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Color image segmentation is always an important technique in image processing system.
Highly precise segmentation with low computation complexity can be achieved through
roughness measurement which approximate the color histogram based on rough set the-
ory. However, due to the imprecise description of neighborhood similarity, the existing
roughness measure tends to over-focus on the trivial homogeneous regions but is not accu-
rate enough to measure the color homogeneity. This paper aims to construct a multiscale
roughness measure through simulating the human vision. We apply the theories of linear
scale-space and rough sets to generate the hierarchical roughness of color distribution
under multiple scales. This multiscale roughness can tolerate the disturbance of trivial
regions and also can provide the multilevel homogeneity representation in vision, which
therefore produces precise and intuitive segmentation results. Furthermore, we propose
roughness entropy for scale selection. The optimal scale for segmentation is decided by
the entropy variation. The proposed method shows the encouraging performance in the
experiments based on Berkeley segmentation database.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Image segmentation is an important pre-processing step in the areas of image analysis and image compression. It is a
critical and essential component of image recognition system and usually determines the quality of the final result [9]. In
segmentation, an image is partitioned into different non-overlapping homogeneous regions. The segmentation process
can be formally defined as [34]: given a set of universally connected pixels of image F and a homogeneity predicate Pð�Þ, then
segmentation is a partition of the set F into connected subsets or regions ðS1; S2; . . . ; SnÞ such that [n

i¼1Si ¼ F with
Si \ Sj ¼ ;; i – j. The homogeneity predicate PðSiÞ ¼ true for all regions, and PðSi [ SjÞ ¼ false, when i – j; Si and Sj are neigh-
bors. The homogeneity of a region may be composed based on different criteria such as gray level, color or texture. Because
color images can provide richer information than gray level images, color image segmentation attracts more and more
attention.

The segmentation techniques for monochrome images can be extended to segment color images by using R; G and B color
components or their transformations (linear/non-linear) [3,47]. One important task of color image segmentation is to com-
press the colors in images. A digital color image has millions of different colors at the maximum. It can be concisely repre-
sented using only a small number of colors through segmentation. Different techniques in this research area can be roughly
classified into histogram based [4,5,10,31,32], edge based [52,53], region based [2,49,54], clustering based [1,7,20,46], and
combination of several techniques [6,15,17,25,26,30]. Any developed segmentation algorithm has its limitation and does
. All rights reserved.
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not always produce good results for all kinds of images. The advantages and the limitations of these techniques have been
discussed in [3,47].

The improvement of color image segmentation mainly focuses on the following aspects. First, color space should be con-
structed according to the specific applications. RGB space is suitable for color display, but not good for scene analysis because
of the high correlation among the R;G, and B components. Although different color representations can be derived from
either linear or non-linear transformations of RGB space (such as YUV and HSI), almost all color spaces have their respectively
non-removable deficiencies [3,47]. The second issue is the dependence of different color components. Especially for the lin-
ear color space, image is usually segmented on each feature independently, which ignores the correlation between color
components. The dependence between color components is helpful for further improving the segmentation quality. The last
issue is synthesizing the statistical and spatial distributions of image color. Most traditional methods based on statistical
information such as histogram do not consider the dependence of adjacent pixels. These methods have low computational
complexity but the segmentation precision cannot be guaranteed. Other segmentation strategies using color spatial distri-
bution such as region-based methods can achieve more precise results but usually cause computational complexity. This pa-
per aims to combine statistical and spatial distributions but without increasing the computational complexity.

As a most widely used technique for color image segmentation, the histogram-based thresholding assumes that the
homogeneous objects in image manifest themselves as clusters. The advantages of such methods are no need of priori infor-
mation and the low computational complexity. But these methods only consider gray levels and do not take into account the
spatial correlation of color in the real images. Through measuring the neighborhood similarity, Mohabey and Ray utilized the
rough set theory to construct the histon concept [31]. Different from histogram, each bin of the histon is the pixel scale
belonging to the corresponding intensity with uncertainty. Therefore histon and histogram can be respectively considered
as the upper and lower approximations of color distribution from rough sets view. The segmentation based on histon utilizes
the local correlation of color. But it pays little attention to the small homogeneous regions and leads to unsatisfactory results.
Employing the boundary between two approximations, Mushrif and Ray then proposed the roughness measure to extract the
homogeneous regions of color image [32]. The roughness index can effectively indicate the region homogeneity degree and
avoid the disturbance of imbalanced color distribution. For image segmentation, it produces better performance than either
histogram based methods or histon based methods.

However,due to the imprecise description of neighborhood similarity, the existing roughness measure tends to over-focus
on the trivial homogeneous regions and is not accurate enough to represent the color homogeneity. The deficiency of this
measurement will be further explained in Section 3. In this paper, we will use computer vision techniques to construct a
precise and hierarchical roughness measurement for detecting the region homogeneity in color image. The main contribu-
tions of this paper are summarized as,

� Applying linear scale-space theory to construct the multiscale roughness for measuring the homogeneity in color image.
� With regard to the diversity of color distribution, designing the self-adaptive algorithms for thresholding and merging

color.
� Proposing the roughness entropy for scale selection based on information variation.

As being discussed in other related work, this paper also adopts RGB color space as the case for image segmentation. The
proposed method will compress the color space through image segmentation without reducing the image qualities.

This paper is organized as follows: Section 2 briefly reviews the related work. Section 3 describes the novel model of mul-
tiscale roughness for measuring the color region homogeneity. Section 4 investigates the information measurement of
roughness and proposes the strategy of optimal scale selection. Section 5 introduces the segmentation method based on
multiscale roughness with self-adaptive algorithms for thresholding feature and merging color. Section 6 presents the exper-
imental results to validate the efficiency of the proposed method. The conclusion about our exploratory work is also given in
the last section.

2. Related work

Rough set theory is a possibilistic approach to extract valuable patterns from information system at multiple granular
levels. It is an effective tool for removing redundant attributes, finding interrelation among data components and dealing
with vague, uncertain and imprecise information [36–38]. Besides the wide application in data mining and machine learning,
rough set theory has been utilized into the areas of image analysis in recent years [29,35,58]. The image analysis based on
rough sets usually focuses on similarity measure of pixel sets, hierarchical representation of image features and rules for
classifying image contents. The related exploratory works actually offer us the new ways to analyze the information con-
tained in digital images.

Hassanien applied rough set theory to analyze medical images. A hybrid scheme for detecting breast cancer was proposed
based on fuzzy rough sets, in which rough sets were used to construct the concise rules for discriminating the regions
whether cancer or non-cancer [11]. For diagnosing prostate cancer in ultrasound images, an image classification framework
employing the wavelet and rough sets was also designed [33]. This framework uses rough sets to filter the wavelet-based
features and construct rough confusion matrix to predict classification. A similar strategy combining rough sets and pulse
coupled neural networks for analyzing ultrasound glaucoma images was presented in [8].
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Śle�zak proposed a model of rough neural networks to represent some types of compound concepts. The rough neural net-
works was applied to the task of magnetic resonance image (MRI) analysis and used to label the MRI voxels with different
tissue types [48]. Widz proposed another rough-set-based system to detect the voxels of partial volume effect (PVE) for MRI
segmentation [56]. This approach uses reducts to produce the decision rules to correctly identify the PVE voxels from the low
resolution magnetic resonance image, thus can form the basis of automated MRI segmentation algorithm.

Petrosino and Salvi presented C-sets for multi-scale image analysis based on the hybrid notion of rough fuzzy sets [42].
This novel set comes from the combination of two models of uncertainty like vagueness by handling rough sets and coarse-
ness by handling fuzzy sets. Marrying characteristics of both rough sets and fuzzy sets, C-sets can represent pixel set approx-
imation and further lead to fuzzy partition of image space.

Peters introduced an approach to analyze perceptual information systems in the context of near sets [12,13,41]. This work
was motivated by an interest in discovering affinities between perceptual granules contained in images. Rather than tradi-
tional equivalence relation or tolerance relation, near sets consider various nearness relations which define coverings of sets
of perceptual objects near each other. Near set theory provides a formal basis for the observation, comparison and classifi-
cation of perceptual granules in information system.

Besides the image analysis tasks mentioned above, both clustering-based and histogram-based strategies employing
rough sets were designed to segment color images. Schaefer et al. used a rough c-means clustering algorithm for image color
quantisation [45]. This method aims at compressing the color in original image into a limited palette of distinct colors while
guaranteeing the display quality of resulting image. In the rough clustering based segmentation, the cluster number, i.e. pal-
ette scale, should be predefined and the pixels located in cluster boundary need proper post processing.

Mohabey and Ray [31] proposed a histogram-based strategy for color image segmentation through inducing the concept
of histon, which is a contour plotted on the top of the histogram. By investigating the spatial correlation of color distribution,
histon utilizes a similar color sphere of a predefined radius around a pixel to define the neighborhood homogeneity. The base
histogram was considered as the lower approximation and the histon as the upper approximation in rough-set theoretic
sense. For segmentation, only the upper approximation was utilized and the histogram-based segmentation technique
was applied on histon to threshold the color regions. This method does not take into account the boundary between two
approximations and the induced segmentation over emphasizes the homogeneity of large scale pixel clusters.

To overcome the drawback of histon-based segmentation, Mushrif and Ray proposed a segmentation scheme that uses
the roughness measure [32]. The roughness index at every intensity level is calculated from the approximation boundary.
Index is large when the neighboring elements have the similar color or is small when the neighboring elements have the
distinct color difference. Clearly, roughness will be very small in the boundary between heterogeneous objects and large
in unified object region. Thus the roughness index can measure the region homogeneity and effectively avoid the disturbance
caused by pixel scale imbalance. Through comparing with the histogram-based and histon-based approaches, the roughness
measurement was demonstrated to achieve better segmentation results. However, this roughness measure just detects the
color regions in fixed neighborhoods and does not quantify the neighborhood homogeneity, thus is not precise enough to
obtain the delicate segmentation.
3. Multiscale roughness measure in color distribution

In this section, we propose a novel multilevel roughness measurement, in which scale-space theory is applied as a vision
technique to construct more precise and intuitive representation of color homogeneity.

3.1. Model description and basic ideas

Mohabey and Ray first introduced the approximate representation of color distribution in rough-set theoretic sense. They
constructed the statistics histon through measuring the color similarity of adjacent pixels. Histon is a contour plotted on the
top of histogram and can be viewed as the extension of histogram with uncertainty. Thus the traditional histogram and his-
ton are also defined as the lower and upper approximations of color distribution respectively. Moreover, Mushrif proposed a
roughness measure utilizing the boundary between the two approximations. For an intensity on one color component, when
the pixels of this value have similar color as their neighbors, the distinct lower and upper approximations will be formed.
Thus the intensity on color component with the large approximation gap will have the property of roughness. Given a color
image, the roughness index will be intuitively small in heterogeneous regions and large in homogeneous regions. The general
roughness measure can be defined as [32]
qiðlÞ ¼
BNiðlÞ
HiðlÞ

¼ 1� HiðlÞ
HiðlÞ

; 0 6 l 6 L� 1; i ¼ fR;G;Bg ð1Þ
in which L is the intensity scale of color plane, HiðlÞ and HiðlÞ are the lower and upper approximations at intensity l in color
plane i, BNiðlÞ ¼ HiðlÞ � HiðlÞ is the boundary between two approximations.

The segmentations on histogram and histon are always sensitive to the pixel scale and tend to merge the small but sig-
nificant regions into other segments. Employing the approximation boundary, the roughness index can effectively embody
the region homogeneity and avoid the affection of pixel scale. Therefore the roughness-based segmentation usually performs
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better than the methods based on traditional histogram and histon, see Fig. 1. However, the existing roughness measurement
still has the following deficiencies. First, this method just utilizes the standard eight neighbors to construct the upper
approximation. It will be better to measure the local similarity in more flexible neighborhood. Under the settled template,
existing roughness tends to over-embody the small regions, a trivial noisy point may obtain the roughness as much as a sig-
nificant homogeneous region. Secondly, the neighborhoods where color difference is within a certain extent are mistakenly
considered as the same homogeneity level, which leads to an inaccurate and single-level upper approximation. Thus the in-
duced roughness can be viewed as the qualitative description of color homogeneity. A hierarchical model for further quan-
tifying roughness should be given to represent the color homogeneity in more precise and intuitive way.

Aiming at the above problems, we expect to construct a quantitative and multilevel roughness through simulating the
human vision. Scale-space theory as a vision technique [21,22,57] is applied into traditional roughness model to obtain
the multiscale roughness for segmentation. Linear scale-space filtering is formed by convolving the specific field with the
Gaussian kernel, thus the weighted average of neighborhood can be used to measure the region homogeneity. The improved
homogeneity representation can be then utilized to construct the upper approximation and quantify the roughness index.
With varying scales, the smoothing kernel actually induces a hierarchical approximate representation of color distribution
and consequently leads to the multiscale roughness. Fig. 1 illustrates the segmentation results based on traditional rough-
ness and multiscale roughness measure. We can see that in the segmented image of traditional roughness, the wall flecks
and the hand shadow are set to the color of tennis table, while under a given scale, the segmentation based on multiscale
Fig. 1. (a) Original ‘Table Tennis’ image, (b–e) segmented images based on several kinds of statistics using the same thresholding strategy, (b) segmented
image based on histogram, (c) segmented image based on histon, (d) segmented image based on traditional roughness, (e) segmented image based on
multiscale roughness (scale t = 0.5).



X.D. Yue et al. / Information Sciences 216 (2012) 93–112 97
roughness achieves more precise result. In the following sections, we will find other important properties of color roughness
from the views of multiple scales.

3.2. Multiscale approximation of color distribution

In the next paragraphs, the linear scale-space technique will be utilized to construct the multiscale approximation of color
distribution. Suppose F is an RGB image of size M � N, consisting of three primary components, red R, green G, and blue B. The
traditional histogram of image can be viewed as the lower approximation of color distribution.

Definition 1. The lower approximation of each color component is defined as
HiðlÞ ¼
XM

m¼1

XN

n¼1

dðFðm; n; iÞ � lÞ; 0 6 l 6 L� 1; i 2 fR;G;Bg ð2Þ
where dð�Þ is the impulse function and L is the intensity scale in each of the color components. Thus HiðlÞ is the number of
pixels having intensity l in color feature i, it is the accurate representation of color distribution at specific grey level.
Definition 2. Given a scale parameter t and a P � P neighborhood, the linear scale-space representation of image F is defined as
Ft ¼ fFtðiÞji 2 fR;G;Bgg;
FtðiÞ ¼ fLtðm;n; iÞj1 6 m 6 M;1 6 n 6 Ng ð3Þ
where FtðiÞ is the linear scale-space filtering of image F on color plane i. Let Fðm;n; iÞ be the intensity of pixel Fðm; nÞ on color
i; Ltðm;n; iÞ is the convolution of Fðm;n; iÞwith the t-scale Gaussian kernel covering the neighborhood of size P � P, see Fig. 2.
As introduced above, Ltðm;n; iÞ ¼ Fðm;n; iÞ � gtðm;nÞ.

In a digital image, the linear scale-space filtering can be also understood as the weighted average of pixel intensities in the
corresponding neighborhood of the reference point. The weight values are computed according to the distances between the
neighboring points and the reference point. The closer a neighbor is to the central point, the more influence it will have in the
neighborhood. Thus the scale-space representation can be used to measure the color difference between a central pixel and
its around elements within a specific area.

Definition 3. Consider v1;v2 are color vectors in RGB space, the Euclidean distance between the two vectors is given by
dðv1;v2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼R;G;B

ðv1ðiÞ � v2ðiÞÞ2
s

ð4Þ
For a pixel Fðm;nÞ, suppose a scale t and P � P neighborhood, the color difference between Fðm;nÞ and its surrounding pixels
in neighborhood can be defined as
dt
P�Pðm;nÞ ¼ dðFðm; nÞ; Ftðm;nÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼R;G;B

ðFðm;n; iÞ � Ltðm;n; iÞÞ2
s

ð5Þ
When the color difference of a neighborhood at specific position is within a limited range, the corresponding image region
will be homogeneous. Homogeneity function is defined to measure the homogeneous degree based on the color difference in
Eq. 5.
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98 X.D. Yue et al. / Information Sciences 216 (2012) 93–112
Definition 4. Suppose a pixel Fðm;nÞ, under a given scale t, the homogeneous degree of P � P neighborhood relative to
Fðm;nÞ is decided by the homogeneity function as follows.
stðm;nÞ ¼
1 dt

P�Pðm;nÞ 6 r
1

1þ½2ðdt
P�P ðm;nÞ=r�1Þ�3

r < dt
P�Pðm;nÞ 6 kr

0 kr < dt
P�Pðm; nÞ

8>><
>>: ð6Þ
As shown in Fig. 3, stðm; nÞ is a piecewise function of Gauchy distribution. Parameter r denotes the threshold of indistinguish-
able color difference. When dt

P�P is less than the threshold r, the pixels in the neighborhood can be considered completely
homogeneous. The homogeneous degree decreases smoothly as the color difference increases. The relative region is believed
to be heterogeneous when color difference exceeds certain range. Considering the concrete cases of various color distribu-
tion, we assign r as one fifth of the median value among all distinct neighborhood differences in a image and set k ¼ 5.
Definition 5. Depending on the homogeneity function as a similarity measurement of neighborhood, under the scale t, the
upper approximation of each color component can now be constructed as
Ht
i ðlÞ ¼

XM

m¼1

XN

n¼1

ð1þ stðm;nÞÞdðFðm;n; iÞ � lÞ; 0 6 l 6 L� 1; i 2 fR;G;Bg ð7Þ
where Fðm;n; iÞ is the pixel’s grey level of color component i, dð�Þ is the impulse function and L is the intensity scale. Ht
i ðlÞ is

the approximate representation of pixel distribution on color plane at lth intensity with uncertainty. Obviously, Ht
i ðlÞP Ht

i ðlÞ.
Fig. 4 shows the homogeneous regions of the image ‘Butterfly’ with different scales. For the purpose of illustration, the

homogeneous degree is scaled up from interval [0,1] to [0,255] in order to better show the homogeneity on a grey image.
The bright regions in the images represent the homogeneous regions (the more bright, the more homogeneous). In contrast,
the dark regions represent the heterogeneous regions. From Fig. 4, we can find that the homogeneous region in the image
gradually shrinks with the increasing scales. At the initial scale level, the homogeneity of most objects in image can be well
embodied and the heterogeneous regions are regarded as the edges to segment the different homogeneous areas. Under the
coarse scales, the homogeneity of some regions disappears and the heterogeneous regions successively expand to ruin the
homogeneous areas. This phenomena occurs especially on the small homogeneous region of objects with textural features
such as leaves, petals and blocks of wings.

3.3. Multiscale roughness of color distribution

Depending on the upper approximations under different scales, the multiscale roughness can be obtained to reflect the
region homogeneity. Because of the quantified local homogeneity and multiple scales, this improved roughness can be con-
sidered as the quantitative homogeneity measurement at multiple granular levels.

Definition 6. Given an RGB image F and a scale t, the roughness of each color component under the scale t is defined as
rt
i ðlÞ ¼ 2� ð1� jHiðlÞj=jHt

i ðlÞjÞ; 0 6 l 6 L� 1; i 2 fR;G;Bg ð8Þ
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Fig. 3. Homogeneity function.



Fig. 4. Homogeneity distributions of image ‘Butterfly’ (a) original ‘Butterfly’ image, (b–e) homogeneous regions under different scales, (b) homogeneity
under t = 1, (c) homogeneity under t = 10, (d) homogeneity under t = 20, (e) homogeneity under t = 30.
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where L is the intensity scale, HiðlÞ is the lower approximation and Ht
i ðlÞ is the upper approximation at intensity l under the

scale t. The constant ‘2’ is used to map the roughness value into interval [0,1] which will be consistent with the information
measurement in next section.

Figs. 5 and 6 illustrate the upper approximation and roughness on Red color component of image ‘Butterfly’ under multi-
ple scales. It is obvious that the local homogeneity and roughness at most intensities will be generally enhanced as the scale
decreasing. Under the large scales, almost all surrounding pixels in the neighborhood will be considered for measuring the
color difference. Even the pixels far from the central position still play an important role in computing the local homogeneity,
which may lead to the improper high color difference on small homogenous regions. Therefore the roughness measure with
large scales tends to exhibit the homogeneity of large areas in color image, and the homogeneity of small regions will be
neglected. On the other hand, when we construct the region roughness by small scales, only the pixels near the central ele-
ment can cause influence to homogeneity measuring. Thus the roughness under small scales can reflect the homogeneity of
small regions effectively. However, too small scales can make almost all image regions having the property of roughness. In
that case, the roughness measurement cannot give the precise representation of homogeneity. Thus it should be known that
seeking an optimal scale is the key to measure the roughness of color distribution. The scale selection strategy will be further
introduced in the following section.

As mentioned above, given a proper scale t, the multiscale roughness can represent the color distribution more precisely
and intuitively. First, because the homogeneity is computed from the surrounding elements in neighborhood and the influ-
ences of surrounding pixels are weighted based on the distance to the central pixel (i.e. reference point), the approximation
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induced from scale-space is more effective to represent the homogeneous regions and weaken the impact of noisy points.
Secondly, besides the linear scale-space, the homogeneity function maps the local color difference into homogeneous degree,
which can further quantify the roughness index. Finally, linear scale-space filtering can provide us an intuitive understand-
ing on the roughness of color image. Like the human vision, multiscale roughness expresses the homogeneous regions from
hierarchical views at different granular levels.
4. Scale selection

Choosing a proper scale is very important to construct the multiscale roughness for image segmentation. Different scales
will determine how much detail of information will be acquired. In general, when the scale is too fine, too much redundant
information will be shown. In contrast, when the scale is too rough, some important information may be lost.

4.1. Information measurement on multiscale roughness

Previous work usually investigated the information properties of scale-space in the form of entropies [27,50,51,55]. There
are several kinds of entropies proposed based on statistical measurement and appearance features of multiscale images.
Using histogram, Sporring applied the Shannon entropies in linear scale-space to perform scale selection in texture segmen-
tation and showed the entropies’ monotone behavior using thermodynamics concepts. Weickert proved the monotony of
Shannon entropies in linear and non-linear diffusion scale-spaces. Besides studying the monotony and smoothness
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properties, Sporring and Weichert utilized the generalized entropy for global scale selection and size estimation [50,51]. Ma-
saru proposed another information measurement based on Tsallis entropy, which is popular in physics. Moreover, relations
between Renyi entropy and Tsallis entropy were elucidated to seek more natural information measurement in scale-spaces
[27]. In addition to the entropies of statistical features, the entropies formed by visual traits was also designed. This kind of
entropy uses the important structures embedded in multiscale images such as edges and vertexes to measure the informa-
tion [55]. To sum up, the information measurement in scale-spaces should be chosen according to application requirements.
Our aim is to find an effective tool for measuring the information represented by multiscale roughness.

Roughness, rough entropy, fuzziness and fuzzy entropy are major methods for measuring the uncertainty of data sets
[14,16,18,19,28,39,43,44]. As per discussed in Section 3, each bin of roughness index represents the homogeneity degree
at specific intensity. In another view, the roughness value also can be considered as the degree of an intensity on color
component belonging to the homogeneity concept, like the membership in fuzzy sets. Thus we can measure the information
contained in multiscale roughness in the form of classical fuzzy entropy.

Definition 7. Given an RGB image F and a scale t, the roughness entropy of F under the scale t is defined as the sum of
roughness entropies of all color components.
HðFtÞ ¼
X

i¼R;G;B

HðFtðiÞÞ;

HðFtðiÞÞ ¼ �1
Lln2

XL

l¼1

½rt
i ðlÞlnðrt

i ðlÞÞ þ ð1� rt
i ðlÞÞlnð1� rt

i ðlÞÞ� ð9Þ
in which rt
i ðlÞ is the lth roughness index of color component i under scale t; L is the intensity scale.

The roughness entropy can effectively represent the distribution of homogeneity and heterogeneity in the view of infor-
mation theory. With the different scales, the change of homogeneous regions will lead to the variance of roughness entropy.
Therefore we can select the optimal scale for segmentation by investigating the roughness entropy variation.

4.2. Scale value estimation

Fig. 7 shows the change of roughness entropy, which is obtained based on all color images in the testing database. The
changes of entropy can be approximately divided into two stages. In the first stage, the roughness entropy has a rapid growth
from zero to the maximum. When the scale parameter is closed to zero, the scale is too small to make any color difference
between the central pixel and the weighted average of neighborhood. This leads to a situation where almost all positions in
image have the high degree of homogeneity. The corresponding roughness near the coordinate line of 1 represents little
information of color distribution and zero entropy will be formed at the initial point. From the scale value of 0 to the scale
value of 0.5, the entropy gradually increases and the region heterogeneity emerges. Because of the increase of heterogeneity,
the redundant roughness will be removed, and the fluctuation of roughness index should become prominent. The distinct
peaks and valleys of roughness index can further represent the homogeneous and heterogeneous regions and bring us more
information for segmentation. In the second stage where the scale value is within the interval from 0.5 to the maximum, the
roughness entropy experiences a smooth and slow variation. The excessively augmented scales may bring overmuch
heterogeneity and reduce roughness index to zero, which result in the decay of roughness entropies. This stage indicates that
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the scales exceeding a specific rage cannot further improve the ability of roughness to represent the homogeneity
distribution.

In this paper, we will find the optimal scale for segmentation in the interval where the roughness entropy has the rapid
growth, because the roughness under these scales can offer us more information of homogeneity distribution. Fig. 8 shows
the first derivative of Fig. 7. It is obvious that there is a sharp increase of entropy in the scale interval [0,0.5]. This indicates
that a drastic variation of roughness entropy occurs around the scale 0.5. After the scale is larger than 0.5, the roughness
entropy gradually transforms from rapid growth into smooth change. Therefore we set the optimal scale as 0.5 for segmen-
tation. The experimental results in Section 6 will further confirm this strategy of scale selection.

5. Segmentation method

This paper proposes color (i.e. RGB) image segmentation based on multiscale roughness (MSR for short). The segmenta-
tion process is mainly divided into three stages. In the first stage, given a scale t, the approximations of each color component
are computed, and then the roughness index under scale t is obtained using Eq. 8. For computing the multiscale roughness,
we need to set two parameters. The first one is the size of the neighborhood, which is a window for scale-space filtering. A
proper size is important to the quality of image segmentation. In this paper, P ¼ 20 is set to construct the big enough tem-
plate (P � P) to detect the homogeneous regions. The second parameter is the adoptive scale. As introduced in Section 4, we
suppose t ¼ 0:5 for segmentation. In the second stage, significant peaks and valleys of roughness index are selected to deter-
mine the bands of each color component, and the initial image segmentation will be formed based on the determined color
bands. The third stage involves color merging as the post processing. Because the bands obtained from the roughness peaks
and valleys usually cause over-segmentation, the color region merging is necessary to reduce the redundant color, which will
merge the similar small segments together.

5.1. Peak selection

Like the segmentation based on histogram, the significant peaks of roughness index always represent the color homoge-
neity at corresponding intensities. The correct peak selection is the key to achieve good segmentation results. The criterion
used for selecting significant peaks is based on the peak height and the distance between adjacent peaks. Traditional meth-
ods usually set the fixed proportion of average index as the height threshold. However, because of the diversity of color dis-
tribution and especially the case caused by the fluctuated roughness, the fixed threshold is difficult to make accurate peak
selection for different images. Too small threshold can cause many redundant bands on the color components, and over-large
threshold may miss the important peaks for segmentation. Hence we design an algorithm using self-adaptive threshold to
select the significant peaks to generate the color bands.

Algorithm 1. Peak selection using self-adaptive threshold
Input: Roughness index of a color component;
Output: Sequence of the selected significant peaks P;
Step 1. Produce all peaks of the roughness index, Pk : Pl1 ; Pl2 ; . . . ; Plk , in which li is the intensity level and l1 < l2 . . . < lk;
Step 2. Obtain the maximum and minimal peaks, Pmax ¼ maxfPl1 ; Pl2 ; . . . ; Plkg; Pmin ¼ minfPl1 ; Pl2 ; . . . ; Plkg and the mean

value lm ¼ ðPmax þ PminÞ=2. Calculate the standard variance rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1ðPli � lmÞ
2
=k

q
, set the peak height

threshold Th ¼ lm � rm;
Step 3. Select the significant peaks according to the height threshold Th to form the peak sequence Ph : Pl1 ; Pl2 ; . . . ; Plk ,

set peak width threshold Tw ¼ 10;
Step 4. Take turns to select adjacent peaks Plh1

and Plh2
in sequence Ph, suppose lh1 < lh2, if Tw > lh2 � lh1, choose the

higher of the two peaks to insert into the peak sequence P;
Step 5. After filtering the peaks according to width threshold, return the peak sequence P.

After selecting the significant peaks, the valleys are obtained by finding the minimum values between every two adjacent
peaks. According to the location of peaks and valleys, the bands of roughness on each color component are formed. The grey
level of each band is set as the weighted average of all intensities within the band, and the weights are decided by the pixels
in the relevant bands. Thus we can initially segment image according to the color bands.
5.2. Color region merging

Unlike the histogram based on pixel scales, roughness focuses on the region homogeneity, thus always generates more
color bands than the traditional statistics. It is necessary to merge the region color in initially over segmented image. The
merging process focuses on the colors of small regions and similar regions. When the pixel number of a color is less than
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a predefined threshold (Tn can be set as 0.1 percent of the total number of pixels), the region of this color should be merged
with the bigger region of the nearest color. Moreover, the regions that are very close in color space also should be merged
into the same color cluster.

Given two regions R1; R2 in the initially segmented image, because the pixels in the same region will have the same color,
we can define the distance between two regions in RGB space by predefined Eq. 4, and measure the region similarity accord-
ing to the distance. Like the peak selection strategy, existing methods usually adopt fixed threshold to merge color region
and neglect the diversity of color distribution. When image has the content of weak contrast, the small threshold can achieve
good performance. However, in the case of strong contrast, the relatively big threshold may be more reasonable for merging
color. Hence the judgment of region similarity should synthesize two factors, visual discernibility of color difference and
characteristics of color distribution.

Suppose the image color is divided into M regions, the number of pairwise region differences is N ¼ C2
M ¼ MðM � 1Þ=2, let

ni be the total number of pixels belonging to the ith color region after initial segmentation, the weighted average and var-
iance of region differences are obtained by the equation.
dl ¼
PN

i¼1di � niPN
i¼1ni

; dr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ððdi � dlÞ2 � niÞPN

i¼1ni

vuut ð10Þ
thus we can use dl and dr as the distribution characteristics to define the threshold for judging region similarity.
Tc ¼
dl � dr dl 6 50
50 � ð1� dr=dlÞ dl > 50

�
ð11Þ
The piecewise function can avoid the improper threshold when dl exceeds a specific range. Considering the visual
discernibility of color difference, set Tv ¼ 20, we can obtain the final threshold of region similarity Ts ¼ maxfTc; Tvg. The
proposed algorithm merges the small and similar color regions successively.

Algorithm 2. Color region merging using self-adaptive threshold

Input: Sequence of color regions after initial segmentation Rk : R1; . . . ;Rk;
Output: Sequence of color regions after region merging Rm : R1; . . . ;Rm;
Step 1. Sort the sequence Rk by the region size (pixel number) ascendingly;
Step 2. Take every region Ri from the sequence Rk successively, if the scale of Ri is less than Tn, search the most similar

region Rj of Ri from Rk. For Ri and Rj, merge the smaller one into the relatively bigger region, and then delete the
small region from Rk;

Step 3. Check sequence Rk, if exists the region which scale is less than Tn, go to step 2;
Step 4. Obtain the region sequence Rs after merging the small regions, sort Rs ascendingly by region size;
Step 5. Take every region Ri from the sequence Rs successively, find the region Rj in sequence so that the color differ-

ence between Ri and Rj is less than Ts. For Ri and Rj, merge the smaller one into the other, and delete the smaller
region from Rs;

Step 6. Check sequence Rs, if exists the region pair which color difference is less than Ts, go to Step5;
Step 7. Output the region sequence Rm after merging the similar regions.



Table 1
Information of illustrated color images.

Image name Size Component intensity Color number

Blue Green Red

Bridge 481⁄321 256 255 256 761
Woman 481⁄321 234 236 237 701
Fruit 481⁄321 256 256 256 763
Old man 321⁄481 256 255 254 762
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5.3. Complexity analysis

The efficiency of MSR segmentation mainly relies on the size of image. Given an RGB image F of pixel number n and
intensity scale on each color component as L, the computational complexity is briefed as followings. At the first stage of
computing the roughness, the computation on neighborhood difference under a given scale requires filtering the image on
each color component, i.e. the calculation of P � P pixels in every neighborhood convolving with the Gaussian kernel,
Oð3P2nÞ. Assuming the distance and homogeneity function as atomic operation, the computation of approximations has
the complexity of Oð2nÞ. Depending on two approximations, producing the roughness index on all color components needs
Oð3LÞ operations.

At the stage of peak selection, given the number of initial peaks on every color component as k, the complexity of com-
puting self adaptive threshold and selecting the significant peaks is OðLþ 4kÞ. In the initial segmentation, every pixel is dis-
tributed into the corresponding color band and assigned the new value. This process needs about Oð3knÞ operations. Because
k is always far less than L, the complexity of initial segmentation can be considered as Oð3ðLþ knÞÞ.

In the post processing stage, supposing rk and rm are the color number after initial segmentation and after region merging
(rk P rm) respectively, the complexity of computing the threshold for measuring region similarity and merging color is about
Oð3r2

kÞ. Furthermore, the operation of readjusting color after merging has the complexity Oð3nðrk � rmÞÞ. Summing up the
operations in the three steps of MSR, the computational complexity of the whole segmentation process can be obtained
by Oð3P2nþ 6Lþ 3ðknþ r2

k þ nðrk � rmÞÞÞ. Because the parameter of filtering window P is usually a relatively small integer,
the method complexity is linearly dependent on the image size. Compared to the traditional roughness segmentation, the
complexity of proposed method just increases by multiples of n calculations.

6. Experimental results and discussion

In our experiments, all testing images are collected from Berkeley segmentation database,1 the illustrations exhibited in
the following paragraphs are also chosen from these images. Table 1 shows the basic information of these illustrated color
images. We expect to present the validity of proposed multiscale roughness measure and thresholding strategies, in order to
validate the efficiency of MSR for segmentation.

6.1. Evaluation on peak selection strategy

The first work is to validate the efficiency of self-adaptive strategy for peak selection. In this experiment, we respectively
adopt different fixed thresholds and self-adaptive threshold Th as the peak height criteria. For the segmentation based on two
kinds of roughness, Fig. 9 shows the influence of height thresholds to the segmented results. When the fixed threshold of the
ratio of average roughness is set small, most peaks are selected to represent homogeneity and generate the exquisite seg-
mentation. Although the small threshold can make the segmented result more close to the original image, too many feature
bands will lead to much redundant color. As the height threshold increases, the band number and color scale in segmented
image are gradually reduced. However, the improper large threshold may miss important peaks and cause the over-rough
segmentation with the poor display quality. As indicated in Fig. 9 and Table 2, for both kinds of roughness, the segmentation
based on self-adaptive peak selection can achieve precise result which is similar to the one when the fixed threshold is set
small. In the meantime, the segmented color number is generally far less than that of the exquisitely segmented result. Con-
sidering the diversity of color distribution, the self-adaptive strategy can effectively improve the initial segmentation preci-
sion for most testing images (see Fig. 10).

From the segmentation based on two kinds of roughness, with different thresholds, we find the traditional roughness
intends to make the segmented images over green, which results from the imprecise approximation of corresponding color
component. Because scale-space filtering forms quantitative roughness to represent the region homogeneity, given a proper
scale, the segmentation based on multiscale roughness achieves better results. Furthermore, we can also find the
1 (http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds).

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds


Fig. 9. (a) Original ‘Bridge’ image, (b, c) set Th ¼ 0:2 average roughness, segmented results from traditional roughness and multiscale roughness (t = 0.5), (d,
e) Th ¼ 0:8 average roughness, segmented results from two kinds of roughness, (f, g) segmented results when Th = average roughness, (h, i) segmented
results when Th = self-adaptive threshold.
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segmentation based on multiscale roughness is more robust to the change of threshold than the traditional roughness. This
indicates that the multiscale roughness can further focus on the distinct homogeneous regions and avoid the trivial noisy
points’ disturbing.



Table 2
Peak selection of image ‘Bridge’.

Segmentation Peak height Blue band Green band Red band Color number

Traditional roughness 0.2Average roughness 12 9 9 302
0.8Average roughness 4 4 7 36
Average roughness 4 4 7 36
Self-adaptive threshold 6 6 8 94

Multiscale roughness 0.2Average roughness 6 7 10 163
0.8Average roughness 5 4 9 74
Average roughness 5 4 6 47
Self-adaptive threshold 5 7 9 117
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Fig. 10. (a) Bands and selected peaks of multiscale roughness on Blue component of image ‘Bridge’, (b) bands and selected peaks on Green component, (c)
bands and selected peaks on Red component. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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6.2. Evaluation on roughness representation

This experiment tests the abilities of various statistics to represent the color homogeneity in image. Using the same thres-
holding strategy (self-adaptive threshold), Fig. 11 presents the segmentation results respectively induced from histogram,
histon, traditional roughness and multiscale roughness. As introduced above, histogram is constructed only based on pixel



Fig. 11. (a) Original ‘Woman’ image, (b–i) adopting self-adaptive peak selection strategy, segmented results from various statistics, (b) segmented result
from histogram, (c) segmented result from histon, (d) segmented result from traditional roughness, (e) segmented result from multiscale roughness when
t = 0.2, (f) t = 0.5, (g) t = 1, (h) t = 2, (i) segmented result when t = 5.
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counting, histon as an approximate representation of color distribution utilizes the spacial correlation but attaches over-
much importance to the homogeneity of large scale regions. Therefore, although the segmentations based on histogram
and histon always produce less segmented bands and color number, they will lose many details of color homogeneity, espe-
cially for the small distinct regions, and generally lead to over rough segmented results, see Fig. 11b and c. Obviously, the



Fig. 12. (a) Original ‘Fruit’ image, (b, c) initially segmented result and the result after adaptive region merging based on histogram, (d, e) results of initial
segmentation and after region merging based on histon, (f, g) results based on traditional roughness, (h, i) results based on multiscale roughness (t = 0.5).
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segmentations based on roughness perform better than histogram and histon, which is because of taking the approximation
boundary into account. Related works have also validated the superiority of roughness to the traditional statistics [32]. The
segmentation based on roughness can effectively extract the homogeneous regions and avoid the influence of pixel scale.

However, due to the fixed neighborhood template and inaccurate approximation, the traditional roughness is still not
precise and flexible enough to measure homogeneity inherent in color image. As illustrated in Fig. 11d, some areas of



Fig. 13. (a) Original ‘Old Man’ image, (b) segmented image based on multiscale roughness (t = 0.5), (c-e) segmented images based on rough clustering with
different K, (c) K = 8, (d) K = 16, (e) K = 32.

Table 3
Segmented results of ‘Woman’ from various statistics.

Statistics Blue band Green band Red band Color number

Histogram 4 5 8 52
Histon 4 6 5 43
Traditional roughness 10 11 10 171
Multiscale roughness t = 0.2 4 8 9 93
Multiscale roughness t = 0.5 9 10 11 169
Multiscale roughness t = 1 11 10 9 144
Multiscale roughness t = 2 11 10 9 168
Multiscale roughness t = 5 9 10 9 154
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woman’s face and clothes are segmented into the wrong colors. Fig. 11 presents the segmented images induced from mul-
tiscale roughness. Under too small scales, the multiscale roughness contains little information of homogeneity distribution
and leads to poor segmentation. When the scale increases to 0.5, the information contained in roughness is greatly enriched



Table 4
Segmented results of ‘Fruit’ after region merging.

Statistics Initial color number Region similarity Merged color number

Histogram 198 Ts ¼ 20 53
Ts ¼ adaptive threshold 39

Histon 163 Ts ¼ 20 52
Ts ¼ adaptive threshold 41

Traditional roughness 274 Ts ¼ 20 62
Ts ¼ adaptive threshold 55

Multiscale roughness 256 Ts ¼ 20 80
Ts ¼ adaptive threshold 42
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because of the emergence of heterogeneity. Therefore the multiscale roughness can express more details about homoge-
neous regions and result in the precise segmented results. As the scale exceeds the specific extent, the ability of roughness
to represent homogeneity is not enhanced. Thus the corresponding segmentations cannot be further improved. As shown in
Fig. 11g–i, the gradually increasing scales do not improve the performance too much. Some regions of face and clothes are
segmented more roughly than the scale of 0.5. This confirms our strategy to decide the optimal scale for segmentation (see
Table 3).
6.3. Evaluation on region merging

Over segmentation based on roughness always produces redundant color, thus the post processing is necessary to merge
the segmented color. In this experiment, we respectively adopt the self-adaptive threshold obtained from Algorithm 2 and
the fixed threshold proposed in [32] to decide the region similarity and merge color region. Fig. 12 presents the segmentation
results with/without the post-processing. Table 4 shows the number of color on the segmented images before and after
merging.

As shown in Fig. 12 and Table 4, through merging process, the number of colors on the initially segmented images using
various methods are greatly compressed while the display qualities are guaranteed. Furthermore, we find the self-adaptive
similarity threshold can further reduce the color number in segmented results than fixed thresholds. Especially for the
images with high color contrast, the self-adaptive strategy for region merging always has outstanding performances on var-
ious kinds of segmentations.
6.4. Comparison with rough clustering based segmentation

In [45], rough K-means clustering algorithm is used for segmenting color images. Segmentation process is viewed as a
clustering problem where the task is to identify those clusters which may best represent the condensed colors in image.
Rough K-means clustering algorithm utilizes two sets for each cluster, a lower and an upper approximation [23,40]. Through
iterative adjustment of the cluster centers, the algorithm is expected to converge towards a good color palette. In this exper-
iment, we compare the segmentation based on rough clustering with the one based on multiscale roughness measure. Fig. 13
shows the results obtained by both methods. It is seen that the quality of segmented image resulting from the roughness
under the scale of 0.5, which has only 32 colors after region merging, is better than that of rough clustering with the various
cluster numbers, i.e. K = 8, 16, 32. Comparing the roughness strategy, the following problems of rough K-means segmenta-
tion are revealed.

First, the quality of segmented image relies much on the clustering initialization. Rough K-means based segmentation
needs an initialized parameter K as the number of condensed color in segmented image. Although K can be predefined as
the size of fixed palette, the cluster number K will significantly influence the segmented results. See Fig. 13c–e, obviously
the segmentation is too coarse with the small K and becomes fine with the large K. Thus it should be better to determine
the optimal number of condensed color based on the specific color distribution of image. Moreover, for rough K-means,
the clustering seeds are randomly selected from pixels, which may lead to the unstable segmented results. Second, for image
segmentation, the pixels in the boundary of rough clusters have to be redistributed into a certain class. Therefore, the proper
strategies for dealing with the uncertain pixels belonging to more than one color are necessary to improve the segmentation
precision. Finally, the computational complexity of rough K-means algorithm is Oðiter � K � nÞ [24], in which n is the number
of objects, K is the number of clusters and iter is the number of iterations required to obtain stable centroid values. In prac-
tice, when the cluster number, i.e. expected condensed color number, is increased to guarantee the quality of segmented im-
age, more iterations are generally required to achieve the clustering convergence due to the complex cluster boundaries.
Therefore, unlike the roughness-based segmentation, the computational burden of segmentation based on rough clustering
will clearly rise with K increasing.

Through testing and analyzing the segmented results of most color images in database, we demonstrate the multiscale
roughness is precise and flexible to depict the color homogeneity. The self-adaptive strategies of selecting peaks and merging
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color can further improve the roughness-based segmentation precision. Furthermore, because the computational complexity
of proposed method is linearly dependent on image size, the segmentation efficiency of MSR is generally acceptable.

7. Conclusion

In this paper, a multiscale roughness measure has been proposed for color image segmentation. Aiming at the problems of
existing histogram-based methods, we apply the linear scale-space theory into the traditional roughness measure to con-
struct the multilevel representation of color homogeneity. Given an appropriate scale, the multiscale roughness can tolerate
the disturbance of trivial structures and form the precise segmentation. For scale selection, we propose the roughness en-
tropy to measure the information contained in roughness, and then decide the optimal scale for segmentation according
to the entropy variation. Furthermore, considering the diversity of color distribution, we design the self-adaptive strategies
for thresholding bands and merging color. Experimental results have shown that the segmentation based on multiscale
roughness performs well on the natural images in the testing database.

We also found several interesting issues remained in this exploratory work. The first one is about the scale-space repre-
sentation of color image. Although the linear scale-space filtering can bring us the intuitive impression of color distribution
on multiple visual levels, the increasing scales rarely cause color variation at the areas of small intensities, which will lead to
the unbalanced changes of roughness at different grey levels as shown in Fig. 6. This means that the roughness with big
scales tends to over focus on the homogeneity of dark areas. That is why the segmentation using relatively small scales
can achieve better performance. The second issue is the scale selection. The proposed roughness entropy is an information
measurement of roughness index from statistical view. The changing entropy reflects the homogeneity variation with vary-
ing scales. To the natural images with complex contents, this strategy is workable to depict the region homogeneity, whereas
to other kinds of images, different strategies for deciding the optimal scale, such as visual feature detection or object size
estimation, may be the better choice.
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