
Knowledge-Based Systems 24 (2011) 275–281
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys
A rough set approach to feature selection based on power set tree

Yumin Chen a,⇑, Duoqian Miao b, Ruizhi Wang b, Keshou Wu a

a Department of Computer Science and Technology, Xiamen University of Technology, 361024 Xiamen, PR China
b Department of Computer Science and Technology, Tongji University, 201804 Shanghai, PR China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 January 2009
Received in revised form 22 July 2010
Accepted 20 September 2010
Available online 25 September 2010

Keywords:
Rough sets
Feature selection
Data mining
PS-tree
Reduction
0950-7051/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.knosys.2010.09.004

⇑ Corresponding author at: Department of Compu
Xiamen University of Technology, 361024 Xiamen
6291390.

E-mail address: cym0620@163.com (Y. Chen).
Feature selection is viewed as an important preprocessing step for pattern recognition, machine learning
and data mining. Traditional hill-climbing search approaches to feature selection have difficulties to find
optimal reducts. And the current stochastic search strategies, such as GA, ACO and PSO, provide a more
robust solution but at the expense of increased computational effort. It is necessary to investigate fast and
effective search algorithms. Rough set theory provides a mathematical tool to discover data dependencies
and reduce the number of features contained in a dataset by purely structural methods. In this paper, we
define a structure called power set tree (PS-tree), which is an order tree representing the power set, and
each possible reduct is mapped to a node of the tree. Then, we present a rough set approach to feature
selection based on PS-tree. Two kinds of pruning rules for PS-tree are given. And two novel feature selec-
tion algorithms based on PS-tree are also given. Experiment results demonstrate that our algorithms are
effective and efficient.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Feature selection can be viewed as one of the most fundamental
problems in the fields of pattern recognition, machine learning and
data mining. The main aim of feature selection is to determine a
minimal feature subset from a problem domain while retaining a
suitably high accuracy in representing the original features [2]. In
real world problems, feature selection is a must due to the abun-
dance of noisy, irrelevant or misleading features [9]. By removing
these factors, learning from data techniques can benefit greatly.
As Liu pointed out in [11], the motivation of feature selection in
data mining and machine learning is to reduce the dimensionality
of feature space, improve the predictive accuracy of a classification
algorithm, and improve the visualization and the comprehensibil-
ity of the induced concepts.

Rough set theory (RST), proposed by Pawlak in 1982 [16], is a
mathematical tool to handle imprecision, uncertainty and vague-
ness. It has been widely applied in many fields such as machine
learning [20], data mining [4], etc [12]. Rough set theory provides
a mathematical tool to discover data dependencies and reduce the
number of features contained in a dataset by purely structural
methods.

Many rough set algorithms for feature selection have been pro-
posed. The complete solution to find minimal reducts is to generate
ll rights reserved.

ter Science and Technology,
, PR China. Tel.: +86 0592
all possible reducts and choose one with minimal cardinality,
which can be done by constructing a kind of discernibility function
from the dataset and simplifying it [10]. Starzyk et al. proposed a
strong equivalence to simplify discernibility functions [18]. Since
it has been shown that the problem of minimal reduct generation
is NP-hard and the problem of the generation of all reducts is expo-
nential, many incomplete solutions have been proposed. The
incomplete solutions include heuristic methods and stochastic
methods. The heuristic methods employ an incremental hill-climb-
ing (greedy) algorithm to select features [1,5,6,13,14,19,23]. The
hill-climbing algorithms usually employ feature significance as
heuristics. For instance, Hu and Cercone proposed a reduction algo-
rithm using the positive-region-based feature significance as the
guiding heuristic [5]. Susmaga focused on the topological aspects
of rough set reducts, giving a discernibility method in reduction
construct [19]. Miao and Hou developed a mutual-information-
based reduction algorithm, using entropy-based feature signifi-
cance [14]. Inuiguchi et al. proposed a variable-precision domi-
nance-based rough set reduction approach [6]. However, hill-
climbing methods often lead to a non-minimal feature combina-
tion, so there can be no guarantee of optimality.

Therefore, many researchers have shifted to stochastic methods
for rough set feature selection. Wroblewski used genetic algo-
rithms (GA) to find minimal reducts [24]. He combined a genetic
algorithm with a greedy algorithm to generate short reducts. How-
ever, Wroblewski’s method uses time-consuming operations and
cannot assure that the resulting subset is really a reduct. ElAlami
utilizes a genetic algorithm to find the optimal relevant features
[3]. Zhai et al. proposed an integrated feature extraction approach

http://dx.doi.org/10.1016/j.knosys.2010.09.004
mailto:cym0620@163.com
http://dx.doi.org/10.1016/j.knosys.2010.09.004
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

276 Y. Chen et al. / Knowledge-Based Systems 24 (2011) 275–281
based on rough set theory and genetic algorithms [26]. Jensen and
Shen proposed a method to find rough set reducts using ant colony
optimization (ACO) [7,8]. Wang et al. developed a feature selection
method based on rough sets and particle swarm optimization
(PSO) [22]. Stochastic methods can provide a more robust solution
as their global optimizing, but at the expense of increased compu-
tational effort.

In the paper, we define a novel tree structure called power set
tree, which is an order tree representing the power set, and each
possible reduct is mapped to a node in the PS-tree. We give two
kinds of PS-tree-based rules for pruning unpromising parts of the
search space. Two novel feature selection algorithms based on
PS-tree are also given. One is a complete algorithm which can guar-
antee to find the minimal reduct. The other is a heuristic algorithm
based on PS-tree. The performance of the first algorithm will be
compared with that of the strong equivalence method. The perfor-
mance of the second algorithm will be compared with that of tra-
ditional hill-climbing algorithms and stochastic algorithms.

The paper is organized as follows. In Section 2, we introduce
some preliminaries in rough sets. Section 3 gives a formal defini-
tion of the PS-tree. Section 4 discusses PS-tree-based search strat-
egies. Section 5 presents two kinds of pruning rules and two
feature selection algorithms based on PS-tree. In Section 6, the
search process is demonstrated by an example. Experimental re-
sults are given in Sections 7, and 8 concludes the paper.

2. Preliminary

This section recalls some preliminaries of RST that are relevant
to this paper. Detailed description of the theory can be found in
[16].

2.1. Preliminary of RST

The notion of information table has been studied by many
authors as a simple knowledge representation method. Formally,
an information table is a quadruple I ¼ ðU;A;V ; f Þ, where U is a
nonempty finite set of objects, A is a nonempty finite set of fea-
tures, V is the union of feature domains such that V =

S
a2AVa for

Va denotes the value domain of feature a, and f: U � A ? V is an
information function which associates a unique value of each attri-
bute with every object belonging to U, such that for any a 2 A and
x 2 U, f(x,a) 2 Va.

With any B # A, there is an associated indiscernibility relation
IND(B):

INDðBÞ ¼ fðx; yÞ 2 U � Uj8a 2 B; f ðx; aÞ ¼ f ðy; aÞg: ð1Þ

The partition of U, induced by IND(B) is denoted by U/IND(B) and
can be calculated as follows:

U=INDðBÞ ¼ �fa 2 B : U=INDðfagÞg; ð2Þ

where

R� S ¼ fX
\

Y : 8R 2 X; 8S 2 Y;X
\

Y – £g: ð3Þ

Given an information table I ¼ ðU;A;V ; f Þ, for any subset X # U and
equivalence relation IND(B), the B-lower and B-upper approxima-
tions of X are defined, respectively, as follows:

B�ðXÞ ¼ fx 2 U : ½x�B # Xg; ð4Þ
B�ðXÞ ¼ fx 2 U : ½x�B

\
X – /g: ð5Þ

Given any two subsets P, Q � A, which give rise to two equivalence
relations IND(P) and IND(Q), the P-positive, P-negative and P-bound-
ary regions of Q can be defined, respectively, as
POSPðQÞ ¼
[

X2U=INDðQÞ
P�ðXÞ; ð6Þ

NEGPðQÞ ¼ U �
[

X2U=INDðQÞ
P�ðXÞ; ð7Þ

BNDPðQÞ ¼
[

X2U=INDðQÞ
P�ðXÞ �

[

X2U=INDðQÞ
P�ðXÞ: ð8Þ

An important issue in data analysis is discovering dependencies be-
tween features. Dependency can be defined in the following way.
For any P, Q � A, P depends totally on Q, if and only if IN-
D(P) # IND(Q). That means that the partition generated by P is finer
than the partition generated by Q. We say that Q depends on P in a
degree lP(Q) (0 6 lP(Q) 6 1), if

lPðQÞ ¼ jPOSPðQÞj=jUj: ð9Þ

If lP(Q) = 1, then Q depends totally on P; if 0 < lP(Q) < 1, then Q de-
pends partially on P; and if lP(Q) = 0 then Q does not depend on P.
Dependency degree lP(Q) can be used as heuristics in greedy algo-
rithms to compute feature reduction.

Information table I ¼ ðU;A;V ; f Þ is also called a decision table if
A = C

S
D, and C

T
D = ;, where C is the set of condition features, D

is the set of decision features. The degree of dependency between
condition and decision features, lC(D), is called the quality of
classification.

The goal of feature reduction is to remove redundant features so
that the reduced set provides the same quality of classification as
the original. A reduct is defined as a subset R of the condition fea-
ture set C such that lR(D) = lC(D) and "B � R, lB(D) – lC(D). A sub-
set Rsup # C is called a super reduct, if lRsup

ðDÞ ¼ lCðDÞ. A given
decision table may have many reducts, the set of all reducts is de-
fined as

Red ¼ fR # CjlRðDÞ ¼ lCðDÞ; 8B � R;lBðDÞ– lCðDÞg: ð10Þ

In rough set feature reduction, a reduct with minimal cardinality is
called the minimal reduct, which can be defined as follows

Rmin ¼ fR 2 Redj8R0 2 Red; jRj 6 jR0jg: ð11Þ
2.2. Hill-climbing methods to feature selection

The hill-climbing methods usually employ dependency degree
as heuristics. They start with the full feature set or an empty set
and then adopt deletion or addition algorithms. The deletion and
addition algorithms can be found in [1,5].

Given a decision table DT ¼ ðU;C
S

D;V ; f Þ, C and D are the con-
dition feature set and decision feature set, respectively. A deletion
algorithm starts with the full feature set. It is not efficient if the
feature reduct is short since many features have been checked
and eliminated.

Deletion algorithm for feature selection
Input: a decision table DT ¼ ðU;C

S
D;V ; f Þ

Output: a feature reduct R

(1) Let R = C, Del = C
(2) While Del – ; do

(2.1) Select a feature a 2 Del according to heuristics, let
Del = Del � {a}

(2.2) If lR�{a}(D) = lR(D), then R = R � {a}, else go to (3)
(3) Output R

The addition algorithm constructs a feature reduct from an
empty set or the core, and adds features to the set until it becomes
a feature reduct. In some cases, the algorithm cannot find a feature
reduct that satisfies the strict reduction definition in Section 2.1,
since the feature subset obtained may contain irrelevant features.

Y. Chen et al. / Knowledge-Based Systems 24 (2011) 275–281 277
Addition algorithm for feature selection
Input: a decision table DT ¼ ðU;C

S
D;V ; f Þ

Output: a feature reduct R

(1) Let R = /, Add = C
(2) While lR(D) – lC(D) and Add – / do

(2.1) Select a feature a 2 Add according to heuristics, let
Add = Add � {a}

(2.2) If lR[{a}(D) – lC(D), then R = R [{a}, else go to (3)
(3) Output R

The order of features for deletion and addition is essential for
feature reduction. Different heuristics may lead to different orders
of features, and thus generate different reducts. The heuristics
adopted in the current feature selection methods mainly include
dependency-degree-based heuristics [5,15], entropy-based heuris-
tics [14,25] and frequency-based heuristics [17,21].
3. PS-tree

Trees provide us an efficient way to solve many problems. The
power set tree (PS-tree) is a tree structure to represent the power
set in an order fashion. Since the PS-tree completely enumerates
the subsets of a power set using a particular order, it can represent
the search space of a particular feature selection problem.

Let DT ¼ ðU;C
S

D;V ; f Þ be a decision table, where C = {c1, . . . ,cn},
P is the power set of C. PT is a PS-tree for DT , which is a tree that
satisfies the following properties:

(1) The root of PT is a tuple hc1, . . . ,cn,ni, which means that the
root has n elements c1, . . . ,cn and n children.

(2) Let PT1,PT2, . . . ,PTn be the n children of root PT. PT1 has n � 1
elements and n � 1 children; PT2 has n � 1 elements and
n � 2 children; . . . ; PTn has n � 1 elements and zero children.
Elements of PT1 are inherited from PT by deleting the 1st ele-
ment of PT; elements of PT2 are inherited from PT by deleting
the 2nd element of PT; . . . ; elements of PTn are inherited
from PT by deleting the n element of PT. Each child of the
root is also a PS-tree.

(3) The order of elements in PT1 is unmodified. The orders of ele-
ments in PT2 , . . . ,PTn must be modified. The last element of
PT2 equals the deleted element of PT1, while the order of
other elements in PT2 is the same as that of PT. The last
two elements in PT3 equal the deleted elements of PT2 and
PT1, while the order of other elements in PT3 is the same as
that of PT. Similarly, the n � 1 elements in PTn equal the
deleted elements of PTn�1, . . . ,PT2, PT1.

Fig. 1 illustrates the PS-tree of set {a,b,c,d}. Expanded nodes
enumerate all the subsets of {a,b,c,d}. Each node represents a pos-
sible solution of feature selection. For convenience, we label the
deleted feature during the expanding process with letter on the
<a,b,c,d,4>

<b,c,d,3> <c,d,a,2><d,b,a,1><c,b,a,0>

<c,d,2><d,b,1><c,b,0><d,a,1><a,c,0><b,a,0>

<d,1> <c,0> <b,0> <a,0>

<Φ,0>

a b c d

b c d c d d

c d d d

d

Fig. 1. The PS-tree for {a,b,c,d}.
top of tuple, and label the number of children for each node in
the right of tuple.

The PS-tree can be used as a data structure for caching unor-
dered sets, and as an effective means for checking whether a
new set is subsumed by any one that is already cached. In our fea-
ture selection algorithms, we shall use the PS-tree for caching solu-
tions and for checking the subsumption relation between two sets,
which can efficiently reduce the time and space complexities of the
algorithms.

4. PS-tree-based feature selection algorithm

Next, we give a PS-tree-based feature selection algorithm (also
called PS-FS). The algorithm expands nodes according to some pri-
ority functions in an order fashion. Nodes along the tree’s expand-
ing fringe are kept in a priority queue and the next node to be
expanded is obtained by virtue of the guiding heuristic.

Algorithm PS-FS
Input: a decision table DT ¼ ðU;C

S
D;V ; f Þ

Output: a feature reduct R

(1) Let R = C; Add C to OPEN_NODES; feat_num = jCj; child = jCj
(2) Repeat the following until OPEN_NODES is empty

(2.1) Select the first node NODE in OPEN_NODES
(2.2) Expand (NODE, feat_num, child)
(2.3) Delete the node NODE from OPEN_NODES
(2.4) Sort all the nodes in OPEN_NODES according to the

heuristic
(3) Output R
Procedure Expand (S, S.feat_num, S.child)
(1) If lS(D) = lC(D) and "B � S, lB(D) – lC(D), then

(1.1) If jSj < jRj, then R = S and return
(1.2) If jSjP jRj, then return

(2) If lS(D) = lC(D), then
(2.1) For i = 1 to S.child do

(2.1.1) Select a feature ai 2 S from sequence S, let
Si = S � {ai}

(2.1.2) Si.feat_num = S.feat_num � 1
(2.1.3) Si.child = S.child � i
(2.1.4) Modify the order of elements in Si according to the

definition of PS-tree
(2.1.5) Add Si to OPEN_NODES
The above algorithm simply implements a best-first search
through sorting nodes by the heuristic. We can also adopt other
expanding strategies, such as breadth-first search or depth-first
search. Breadth-first search can be implemented by calling the ex-
pand procedure with a queuing function which puts the newly gen-
erated nodes at the end of the queue. And depth-first search can be
implemented by calling the expand procedure with a queuing func-
tion which puts the newly generated states at the front of the queue.

Theorem 1. If nodes are sorted by their cardinality in descending,
then the PS-FS is complete. If nodes are sorted by their cardinality in
ascending, then the PS-FS is also complete. Completeness means that
we can guarantee to find all reducts or a minimal reduct.
Proof

(1) In algorithm PS-FS, if nodes are sorted by their cardinality in
descending, then it means that we adopt the breadth-first
search strategy. It is well known that breadth-first search
is complete. Hence, algorithm PS-FS is also complete.

278 Y. Chen et al. / Knowledge-Based Systems 24 (2011) 275–281
(2) If nodes are sorted by their cardinality in ascending, then it
means that we adopt the depth-first search strategy. Depth-
first search is not complete generally. But in algorithm PS-FS,
since all the possible solutions are represented by the PS-
tree, and all the nodes in the PS-tree will be accessed, we
can guarantee to find all reducts. Minimal reduct is a reduct
that its cardinality is minimal. So, we can also find a minimal
reduct from all reducts. Thus algorithm PS-FS is
complete. h

5. Pruning rules

Due to its exponential size, it is impossible to completely ex-
plore the PS-tree. The rules of eliminating a branch of the search
tree from consideration without examining the nodes in the
branch are called pruning rules. The particular PS-tree-based prun-
ing rules are called rotation and backtracking.

5.1. Rotation

The PS-tree is not a balancing tree as its left branches are larger
than the right branches. Therefore, it is more efficient to prune the
left branches. If a node is not a super reduct, then its children cer-
tainly are not reducts. By virtue of this property of PS-tree, we can
prune unpromising parts of the search space. When an expanded
node in the right of PS-tree is not a super reduct, it must be rotated
to the left and pruned as a large branch. Simultaneously, the order
of elements in the node should be modified according to the defi-
nition of PS-tree.

Fig. 2 illustrates the rotation pruning. Node {a,b,c} is a leaf in
the most right part of the left PS-tree, which is a small branch. Sup-
pose {a,b,c} is not a super reduct. Therefore, we can rotate it to the
most left as a larger branch and prune it, which can improve the
search efficiency greatly.

To add rotation pruning rule into feature reduction, we modify
the previous PS-FS algorithm, and obtain a new algorithm, called
PS-FS-I. PS-FS is a complete algorithm, which is an expensive
method to search all the reducts and is only practical for small data
sets. Therefore, in PS-FS-I algorithm we use the depth-first search
strategy as adding rotation pruning and stop the search process
when a reduct is found. The PS-FS-I algorithm is incomplete for
finding minimal reduct, but can find the best solution by the sort-
ing operation. The sorting operation can use heuristics to select the
best solution.

Algorithm PS-FS-I
Input: a decision table DT ¼ ðU;C

S
D;V ; f Þ

Output: a feature reduct R

(1) Let R = C; add C to OPEN_NODES; let feat_num = jCj, child = jCj
and Isreduct = false

(2) Repeat the following until Isreduct = true
<a,b,c,d,4>

<b,c,d,3> <c,d,a,2> <d,b,a,1> <c,b,a,0>

<c,d,2> <d,b,1> <c,b,0> <d,a,1><a,c,0> <b,a,0>

<d,1> <c,0> <b,0> <a,0>

<Φ,0>

a b c d

b c d c d d

c d d d

d
<

Rota

Fig. 2. Rot
(2.1) Select the first node NODE in OPEN_NODES
(2.2) Expand (NODE, feat_num, child)
(2.3) Delete the node NODE from OPEN_NODES
(2.4) Sort all the nodes in OPEN_NODES according to the

heuristic
(3) Output R
Procedure Expand (S, S.feat_num, S.child)
(1) If lS(D) = lC(D) and "B � S, lB(D) – lC(D), then let R = S, Isre-

duct = ture and return
(2) If lS(D) = lC(D), then

(2.1) For i = 1 to S.child
(2.1.1) Select a feature ai 2 S in sequence S, let Si = S � {ai}
(2.1.2) Let Si.feat_num = S.feat_num � 1
(2.1.3) Let Si.child = S.child � i
(2.1.4) If lSi

ðDÞ – lCðDÞ, then rotate Si to the left of PS-
tree to be pruned

(2.1.5) Else rotate Si to the right of PS-tree
<

Φ,0
c

tion

ation
(2.2) Let M1,M2, . . . ,Mm,Mm+1, . . . ,Mchild be the nodes after
rotation, where M1,M2, . . . ,Mm are the pruned parts,
and Mm+1, . . . ,Mchild are the non-pruned parts

(2.3) Modify the order of elements in nodes of non-pruned
parts according to the definition of PS-tree

(2.4) For j = m + 1 to S.child
(2.4.1) Add Mj to OPEN_NODES
The above algorithm is identical to PS-FS, except for the addi-
tions of rotation and the stop condition. The addition of rotation
will improve the efficiency of search process. The PS-FS-I is incom-
plete for minimal reduct, as its stop condition only finding one
reduct.

5.2. Backtracking

The PS-tree is an organization of the solution space so that it can
be searched easily through either rotation method or backtracking
method. Backtracking is a systematic way to search for the solution
to a given problem. Once we have defined an organization for the
solution space, this space is searched in a depth-first manner begin-
ning at a start node. If the search process constructs a solution by
depth-first manner, then backtracks to search for a more optimal
solution. For example, in feature reduction problem, if we find a re-
duct by depth-first manner and regard it as the minimal reduct
temporarily, then backtrack to its father’s right brother and deem
it as the current expansion node. Let r be the length of the tempo-
rary minimal reduct, t be the length of the expansion node and s
be the number of children of the expansion node. If t � s P r, then
prune the expansion node and back up to its father’s right brother.
The search terminates when we run out of live nodes to back up to.

Fig. 3 illustrates the backtracking. Suppose we have found node
{b,a} is a reduct by depth-first search and rotation pruning. We can
<a,b,c,d,4>

<a,b,c,3> <a,c,d,2> <a,b,d,1> <c,b,d,0>

<b,c,2> <c,a,1> <b,a,0> <c,d,1><d,a,0> <b,d,0>

c,1> <b,0> <a,0> <d,0>

>

d b c a

a b c a c a

b c c c

.

<a,b,c,d,4>

<a,b,c,3> <a,c,d,2><a,b,d,1><c,b,d,0>

<b,c,2><c,a,1><b,a,0><c,d,1><d,a,0><b,d,0>

<c,1> <b,0> <a,0> <d,0>

<Φ,0>

d b c a

a b c a c a

b c c c

c

Fig. 3. Backtracking.

Y. Chen et al. / Knowledge-Based Systems 24 (2011) 275–281 279
regard node {b,a} as the minimal reduct temporarily and back-
tracking to its father’s right brother {a,c,d}. Node {a,c,d} is labeled
with two children (expand two children or two levels). If we ex-
pand two levels, the length of posterity of node {a,c,d} will be 1,
which is smaller than that of current minimal reduct. Therefore,
node {a,c,d} must be expanded. Consider its father’s other two
right brother {a,b,d} and {c,b,d}. Node {a,b,d} is labeled with one
child (expand one child or one level). If we expand one level, the
length of its child will be 2, which equals that of the current min-
imal reduct. So, node {a,b,d} must be pruned. Node {c,b,d} must
also be pruned as it is a leaf and its length is more than that of
the current minimal reduct.

Rotation method can prune left branches of the PS-tree. And
backtracking method can prune the right branches of the PS-tree.
Through rotation and backtracking, we can ignore those parts of
the solution space which do not have the potential to lead to a
solution.

To incorporate rotation and backtracking into feature reduction,
we modify the expand procedure of PS-FS algorithm, and obtain a
new algorithm, called PS-FS-C.

Algorithm PS-FS-C
Input: a decision table DT ¼ ðU;C

S
D;V ; f Þ

Output: a feature reduct R

(1) Let R = C; Add C to OPEN_NODES; Let feat_num = jCj, child = jCj
(2) Repeat the following until OPEN_NODES is empty

(2.1) Select the first node NODE in OPEN_NODES
(2.2) Expand (NODE, feat_num, child)
(2.3) Delete the node NODE from OPEN_NODES
(2.4) Sort all the nodes in OPEN_NODES according to the

heuristic
(3) Output R
<a,b,c,d,e,5>

<b,c,d,e,4><a,c,d,e,3> <a,b,d,e,2> <a,b,c,e,1>
a b

<a,b,c,d,0>
d ec
Procedure Expand (S, S.feat_num, S.child)
(1) If lS(D) = lC(D) and "B � S, lB(D) – lC(D), then

(1.1) If jSj < jRj, then let R = S and return
(1.2) If jSjP jRj, then return

(2) If lS(D) = lC(D), then
(2.1) For i = 1–S.child

(2.1.1) Select a feature ai 2 S in sequence S, let Si = S � {ai}
(2.1.2) Let Si.feat_num = S.feat_num � 1
(2.1.3) Let Si.child = S.child � i
(2.1.4) If lSi

ðDÞ – lCðDÞ, then rotate Si to the left of PS-
tree to be pruned

(2.1.5) Else rotate Si to the right of PS-tree
Fig. 4. Expand the root by deleting a feature in sequence.
<a,b,c,d,e,5>

<a,b,c,d,4><b,c,d,e,3> <c,d,a,e,2> <d,b,a,e,1>
e a

<c,b,a,e,0>
c db

Fig. 5. Rotating node {a,b,c_,d} to the left.
(2.2) Let M1,M2, . . . ,Mm,Mm+1, . . . ,Mchild be the nodes after
rotation, where M1,M2, . . . ,Mm are the pruned parts,
and Mm+1, . . . ,Mchild are the non-pruned parts

(2.3) Modify the order of elements in nodes of non-pruned
parts according to the definition of PS-tree

(2.4) For j = m + 1 to S.child
(2.4.1) If Mj.feat_num �Mj.child < jRj, then add Mj to

OPEN_NODES
<a,b,c,d,e,5>

<a,b,c,d,4><b,c,d,e,3> <c,d,a,e,2> <d,b,a,e,1>
e a

<c,b,a,e,0>
c db

<c,d,e,2> <d,e,b,1> <e,c,b,0>
cb d

Fig. 6. Finding a reduct by depth-first search.
The above algorithm is identical to PS-FS, except for the addi-
tions of rotation and backtracking. These changes will improve
the efficiency of search process. The PS-FS-C is complete for mini-
mal reduct, since the PS-FS is complete.

6. An example

Let DT ¼ ðU;C
S

D;V ; f Þ be a decision table and C = {a,b,c,d,e}
be the condition feature set. Assume that all reducts are {b,c,e}
and {a,e}. The justification for a reduct is the definition of depen-
dency degree. If a feature set B includes the reduct {b,c,e} or
{a,e}, then lB(D) = lC(D). If a feature set B does not include the re-
ducts {b,c,e} and {a,e}, then lB(D) – lC(D). So, we can use its
including for justification.

Initially, the minimal reduct R = {a,b,c,d,e} and its length is 5.
The following Figs. 4–7, respectively illustrate the search process.
The start node is {a,b,c,d,e}.

We expand the start node by deleting a feature in sequence as
illustrated in Fig. 4. The character on the top is the deleted feature
of the node. The number in the right is the number of children of
the node.

The last expanded node is {a,b,c,d}. We must prune it as its pos-
terity is not a reduct. However, it is in the most right of the PS-tree.
We can rotate it to the most left and then prune it. To guarantee
the structure of PS-tree, inner order of nodes should be modified.
The rotation pruning is illustrated in Fig. 5.

The other four children of the root include reducts, so each of
them should be expanded. The node {b,c,d,e} is expanded with
three sub-nodes by deleting a feature in the sequence. Two chil-
dren of node {b,c,d,e} do not include reducts, so we prune them.
The remainder child {e,c,b} is a reduct. Moreover, its length is
smaller than that of previous minimal reduct. Therefore, we update
the minimal reduct R = {e,c,b} and its length equals 3. The search
process is illustrated in Fig. 6.

After finding a reduct by depth-first search and rotation prun-
ing, we backtrack to its father’s right brother {c,d,a,e}. Node

<a,b,c,d,e,5>

<a,b,c,d,4><b,c,d,e,3> <c,d,a,e,2> <d,b,a,e,1>
e a

<c,b,a,e,0>
c db

<c,d,e,2> <d,e,b,1> <e,c,b,0>
cb d

<d,a,e,1> <a,e,c,0>

<a,e,0>

c

d

d

Fig. 7. The backtracking process.

280 Y. Chen et al. / Knowledge-Based Systems 24 (2011) 275–281
{c,d,a,e} is labeled with two children (expand two children or two
levels). If we expand two levels, the length of posterity of node
{c,d,a,e} will be 2, which is smaller than that of the current mini-
mal reduct. So node {c,d,a,e} must be expanded. Consider its
father’s other two right brother {d,b,a,e} and {c,b,a,e}. Node
{d,b,a,e} is labeled with one child (expand one child or one level).
If we expand one level, the length of its child will be 3, which
equals that of the current minimal reduct. So, node {d,b,a,e} must
be pruned. Node {c,b,a,e} must also be pruned as its length is more
than that of the current minimal reduct.

Next we search from the node {c,d,a,e}. It can be expanded two
levels in a depth-first manner, and node {a,e} is reached. Now,
node {a,e} is a reduct. Its length is 2, which is smaller than that
of the current minimal reduct. Therefore, we regard node {a,e} as
the current minimal reduct and update the length of minimal re-
duct as 2. From the node {a,e} we backtrack to its father’s right
brother {a,e,c}. But the length of node {a,e,c} is more than that
of the current minimal reduct. So, it must be pruned. From the
node {a,e,c} we backtrack to {d,b,a,e}, which is also pruned.
Continuing in this way, we search the entire PS-tree. The best solu-
tion is found during the search is the optimal one. In the end, we
find the minimal reduct, which is {a,e}. Fig. 7 shows the backtrack-
ing process.
Strong Equivalence

2

3

4

g1
0

(ti
m

e) 25

30

35

Features
7. Experimental results

Our method to feature reduction has two search strategies
based on PS-tree, which induce two algorithms PS-FS-C and PS-
FS-I. PS-FS-C can guarantee to find a minimal reduct, but the
computation time is expensive. PS-FS-I can find a reduct quickly,
but cannot guarantee to find a minimal reduct. Next, we shall
compare our algorithms with the current algorithms to feature
selection.
0

1

25 30 35 40
Instances

lo 40

Fig. 8. Strong equivalence algorithm.

PS-FS-C

0

1

2

3

4

60 80 100 120
Instances

lo
g1

0
(ti

m
e) 60

80

100

120

Features

Fig. 9. PS-FS-C Algorithm.
7.1. Comparison with the complete algorithm

Starzyk’s strong equivalence algorithm [18] is complete, which
can obtain all the reducts and then guarantee to find a minimal re-
duct. We have implemented a program in Visual C++ 6.0 to com-
pare the efficiency of algorithm PS-FS-C with strong equivalence
methods. A random number generator is used to provide uniformly
distributed numbers to represent each feature of each instance.
These values are multiplied by 8 and then the fractional parts are
truncated. This results that all the feature values are integers be-
tween 0 and 8. The number of instances varies from 25 to 40 in
steps of 5.

Fig. 8 illustrates how the run times increase with problem
size using the strong equivalence algorithm. Note the abscissa
is log10 of the run time. From Fig. 8 we can see that the
computational time of strong equivalence algorithm is growing
exponentially.
Fig. 9 shows the results using PS-FS-C algorithm. The number of
features varies from 60 to 120 in steps of 20 and the number of in-
stances varies from 60 to 120 in steps of 20.

From the above two figures, we can see that PS-FS-C algorithm
can compute 120 features, while strong equivalence algorithm can
compute only 40 features. Both PS-FS-C and strong equivalence
algorithm are growing exponentially in the computational time.
PS-FS-C algorithm is growing exponentially in step of 20 features,
while strong equivalence algorithm is growing exponentially in
step of 5 features.

7.2. Comparison with the incomplete algorithms

Hill-climbing algorithm is efficient but often finds a local solu-
tion. Ant colony optimization (ACO) is an effective global optimiz-
ing technique, which is a stochastic search method. ACO-based
algorithm for feature selection can find more robust solution. We
compare our algorithm PS-FS-I with the hill-climbing algorithm
and ACO-based algorithm [7].

In order to compare PS-FS-I with the hill-climbing algorithm
and ACO-based algorithm, we perform the experiments on nine
publicly available data sets from UCI database (These data sets
can be downloaded at http://www.ics.uci.edu).

The experimental results are summarized in Table 1. The left-
most column is the name of each data set. The 2nd and 3rd col-
umns are instance numbers and feature numbers of the
corresponding data set. The 4th, 6th, and 8th columns are the re-
sults of hill-climbing, ACO, and PS-FS-I algorithms, respectively.
These results are the length of the reduct obtained by each algo-
rithm. The 5th, 7th, and 9th columns are the results of hill-climb-
ing, ACO, and PS-FS-I algorithms in run time, respectively. ACO
algorithm is tested for 20 times. Therefore, its run time is the aver-
age time. For ACO algorithm, the number in parentheses denotes
the times of test to achieve such a feature reduct.

From Table 1, we can see that ACO outperforms the hill-climb-
ing with respect to the ability of finding optimal reducts, but for
the expensive of computational time. And PS-FS-I outperforms
the hill-climbing and ACO as respect to the ability of finding opti-
mal reducts.

http://www.ics.uci.edu

Table 1
Experimental results compared with ACO-based algorithm.

Dataset Instance Feature Hill-climbing Run time (s) ACO Run time (s) PS-FS-I Run time (s)

Balance 200 5 4 <0.001 4 0.016 4 0.003
DNA-stalog 2000 61 10 21.703 10 134.203 10 102.325
Led24 200 25 12 0.094 12(13)13(7) 0.624 11 0.265
Lung 32 57 5 <0.001 4(5)5(10)6(5) 0.421 4 0.109
Mushroom 8124 23 5 0.657 4(13)5(7) 23.391 4 15.236
Soy 47 36 2 <0.001 2 0.032 2 0.016
Vote 435 17 12 0.068 105117128 1.798 9 0.389
Wine 178 14 5 <0.001 5(17)6(3) 0.088 5 0.064
Zoo 101 17 6 <0.001 5(18)6(2) 0.089 5 0.016

Y. Chen et al. / Knowledge-Based Systems 24 (2011) 275–281 281
8. Conclusions

This paper discussed the shortcomings of the conventional hill-
climbing approaches to feature selection. These techniques often
fail to find minimal reducts. On the other hand, stochastic methods
can provide a more robust solution, but at the expense of increased
computational effort. To solve these problems, we defined a novel
structure called PS-tree which is efficient in finding minimal re-
ducts. Based on the PS-tree, a complete algorithm for the genera-
tion of minimal reduction was proposed. In order to reduce the
run time of complete algorithm, an incomplete algorithm was also
given. Experimental results on synthetic and real data sets demon-
strated the efficiency of our method to feature selection.
Acknowledgement

This work was supported by the National Natural Science Foun-
dation of China under Grant Nos: 60903203, 60802042, 60970061.
References

[1] J.G. Bazan, H.S. Nguyen, et al., Rough set algorithms in classification problem,
in: Rough Set Methods and Applications, Physica-Verlag GmbH Heidelberg,
Germany, 2000, pp. 49–88.

[2] M. Dash, H. Liu, Feature selection for classification, Intelligent Data Analysis 1
(3) (1997) 131–156.

[3] M.E. ElAlami, A filter model for feature subset selection based on genetic
algorithm, Knowledge-Based Systems 22 (5) (2009) 356–362.

[4] Q.L. Guo, M. Zhang, Implement web learning environment based on data
mining, Knowledge-Based Systems 22 (6) (2009) 439–442.

[5] X. Hu, N. Cercone, Learning in relational databases: a rough set approach,
Computation Intelligence: An International Journal 11 (1995) 323–338.

[6] M. Inuiguchi, Y. Yoshioka, Y. Kusunoki, Variable-precision dominance-based
rough set approach and attribute reduction, International Journal of
Approximate Reasoning 50 (2009) 1199–1214.

[7] R. Jensen, Q. Shen, Finding rough set reducts with ant colony optimization, in:
Proceeding of 2003 UK Workshop Computational Intelligence, 2003, pp. 15–22.

[8] R. Jensen, Q. Shen, Semantics-preserve dimensionality reduction: rough and
fuzzy-rough-based approaches, IEEE Transactions on Knowledge and Data
Engineering 16 (2004) 1457–1471.
[9] R. Jensen, Combining rough and fuzzy sets for feature selection, Ph.D. Thesis,
University of Edinburgh, 2005.

[10] J. Komorowski, Z. Pawlak, L. Polkowski, A. Skowron, Rough sets: a tutorial, in:
Rough Fuzzy Hybridization, A New Trend in Decision-Making, Springer-Verlag
Singapore Pte., Ltd., Singapore, 1999.

[11] H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data Mining,
Kluwer, Boston, 1998.

[12] J.S. Mi, W.Z. Wu, W.X. Zhang, Approaches to knowledge reduction based on
variable precision rough set model, Information Sciences 159 (3–4) (2004)
255–272.

[13] J.S. Mi, Y. Leung, W.Z. Wu, Approaches to attribute reduction in concept
lattices induced by axialities, Knowledge-Based Systems 23 (6) (2010) 504–
511.

[14] D.Q. Miao, L. Hou, A comparison of rough set methods and representative
inductive learning algorithms, Fundamenta Informaticae 59 (2–3) (2004) 203–
219.

[15] M. Modrzejewski, Feature selection using rough sets theory, in: P.B. Brazdil
(Ed.), Proceedings of the European Conference on Machine Learning, Vienna,
Austria, 1993, pp. 213–226.

[16] Z. Pawlak, Rough sets, International Journal of Computer and Information
Science 11 (5) (1982) 341–356.

[17] D. Slezak, Various approaches to reasoning with frequency based decision
reducts: a survey, in: Rough Set Methods and Applications, Physica-verlag,
Heidelberg, 2000, pp. 235–285.

[18] J. Starzyk, D.E. Nelson, K. Sturtz, Reduct generation in information systems,
Bulletin of International Rough Set Society 3 (1998) 19–22.

[19] R. Susmaga, Reducts and constructs in attribute reduction, Fundamenta
Informaticae 16 (61) (2004) 159–181.

[20] R.W. Swiniarski, A. Skowron, Rough set methods in feature selection and
recognition, Pattern Recognition Letters 24 (2003) 833–849.

[21] J. Wang, J. Wang, Reduction algorithms based on discernibility matrix: the
ordered attributes method, Journal of Computer Science and Technology 16
(2001) 489–504.

[22] X.Y. Wang, J. Yang, et al., Feature selection based on rough sets and particle
swarm optimization, Pattern Recognition Letters 28 (2007) 459–471.

[23] X. Wang, W.X. Zhang, Relations of attribute reduction between object and
property oriented concept lattices, Knowledge-Based Systems 21 (2008) 398–
403.

[24] J. Wrblewski, Finding minimal reducts using genetic algorithms, In:
Proceedings of Second Annual Join Conference on Information Sciences,
Wrightsville Beach, NC. September 28–October 1, 1995, pp. 186–189.

[25] Y.Y. Yao, Information-theoretic measures for knowledge discovery and data
mining, in: Entropy Measures, Maximum Entropy and Emerging Applications,
Springer, Berlin, 2003, pp. 115–136.

[26] L.Y. Zhai et al., Feature extraction using rough set theory and genetic
algorithms: an application for the simplification of product quality
evaluation, Computers and Industrial Engineering 43 (2002) 661–676.

	A rough set approach to feature selection based on power set tree
	Introduction
	Preliminary
	Preliminary of RST
	Hill-climbing methods to feature selection

	PS-tree
	PS-tree-based feature selection algorithm
	Pruning rules
	Rotation
	Backtracking

	An example
	Experimental results
	Comparison with the complete algorithm
	Comparison with the incomplete algorithms

	Conclusions
	Acknowledgement
	References

