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In this study, we develop a technique of an automatic selection of a threshold parameter, which

determines approximation regions in rough set-based clustering. The proposed approach exploits a

concept of shadowed sets. All patterns (data) to be clustered are placed into three categories assuming a

certain perspective established by an optimization process. As a result, a lack of knowledge about global

relationships among objects caused by the individual absolute distance in rough C-means clustering or

individual membership degree in rough-fuzzy C-means clustering can be circumvented. Subsequently,

relative approximation regions of each cluster are detected and described. By integrating several

technologies of Granular Computing including fuzzy sets, rough sets, and shadowed sets, we show that

the resulting characterization leads to an efficient description of information granules obtained through

the process of clustering including their overlap regions, outliers, and boundary regions. Comparative

experimental results reported for synthetic and real-world data illustrate the essence of the

proposed idea.

& 2011 Elsevier Ltd. All rights reserved.
1. Introductory comments

Real-world data distribution often involves ambiguous struc-
tures characterized by uncertainty and overlap between elements
of the structure (clusters). The main task of clustering is to
partition an unlabeled dataset {x1, x2,y, xN}, each object xiARn,
into C (1oCoN) subgroups such that the objects in the same
cluster are characterized by the highest levels of similarity
(homogeneity). During the realization of clustering algorithms,
one can highlight several important issues.

K-Means [1] being regarded as a classical prototype (centroid)-
based partitive clustering method, assigns each object to exactly
one cluster. Though K-Means is effective, its usefulness degen-
erates when dealing with overlapping clusters. Fuzzy clustering,
especially Fuzzy C-Means (FCM) [2], as the extension of K-Means,
is often used to reveal the structure of a dataset and to construct
information granules. It utilizes a partition matrix to capture the
degree of each object belonging to each cluster, so the over-
lapping circumstances can be effectively described. The main
challenge to FCM is the sensitivity to noisy objects.
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Recently, considering rough set theory [3], Lingras and West [4]
introduced Rough C-Means (RCM) clustering, which describes
each cluster not only by a prototype, but also with a pair of lower
and upper bounds (interval set). Weighted parameters are used to
measure the importance of lower bounds and boundary regions
when calculating new prototypes. RCM can deal with the uncer-
tainty and vagueness arising in the boundary region of each
cluster. Since no memberships are involved, the closeness of
objects to the clusters cannot be detected [5].

As two important paradigms of Granular Computing [6,7],
rough sets and fuzzy sets have been developed separately to a
significant extent. However, they are also complementary. Invol-
ving membership degrees, Mitra et al. [5] put forward a Rough-
Fuzzy C-Means (RFCM) clustering method, which integrates the
advantages of the technologies of fuzzy sets and rough sets. The
lower and upper bounds are determined according to the mem-
bership degrees, not the individual absolute distances between an
object and its neighbors. Maji et al. [8] further pointed out that
the objects in the lower bound of a cluster should have similar
influence on this cluster and the corresponding prototype, and
their weights should also be independent of other prototypes
when iteratively computing the new prototypes. Following this
notion, Maji modified the computation for new prototypes under
the scheme of the RFCM.

No matter which rough set-based partitive clustering methods
will be used, their pertinent parameters have to be carefully
optimized. One of them is the threshold that determines the
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approximation regions for each cluster. The other is the weighted
measures evaluating the importance of lower bounds and bound-
ary regions when updating the prototypes in iterations. Though
the initial configuration of the methods can be optimized by a
genetic algorithm [9], the selection of parameters mainly depends
on subjective tuning in some available research and the obtained
results need more interpretations [4,11]. In addition, since only
the individual absolute distance and individual membership
degree are, respectively, exploited in the RCM and RFCM, the
approximation regions that form the prototypes might be
deflected when some outliers are involved [10].

Shadowed sets [12], which are considered as a conceptual and
algorithmic bridge between rough sets and fuzzy sets, have
become a new emerging paradigm of Granular Computing being
successfully used for unsupervised learning, resulting in a so-
called Shadowed C-Means (SCM) [13]. Unlike FCM, the weighted
values of objects at the core level of a cluster are enhanced in the
SCM. The membership degrees of these objects to this cluster
should also be uniform when calculating the dfsfsa corresponding
prototype, which is the same as in Maji’s notion. The weighted
values of objects at the exclusion level of a cluster will be reduced
by raising the fuzzification coefficient in the form of a double
exponential. Compared with the FCM, the capability of SCM when
dealing with outliers is enhanced and improved clustering results
can be envisioned [13].

In this study, we concentrate on the determination of the
threshold parameter in three types of rough set-based clustering
methods including RCM, RFCM, and Maji’s method. According to
the optimization process supported by shadowed sets, this user-
defined threshold becomes automatically selected based on the
data’s intrinsic structural complexity. The lack of knowledge
about global relationships among objects caused by the individual
absolute distance in RCM or individual membership degree in
RFCM can be circumvented. Therefore, comparative accurate
approximation regions of each cluster can be detected which
are crucial to the calculations of the associated prototype.
Furthermore, a new validity index is proposed by taking into
account the granulation–degranulation principle and its under-
lying mechanism. It is worth noting here that this concept is quite
different from the idea supported by cluster validity indices
available in the literature including such alternatives as
PBM [14], DB [15] and XB indices [16].

By integrating various technologies of Granular Computing
involving fuzzy sets, rough sets and shadowed sets, some significant
merits of the proposed development can be offered. The member-
ship degrees can effectively describe an overlapping effect present in
the partition matrices. In particular, the concept of approximation
regions can deal with uncertainty and vagueness arising in the
boundary region of any cluster, while the shadowed sets make the
modified algorithms robust when coping with noisy objects. Experi-
mental results for synthetic and real-world data show the compara-
tive performance of the proposed notion with respect to the new
index along with other available validity indices.

The structure of the paper is as follows. Some basic concepts of
rough sets are briefly introduced in Section 2. Section 3 reviews the
pertinent rough set-based clustering methods along with their
generalized version. In Section 4, we provide shadowed sets as a
vehicle for describing information granules obtained through the
process of clustering. Based on granulation–degranulation mechan-
isms, a new cluster validity index is presented in Section 5. Section 6
includes the results of experiments involving both synthetic and real
datasets. In Section 7, main conclusions are covered.

Throughout the study, we adhere to the following notation:
N n
umber of objects;
C n
umber of clusters;
Ui it
h cluster;

vi it
h prototype;

xk k
th object;

uik m
embership of xk in Ui;

m f
uzzification coefficient;

RUi lo
wer bound of Ui;
RUi
u
pper bound of Ui;
RbUi b
oundary region of Ui;
dj s
tandard deviation of the jth feature;
d(xk, vi) d
istance between xk and vi;

card(X) c
ardinality of set X.
2. A brief review of rough sets

Rough sets aim at forming an approximate definition for a
target set in terms of some definable sets, especially, when the
target set is uncertain or imprecise. Some basic concepts in the
rough set theory are briefly recalled in this section. More detailed
discussion can be found in [3,17].

Let U denote a finite nonempty universe. A is a set of features
(attributes) that describe the objects in the universe. A can be
defined as an equivalence relation, referred to as an indiscern-
ibility relation on U, with which U can be partitioned into a
collection of disjoint equivalence classes U=A¼ fE1,E2, . . . ,
EcardðU=AÞg . card(X) stands for the cardinality of set X. Each
EiAU=A is called an elementary set. Any arbitrary subset (target
set) XDU can be represented in terms of a pair of upper and
lower bounds AX and AX which are defined as follows:

AX ¼ [ fEjE \ Xa|, EAU=Ag, AX ¼ [ fEjEDX, EAU=Ag: ð1Þ

The upper bound AX is composed of objects that have a
nonempty intersection with X, namely belong to the set X

possibly. The lower bound AX is composed of objects that are
subsets of X, namely belong to the set X certainly. U�AX is called
the negative region of X, in which the objects do not belong to the
set X. The objects positioned in-between the lower and upper
bounds form the boundary region of X. If the boundary region is
empty, X is called a crisp set. Otherwise, we are concerned with a
rough set. The upper and lower bounds approximate the set X

from two sides. In other words, X can be approximately repre-
sented by two sets. If the target set X is uncertain or vague, such
approximate descriptions have an important meaning.
3. Rough set-based partitive clustering

In this section, some rough set-based partitive clustering
algorithms will be revisited which include rough C-means algo-
rithm (Lingras’ model) and two types of rough-fuzzy C-means
algorithms (Mitra’s model and Maji’s model).

3.1. Rough C-means

Lingras et al. [4] extended the concept of rough approxima-
tions to develop a clustering algorithm in which the following
basic rough set properties need to be satisfied.

Property 1. An object can belong to the lower bound of one cluster

at most.

Property 2. An object that belongs to the lower bound of a cluster

also belongs to the upper bound of this cluster.

Property 3. An object that does not belong to any lower bound will

belong to more than one upper bound.



Fig. 1. Three levels of belongingness with respect to a fixed cluster.
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Each cluster has its own lower and upper bounds. The new
prototype calculations will only depend upon the objects in these
two approximation regions, not all objects as in the K-Means, FCM
or SCM. Thus the useless information can be filtered out and
ensuing numeric computing can be reduced. For a fixed cluster, all
objects are split into three categories, namely, core level, bound-
ary level and exclusion level, as shown in Fig. 1.

The objects located at the core level definitely belong to this
cluster. The objects at the boundary level possibly belong to this
cluster, viz., they come with some component of vagueness and
uncertainty. Other objects that fall within the exclusion level do
not belong to this cluster. The contributions of objects located at
different levels to the cluster are distinct. Generally, the objects
present at the core level exhibit the highest importance while the
objects positioned in the exclusion region are almost ignored.

Suppose N objects are grouped into C clusters U1,U2,y,UC. The
corresponding prototypes v1,v2, . . . ,vC , viARn, are updated in the
following way.

vi ¼

wlA1þwbB1 if RUia|4RbUia|,

B1 if RUi ¼ |4RbUia|,

A1 if RUia|4RbUi ¼ |,

8><
>: ð2Þ

where

A1 ¼

P
xk ARUi

xk

cardðRUiÞ
, ð3Þ

B1 ¼

P
xk ARbUi

xk

cardðRbUiÞ
: ð4Þ

RbUi ¼ RUi�RUi denotes the boundary region of cluster Ui, where
RUi and RUi denote the lower and upper bounds of cluster Ui with
respect to feature set R, respectively. A1, B1 can be considered as
the contributions by the lower bounds and boundary regions,
respectively. wlð0:5owlr1Þ and wb¼1�wl are the weights for
these two contributed parts. When updating a prototype, the
higher the value of wl, the more important the lower bound is.
There is no need to consider the cases that both the lower bound
and boundary region of a cluster are empty since this cluster has
no representative [10].

In order to determine the lower bound and boundary region of
each cluster, Lingras et al. [4] utilized the following rules:

If dðxk,vqÞ�dðxk,vpÞre, then xkARUp and xkARUq. In this case,
xk cannot belong to the lower bound of any cluster. Otherwise,
xkARUp. Here d(xk, vi) denotes the distance between object xk and
prototype vi (i¼1,2,y,C). d(xk, vp) and d(xk, vq) stand for the
minimum and secondary minimum of xk over all clusters, respec-
tively. A weighted Euclidean distance will be used in this study,
which is expressed as follows:

dðxk,viÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j ¼ 1

ðxkj�vijÞ
2

d2
j

vuut , ð5Þ

where dj is the standard deviation of the jth feature. Compared
with the standard Euclidean distance, its weighted version
eliminates the influence of significantly different ranges of indi-
vidual features.

The threshold e is crucial for the determination of the approx-
imation regions of each cluster. The lower the threshold value, the
more objects will belong to the lower bounds. To the contrary, the
higher the threshold, the more objects will belong to the bound-
ary regions. The improperly selected value of the threshold will
result in inaccurate approximation regions, which then misguide
the formation of the prototypes. In addition, since no membership
degrees are involved, the overlapping partitions cannot be effec-
tively handled by the RCM.
3.2. Rough-fuzzy C-means

Incorporating fuzzy clustering methods, Mitra et al. [5] put
forward the version of Rough-Fuzzy C-means (referred to as RFCM I)
in which membership degree uik will replace the absolute dis-
tance d(xk, vi) when determining the approximation regions for
each cluster. This adjustment will enhance the robustness of
the clustering when dealing with overlapping situations. In this
case, the calculation of prototypes is governed by the following
expressions:

vi ¼

wlA2þwbB2 if RUia|4RbUia|,

B2 if RUi ¼ |4RbUia|,

A2 if RUia|4RbUi ¼ |,

8><
>: ð6Þ

where

A2 ¼

P
xk ARUi

um
ik xkP

xk ARUi
um

ik

, ð7Þ

B2 ¼

P
xk ARbUi

um
ik xkP

xk ARbUi
um

ik

: ð8Þ

A2 and B2 can be considered as the contributors to the fuzzy

lower bounds and fuzzy boundary regions, respectively. As in the
RCM, the weights wb¼1�wl and 0:5owlr1. In order to deter-
mine the approximation regions, the following calculations are
completed.

If upk�uqkre, then xkARUp and xkARUq. In this case, xk cannot
belong to the lower bound of any cluster. Otherwise, xkARUp. uik

denotes the membership degree of object xk to the cluster with
prototype vi (i¼1,2,y,C) and is calculated in the same way as
realized in the FCM. upk and uqk represent the maximum and
secondary maximum of xk over all clusters, respectively.

The fuzzification coefficient m assumes values greater than 1.
Its value reflects the geometry of fuzzy clusters [18]. When the
value is close to 1, it implies a Boolean nature of the cluster. On
the other hand, it will result in spike-like membership functions
when the value increases (such as three or more). By choosing
different values of m, we can control the shape of clusters. Yu
et al. [21] provided a theoretical basis for selecting the fuzzifica-
tion coefficient and pointed out that its suitable values should
depend on the dataset itself. A fuzzy encoding and decoding
mechanism [22] has also been constructed for choosing experi-
mental optimal values. Predominantly, applications involving
FCM often set this value to be equal to 2.

Maji et al. [8] pointed out that the weights of objects forming
the lower bound of a cluster should be independent of other
prototypes and they should have the same contribution to this
cluster. Nevertheless, the objects in the boundary region should
exhibit different influence on this prototype. Following these
observations, Mitra’s model is modified where the prototypes
are computed depending on the weighted average of the lower



J. Zhou et al. / Pattern Recognition 44 (2011) 1738–1749 1741
bounds and fuzzy boundary regions. More specifically, we have

vi ¼

wlA1þwbB2 if RUia|4RbUia|,

B2 if RUi ¼ |4RbUia|,

A1 if RUia|4RbUi ¼ |:

8><
>: ð9Þ

The parameters wl and e as well as the rules used to determine
the approximation regions are the same as encountered in the
RFCM I. It has been shown that the performance of the modified
RFCM (referred here to as RFCM II) is better than RFCM I according
to some proposed rough set-based quantitative indices [8].

3.3. Generalized rough set-based C-means algorithm

According to the common properties of RCM, RFCM I and
RFCM II, a generalized version of rough set-based C-means
algorithm can be described as follows:

Algorithm 1. Generalized rough set-based C-means algorithm

Step 1: Initialization. Assign initial prototypes for the C clusters;

Step 2: Determine the lower bound and boundary region of each

cluster;

Step 3: Update the prototypes for the C clusters;

Step 4: Repeat Steps 2 and 3 until convergence has been reached.

Convergence pointed to in Step 4 means the obtained proto-
types in the current iteration are identical to those that have been
generated in the previous one, namely, the prototypes are
stabilized. Steps 2 and 3 are the main points in the generalized
version. The modifications based on original RCM, namely, RFCM I
and RFCM II, are all concentrated on them. Compared with K-
Means and FCM, the objects are divided into three regions with
respect to a given cluster. The contributions for the prototype and
cluster from the lower bound (core level) will be enhanced and
the contributions from the boundary region will be diminished
relative to the contributions encountered in the FCM.

The accurate approximation regions and reasonable values of
weights directly affect the clustering results. However, a single
threshold cannot reflect the differences among all clusters and the
closeness of objects to the clusters will not be effectively described.
In this case, approximation regions may be distorted and the
prototypes may deviate from their expected locations. In order to
form accurate regions, we anticipate that each cluster should come
with a suitable threshold reflecting structural characteristics of the
data when being perceived from the perspective of some structural
relationships.
x

( )f x

2Ω

1Ω

3Ω

1x 2x

Fig. 2. Shadowed sets induced by fuzzy membership function f(x).
4. Shadowed set-based rough-fuzzy clustering

Shadowed set-based rough-fuzzy clustering methods are pro-
posed in this section. We show that the threshold parameter that
affects the lower bound and boundary region of each cluster can
be decided upon automatically. Its value can be adjusted accord-
ing to the structure of data and its complexity.

4.1. Shadowed sets

Shadowed sets, as introduced by Pedrycz [12], is one among
several key contributions to the area of Granular Computing. It
could be considered as new and stand-alone constructs, yet it is
often induced by the corresponding fuzzy sets. It is simpler and
more practical than fuzzy sets and can be sought as a symbolic
representation of numeric fuzzy sets [19].

Three quantification levels being elements of the set {0, 1, [0,
1]} are utilized to simplify the relevant fuzzy sets in shadowed set
theory. Obviously, it not only simplifies the interpretation but
also avoids a number of computations of numeric membership
grades comparing with the methodology of fuzzy sets. Concep-
tually, shadowed sets are close to rough sets even though their
mathematical foundations are very different. The concepts of
negative region, lower bound and boundary region in rough set
theory are corresponding to three-logical values 0, 1, and [0,1] in
shadowed sets, namely, excluded, included and uncertain, respec-
tively. In this sense, shadowed sets can be considered as the
bridge between fuzzy and rough sets.

The construction of shadowed sets is based on balancing the
uncertainty that is inherently associated with fuzzy sets, in other
words, uncertainty relocation. As elevating membership values
(high enough) of some regions of universe to 1 and at the same
time, reducing membership values (low enough) of some regions
of universe to 0, we can eliminate the uncertainty in these
regions. In order to balance the total uncertainty, it needs to
compensate these changes by allowing for the emergence of
uncertainty regions, namely, it results in shadowed sets.

Given a continuous fuzzy membership function x-f ðxÞ,
f ðxÞA ½0,1�, the reduction of uncertainty and shadows can be
represented as in Fig. 2 and are quantified as follows.

Reduction of membership:

O1 ¼

Z
x:f ðxÞra

f ðxÞ dx: ð10Þ

Elevation of membership:

O2 ¼

Z
x:f ðxÞZ1�a

ð1�f ðxÞÞ dx: ð11Þ

Formation of shadows:

O3 ¼

Z
x:ao f ðxÞo1�a

dx: ð12Þ

The separate threshold a in shadowed sets can be optimized
by realizing the principle of uncertainty balance. It translates into
the minimization of the following objective function.

VðaÞ ¼ jO1þO2�O3j: ð13Þ

The optimal threshold a satisfies the requirement aopt ¼

argminaVðaÞ, where aA ½0,0:5Þ. The discrete version of optimization
process can be expressed in a similar manner. Suppose u1,u2,y,uN

are discrete membership values, ukA ½0,1� (k¼1,2,y,N). umax and
umin denote the maximal and minimal values, respectively. The
objective function is modified as

VðaÞ ¼ jc1þc2�c3j, ð14Þ

where c1 ¼
P

ui raui means the reduction of membership. c2 ¼P
ui Z ðumax�aÞðumax�uiÞ means the elevation of membership. c3 ¼

cardðDÞ represents the shadows, D¼ fijaouio ðumax�aÞg. The range
of feasible values of threshold a is suggested in ½umin,ðuminþ

umaxÞ=2�.
Three logical values induced by shadowed sets correspond to

the notions of three approximation regions in rough set theory.
Though the foundations of these two methodologies are different,
they share some common philosophies when coping with uncertain
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problems. The main merits of shadowed sets involve the optimiza-
tion mechanism for choosing separate threshold and the reduction
of the burden of plain numeric computations.

4.2. Shadowed set-based rough-fuzzy clustering

The membership degrees of objects belonging to a fixed cluster
Ui (i¼1,2,y,C) can be considered as a generic fuzzy set. Under
this consideration, we can determine the approximation regions
for cluster Ui by integrating shadowed sets. The algorithm is
described as follows.

Algorithm 2. Determine the approximation regions based on
shadowed sets

Step 1: Compute membership values uik of each object xk to

each prototype vi,

uik ¼
1

PC
j ¼ 1

dðxk,viÞ

dðxk,vjÞ

� �2=ðm�1Þ
; ð15Þ

Step2: Based on the optimization process in shadowed sets,

compute optimal threshold ai for each cluster Ui,

ai ¼ argmin
a
ðViÞ,

where

Vi ¼
X

k:uik ra
uikþ

X
k:uik Z ðmaxkðuikÞ�aÞ

max
k
ðuikÞ�uik

� �
:

������
�card kjaouiko max

k
ðuikÞ�a

� �� �� �����; ð16Þ

Step3: According to ai, determine the lower bound and bound-

ary region of each cluster Ui,

RUi ¼ xkjuikZ max
k
ðuikÞ�ai

� �� �
, ð17Þ

RbUi ¼ xkjaiouiko max
k
ðuikÞ�ai

� �� �
: ð18Þ

where uikA ½0,1� ði¼ 1,2, . . . ,C,k¼ 1,2, . . . ,NÞ,
PC

i ¼ 1 uik ¼ 1 and

0o
PN

k ¼ 1 uikoN. After Algorithm 2 is completed, each cluster

comes with its lower bound and boundary region. Here, the

threshold is not subjectively user-defined but it is established

on the balance of uncertainty and can be adjusted automatically

in the clustering process. In addition, the determination of

approximation regions is not dependent on the individual abso-

lute distance or the individual membership value. It considers all

membership values with respect to a fixed cluster when updating

the prototype of this cluster. Thus the three levels of objects

regarding this cluster can be effectively divided.

Based on Algorithm 2, the generalized version of rough set-
based clustering algorithm can be refined as follows.

Algorithm 3. Shadowed set-based rough-fuzzy clustering

Step 1: Assign a random membership partition matrix {uik};

Step 2: Based on shadowed sets, compute optimal ai for each

cluster Ui (i¼1,2,y,C);

Step 3: According to ai, determine the lower bound and

boundary region for each cluster Ui;

Step 4: Calculate the prototypes by formula (2), (6) or (9);

Step 5: Update the membership partition matrix {uik};

Step 6: Repeat Steps 2–5 until convergence has been reached.
Algorithm 3 will be referred to as shadowed set-based rough
C-means (SRCM), shadowed set-based rough-fuzzy C-means I
(SRFCM I) and shadowed set-based rough-fuzzy C-means II (SRFCM
II) according to formulas (2), (6) and (9) used in Step 4, respectively.

The main difference between Algorithm 3 and available rough
set-based clustering methods is the mechanism for choosing a
suitable threshold for each cluster. The threshold values used in
the RCM and RFCM are often user-defined and the approximation
regions are determined from the perspective of individual objects,
then the global knowledge over all objects when calculating the
prototype for each cluster will be lost. However, the threshold
in Algorithm 3 will be automatically adjusted and optimized. The
approximation regions are determined from the perspective of
individual clusters and the accurate three levels can be availably
detected. In addition, the membership computation can capture
the overlapping partitions and the concept of approximation
regions can handle the uncertain arising from the boundary
regions. By integrating fuzzy sets, rough sets and shadowed sets,
the proposed notion can effectively deal with uncharted situations.

Like most partitive clustering methods, the shadowed set- and
rough set-based clustering approaches cannot effectively cope
with non-sphere datasets. In this case, more information about
the data structure is expected to be integrated.

5. A validity index based on granulation–degranulation
mechanisms

During the recent years, some validity indices are proposed to
evaluate clustering methods which include fuzzy and non-fuzzy
versions, such as PBM, DB and XB indices. These indices often follow
the principle that the distance between objects in the same cluster
should be as small as possible and the distance between objects in
different clusters should be as large as possible. They have also been
used to acquire the optimal number of clusters C [14]. However,
each of them can work better than others depending on the selected
datasets [20]. In what follows, we introduce a new validity index,
which is based on the granulation–degranulation mechanisms that
are schematically shown in Fig. 3.

Essentially, fuzzy clustering process can be treated as a
granulation mechanism. Then the information granules estab-
lished here are expected to reflect the original data as much as
possible, so that the input objects should be represented in terms
of information granules, involving prototypes and associated
membership degrees. In the subsequent step, degranulation
process takes place and is applied to original objects and recon-
structed (de-granulated) based on the prototypes and the parti-
tion matrix. The results of degranulation are expected to be as
close as possible to the original objects subject to the granulation.
The concept of granulation–degranulation comes also under the
name of fuzzification-defuzzification, coding–decoding, compres-
sion–decompression and alike. Recently, the mechanisms of
granulation–degranulation are utilized in the design of adjustable
fuzzy clustering [22].

Formally, given an object x, suppose that x̂ is the correspond-
ing result of degranulation. An overall performance of the gran-
ulation–degranulation mechanisms is quantified as follows:

Q ¼
XN

k ¼ 1

d2ðxk,x̂kÞ, ð19Þ
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where

x̂k ¼

PC
i ¼ 1 um

ikviPC
i ¼ 1 um

ik

: ð20Þ

In general, the values of Q will decrease with the increase of the
number of clusters C. The reason is that more clusters can provide
the detailed information of data structure, so that the estimation of
each object can be precisely established in the degranulation
process. The smaller the value of Q, the better the established
information granules will be reflected under the same value of C.
6. Experimental studies

We report on the results produced by different clustering
algorithms, two synthetic two-dimensional datasets and some
datasets coming from the UCI repository [23].

6.1. Synthetic dataset I

This synthetic dataset is a mixture of Gaussian distributions as
depicted in Fig. 4. It consists of three clusters with 50 data per
cluster. Two of the three clusters exhibit some overlap.

The results obtained by running FCM and including prototypes
and the corresponding membership degrees constitute an initial
configuration for the implementation of SCM, SRCM, SRFCM I, and
SRFCM II. Since the lower bound of each cluster forms the main
contribution for this cluster, its weighted value should be rela-
tively higher [5,8]. Here, set wl¼0.95 and m¼2. They are kept
constant for all datasets and all experiments. In order to calculate
the optimal threshold a for each cluster in shadowed set-based
methods, its value is varied from umin to ðuminþumaxÞ=2 by small
steps equal to 0.001 and the value for which the performance
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Fig. 4. Scatter-plot of synthetic dataset I.

Table 1
Prototypes obtained for the synthetic dataset I.

FCM SCM

Prototype 1 6.041 2.8952 6.0772 2.9018 6.07

Prototype 2 2.9681 5.251 2.9488 5.3166 2.94

Prototype 3 1.1981 0.89709 1.1174 0.82937 1.17
index Vi attains minimum becomes selected as a solution. All the
algorithms were run on a personal computer with Intel Pentium
Dual-Core T5870 2.0 GHz processor and 1 Gb RAM.

The prototypes obtained by each method are presented
in Table 1. As Fig. 5 shows, each shadowed set-based clustering
algorithm can separate well the core level (lower bound) and
boundary region of each cluster. Moreover, cluster 2 acquires the
same results under different shadowed set-based clustering
methods. However, the results in cluster 3 generated by the
SRCM, refer to Fig. 5(b), exhibit some minor differences when
compared with the results produced by the other three methods,
refer to Fig. 5(a, c and d). One data object in the cluster 3 is
partitioned to the core level of this cluster by SRCM and is
partitioned to the boundary region of this cluster by other three
methods. In addition, one data object in the cluster 3 is parti-
tioned to the boundary region of this cluster by SRCM and is
partitioned to the core level of this cluster by the others. The
results in cluster 1 generated by the SRFCM I, refer to Fig. 5(c),
also show some minor differences compared with the results
provided by other methods. The obtained approximation regions
could be distorted due to some objects that are displaced, even if
the number of these objects is very small.

Furthermore, it can be observed that some objects only belong
to the boundary region of one cluster, meaning that these objects
only belong to the upper bound of one cluster which indicates
that the third property in Lingras’ model needs not to be always
satisfied. The reason behind this effect is that the lower bounds
and the boundary regions are being formed from the perspective
of each cluster, not the individual objects, and these are indepen-
dent from any other clusters. In the case of increased overlap
between clusters, more objects tend to appear in the common
boundary region as seen between the first and the second
clusters.

The threshold values that determine the lower bound and the
boundary region of each cluster are adjusted automatically
according to the intrinsic structural complexities of data detected
during the implementation. The obtained threshold values are
distinct for different shadowed set-based clustering methods as
illustrated in Table 2. According to these obtained threshold
values, the lower bound and boundary region of each cluster are
depicted in Fig. 5 (right column). It is noticeable that the lower
bounds do not intersect which is not the case for some boundary
regions of different clusters.

To compare the results obtained by the introduced partitive
clustering algorithms, some validity indices are utilized including
PBM, XB, DB indices as well as the reconstruction index Q. The
obtained results are presented in Table 3. Note that the greater
the values of the PBM index and the smaller the values of the XB,
DB and Q indices, the better the clustering results are. It becomes
apparent that shadowed set-based clustering methods perform
far better than the generic FCM. Furthermore, clustering utilizing
shadowed sets and rough sets performs better than the SCM
method. This implies that the partition of the approximation
regions can better capture the existing data structure. Data
objects located in different regions (core, boundary and exclusion)
exhibit different levels of contribution to prototypes and clusters.
SRCM SRFCM I SRFCM II

26 2.8906 6.1688 2.8569 6.0895 2.8901

16 5.3262 2.919 5.3604 2.9407 5.3317

0.78534 1.1259 0.80343 1.0952 0.8046
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Fig. 5. Synthetic dataset I—Visualization of regions and boundaries generated by different methods: (a) SCM; (b) SRCM; (C) SRFCM I; and (d) SRFCM II. The left column

presents the classification of each object and the formed prototypes. The right column plots the approximation regions of each cluster.
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Compared with FCM, the contribution produced by the objects in
the core, boundary and exclusion regions are enhanced, reduced
and eliminated, respectively. Among introduced methods, the
SRFCM I exhibits the best performance as documented
in Table 3. In addition, the computed time (in seconds) of FCM
is less than shadowed set- and rough set-based methods. The
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reason is that the optimization of a for each cluster in each
iteration consumes extra time.
6.2. Synthetic dataset II

Synthetic dataset II comes with the two clusters of quite
distinct cardinalities. The prototypes produced by each method
are collected in Table 4 and visualized in Figs. 6 and 7, res-
pectively.

The underlying characteristics of these data affect the validity
of the clustering methods. The prototypes produced by FCM, SCM,
SRCM and SRFCM II somewhat deviate from the anticipated
positions of the representatives. Here the FCM algorithm per-
forms quite poorly. Although SCM, SRCM and SRFCM II show some
improvement, the results are still not appealing, see Fig. 7(a, b
and d). The results generated by SRFCM I are the best in terms of
the location of the prototypes, see Fig. 7(c).

As shown in Fig. 7(a, b and d), the approximation regions
obtained by SCM, SRCM and SRFCM II are not desirable. Some data
objects are apparently partitioned into wrong areas, namely,
three data objects that should belong to the cluster 1 are
definitely assigned to the cluster 2. Inaccurate lower bounds
and boundary regions will directly result in unsuitable proto-
types. The best approximation regions of each cluster can be
captured by SRFCM I, which can be observed in Fig. 7(c). Only a
single object here has not been properly assigned to the clusters.

Different threshold values result in distinct approximation
regions and these regions affect the prototypes and associated
membership values. Following the principle of uncertainty bal-
ance in shadowed sets, the optimal threshold value of each cluster
can be acquired. The comparative results are presented in Table 5
and the corresponding approximation regions of each cluster are
shown in Fig. 7(right column). It can be observed that the core
level of one cluster is the exclusion level of the other cluster.
Table 2
Comparative analysis for selected threshold values—synthetic dataset I.

a1 a2 a3

SCM 0.33848 0.30733 0.30318

SRCM 0.34086 0.30741 0.31123

SRFCM I 0.33568 0.31872 0.30445

SRFCM II 0.3398 0.30851 0.30228

Table 3
Validity indices—synthetic dataset I.

PBM XB DB Q Time

FCM 13.935 0.087073 0.54924 0.32015 0.016

SCM 14.584 0.08383 0.53793 0.31256 0.265

SRCM 14.336 0.083301 0.53584 0.31229 0.141

SRFCM I 14.816 0.07819 0.52427 0.30824 0.25

SRFCM II 14.726 0.08263 0.53409 0.31049 0.156

Table 4
Prototypes obtained for the synthetic dataset II.

FCM SCM

Prototype 1 0.34945 0.30355 0.34406 0.30148 0.344

Prototype 2 0.18505 0.19699 0.17922 0.19097 0.177
It reflects the duality property between approximation regions of
the target concept and its complement in rough set methodology.

The validity indices of each method are compared in Table 6.
SRFCM I exhibits a far better performance than other methods
with respect to the available and newly proposed indices. More-
over, shadowed set- and rough set-based clustering methods,
namely SRCM, SRFCM I and II, perform better than the generic
SCM and FCM. It implies that the partition of approximation
regions can reveal the nature of data structure and only the lower
bound and boundary region of each cluster have positive con-
tribution in the process of updating the prototypes. Though the
execution time of shadowed set-based methods is longer than the
one for the FCM method, they can also be realized in short time,
as shown in Table 6.

6.3. UCI datasets

Eight UCI datasets are included in the experiments, namely
Iris, Wine, Balance, Ionosphere, Wisconsin, Bupa liver, Vehicle and
Heart data. The results of comparative analysis are shown
in Tables 7–10. From the experimental results, the following
conclusions can be drawn:

(1) The shadowed set-based C-means clustering methods per-
form far better than the FCM itself. The improvement can be
attributed to the fact that the objects are divided into different
regions (segments), which helps capture better the overall topol-
ogy of the data.

(2) The shadowed set- and rough set-based clustering methods
(namely SRCM, SRFCM I, and SRFCM II) exhibit better perfor-
mance than the generic SCM. Through the weighted approaches,
the contribution of each approximation region to the formation of
the prototypes and the clusters can be properly quantified.

(3) It can be found that even though the computing time
required to run FCM is less than the one required by shado-
wed set-based methods, FCM cannot provide sound results for all
SRCM SRFCM I SRFCM II

17 0.30156 0.34538 0.30014 0.34419 0.30161

82 0.19026 0.15579 0.18094 0.17779 0.1902
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Fig. 6. Prototypes formed by the FCM—synthetic dataset II.
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Fig. 7. Synthetic dataset II—approximation regions produced by different clustering methods: (a) SCM; (b) SRCM; (C) SRFCM I; and (d) SRFCM II. The left column presents

the classification of each object and the formed prototypes. The right column plots the approximation regions of each cluster.
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real-world data. However, the shadowed set-based methods can
also be executed in short time along with better performance.
Especially, they exhibit the capability on the Balance and Heart
data which cannot be effectively handled by FCM.
(4) The SRFCM I method exhibits the best performance when
being compared with the results produced by other methods and
the quality is assessed by the validity indices (with exception of
the PBM index reported for the Iris data). Here the advantages of



Table 5
Comparative results of thresholds for synthetic dataset II.

a1 a2

SCM 0.32827 0.32785

SRCM 0.33629 0.33559

SRFCM I 0.33438 0.32549

SRFCM II 0.33629 0.33655

Table 6
Values of the validity indices—synthetic dataset II.

PBM XB DB Q Time

FCM 4.7038 0.1295 0.74606 0.7441 0.015

SCM 4.7996 0.12655 0.69913 0.74393 0.078

SRCM 4.8829 0.12441 0.69171 0.7412 0.078

SRFCM I 5.9473 0.10075 0.61455 0.72311 0.14

SRFCM II 4.8886 0.12427 0.6913 0.74091 0.078

Table 7
Validity indices for Iris and Wine data.

Iris (C¼3)

PBM XB DB Q Time

FCM 40.722 0.18017 0.75115 0.89867 0.0

SCM 43.081 0.14207 0.68622 0.85073 0.1

SRCM 43.946 0.12821 0.66264 0.84523 0.1

SRFCM I 42.933 0.12614 0.65972 0.8388 0.2

SRFCM II 43.913 0.12868 0.66342 0.84424 0.2

Table 8
Validity indices for Balance and Ionosphere data.

Balance (C¼3)

PBM XB DB Q Time

FCM 0.004805 145.14 37.657 3.9906 0.0

SCM 1.054 0.29652 1.4742 2.6284 1.5

SRCM 1.2211 0.25702 1.359 2.5637 1.5

SRFCM I 1.226 0.24278 1.3083 2.5275 4.2

SRFCM II 1.1921 0.24792 1.343 2.5671 1.5

Table 9
Validity indices for Breast cancer and Bupa liver disorders data.

Breast cancer—Wisconsin (C¼2)

PBM XB DB Q Time

FCM 5.8505 0.11314 0.7599 3.7047 0.03

SCM 6.1424 0.10766 0.73838 3.6638 0.21

SRCM 6.1233 0.10788 0.7444 3.6441 0.34

SRFCM I 6.4839 0.1016 0.7216 3.6069 0.61

SRFCM II 6.163 0.1072 0.74158 3.6423 0.23

Table 10
Validity indices for Vehicle and Heart-Statlog data.

Vehicle (C¼4)

PBM XB DB Q Time

FCM 11.447 2.0111 1.7879 8.4717 0.359

SCM 13.168 2.2233 1.59 7.2515 2.297

SRCM 13.214 1.7829 1.4529 7.1238 1.578

SRFCMI 13.469 1.2596 1.3387 7.103 3.578

SRFCMII 13.443 1.7359 1.4408 7.1122 2.532

J. Zhou et al. / Pattern Recognition 44 (2011) 1738–1749 1747
fuzzy sets, rough sets and shadowed sets are integrated in the
SRFCM I. The membership grades make the proposed notion
applicable to deal with overlapping partitions, as the concept of
approximate regions can handle the uncertainty and vagueness
arising from the boundary regions, and the optimization process
in the shadowed sets make the method robust to outliers, so that
the approximation regions of each cluster can be determined
accurately and the obtained prototypes approach to the desired
locations. Although the SRFCM II has the same properties, the
experimental results demonstrate that the objects within the
lower bound of a cluster should have different influence on this
cluster and the calculations of the corresponding prototype when
the shadowed sets are incorporated to the method.
7. Conclusions

The value of the threshold that determines the approximation
regions in rough set-based clustering methods is crucial in the
Wine (C¼3)

PBM XB DB Q Time

15 2.3341 6.6822 2.6731 7.6861 0.016

25 4.099 1.4808 1.2496 6.873 0.172

72 4.28 1.2074 1.1454 6.8344 0.094

5 4.4756 1.1419 1.1034 6.774 0.266

03 4.3144 1.2257 1.1481 6.8178 0.125

Ionosphere (C¼2)

PBM XB DB Q Time

78 0.52844 0.83245 2.0598 27.626 0.047

32 0.92234 0.47282 1.5328 26.201 2.64

78 1.0149 0.42709 1.4544 25.992 0.203

81 1.0963 0.39255 1.3946 25.883 0.328

78 1.0226 0.42366 1.4481 25.973 0.203

Bupa liver disorders (C¼2)

PBM XB DB Q Time

1 0.38034 0.82882 2.0251 4.9856 0.015

9 1.9217 0.16503 1.0422 4.1725 0.438

4 2.3601 0.13128 0.94987 4.0806 0.344

2.4859 0.12484 0.92599 4.055 0.453

4 2.3848 0.13016 0.94724 4.0824 0.313

Heart-Statlog (C¼2)

PBM XB DB Q Time

3.20E�08 1.16E+07 8280.9 13 0.062

0.14162 2.5329 3.6541 11.748 1.266

0.07401 4.8255 5.067 11.631 1.5

0.20503 1.6686 2.9167 10.668 0.297

0.065 5.5288 5.4449 11.852 1.531
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determination of prototypes so that they are reflective of the
structure of the data. By engaging the optimization supported by
the shadowed set constructs, the threshold is automatically
acquired in rough set-based clustering methods. As a result, from
the perspective of each cluster, all objects to be clustered are
divided into three components. Since the lack of knowledge
regarding global relationships over all objects caused by the
individual absolute distance in RCM or individual membership
degree in RFCM is diminished, the comparative accurate lower
bound and boundary region of each cluster can be captured. The
effectiveness of the proposed notion is demonstrated by experi-
menting some synthetic as well as real-world datasets.

The complex characteristics of data distribution cannot be
fully analyzed by only a single methodology. The performance of
the approach can be improved by integrating the available
methodologies since all of them have their own merits and share
a strong nature of complementarities. To comprehensively reveal
the capabilities of the proposed hybrid methods, some possible
Table 11
Synthetic dataset I.

Index x y Index x

1 3.4654 1.0284 51 4.3

2 0.18183 �0.35795 52 3.2

3 1.9709 1.5886 53 2.8

4 2.7071 1.6787 54 3.0

5 1.9233 0.097911 55 3.9

6 0.50687 0.71848 56 1.6

7 2.007 �1.3978 57 3.9

8 0.026907 0.57245 58 2.1

9 1.5408 1.708 59 2.6

10 0.22675 0.68569 60 2.8

11 �0.6546 1.1999 61 1.6

12 0.96241 3.3294 62 2.3

13 0.74402 2.6719 63 3.4

14 0.65946 �0.33351 64 0.5

15 1.3807 0.27017 65 4.6

16 1.3257 2.2398 66 2.0

17 0.30765 1.3045 67 4.4

18 1.1544 0.99009 68 1.9

19 �0.29511 0.38581 69 0.8

20 1.9716 1.3114 70 2.4

21 �0.79335 2.4571 71 2.4

22 �0.14213 �0.044124 72 4.0

23 �0.077785 1.166 73 3.7

24 0.76866 2.6298 74 3.7

25 1.1055 �0.6792 75 3.7

26 1.4313 0.43745 76 3.8

27 2.0267 0.86831 77 2.8

28 1.2491 1.3578 78 1.9

29 �0.67869 2.0814 79 3.5

30 0.59862 0.69194 80 5.1

31 1.5265 0.63547 81 3.0

32 3.4427 0.74753 82 3.0

33 0.78195 0.73888 83 3.7

34 1.1765 1.667 84 2.9

35 0.9488 1.5228 85 1.7

36 2.0917 1.4005 86 3.2

37 1.729 1.1857 87 2.8

38 1.1644 0.92502 88 2.8

39 0.91015 0.9903 89 4.1

40 1.9698 0.23419 90 3.3

41 �1.383 �1.6127 91 1.4

42 2.5592 �0.79511 92 1.9

43 2.0344 0.76323 93 3.2

44 1.5424 0.95165 94 2.5

45 1.5648 2.4951 95 2.7

46 1.884 0.47951 96 1.8

47 2.5657 0.58422 97 3.1

48 3.3639 1.569 98 4.0

49 1.3545 2.149 99 4.2

50 1.8619 0.092487 100 3.3
applications need further investigation along with their theore-
tical basis. In addition, the proposed notion is implemented on
static data in this study. How to utilize them for analyzing time-
varying data is a challenging task to study in the future.
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Appendices

Tables 11 and 12.
y Index x y

005 4.1126 101 4.1331 3.8171

691 5.0615 102 4.7904 3.5472

449 3.1098 103 7.0358 2.6073

342 6.7051 104 6.0239 4.2794

913 5.2905 105 4.9716 3.6432

382 4.9401 106 5.9741 2.8693

792 5.3606 107 6.8801 3.4199

137 4.1912 108 6.4778 3.6395

438 5.2954 109 7.1449 3.1369

572 5.4483 110 6.4397 3.3893

835 7.2433 111 5.847 2.7293

897 5.8543 112 5.6877 2.7087

468 4.068 113 6.1394 2.3481

8813 5.0003 114 6.9228 2.4913

895 5.1976 115 5.3792 1.8063

317 5.291 116 6.0726 3.3622

889 5.9636 117 7.3409 2.7984

834 5.2015 118 6.4162 2.8808

242 4.1379 119 4.5391 4.5291

263 6.0836 120 6.0867 3.7606

508 5.9118 121 5.1691 4.2533

014 4.6632 122 6.7847 2.3801

482 6.3785 123 6.9698 2.4914

242 5.2954 124 5.9035 4.0919

019 4.5108 125 6.1917 2.748

053 3.7716 126 5.9178 3.29

349 5.7234 127 7.8527 5.2132

978 6.1029 128 6.2697 2.5735

817 3.2178 129 4.7633 2.7942

113 5.2466 130 6.39 2.3224

601 6.0595 131 5.2843 3.1262

51 5.6477 132 5.7176 2.111

101 6.411 133 6.037 1.8349

047 4.1669 134 7.0517 2.8526

963 5.477 135 6.5098 1.9205

633 4.4135 136 5.0275 0.44225

392 4.7623 137 6.6205 1.4836

347 5.0178 138 7.0982 2.3903

027 5.7959 139 5.3469 2.3245

762 5.8006 140 7.8969 3.585

191 5.5039 141 4.844 2.7594

022 5.5345 142 6.0335 2.955

103 4.5213 143 4.369 2.8642

544 5.0587 144 6.3115 1.6647

306 5.2782 145 5.3215 4.3646

279 5.9025 146 5.7982 2.7656

277 5.9385 147 5.6266 3.4521

411 3.7908 148 5.9532 2.841

827 5.3268 149 6.4163 2.9329

49 4.7691 150 5.0174 4.1097



Table 12
Synthetic dataset II.

Index x y Index x y Index x y

1 0.11866 0.17398 16 0.23157 0.28801 31 0.40899 0.3114

2 0.11406 0.20906 17 0.25922 0.31725 32 0.3629 0.3348

3 0.15553 0.20906 18 0.32604 0.3348 33 0.26613 0.37281

4 0.18088 0.1886 19 0.32373 0.38158 34 0.23848 0.30263

5 0.17166 0.15351 20 0.36751 0.34064 35 0.24078 0.24123

6 0.1394 0.14474 21 0.40668 0.3231 36 0.4159 0.20906

7 0.10714 0.15351 22 0.3629 0.28509 37 0.41129 0.28801

8 0.14171 0.21784 23 0.36982 0.24708 38 0.3001 0.351

9 0.17396 0.13889 24 0.32604 0.24123 39 0.2775 0.2002

10 0.23157 0.30263 25 0.29378 0.2617 40 0.26 0.25

11 0.25922 0.39327 26 0.29839 0.22076

12 0.37212 0.40497 27 0.34677 0.20322

13 0.42051 0.33772 28 0.37673 0.23246

14 0.43664 0.23538 29 0.42281 0.22953

15 0.24539 0.22076 30 0.37673 0.27632
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