexity to construct Pj is
XjCj�1

j¼1

ðOðjCjj2jUj2Þ þ OðjCjjÞÞ ¼
XjCj�1

j¼1

OðjCjj2jUj2Þ þ
XjCj�1

j¼1

OðjCjjÞ

¼ OðjCj2jUj2 þ ðjCj � 1Þ2jUj2 þ ðjCj � 2Þ2jUj2 	 	 	 þ 22jUj2Þ þ OðjCj þ ðjCj � 1Þ þ 	 	 	 þ 2Þ

¼ O
1
6
ð2jCj3 þ 3jCj2 þ jCjÞ � 1

� 	
jUj2

� 	
þ Oð1

2
ðjCj2 þ jCj � 2Þ ¼ OðjCj3jUj2Þ:
In Step (7), the time complexity for computing aprP (Fk),MPk is O(jCkUj2).
In Step (8), the time complexity for putting each decision rule into the rule base is O(jMPkj).
In Step (10), the time complexity for computing T is O(jCkUj2).
In Step (11), the time complexity is O(jUj).
In Steps (7)–(9), d is the circle times. Therefore, the time complexity of the algorithm MRBCA is OðjUj2Þ þ OðjCj3jUj2Þ

þ
Pd

k¼1ðOðjCkUj
2Þ þ OðjMPkjÞÞ þ OðjCkUj2Þ þ OðjUjÞ ¼ OðjCj3jUj2Þ.

The time complexity of this algorithm can be reduced to O(jCj3jUj log2jUj) of a classification is computed using the ranking
technique.

Remark 18. The differences between MRBCA and the method based on attribute reduction include two aspects. First, rule
extraction is based on a converse granulation order instead of attribute reduction. Second, MRBCA can extract much simpler
rules based on keeping the approximation precision invariant.
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5.3. An example

An example using the data set in Table 2 is presented to discuss the application of MRBCA.
According to MRBCA, a converse granulation order is constructed first. The significances of a1, a2, a3 with regard to d are

computed. For C1 = C = {a1,a2,a3}, we obtain sigd
C1
ða1Þ ¼ 10

2000 ; sigd
C1
ða2Þ ¼ 115

2000 ; sigd
C1
ða3Þ ¼ 70

2000, thus, c0 = a1, C2 = C1 � a1 =
{a2,a3}, P2 = {C1,C2}.

For C2, we obtain sigd
C2
ða2Þ ¼ 145

2000 ; sigd
C2
ða3Þ ¼ 435

2000. As sigd
C2
ða2Þ < sigd

C2
ða3Þ; C3 ¼ C2 � a2 ¼ fa3g; P3 ¼ fC1;C2;C3g ¼

ffa1; a2; a3g; fa2; a3g; fa3gg, and P = P3.
Let f = [0.5,0.6]. According to the definition of the converse approximation, we obtain:
laprP ðF1Þðx1Þ ¼ ½0:45; 0:7�; laprP ðF1Þðx2Þ ¼ ½0:3; 0:4�; laprP ðF1Þðx3Þ ¼ ½0:45;0:7�; laprP ðF1Þðx4Þ ¼ ½0:4;0:45�;

laprP ðF1Þðx5Þ ¼ ½0:2; 0:4�;

laprP ðF1Þðx6Þ ¼ ½0:4; 0:5�; laprP ðF1Þðx7Þ ¼ ½0:3;0:4�; laprP ðF1Þðx8Þ ¼ ½0:2;0:4�; laprP ðF1Þðx9Þ ¼ ½0:45;0:7�;

laprP ðF1Þðx10Þ ¼ ½0:3; 0:4�;

MPF1 ¼£; Rule ¼£;

laprP ðF2Þðx1Þ ¼ ½0:3; 0:4�; laprP ðF2Þðx2Þ ¼ ½0:5 _ 0:5 _ 0:5;0:7 _ 0:7 _ 0:7�;

laprP ðF2Þðx3Þ ¼ ½0:3; 0:4�; laprP ðF2Þðx4Þ ¼ ½0:5 _ 0:5; 0:6 _ 0:6�;

laprP ðF2Þðx5Þ ¼ ½0:2; 0:5�; laprP ðF2Þðx6Þ ¼ ½0:4;0:5�; laprP ðF2Þðx7Þ ¼ ½0:5 _ 0:5 _ 0:5;0:7 _ 0:7 _ 0:7�;

laprP ðF2Þðx8Þ ¼ ½0:2; 0:5�;

laprP ðF2Þðx9Þ ¼ ½0:3; 0:4�; laprP ðF2Þðx10Þ ¼ ½0:5 _ 0:5 _ 0:5;0:7 _ 0:7 _ 0:7�;
MPF2 ¼ fða13 \ a22 \ a31Þ [ ða22 \ a31Þ [ a31; ða12 \ a22 \ a33Þ [ ða22 \ a33Þg ¼ fa31; a22 \ a33g, and

Rule = {r01: If a3 is a31 Then d is F2 and laprP ðF2ÞðxÞP ½0:5;0:7�;

r02: If a2 is a22 and a3 is a33, then d is F2 and laprP ðF2ÞðxÞP ½0:5;0:6�g.
laprP ðF3Þðx1Þ ¼ ½0:3; 0:4�; laprP ðF3Þðx2Þ ¼ ½0:3;0:4�; laprP ðF3Þðx3Þ ¼ ½0:3;0:4�; laprP ðF3Þðx4Þ ¼ ½0:4;0:45�;

laprP ðF3Þðx5Þ¼ ½0:5_0:5_0:5;0:6_0:6_0:6�; laprP ðF3Þðx6Þ¼ ½0:7_0:7_0:6;0:8_0:7_0:7�; laprP ðF3Þðx7Þ¼ ½0:3;0:4�;

laprP ðF3Þðx8Þ ¼ ½0:5 _ 0:5 _ 0:5;0:6 _ 0:6 _ 0:6�; laprP ðF3Þðx9Þ ¼ ½0:3;0:4�; laprP ðF3Þðx10Þ ¼ ½0:3;0:4�;
MPF3 ¼ fða11 \ a21 \ a34Þ [ ða21 \ a34Þ [ a34; ða11 \ a21 \ a32Þ [ ða21 \ a32Þ [ a32g ¼ fa34; a32g, and

Rule = {r01: If a3 is a31 then d is F2 and laprP ðF2ÞðxÞP ½0:5;0:7�;
r02: If a2 is a22 and a3 is a33, then d is F2 and laprP ðF2ÞðxÞP ½0:5;0:6�;

r03:If a3 is a34, then d is F3 and laprP ðF3ÞðxÞP ½0:5;0:6�;
r04: If a3 is a32, then d is F3 and laprP ðF3ÞðxÞP ½0:6;0:7�g.

Moreover, for x 2 a12 \ a21 \ a33, we obtain laprP F�1ð ÞðxÞ þ laprP Fþ1ð ÞðxÞ ¼ 0:45þ 0:7 P f� þ fþ ¼ 0:5þ 0:6;laprP ðFþ1 Þ
ðxÞ � laprP F�1ð ÞðxÞ ¼ 0:7� 0:45 P fþ � f� ¼ 0:6� 0:5 and a12 \ a21 \ a33 R MPFk

, k = 1, 2, 3. Therefore, T = {x1,x3,x9} and r05: If

a1 is a12, a2 is a21 and a3 is a33 then d is F1 and laprP ðF1ÞðxÞP ½0:45;0:7� is added toRule. Rules can be obtained as follows:

Rule = {r01: If a3 is a31, then d is F2 and laprP ðF2ÞðxÞP ½0:5;0:7�;
r02: If a2 is a22 and a3 is a33, then d is F2 and laprP ðF2ÞðxÞP ½0:5;0:6�;
r03: If a3 is a34, then d is F3 and laprP ðF3ÞðxÞP ½0:5;0:6�;
r04: If a3 is a32, then d is F3 and laprP ðF3ÞðxÞP ½0:6;0:7�;
r05: If a1 is a12,a2 is a21 and a3 is a33, then d is F1 and laprP ðF1ÞðxÞP ½0:45; 0:7�g



Table 3
Data description.

Data set Abbreviation Samples Attributes Classes

1 Parkinsons parkinsons 197 23 2
2 Housing housing 506 13 Continuous
3 Concrete compressive strength concrete 1030 8 Continuous
4 Image segmentation image 2310 19 7
5 Page blocks page 5473 10 5
6 Waveform database generator wave 5000 21 3
7 Magic gamma telescope magic 19020 11 2
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Comparing r01; r
0
2; r

0
3; r

0
4, and r05 with r1, r4, r3, r2, and r5, respectively, in Section 4.3 shows that the rules extracted from

MRBPA and MRBCA are the same.
The previously discussed examples reveal three merits of MRBPA and MRBCA. First, the computational complexity of

MRBPA is less than that of the knowledge discovery method [7] due to the gradual dwindling of the universe. Second, for
the algorithm MRBCA, much simpler rules can be extracted based on keeping the approximation precision invariant. Third,
rules can be generated when an interval is nested in the other due to Step (5) in MRBPA and Step (10) in MRBCA.

6. Experimental analysis

In this section, we first evaluate the performance of CMAVIFIS. We then compare the computing time and classification
accuracy of MRBPA, MRBCA, and the fuzzy rule induction algorithm (RIA) on different data sets.

We download several data sets from the UCI Machine Learning database [55] to test our proposed methods. The data sets
are outlined in Table 3. In the seven sets, two have a continuous class attribute, while the others have a categorical class
attribute. Furthermore, the number of samples is between 197 and 19,020.

The experiment is performed on a 400 MHz Pentium Server with 512 MB of memory running on Windows XP. Algorithms
are coded in Matlab 7.1. Considering that CMAVIFIS, MRBPA, and MRBCA mainly deal with interval-valued data, some
Table 4
Accuracy of CMAVIFIS.

Missing ratio Test times and accuracy (%) Average accuracy (%)

1 2 3 4 5

0.02 0.948 0.952 0.950 0.945 0.942 0.9474
0.05 0.918 0.923 0.920 0.921 0.916 0.9196
0.08 0.908 0.917 0.912 0.913 0.906 0.9112
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Fig. 1. Comparison of running time (parkinsons).
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pretreatments, including the fuzzification of the data set and the conversion of a fuzzy set to an interval-valued fuzzy set, are
necessary.

A simple algorithm [48] is used to generate a triangular membership function defined as follows:
T1ðxÞ ¼
1; x 6 m1;

ðm2 � xÞ=ðm2 �m1Þ; m1 < x < m2;

0; m2 6 x;

8><
>:

TkðxÞ ¼
1; x P mk;

ðx�mk�1Þ=ðmk �mk�1Þ; mk�1 < x < mk;

0; x 6 mk�1;

8><
>:
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Fig. 2. Comparison of running time (housing).
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Fig. 3. Comparison of running time (concrete).
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TiðxÞ ¼

0; x P miþ1;

ðmiþ1 � xÞ=ðmiþ1 �miÞ; mi 6 x 6 miþ1;

ðx�mi�1Þ=ðmi �mi�1Þ; mi�1 < x < mi;

0; x 6 mi�1:

8>>><
>>>:
The slopes of the triangular membership functions are selected such that adjacent membership functions cross at the
membership value 0.5. In this case, the only parameter to be determined is M = {mi, i = 1,2, . . . ,k}. The center, mi, can be cal-
culated using the feature-maps algorithm by Kohonen [18].

After the fuzzification of data, each attribute has three linguistic terms, each of which is a fuzzy set on the data set. A con-
struction theorem is used to construct an interval-valued fuzzy set from a fuzzy set [21]. Seven interval-valued fuzzy infor-
mation systems can be obtained. The following experiment consists of two parts: the validity test of CMAVIFIS and the rule
extraction based on MRBPA and MRBCA.
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Fig. 4. Comparison of running time (image).
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6.1. Validity test of CMAVIFIS

The data set ‘‘housing’’ is used to evaluate the performance of CMAVIFIS. In the corresponding interval-valued fuzzy infor-
mation system, there is no missing datum. Missing values with a certain ratio are randomly generated to obtain an incom-
plete interval-valued fuzzy information system. The ratios of the missing values are 2, 5, and 8%, respectively. The test is
carried out five times. The results are summarized in Table 4 (n = 0.65). Table 4 also shows that the overall accuracy de-
creases as the ratio of missing values increases. This is reasonable because more useful information is lost when the amount
of missing data increases. The average accuracy of CMAVIFIS is over 91%, which shows that CMAVIFIS sufficiently utilizes the
hidden commonness in the data set. Hardly any existing completeness method of incomplete interval-valued fuzzy informa-
tion systems exists; thus, we cannot directly compare the complete information system obtained from CMAVIFIS with oth-
ers. Comparing the accuracies with those of the completeness methods for symbolic-valued information systems [10,11,54],
the experiment results are acceptable.
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Fig. 6. Comparison of running time (wave).
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6.2. Rule extraction based on MRBPA and MRBCA

In this section, rules are extracted using MRBPA and MRBCA. There is almost no existing rule extraction method for
interval-valued fuzzy information systems with both interval-valued fuzzy condition and decision attributes; thus, we
cannot directly compare the performance of MRBPA and MRBCA with that of others before generalizing the rule extraction
method in Ref. [37].
6.2.1. Rule extraction based on attribute reduction
Ref. [37] is a representative work on fuzzy rule extraction based on fuzzy rough sets. The rule extraction method consists

of two steps: (1) extension relative reduction to fuzzy rough sets and development of an algorithm to compute a reduct, and
Table 5
Classification accuracies of MRBPA, MRBCA and RIA (%).

Data set MRBPA MRBCA RIA

1 parkinsons 0.9744 ± 0.0161 0.9568 ± 0.0230 0.7846 ± 0.0822
3 concrete 0.6867 ± 0.1034 0.6599 ± 0.1123 0.5276 ± 0.0823
4 image 0.8345 ± 0.0373 0.8157 ± 0.0409 0.7311 ± 0.0698
5 page 0.5513 ± 0.0312 0.5507 ± 0.0398 0.2608 ± 0.1034
6 wave 0.6012 ± 0.0978 0.5747 ± 0.0830 0.5462 ± 0.1208
7 magic 0.6179 ± 0.0723 0.6135 ± 0.0676 0.5840 ± 0.0857

Table 6
Classification accuracies of MRBPA, MRBCA and RIA.

Number of samples in training set Number of samples in test set Method Training accuracy (%) Testing accuracy (%)

506 506 MRBPA(g� = 0.5,g+ = 0.55) 0.65217 0.65217
MRBPA(g� = 0.5,g+ = 0.52) 0.73715 0.73715
MRBPA(g� = 0.5,g+ = 0.5) 0.79249 0.79249
MRBCA(f� = 0.5,f+ = 0.55) 0.66333 0.66333
MRBCA(f� = 0.5,f+ = 0.52) 0.74877 0.74877
MRBCA(f� = 0.5,f+ = 0.5) 0.80049 0.80049
RIA(a = 0.85) 0.65115 0.65115
RIA(a = 0.8) 0.54941 0.54941

425 81 MRBPA(g� = 0.5, g+ = 0.55) 0.66824 0.53086
MRBPA(g� = 0.5,g+ = 0.52) 0.78353 0.60494
MRBPA(g� = 0.5,g+ = 0.5) 0.84235 0.72840
MRBCA(f� = 0.5,f+ = 0.55) 0.67489 0.54870
MRBCA(f� = 0.5,f+ = 0.52) 0.77890 0.61852
MRBCA(f� = 0.5,f+ = 0.5) 0.85647 0.72141
RIA(a = 0.85) 0.65412 0.51852
RIA(a = 0.8) 0.54321 0.50529

350 156 MRBPA(g� = 0.5,g+ = 0.55) 0.71429 0.55128
MRBPA(g� = 0.5,g+ = 0.52) 0.83714 0.68590
MRBPA(g� = 0.5,g+ = 0.5) 0.85429 0.69872
MRBCA(f� = 0.5,f+ = 0.55) 0.71633 0.56989
MRBCA(f� = 0.5,f+ = 0.52) 0.83429 0.69282
MRBCA(f� = 0.5,f+ = 0.5) 0.84286 0.70154
RIA(a = 0.85) 0.57688 0.56154
RIA(a = 0.8) 0.55143 0.55333

250 256 MRBPA(g� = 0.5,g+ = 0.55) 0.74000 0.53516
MRBPA(g� = 0.5,g+ = 0.52) 0.82000 0.69531
MRBPA(g� = 0.5,g+ = 0.5) 0.84800 0.71875
MRBCA(f� = 0.5,f+ = 0.55) 0.73300 0.54000
MRBCA(f� = 0.5,f+ = 0.52) 0.82400 0.67688
MRBCA(f� = 0.5,f+ = 0.5) 0.83600 0.70900
RIA(a = 0.85) 0.58000 0.50984
RIA(a = 0.8) 0.50400 0.48828

150 356 MRBPA(g� = 0.5,g+ = 0.55) 0.84667 0.59270
MRBPA(g� = 0.5,g+ = 0.52) 0.89333 0.65169
MRBPA(g� = 0.5,g+ = 0.5) 0.97333 0.75281
MRBCA(f� = 0.5,f+ = 0.55) 0.83112 0.59860
MRBCA(f� = 0.5,f+ = 0.52) 0.90667 0.66966
MRBCA(f� = 0.5,f+ = 0.5) 0.95903 0.75225
RIA(a = 0.85) 0.59333 0.54775
RIA(a = 0.8) 0.52000 0.54494
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(2) extraction of rules based on an existing fuzzy RIA. To extend the method to interval-valued fuzzy information systems
with both interval-valued fuzzy condition and decision attributes, the dependency degree and the fuzzy subsethood should
be redefined. The definition of dependency degree is the same as in Definition 14. The fuzzy subsethood is redefined as
follows:
Fig. 8.
= 0.5);

Fig. 9.
g+ = 0.5
SðA;BÞ ¼ MðA \ BÞ
MðAÞ ¼

P
u2U minflA� ðuÞ;lB� ðuÞg

2
P

u2UlA� ðuÞ
þ
P

u2U minflAþ ðuÞ;lBþ ðuÞg
2
P

u2UlAþ ðuÞ
;

where A and B are interval-valued fuzzy sets.
The subsethood values indicate the relationship between condition and decision attributes. A suitable threshold, a 2 [0,1],

must be chosen to determine whether the terms are close enough.
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Based on the new definition of dependency degree, ‘‘fuzzy-rough QUICKREDUCT algorithm’’ in [37] is used to reduce the
attributes. According to the definition of fuzzy subsethood, the fuzzy RIA [37] is then used to generate the fuzzy rules.

6.2.2. Experimental results
We randomly divide the samples into 10 subsets. One is used as the training set to find the rule set, and the remainder is

used as the test sets to determine the classification accuracy. After 10 rounds, we compute the average value and variation.
Rule extraction is performed using MRBPA, MRBCA, and RIA. Two indices are used to evaluate the three algorithms: total
running time and classification accuracy. The threshold values of g and f are from [0.5,0.5] to [0.8,0.8] for MRBPA and
MRBCA, respectively, and a in the interval [0.7,0.9] for RIA. Figs. 1–7 show the running time using these algorithms, and indi-
cate that the running time increases with the increase in samples. The running time of MRBPA is far less than that of RIA,
while the running time of MRBCA is slightly less than that of RIA. The running time of MRBPA is significantly reduced, espe-
cially for parkinsons, housing, and concrete data sets; the results are consistent with the key idea of MRBPA; i.e., computa-
tional complexity is effectively reduced as the universe dwindles gradually. Table 5 presents the comparison of the
classification accuracies with MRBPA, MRBCA, and RIA. Overall, the classification accuracies of MRBPA are slightly better
than those of MRBCA. Both MRBPA and MRBCA outperform RIA. The classification accuracies of MRBPA and MRBCA are high-
er than those of RIA for parkinsons, concrete, image, and page data sets. Particularly for parkinsons, the classification accu-
racy of MRBPA is 97.44 ± 1.61%, which is a satisfactory result.

Corresponding to different thresholds and different-sized data sets, we compared the classification accuracy further by
using three algorithms. The data set ‘‘housing’’ is reused. The selected data set is first divided into two parts: the training
set composed of randomly chosen samples and the test set composed of the remainder. Thresholds g and f are considered
parameters to control the granularity of fuzzy rules. We take the values of g and f from [0.5,0.5] to [1.0,1.0] with step 0.01.
The classification accuracies vary with the thresholds. Generally, [0.5,0.5]–[0.5,0.7] is a candidate range for g and f, where
both training and testing accuracies obtain good classification performance. Part training accuracies and testing accuracies
corresponding to different sizes of data sets and different thresholds are enumerated in Table 6. The classification accuracies
of MRBPA and MRBCA are almost equivalent. Both MRBPA and MRBCA outperform RIA. For the data set including 150 train-
ing samples and 356 test samples, the average classification accuracies for MRBPA (g� = 0.5,g+ = 0.5) are 97.333% (training
accuracy) and 75.281% (testing accuracy), and 95.903% (training accuracy) and 75.225% (testing accuracy). For RIA, the accu-
racy is 59.333% using the training data and 54.775% for the test data (a = 0.85). More intuitive comparisons can be found in
Figs. 8 and 9.

7. Conclusions

This paper presents two fuzzy rule extraction methods for interval-valued fuzzy information systems. The main features
of the methods cover four aspects. (1) Rule extraction is based on a granulation order, thus the adverse effects of attribute
reduction are excluded as much as possible. (2) They can be applied to three types of interval-valued fuzzy information sys-
tems (i.e., crisp condition and interval-valued fuzzy decision, interval-valued fuzzy condition and crisp decision, and inter-
val-valued fuzzy condition and decision). (3) For MRBPA, computational consumption can be reduced effectively as the
domain gradually narrows. (4) When one interval is nested in the other, rules can still be generated. The comparative exper-
iments show that the methods in this paper achieve better classification performances than the method based on attribute
reduction.
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