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Abstract. Qualitative propagation influences in qualitative inferences
are unlike and interrelated on the different hierarchy of knowledge gran-
ules, and quantitative information loss easily results in reasoning con-
flicts. This paper presents a hierarchical qualitative inference model with
substructures which to some extent can eliminate the qualitative impact
of uncertainty and solve trade-off problems by metastructures with basic
decomposition and coarse-grained mesoscale substructures with edge-
deletion. The substructural inferences could not only reduce computa-
tional complexity, but provide an approximate strategy for modular rea-
soning on large-scale problems. The example respectively illustrates the
two substructural methods are both effective.

Keywords: qualitative inference, substructures, hierarchical structure,
granular computing.

1 Introduction

Uncertainty problems with inaccurate, incomplete and incorrect information ex-
tensively exists in the reality. As a kind of tools to efficiently acquire knowledge
and reason for uncertain knowledge in complex problems, Bayesian networks
(BNs)[6] can visually reveal the structure of problems via graph theory, and
analyze the structure according to the probability of problems.

Due to the network structure is still quite complex to build BNs accord-
ing to the actual problems, Wellman[13] proposes qualitative probability net-
works (QPNs), which reason with qualitative signs propagation way of condi-
tional probability. QPNs as the abstract description on general BNs can im-
prove reasoning abilities and enhance reasoning efficiency. And some polynomial
time sign propagation QPNs algorithm[2,12] extend qualitative reasoning from
singly connected to general multiply connected networks. But whatever quali-
tative methods are taken, qualitative abstract with information lost may lead
to reasoning results with conflicts. In other words, the inference with conflicts
would get uncertainty results. Thus, in recent years the related work mostly
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adopts the integrated strategy with qualitative and quantitative information to
solve conflicts, such as the incremental qualitative and quantitative combined
method[5], sign propagation based on context[9], enhanced qualitative propa-
gation strategies[10], rough-set-based weights QPNs[16] and interval probability
parameters as indicators of influence strengths[17]. Moreover, network decompo-
sition measures in QPNs is taken[4], but the method is not involved in utilization
of the prior knowledge, and weak as before in solving the large-scale complex
network.

Most of all, QPN algorithms have never considered that qualitative propa-
gation influences are not identical but interrelated upon the different hierarchy
of knowledge granules. For example, the people possibly have different opinions
based on their perspective for the same problem. As a matter of fact, the differ-
ent cognitive description of the problem are to some extent correlative. Hence,
whether the existing knowledge of different levels are benefit to each other or
not, merely depends on how the knowledge is used.

The motivation of the work with the hierarchy theory of granular computing
comes from making up above shortages of QPNs. Granular computing (GrC),
as a popular research field in recent years[14], concerns the processing of com-
plex information entities, which arise in the process of data abstraction and
derivation of knowledge from information. The hierarchy theory of granular
computing which is a multi-disciplinary and cross-disciplinary study provides
a multi-layered framework based on levels. Yao[15] considers different levels in-
volve different types of processing. The lowest level concerns numeric processing,
the intermediate level concerns larger information granules, and the highest level
concerns symbol-based processing. Feng and Miao[3] draw the hierarchy theory
into the decision-making domains, and puts forward a hierarchical decision rule
mining model based on multidimensional data and a hierarchical rough set model
based on the concept of attributes. Pedrycz[7] elaborates on the design of infor-
mation granules for machine learning techniques.

Consequently, we propose a hierarchical qualitative inference model with sub-
structures including inference on metastructures with basic decomposition and
coarse-grained mesoscale structures with edge-deletion. Qualitative inference on
substructures in different levels could avoid conflicts, but benefit to find the
suitable inference model and the optimal structure of reasoning aiming at the
problems. Because global reasoning partly depends on local reasoning, the dis-
tributed inference method with substructures could accelerate global reasoning.
In addition, substructural inference methods provide an approximate strategy
of modular reasoning on large-scale problems.

The paper is arranged as follows. Section 2 briefly introduces preliminaries
and their qualitative abstractions of QPNs. In Section 3 the work elaborates
the hierarchical qualitative inference model with substructures and its two sub-
structural reasoning strategies. Section 4 demonstrates the both methods are
feasible by solving an inference example. The paper ends with conclusions in
Section 5.
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2 Preliminaries

A Bayesian network encodes probabilistic knowledge about a problem domain
through a dependence structure in the form of a directed acyclic graph (DAG)
and Conditional Probability Tables (CPTs) associated with nodes of the graph.
Qualitative probabilistic networks[13] are introduced as qualitative abstractions
of Bayesian networks, and thus bear a strong resemblance to their quantitative
counterparts. A qualitative probabilistic network also is described to a DAG
model by variables and the probabilistic relationships between them, denoted
G = (V (G), A(G)). However, a qualitative probabilistic network associates with
its digraph qualitative influences and qualitative synergies instead of conditional
probability distributions.

Definition 1. qualitative influences[13]: Let A → B ∈ A(G) be an acyclic
digraph, and A, B ∈ V (G). A positively influences B, denoted S+(A, B). If
Pr(B|Ax)−Pr(B|Ax) ≥ 0 for any combination of values x for the set π(B)\{A}
of predecessors of B other than A.

This definition expresses observing a higher value of A makes higher value of B
more likely, regardless of any other direct influences on B. Similarly, a negative
qualitative influence and a zero qualitative influence, respectively denoted S−

with ≤ and S0 with = in the above function. A non-monotonic or unknown
influence of A on B is denoted by S?, called ambiguous influence. The set of all
influences of a qualitative network exhibits various important properties. The
property of symmetry states that, if the network includes the influence Sδ(A, B)
and Sδ(B, A), δ ∈ {+,−, 0, ?}.

Table 1. The ⊕-and⊗-operators

⊕ + - 0 ?

+ + ? + ?
- ? - - ?
0 + - 0 ?
? ? ? ? ?

⊗ + - 0 ?

+ + - 0 ?
- - + 0 ?
0 0 0 0 0
? ? ? 0 ?

Besides, a qualitative probabilistic network includes synergies that express how
the values of one node influences the probabilities of the values of another node
in view of a value for a third node[13].

Definition 2. qualitative synergies: Let G be as before, with A, B, C ∈ V (G)
and π(C) = {A, B}. A negative product synergy of node A on node B (and vice
versa), given the value c for node A , denoted X−({A, B}, c), expresses that,
given c, a higher value for C renders the higher value for B less likely, that is,

Pr(c|ab) · Pr(c|ab)− Pr(c|ab) · Pr(c|ab) ≥ 0 (1)
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Positive, zero, and ambiguous product synergies are defined analogously. The
product synergy Xδ({A, B}, c) serves, upon observing c, a qualitative intercausal
influence with sign δ is induced between A and B.

Qualitative probabilistic inference propagates the sign between related nodes,
bases on the idea of tracing the influence of observed node on others nodes.
From table 1, we could draw some conclusions that the combined influences only
result an ambiguous sign on V type structure by ⊕-operator. Once the conflict
happens, it would spread the ambiguous result to the whole network. So it is
vital to research on avoiding conflicts in qualitative inference.

3 Hierarchical Qualitative Inference Model

Granular computing theory can enhance the process of data abstraction and
derivation of knowledge from information, while QPNs problems are required to
look for the balance between the conflict-free and efficiency. The multi-view and
multi-level structure models reflect the internal knowledge structure of problems,
and make the structured solution possible. Therefore, we propose a hierarchical
qualitative inference model with substructures as Fig.1. The model could re-
spectively reason on coarse-grained mesoscale structures with edge-deletion and
metastructures with basic decomposition.
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Fig. 1. Hierarchical qualitative inference model with substructures

To begin with, the hierarchy theory from high to low level demonstrates the
cognitive style of human beings from the macro scale to the micro scale, and
the cognitive process from coarse granules to fine granules. And then the anal-
ysis from the top to the bottom also reflects the relevance between knowledge
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structures and functions, which provides the theoretic support for solving struc-
tured and modular problems. Furthermore, we are supposed to observe that the
computational cost is generally much higher from coarse granules to fine gran-
ules, the accuracy yet is not necessarily improved. It means the fine granular
method is no more effective than the coarse-grained for actual problems. Our
model could find the suitable method by hierarchical analysis.

In the next, the qualitative inference methods on metastructures with basic
decomposition and coarse-grained mesoscale structures with edge-deletion would
be introduced.

3.1 Mesoscale Substructures Inference with Edge-Deletion

Mesoscale is an intermediate scale described as the size between macro and micro
structures, which is contained by macro structure and could include some micro
substructures. The qualitative inference methods are based on a Bayesian net-
work with known structure, while mesoscale substructures inference with edge-
deletion attempts to reconstruct local network with conflicts to solve trade-off
problems.

Edge deletion strategy: Let U → X be an edge in a Bayesian network G =
(V (G), A(G)) and U → X ∈ A(G), and suppose that we would like to delete
this edge. But the deletion operation will cause two problems. variable X will
lose its direct dependence on parent U . On the other hand, variable U may lose
evidential information received through its child X . To address these problems,
Choi[1] shows recovering the deleted edges with high mutual information can
improve the quality of approximations computed by belief propagation without
incurring much additional computational cost. On the basis of above research,
Renooij[11] considers the possible impact of removing a single, pre-selected arc
in a different setting on the behavior of the network, both with and without
evidence.

The above work on edge deletion with adding new parameters pay attention to
the effect on the network, but not to approximating networks to make inference
feasible. In the paper we focus on simplifying networks that observable variables
are efficiently approximated to the certain sets. Especially on a sparser structure,
domain experts can easily find the relationship between variables. Therefore, we
propose a modified edge deletion method defined in the following:

Definition 3. Modified Edge Deletion(MED): Let U → X ∈ A(G), G =
(V (G), A(G)). We say that the edge U → X is deleted when it results in a conflict
network that is obtained from G as follows:

– G′ = G/(U → X).
– ∃X, Y ∈ V (G), st.Y → X, U → Y , Y �= U , and U ′ = U .
– Case1: If Pr(X |U ′) ≥ Pr(X |Y ),

then G′ = G/(Y → X) and Pr(X |U ′′) = |Pr(X |U)− Pr(X |Y )|.
– Case2: Else delete U ′ → X, and Pr(X |Y ′) = |Pr(X |U)− Pr(X |Y )|.
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– U → E′
X , E′

X replaces X as a child of U .
Due to E′

X cannot directly impact on inference result, E′
X is instantiated as

soft evidence on U .

Fig.2 illustrates the modified edge deletion operation. Firstly, the conflict hap-
pens on X in Fig.2(a), and then Fig.2(b) shows the method as[1]. The edge
U → X is removed from the graph G. Y is one of other observed fathers of X .
If Y is connected with U , then the smaller edge is alternative to be removed by
influence on X . And a new variable U ′ replaces variable U as a parent of X ,
where U ′ is a copy of U , with the same state as U . E′

X as soft evidence on U
could replace X as a child of U , where E′

X is instantiated and can help to choose
the deleted edge. Fig.2(c) and (d) respectively show the result in the case1 and
the case2 on merging the edges of X by the influence on X .
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Fig. 2. Modified edge deletion operation

Only when the influence of U ′ on X is not less than the influence of Y on X ,
the modified edge deletion method could separate the whole network into some
subnetworks without conflicts as Fig.2(c).

Algorithm 1: Sign-Propagation algorithm with modified edge deletion
Input: a Bayesian network with known structure.
Output: propagation sign.
Begin procedure PropagateSign(trail, to, messagesign):

– sign[to]← sign[to] ⊕ messagesign;
– trail← trail ∪ to;
– for each active neighbour Vi of to,
– Do linksign ← sign of influence between to and Vi ;
– messagesign ← sign[to] ⊗ linksign;
– If Vi /∈trail and sign[Vi]�= sign[Vi]⊕ messagesign,
– then Delete the edge and update the influence by Definition 3 MED.
– PropagateSign (trail, to, Vi, messagesign).
– endif
– endfor



Hierarchical Qualitative Inference Model with Substructures 759

The idea of the algorithm is to follow the sign influence with breadth-first
search. When the inference conflicts happen, the modified edge deletion method
is taken until the whole network is decomposed into subnetworks without con-
flict.

3.2 Metastructures Inference with Basic Decomposition

The metastructure is one kind of micro structure which could provide extra se-
mantic information about one or more aspects of the data set. The metastructure
is defined as follow:

Definition 4. Metastructure: Let SG is one substructure of graph G and Vi

∈ SG, so there are SG ⊆ G and Vi ∈ G. If any Vi meets FSG = f(vi), then SG

is called the metastructure with respect to F. Where FSG indicates the function
of substructure SG, and f is the mapping of vi to FSG .

(a)(a) (c)(c)(b)(b)

Fig. 3. basic structures and metastructures

The basic structures include three types in Fig.3(a), such as chain type, discrete
type and convergent type also called V type structure. As the composite struc-
tures, Fig.3(b) shows some classic simply connected structures, and multiply
connected structures are in Fig.3(c).

Sign propagation of metastructures inference with basic decomposition is sim-
ilar with mesoscale substructures inference with edge-deletion, except that the
former is bottom-up based on depth-first search and the latter is top-down basd
on breadth-first search. At the beginning of the metastructures inference, we
first find the nodes set with zero input degree and randomly pick up one of the
nodes as the start point. Then subnetwork is generated with along one arc by
depth-first search algorithm until contract all nodes through substructures. It is
obvious that the time complexity of the algorithm is O(|E|2) at the worst case,
where |E| is the number of edges in the network.

4 An Inference Case

The qualitative inference case with conflicts as Fig.4(a) is introduced in [8].
Supposed that the value true has been given for the observed node H, now we
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Fig. 4. An inference case with conflict

focus on its influence on the other nodes. By tracing the effect of observing every
node’s value on the other nodes in the network via message delivery between
related nodes, the sign propagation result for each node is shown in Fig.4(b).
The ambiguous signs reveal that there are at least one conflict existing in the
network. For example, Node I results an ambiguous sign from the combination of
the sign of node H to I and the sign of node L to I. And it is noticed that node J
without input data has no influence on I. In the next, Fig.5 shows the qualitative
inference methods based substructures how to solve the trade-off problems.

It indicates enhanced sign propagation in Fig.5(a), which can be used to dis-
tinguish sign strength. And Fig.5(b) illustrate how to solve the trade-off prob-
lems with edge deletion. Firstly, breadth-first search is carried out until conflict
happens. Secondly. the edge L → I on the node I with conflicts is deleted in
Fig.5(b). In this case, we take the enhanced sign propagation method to sim-
plify calculation. The influence of node H on I is + + +, while the effect of
L on I is +−. So L → I is deleted, the composed influence on I is updated,
and then the soft evidence EI is added upon node L. Similarly, when the arcs
H → G and G → C are removed, the network without conflict is separated
into three inference submodules. In the end, we can easily draw conclusions on
influence between nodes with lower computation cost. The time complexity is
O(|V |+ |E|+ |D|), where |V | is the number of all nodes and |E| is the number of
edges in the whole network. As the cost of edge deletion operation, |D| mainly is
depended on the times of conflicts. When |E| − 1 edges are deleted at the worst
case, the time complexity of the algorithm is O(|V |+ 2|E|).

According to the basic substructures in Fig.3, we can easily decompose the
whole network into the structures SG without conflict:(KL), (HM), (JI), (CBA),
(DFE) and SG with conflict:(LHI), (HIG), (IDGC). In fact, the metasubstruc-
tures with semantics would be composed of the basic substrutures and problem
domain or experts knowledge. And the metasubstructures do well in solving
structured problems.
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Fig. 5. mesoscale substructures inference with edge-deletion

Compare with the methods in the hierarchical qualitative inference model,
mesoscale substructures inference solves trade-off problem better than micro and
macro method, and its time complexity is much lower. However, the method with
fine granules shows some conflict pattern or local knowledge structure to acceler-
ate reasoning and benefit the network reconstruction. For example, substructure
SG(CBA) both belongs to the mesoscale substructures and the metasubstruc-
tures. Furthermore, the two methods is alike in sparse networks, and but in dense
problem substructures inference with edge-deletion is more effective because of
lower network decomposition.

That is to summarize, hierarchical qualitative inference model could effectively
evade conflicts and find the better inference structure by comparison with the
methods on different granules than those methods based on experts.

5 Conclusions

This paper presents a hierarchical qualitative inference model with substructures
including metastructures with basic decomposition and coarse-grained mesoscale
structures with edge-deletion, which to some extent can eliminate the qualitative
impact of uncertainty and solve the trade-off problems. Moreover, multi-level
analysis could not only find better structure of inference network, but provide
an approximate strategy for modular reasoning on large-scale problems. In the
future, we would devote to designing the strategy and construct the network
according to the experts knowledge.
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