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In recent years, much attention has been given to the rough set models based on two universes of dis-
course and different kinds of rough set models on two universes have been developed from different
points of view. In this paper, a novel model, i.e., the graded rough set model on two distinct but related
universes (GRSTU) is proposed from the absolute quantitative point of view. We study the basic proper-
ties of approximation operators in GRSTU, and introduce a relation matrix based algorithm to compute
the lower and upper approximations of a set of objects in GRSTU. Furthermore, the relationships between
classical rough set model and GRSTU are discussed and some conclusions related to the GRSTU are given.
Finally, several examples are employed to demonstrate the conceptual arguments of GRSTU, and an
application of GRSTU is also illuminated in details.
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1. Introduction

Rough set theory, originally proposed by Pawlak [1,2] as an
extension of set theory, is an effective approach to dealing with
imprecise, uncertain and incomplete information. It has been suc-
cessfully used in many research areas, such as pattern recognition,
machine learning, knowledge acquisition and data mining
[3–7,32–35,38,39,41].

As we know, Pawlak’s rough set model has a basic hypothesis,
that is, whether an object belongs to a class or not is completely
certain. However, in practice, allowing some extent of uncertainty
in the classification process may lead to a deeper understanding
and a better utilization of the data being analyzed. In order to deal
with the uncertainty in such cases, a lot of models have been pro-
posed. For example, based on the Bayesian decision procedure with
minimum cost (risk), Yao [8,9] proposed a decision-theoretic rough
set model (DTRSM) which brings new insights into the probabilis-
tic approaches to rough set model. DTRSM not only has good
semantic interpretation, but also be beneficial for rule acquisition
in the applications involving cost and risk. And Yao and Lin
[10,11] presented a graded rough set model (GRS) from the abso-
lute quantitative point of view. Moreover, many other models have
also been proposed, such as rough set models based on arbitrary
binary relations [12–14,40], rough set models based on incomplete
systems [15–17,43], covering rough sets [18–20], rough fuzzy sets
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and fuzzy rough sets [21,42,44], variable precision rough sets
[22,23], etc. Through loosening the strict definition of the approx-
imations in Pawlak’s rough set model, these models enrich the
application scope of rough set theory.

In the real world, we often face some situations in which mak-
ing a decision is difficult. For example, in the process of identifying
or determining the nature and cause of a disease, since a certain
disease may simultaneously have several symptoms but the same
symptom may be shared by diverse diseases, a doctor (or a deci-
sion-maker) often finds it is difficult to distinguish whether a per-
son has suffered from the disease or not. In these kinds of
situations, more than one universes of discourse are often in-
volved. However, Pawlak’s rough set model and its extensions
mentioned above are all based on only one universe, therefore
these models may be not suitable to deal with the above problem.
Hence, it is meaningful to propose a rough set model based on two
universes.

The generalization of rough set model from only one universe of
discourse to the two distinct but related universes of discourse has
attracted much attention [24–29,36]. Wong et al. [24] first pro-
posed a rough set model on two universes from the viewpoint of
compatibility. In [26,28,29], the applications and some interesting
properties about the rough set model on two universes were dis-
cussed. Wu et al. [25] developed a general framework for the study
of the fuzzy rough set models on two universes in which both con-
structive and axiomatic approaches were considered and surveyed.
In [27], four types of rough fuzzy approximation operators on two
universes have been proposed. Zhang et al. [36] studied the gener-
alized interval-valued fuzzy rough sets on two universes of
discourse.
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Although the above models can effectively overcome the limita-
tions of rough set models on one universe, they still lack the adapt-
ability in solving uncertainty problems. To solve this problem, Shen
et al. [30] proposed a variable precision rough set model on two
universes from the relative quantitative point of view. Ma and
Sun [37] introduced a probabilistic rough sets over two universes
and used it to deal with the problem of Bayesian risk decision. In
this paper, from the absolute quantitative point of view, we pro-
pose a graded rough set model defined on two distinct but related
universes. Our model is not only an extension of the rough set
model on two universes but also an extension of Pawlak’s rough
set model. To compare with Yao and Lin’s graded rough set model,
our model may be more appropriate to handle the problems where
more than one universe is involved. Paralleling with Pawlak’s
rough set model, the basic properties of our model are discussed.
Meanwhile, a relation matrix based algorithm for computing the
lower and upper approximations in GRSTU is proposed.

The remainder of this paper is organized as follows. In the next
section, we briefly introduce some notions using in Pawlak’s rough
set model, graded rough set model on one universe and rough set
model on two universes. In Section 3, we define the lower and
upper approximation operators in GRSTU and discuss the basic
properties of GRSTU. In Section 4, two examples are employed to
substantiate the conceptual arguments of GRSTU. An application
of GRSTU is discussed in details in Section 5. Finally, Section 6 con-
cludes the paper.

2. Preliminaries

In this section, we outline some basic concepts in rough sets and
some current rough set models, such as Pawlak’s rough set model
[1], graded rough set model on one universe [10] and rough set
model on two universes [24]. Throughout this paper, we suppose
that the universe U or V is a finite non-empty set.

2.1. Pawlak’s rough set model

Let U be a universe of discourse, for any binary relation R on U,
we call R an equivalence relation on U, if.

(1) R is reflexive if for all x 2 U, xRx;
(2) R is symmetric if for all x,y 2 U, xRy implies yRx;
(3) R is transitive if for all x,y,z 2 U, xRy and yRz implies xRz.

An equivalence relation is a reflexive, symmetric and transitive
relation. The equivalence relation R partitions U into disjoint sub-
sets (or equivalence classes). Let U/R denote the family of all equiv-
alence classes of R. For every object x 2 U, let [x]R denote the
equivalence class of relation R that contains element x, called the
equivalence class of x under relation R.

Let U be a universe of discourse, R an equivalence relation on U,
for any X # U, one can describe X by a pair of lower and upper
approximations defined as follows.

RðXÞ ¼ fx 2 Uj½x�R # Xg
RðXÞ ¼ fx 2 Uj½x�R \ X – ;g

R(X) is called the lower approximation of X, which is the union
of all the equivalence classes which contain in X, and RðXÞ is
called the upper approximation of X, which is the union of all
equivalence classes which have non-empty intersection with X.
Then ðRðXÞ;RðXÞÞ is called the rough sets of X. Accordingly, the
positive, negative and boundary regions of X on the approxima-
tion space (U,R) can be defined as follows: posðXÞ ¼ RðXÞ;
negðXÞ ¼� RðXÞ; bndðXÞ ¼ RðXÞ � RðXÞ, where � stands for the
complement of a set.
2.2. Generalized rough set operators

The Pawlak rough set model may be extended by using an arbi-
trary binary relation.

Let U be a universe of discourse and R a binary relation on U, the
following two operators: r(x) = {y 2 UjxRy}, l(x) = {y 2 UjyRx} are
called the successor and predecessor neighborhood operator,
respectively.

Definition 1 ([12]). Let U be a universe of discourse and R a binary
relation on U. For any X # U, its lower and upper approximations
based on the successor neighborhood operator are respectively
defined as follows:

RðXÞ ¼ fx 2 UjrðxÞ# Xg
RðXÞ ¼ fx 2 UjrðxÞ \ X – ;g

Analogously, for any X # U, one can define the lower and upper
approximations based on the predecessor neighborhood operator.

In the remainder of this paper, we shall only take the case of the
successor neighborhood operator into consideration.
2.3. Yao and Lin’s graded rough set model on one universe [10]

Let U be a universe and R a binary relation on U, n 2 N, where N
is the set of natural numbers. For any subset A # U, the lower and
upper approximations of A with respect to n (denoted by aprn(A)
and aprnðAÞ, respectively) are defined as follows.

aprnðAÞ ¼ fx 2 UjjrðxÞj � jrðxÞ \ Aj 6 ng
¼ fx 2 UjjrðxÞ � Aj 6 ng

aprnðAÞ ¼ fx 2 UjjrðxÞ \ Aj > ng

where jr(x)j denotes the cardinality of set r(x).
An element of U belongs to aprn(A) if at most n of its R-related

elements do not belong to A, and belongs to aprnðAÞ if more than
n of its R-related elements belong to A.

2.4. Rough set model on two universes

Next, we shall review some basic concepts and properties of the
rough set model on two universes. Detailed description of the
model can be found in [12,26,28].

The above model can be generalized to the case of two
universes.

Definition 2 ([12,28]). Let U and V be two universes of discourse
and R a binary relation from U to V, i.e. R # U � V. The ordered triple
(U,V,R) is called a two-universe approximation space. For any Y # V,
the lower and upper approximations of Y can be defined as follows.

RðYÞ ¼ fx 2 UjrðxÞ# Yg
RðYÞ ¼ fx 2 UjrðxÞ \ Y – ;g

R(Y) is called the lower approximation of Y and RðYÞ the upper
approximation of Y. (R (Y), RðYÞ) is called the rough sets of Y.
Accordingly, the positive, negative and boundary regions of Y over
the approximation space (U,V,R) are defined as follows: Pos(Y) =
R(Y), NegðYÞ ¼� RðYÞ, BndðYÞ ¼ RðYÞ � RðYÞ.
Proposition 1. Given a two-universe approximation space (U,V,R),
for any Y, Y1, Y2 # V, the approximation operators given in Definition
2 have the following properties:

(1) RðYÞ ¼� Rð� YÞ;RðYÞ ¼� Rð� YÞ
(2) RðVÞ ¼ RðVÞ ¼ U;Rð;Þ ¼ Rð;Þ ¼ ;
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RðY1 [ Y2Þ ¼ RðY1Þ [ RðY2Þ
(3) R (Y1 \ Y2) = R(Y1) \ R(Y2),
(4) R(Y1 [ Y2) � R (Y1) [ R(Y2),
RðY1 \ Y2Þ# RðY1Þ \ RðY2Þ

(5) Y1 # Y2;RðY1Þ# RðY2Þ;RðY1Þ# RðY2Þ
Proof 1. Since the proofs can be found in [12], we omit them
here. h

By now, we have briefly recalled several interesting rough set
models. The relationships among them are shown in Fig. 1. In
Fig. 1, each node denotes one model, where Model 1 is the Pawlak’s
rough set model, Model 2 is the model defined by Definition 1,
Model 3 is the graded rough set model on one universe and Model
4 is the model defined by Definition 2. Each arrow connects two
models, where the model located at the beginning of the arrow is
called the first model, and the model located at the end of the ar-
row is called the second model. For each arrow, the second model
is a special case of the first model, and the numbers located on the
arrow denotes the conditions that should be satisfied for the first
model to degenerate to the second model.

3. Graded rough sets on two universes and their properties

In parallel to graded modal logics, Yao and Lin [10] first intro-
duced graded rough sets on one universe. In this section, based
on the work of Yao and Lin, we shall define graded rough sets on
two universes and discuss the basic properties of this model.

Definition 3. Let U and V be two universes of discourse, R a binary
relation from U to V, i.e. R # U � V, and n 2 N, where N is the set of
natural numbers. For any Y # V, its lower and upper approxima-
tions with respect to the graded n are defined respectively as
follows:
RnðYÞ ¼ fx 2 UjjrðxÞ � Yj 6 ng
RnðYÞ ¼ fx 2 UjjrðxÞ \ Yj > ng

According to Definition 3, an element of U belongs to Rn(Y) if and
only if at most n of its R-related elements do not belong to Y, and
Fig. 1. Relationships of models.
belongs to RnðYÞ if and only if more than n of its R-related
elements belong to Y. If RnðYÞ– RnðYÞ, then Y is called a rough set
with respect to the grade n. Otherwise, Y is called a definable set
with respect to the grade n. Rn and Rn are called the lower and upper
approximations with respect to the grade n, respectively.
Remark 1.

(1) If n = 0, then
RnðYÞ ¼ fx 2 UjjrðxÞ � Yj 6 0g
¼ fx 2 UjrðxÞ# Yg;

RnðYÞ ¼ fx 2 UjjrðxÞ \ Yj > 0g
¼ fx 2 UjrðxÞ \ Y – ;g:
That is, if n = 0, then the graded rough set model on two uni-
verses degenerates to the rough set model on two universes
as defined in Definition 2.
(2) If U = V, then the graded rough set model on two universes
degenerates into the original graded rough set model pro-
posed by Yao and Lin [10].

(3) If n = 0 and U = V, then
RnðYÞ ¼ fx 2 UjjrðxÞ � Yj 6 0g
¼ fx 2 Uj½x�R # Yg;

RnðYÞ ¼ fx 2 UjjrðxÞ \ Yj > 0g
¼ fx 2 Uj½x�R \ Y – ;g
In the current case, the graded rough set model on two universes
degenerates into the rough set model based on a binary relation
over a given universe.
Remark 2. In the graded rough set model on two universes, the
positive, negative and boundary regions of set Y # V cannot
be directly defined as those in Pawlak’s rough set model, since the
property RnðYÞ# RnðYÞ does not always hold (as show in Example 2).

For completeness, we give the definitions of positive, negative
and boundary regions of Y # V in the graded rough set model on
two universes.
Definition 4. Let U and V be two universes of discourse, R a binary
relation from U to V, i.e. R # U � V, and n 2 N, N is the set of natural
numbers. For any Y # V, the positive, negative and boundary
regions of Y are respectively defined as follows.

POSnðYÞ ¼ fx 2 UjjrðxÞ � Y j 6 n and jrðxÞ \ Yj > ng
¼ RnðYÞ \ RnðYÞ

NEGnðYÞ ¼ fx 2 UjjrðxÞ � Y j > n and jrðxÞ \ Y j 6 ng
¼� ðRnðYÞ [ RnðYÞÞ

BNDnðYÞ ¼� ðPOSnðYÞ [ NEGnðYÞÞ

From Definition 4, we can see that the positive, negative and
boundary regions of a set in the graded rough set model on two
universes have more complex structure than those in Pawlak’s
rough set model.
Proposition 2. Given a two-universe approximation space (U,V,R),
for any Y, Y1, Y2 # V, the rough set approximation operators with
respect to graded n satisfy the following properties.

(1) RðYÞ ¼ R0ðYÞ; RðYÞ ¼ R0ðYÞ
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(2) RnðVÞ ¼ U; Rnð;Þ ¼ ;
(3) If Y1 # Y2, then RnðY1Þ# RnðY2Þ; RnðY1Þ# RnðY2Þ.
(4) Rn(Y1 \ Y2) # Rn(Y1) \ Rn(Y2)
RnðY1 [ Y2Þ � RnðY1Þ [ RnðY2Þ

(5) Rn(Y1 [ Y2) � Rn(Y1) [ Rn(Y2)
RnðY1 \ Y2Þ# RnðY1Þ \ RnðY2Þ

(6) RnðYÞ ¼� Rnð� YÞ, RnðYÞ ¼� Rnð� YÞ
(7) If n P m, then Rn(Y) � Rm(Y), RnðYÞ# RmðYÞ.

Proof 2. Since (1), (2) and (6) can be obtained directly from Defi-
nition 3, we omit the proofs of them here.

(3) For any x 2 Rn(Y1), we have that jr(x) � Y1j 6 n. If Y1 # Y2,

then j r(x) � Y2j 6 jr(x) � Y1j 6 n, that is x 2 Rn(Y2). Thus, if Y1 # Y2,

then Rn(Y1) # Rn(Y2);
Analogously, for any x 2 RnðY1Þ, we have that n < jr(x) \ Y1j. If

Y1 # Y2 then n < j r(x) \ Y1j 6 jr(x) \ Y2j, that is, x 2 RnðY2Þ. Thus, if
Y1 # Y2, then RnðY1Þ# RnðY2Þ.

(4) Since Y1 \ Y2 # Y1 and Y1 \ Y2 # Y2, from (3), we have that

Rn(Y1 \ Y2) # Rn(Y1) and R n(Y1 \ Y2) # Rn(Y2). Combining the two

formulas, we can obtain that Rn(Y1 \ Y2) # Rn(Y1) \ R n(Y2).
Another part of (4) and all the parts of (5) can be proved

analogously, we omit them here.
(7) For any x 2 Rm(Y), we have that jr(x) � Yj 6m. If n P m, then

jr(x) � Yj 6m 6 n, i.e., x 2 Rn(Y). Thus, if n P m, then Rn(Y) � Rm(Y);
For any x 2 RnðYÞ, we have that jr(x) \ Yj > n, if n P m, then

jr(x) \ Yj > n P m, that is, x 2 RmðYÞ. Thus, if n P m, then
RnðYÞ# RmðYÞ. h

It is well-known that the computation of lower and upper
approximations is not an easy task. To deal with this issue in the
graded rough set model on two universes, we develop a novel
method on the basis of relation matrix defined as following.

Definition 5. Let U = {x1,x2, . . . ,xn} and V = {y1,y2, . . . ,ym} be two
universes of discourse, R # U � V. The matrix MR = (aij)n�m induced
by R is called the relation matrix of R, where for any i and j,
1 6 i 6 n and 1 6 j 6m, if xiRyj then aij = 1, otherwise aij = 0. We
define sumðiÞ ¼

Pm
j¼1aij as the summation of the ith row of MR,

1 6 i 6 n.
Definition 6. Let U = {x1,x2, . . . ,xn}, for any set X # U, the corre-
sponding matrix of set X is defined as X = (u1,u2, . . . ,un)T(T is the
transposition of matrix), where for any i, 1 6 i 6 n, if xi 2 X then
ui = 1, otherwise ui = 0.

Based on Definitions 5 and 6, we can prove the following
proposition.
Proposition 3. Let U = {x1,x2, . . . , xn} and V = {y1,y2, . . . , ym} be two
universes of discourse, and R # U � V, MR = (aij)n�m be the relation
matrix of R. Given any Y # V (let (u1,u2, . . . ,um)T be the matrix of
set Y) and k 2 N, where N is the set of natural numbers. Let
Z = MR � Y = (z1,z2, . . . , zm)T, where zi ¼

Pm
j¼1aij � uj and � represents

standard multiplication, then the lower and upper approximations of
Y with respect to the graded k can be computed as following:

RkðYÞ ¼ fx 2 UjjrðxÞ � Yj 6 kg

¼ fxi 2 UjsumðiÞ � zi 6 kg

RkðYÞ ¼ fx 2 UjjrðxÞ \ Y j > kg

¼ fxi 2 Ujzi > kg
Proof 3. In fact, according to Definition 5, sum(i) is the cardinality
of set {yj}, where yj is related to xi based on R, i.e. sum(i) = jr(xi)j,
1 6 i 6 n. And zi is the cardinality of set {yj}, where yj is related
to xi based on R and yj belongs to Y, i.e. zi = j r(xi) \ Yj, 1 6 i 6 n.
Proposition 3 is proved. h

As a summary, we can describe the algorithm as Algorithm 1.

Algorithm 1. A matrix-based algorithm for computing
approximations

Input: U = {x1,x2, . . . ,xn}, V = {y1,y2, . . . ,ym}, R # U � V
Y # V and (u1,u2, . . . ,um)T is the matrix of Y, k 2 N;
Output: Approximations of Y with respect to R;

1 Let RkðYÞ ¼ ;; RkðYÞ ¼ ;;
2 Compute MR = (aij)n�m of R, sum and Z;
3 for i = 1 to m do
4 if sum(i) � zi 6 k then

5 Rk(Y) = Rk(Y) [ {xi};
6 end
7 if zi > k then
8 RkðYÞ ¼ RkðYÞ [ fxig;
9 end
10 end
11 return RkðYÞ;RkðYÞ

Algorithm 1 involves two closely integrated stages. In the first
stage (from lines 1 to 2), it computes MR, sum and yi according to
Definitions 5, 6 and Proposition 3. This stage is the basis for the
next stage. In the second stage (from lines 3 to 10), it computes
approximations by using Proposition 3.

As shown in Algorithm 1, its major computation lies in the
establishment of relation matrix, sum and Z. Assume jUj = n and
jVj = m, the time complexity of building a relation matrix is
O(n ⁄m) and the time complexity for computing sum and Z is also
O(n ⁄m). The time complexity for calculating approximations is
O(m). Therefore, the total complexity of Algorithm 1 is
O(n ⁄m + m), which is approximate to O(n ⁄m).

In order to show the implicit relations between GRSTU and
graded rough set model on one universe, we introduce two binary
relations: ER

U and ER
V , which are induced by R # U � V, where U and

V are two universes of discourse. The two relations are defined
based on only one universe U or V.

A binary relation ER
U # U � U induced by R can be defined as

xER
Ux0 () rðxÞ ¼ rðx0Þ, x,x0 2 U. Obviously, ER

U is an equivalence rela-

tion on U � U. Equivalence relation ER
U partitions the universe U

into disjoint subsets. Let U=ER
U denotes the set of all equivalence

classes of ER
U and ½x�ER

U
denotes the equivalence class containing x,

where x 2 U. For convenience, ½x�ER
U

is replaced by [x]U in this paper.

Definition 7. Let U and V be two universes of discourse, R # U �
V, ER

U # U � U be the equivalence relation induced by R, and n 2 N.
For any X # U, its lower and upper approximations with respect to
the grade n under ER

U are defined respectively as follows:

ER
U nðXÞ ¼ fx 2 Ujj½x�U � Xj 6 ng

ER
U nðXÞ ¼ fx 2 Ujj½x�U \ Xj > ng

Obviously, ER
U n and ER

U n are two mappings from P(U) to P(U),
where P(U) denotes the power set of U. They are the approximation
operators with respect to grade n over universe U. Similarly,

ER
V n; ER

V n : PðVÞ ! PðVÞ can also be defined.
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Here, it should be noted that graded rough set model defined by
Definition 7 is also a special case of the model defined by Yao and
Lin in [10].

From Definitions 3 and 7, we can see that Rn;Rn : PðVÞ ! PðUÞ,
ER

Un, ER
U n : PðUÞ ! PðUÞ and ER

V n; ER
V n : PðVÞ ! PðVÞ are all induced

by relation R. Therefore, there must exist some interrelations
among them.
Proposition 4. Let U and V be two universes of discourse, R a binary
relation from U to V, and n 2 N. ER

U # U � U and ER
V # V � V are two

equivalence relations induced by R. For any Y # V, the following prop-
erties are satisfied.

(1) Rn ER
V nðYÞ

� �
# ER

U nðRnðYÞÞ# RnðYÞ
(2) ER

U nðRnðYÞÞ � Rn ER
V nðYÞ

� �
� RnðYÞ

(3) ER
U nðRnðYÞÞ# Rn ER

V nðYÞ
� �

(4) Rn ER
V nðYÞ

� �
# ER

U nðRnðYÞÞ
Proof 4.

(2) For any x 2 Rn ER
V nðYÞ

� �
, from Definition 3, we have that

jrðxÞ \ ER
V nðYÞj > n, that is, there exist at least n + 1 elements

yi 2 r(x) such that yi 2 rðxÞ \ ER
V nðYÞ. Thus, there exist at least

n + 1 elements yi 2 r(x) \ Y, i.e., at least n + 1 elements
x 2 ½x�U \ RnðYÞ. According to Definition 3, we have that

x 2 ER
U nðRnðYÞÞ. Then Rn ER

V nðYÞ
� �

# ER
U nðRnðYÞÞ holds;

For any x 2 ER
U nðRnðYÞÞ, from Definition 3, we have that

j½x�U \ RnðYÞj > n, i.e., there exist at least n + 1 elements
x 2 [x]U such that x 2 RnðYÞ. Therefore, jr(x) \ Yj > n, i.e.,

ER
U nðRnðYÞÞ# RnðYÞ holds.

Hence, RnðER
V nðYÞÞ# ER

U nðRnðYÞÞ# RnðYÞ.
(2) For any x 2 Rn ER

V nðYÞ
� �

, from Definition 3, jrðxÞ � ER
V nðYÞj 6 n,

then r(x) and ER
V nðYÞ contain at most n different elements,

i.e., r(x) and [y]V \ Y contain at most n different elements.
Thus, we have that r(x) and Y contain at most n different ele-

ments. Therefore, jr(x) � Yj 6 n, and x 2 [x]U \ Rn(Y), i.e.,

x 2 ER
U nðRnðYÞÞ. Hence, EUn(Rn(Y)) � Rn(EVn(Y));

Since Y # ER
V ðYÞ ¼ ER

V 0ðYÞ and according to (7) of Proposi-

tion 2, we have that Y # ER
V ðYÞ ¼ ER

V 0ðYÞ# ER
V nðYÞ, where

n P 0, i.e. Y # ER
V nðYÞ. And from (3) of Proposition 2,

RnðER
V nðYÞÞ � RnðYÞ.

(3) For any x 2 ER
U nðRnðYÞÞ, we have that j[x]U \ Rn(Y)j > n. Hence,

there exist at least n + 1 elements x 2 [x]U such that
x 2 RnðYÞ, i.e., jr(x) \ Yj > n. Therefore, x 2 RnðYÞ, i.e.,

ER
U nðRnðYÞÞ# RnðYÞ.

As we have proved in (2), Y # ER
V nðYÞ. According to (3) of

Proposition 2, we have that RnðYÞ# RnðER
V nðYÞÞ. Thus,

ER
U nðRnðYÞÞ# RnðER

V nðYÞÞ.

(4) For any x 2 Rn ER
V nðYÞ

� �
, from Definition 3, we have that

jrðxÞ � ER
V nðYÞj 6 n, i.e., r(x) and EV nðYÞ contain at most n dif-

ferent elements, which implies that xRy and j[y]V \ Yj > n.
Hence, jr(x) \ Yj > n, i.e., x 2 RnðYÞ. Therefore, x2 ½x�U \RnðYÞ,
i.e., x 2 ER

U nðRnðYÞÞ. Thus, RnðER
V nðYÞÞ# ER

U nðRnðYÞÞ. h
Given any subset Y # V and a fixed grade n, if we apply differ-
ent approximation operators on Y, then we can obtain different
results, and there exist some interrelations among these results.
Proposition 4 gives a description of such interrelations among
the results induced by different approximation operators on Y.
As shown in (1) of Proposition 4, for any subset Y # V, the result

induced by ER
V n and Rn on Y, i.e., RnðER

V nðYÞÞ, is a subset of that in-

duced by Rn and ER
V n on Y, and the latter is a subset of the result

induced by Rn on Y. On the contrary, when the lower approxima-

tion operators ER
V n, ER

U n and Rn are concerned, we can obtain a dif-

ferent conclusion, as shown in (2) of Proposition 4. Moreover,
when the lower and upper approximation operators are used
simultaneously, the outcomes can be found in (3) and (4) of Prop-
osition 4.

Proposition 5. Let U and V be two universes of discourse, R a binary
relation from U to V, and n,m 2 N, n P m. ER

U # U � U and ER
V # V � V

are two equivalence relations induced by R. For any Y # V, the
following properties are satisfied.

(1) ER
U nðRnðYÞÞ# ER

U mðRmðYÞÞ
RnðRnðYÞÞ# RmðRmðYÞÞ

(2) ER
U nðRnðYÞÞ � ER

U mðRmðYÞÞ
RnðRnðYÞÞ � RmðRmðYÞÞ

(3) RnðER
V nðYÞÞ � RmðER

V mðYÞÞ
(4) RnðER

V nðYÞÞ# RmðER
V mðYÞÞ
Proof 5. (1) If n P m, according to (7) of Proposition 2, we have

that Rn(Y) � Rm(Y). Thus, we have that ER
U nðRnðYÞÞ# ER

U nðRmðYÞÞ
and RnðRnðYÞÞ# RnðRmðYÞÞ. And from (3) of Proposition 2, we can

obtain that ER
U nðRmðYÞÞ# ER

U mðRmðYÞÞ and RnðRmðYÞÞ# RmðRmðYÞÞ.
Therefore, ER

U nðRnðYÞÞ# ER
U mðRmðYÞÞ and RnðRnðYÞÞ# RmðRmðYÞÞ.

Analogously, one can prove (2), (3) and (4), we omit the proofs
of them here. h

Differing from Proposition 4, given any subset Y # V, Proposi-
tion 5 shows the interrelations between the results induced by
the approximation operators on Y with different grades. As shown
in (1) of Proposition 5, for any subset Y # V, the result induced by

Rn and ER
U n on Y is a subset of that induced by Rm and ER

U m on Y,
where n P m.

Definition 8 ([7]). Let U be a universe of discourse, P and R are two
equivalence relations on U. We say that P is finer than R, denoted
by P ^ R, if each equivalence class in U/R is a union of some
equivalence classes in U/P.
Proposition 6. Let U and V be two universes of discourse, P and R are
two binary relations from U to U, and n 2 N. If P ^ R, then for any
X # U,Pn(X) � Rn(X).
Proof 6. For any x 2 Rn(X), from Definition 7, j[x]U � Xj 6 n holds. If
P^R, then ½x�U ¼

Sm
i¼1Ni, where Ni is the equivalence class with

respect to P. Hence, we have that j½x�U � Xj ¼
Sm

i¼1Ni � Xj 6 n, i.e.,Pm
i¼1jNi � Xj 6 n. Obviously, jNi � XjP 0, thus, jNi � Xj 6 n, i.e.,

x 2 Pn(X). Therefore, we can obtain that Pn(X) � Rn(X).
Remark 3. PnðXÞ � RnðXÞ does not always hold.
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Example 1. Let U be the universe of discourse, P and R two equiv-
alence relations on U. U, U/P and U/R are specified as follows:
70 C. Liu et al. / Knowledge-Ba
U ¼ fx1; x2; . . . ; x6g

U=P ¼ ffx1g; fx2; x4g; fx3g; fx5; x6gg

U=R ¼ ffx1; x2; x3; x4g; fx5; x6gg

Obviously, we have that P ^ R.
Suppose that X = {x2,x3,x4} # U and n = 1.
Then we can obtain that

PnðXÞ ¼ fx1; x2; x3; x4g; PnðXÞ ¼ fx2; x4g
RnðXÞ ¼ fx1; x2; x3; x4g;RnðXÞ ¼ fx1; x2; x3; x4g

Therefore Pn(X) � Rn(X) and PnðXÞ � RnðXÞ.
4. Two illustrative examples

In this section, two illustrative examples are employed to dem-
onstrate the concepts, method and properties which discussed in
Section 3.

Example 2. Let U and V be two universes of discourse, R a binary
relation from U to V, and MR = (aij)n�m be the relation matrix of R,
which are respectively given as follows:

U ¼ fx1; x2; . . . ; x6g
V ¼ fy1; y2; . . . ; y7g

MR ¼

1 0 0 1 0 0 0

1 1 1 1 0 0 0

1 0 0 1 1 1 1

1 1 1 1 0 0 0

0 0 0 0 1 1 1

0 0 0 0 1 1 1

2
6666666666664

3
7777777777775

Let Y = {y2,y3,y4} be a subset of V, and n = 2.
First, we compute the lower and upper approximations of Y

with respect to n using Definition 3.
From MR, we can obtain that

rðx1Þ ¼ fy1; y4g; rðx2Þ ¼ rðx4Þ ¼ fy1; y2; y3; y4g
rðx3Þ ¼ fy1; y4; y5; y6; y7g; rðx5Þ ¼ rðx6Þ ¼ fy5; y6; y7g:

Hence, we can further obtain that

rðx1Þ \ Y ¼ fy4g; rðx2Þ \ Y ¼ rðx4Þ \ Y ¼ fy2; y3; y4g
rðx3Þ \ Y ¼ fy4g; rðx5Þ \ Y ¼ rðx6Þ \ Y ¼ ;:

Therefore,

jrðx1Þ � Y j ¼ 1 < 2; jrðx2Þ � Yj ¼ jrðx4Þ � Yj ¼ 1 < 2

jrðx3Þ � Y j ¼ 4 > 2; jrðx5Þ � Yj ¼ jrðx6Þ � Yj ¼ 3 > 2

jrðx1Þ \ Yj ¼ 1 < 2; jrðx2Þ \ Yj ¼ jrðx4Þ \ Y j ¼ 3 > 2

jrðx3Þ \ Yj ¼ 1 < 2; jrðx5Þ \ Yj ¼ jrðx6Þ \ Y j ¼ 0 < 2

According to Definition 3, R2(Y) = {x1,x2,x4} and R2ðYÞ ¼ fx2; x4g.
Second, we compute the lower and upper approximations of Y

with respect to n using Proposition 3.
From MR, we can obtain that

sum ¼ ðsumð1Þ; sumð2Þ; sumð3Þ; sumð4Þ; sumð5Þ; sumð6ÞÞT

¼ ð2;4;5;4;3;3ÞT
and

Z ¼MR � Y ¼ ðz1; z2; . . . zmÞT ¼

1 0 0 1 0 0 0
1 1 1 1 0 0 0
1 0 0 1 1 1 1
1 1 1 1 0 0 0
0 0 0 0 1 1 1
0 0 0 0 1 1 1

2
66666664

3
77777775
�

0
1
1
1
0
0
0

2
6666666664

3
7777777775

¼

1
3
1
3
0
0

2
66666664

3
77777775

Therefore,

sumð1Þ � z1 ¼ 1; sumð2Þ � z2 ¼ 1; sumð3Þ � z3 ¼ 4;

sumð4Þ � z4 ¼ 1; sumð5Þ � z5 ¼ 3; sumð6Þ � z6 ¼ 3:

Then, we can obtain that R2(Y) = {xi 2 Ujsum(i) �zi 6 2} =
{x1,x2,x4} and R2ðYÞ ¼ fxi 2 Ujzi > 2g ¼ fx2; x4g.

In the above example, the two methods produce the same
result. And we can conclude that the method based on Proposition
3 is more efficient and convenient than that based on Definition 3.
Example 3. (Continued from Example 2)
From MR, we can obtain that

rðx1Þ ¼ fy1; y4g; rðx2Þ ¼ rðx4Þ ¼ fy1; y2; y3; y4g
rðx3Þ ¼ fy1; y4; . . . ; y7g; rðx5Þ ¼ rðx6Þ ¼ fy5; y6; y7g
lðy1Þ ¼ lðy4Þ ¼ fx1; x2; x3; x4g; lðy2Þ ¼ lðy3Þ ¼ fx2; x4g
lðy5Þ ¼ lðy6Þ ¼ lðy7Þ ¼ fx3; x5; x6g

Then, we have that

U=ER
U ¼ ffx1g; fx2; x4g; fx3g; fx5; x6gg

V=ER
V ¼ ffy1; y4g; fy2; y3g; fy5; y6; y7gg

Suppose Y1 = {y2,y3,y4}, Y2 = {y2,y3} and Y3 = {y1,y2,y3,y5}. Then
Y2 � Y1, Y1 \ Y3 = {y2,y3}, Y1 [ Y3 = {y1,y2,y3,y4,y5}.

First, let n = 2.
Then, we have that

R2ðY1Þ ¼ fx2; x4g; R2ðY2Þ ¼ ;

R2ðY3Þ ¼ fx2; x3; x4g; ER
V 2ðY1Þ ¼ ;

R2ðY1 \ Y3Þ ¼ ;; R2ðY1 [ Y3Þ ¼ fx2; x3; x4g
R2ðY1Þ ¼ fx1; x2; x4g; R2ðY2Þ ¼ fx1; x2; x4g
R2ðY3Þ ¼ fx1; x2; x4; x5; x6g; ER

V 2ðY1Þ ¼ fy1; y2; y3; y4g
R2ðY1 \ Y3Þ ¼ fx1; x2; x4g;
R2ðY1 [ Y3Þ ¼ fx1; x2; x3; x4; x5; x6g

From the above definitions, we have that

R2ðY2Þ¼;�R2ðY1Þ¼fx2;x4g
R2ðY2Þ¼fx1;x2;x4g#R2ðY1Þ¼fx1;x2;x4g
R2ðY1\Y3Þ¼;�R2ðY1Þ\R2ðY3Þ¼fx2;x4g
R2ðY1\Y3Þ¼fx1;x2;x4g#R2ðY1Þ\R2ðY3Þ¼fx1;x2;x4g
R2ðY1[Y3Þ¼fx2;x3;x4g�R2ðY1Þ[R2ðY3Þ¼fx2;x3;x4g
R2ðY1[Y3Þ¼fx1;x2;x3;x4;x5;x6g	R2ðY1Þ[R2ðY3Þ¼fx1;x2;x4;x5;x6g
R2ðER

V 2ðY1ÞÞ¼;; ER
U 2ðR2ðY1ÞÞ¼;

ER
U 2ðR2ðY1ÞÞ¼;; R2ðER

V 2ðY1ÞÞ¼fx1g
ER

U 2ðR2ðY1ÞÞ¼fx1;x2;x3;x4;x5;x6g
R2ðER

V 2ðY1ÞÞ¼fx2;x4g
ER

U 2ðR2ðY1ÞÞ¼fx1;x2;x3;x4;x5;x6g
R2ðER

V 2ðY1ÞÞ¼fx1;x2;x4g
R2ðR2ðY1ÞÞ¼fy1;y4g
R2ðR2ðY1ÞÞ¼fy1;y2;y3;y4g
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Then, we can conclude that

R2ðER
V 2ðY1ÞÞ ¼ ;# ER

U 2ðR2ðY1ÞÞ ¼ ;
ER

U 2ðR2ðY1ÞÞ ¼ fx1; x2; x3; x4; x5; x6g � R2ðER
V 2ðY1ÞÞ ¼ fx1; x2; x4g

ER
U 2ðR2ðY1ÞÞ ¼ ;# R2ðER

V 2ðY1ÞÞ ¼ fx2; x4g

R2ðER
V 2ðY1ÞÞ ¼ fx1g# ER

U 2ðR2ðY1ÞÞ ¼ fx1; x2; x3; x4; x5; x6g

Second, let n = 1.
Analogously, we have that

R1ðY1Þ ¼ fx2; x4g; R1ðY2Þ ¼ fx2; x4g; ER
V 1ðYÞ ¼ ;

R1ðY1Þ ¼ fx1; x2; x4g; R1ðY2Þ ¼ ;; ER
V 1ðY1Þ ¼ fy1; y2; y3; y4g

From the above definitions, we have that

R1ðY2Þ ¼ fx2; x4g 	 R2ðY2Þ ¼ ;
R1ðY2Þ ¼ ; � R2ðY2Þ ¼ fx1; x2; x4g

R1ðER
V 1ðY1ÞÞ ¼ ;; ER

U 1ðR1ðY1ÞÞ ¼ fx2; x4g

ER
U 1ðR1ðY1ÞÞ ¼ fx1; x2; x4gR1ðER

V 1ðY1ÞÞ ¼ ;
ER

U 1ðR1ðY1ÞÞ ¼ fx1; x2; x3; x4g

R1ðER
V 1ðY1ÞÞ ¼ fx1; x2; x3; x4g

ER
U 1ðR1ðY1ÞÞ ¼ fx1; x2; x3; x4g

R1ðER
V 1ðY1ÞÞ ¼ fx1; x2; x4g

R1ðR1ðY1ÞÞ ¼ fy1; y2; y3; y4g
R1ðR1ðY1ÞÞ ¼ fy2; y3g

Then, we can conclude that

R1ðER
V 1ðY1ÞÞ ¼ ;# ER

U 1ðR1ðY1ÞÞ ¼ fx2; x4g
ER

U 1ðR1ðY1ÞÞ ¼ fx1; x2; x3; x4g � R1ðER
V 1ðY1ÞÞ ¼ fx1; x2; x4g

ER
U 1ðR1ðY1ÞÞ ¼ fx1; x2; x4g# R1ðER

V 1ðY1ÞÞ ¼ fx1; x2; x3; x4g

R1ðER
V 1ðY1ÞÞ ¼ ;# ER

U 1ðR1ðY1ÞÞ ¼ fx1; x2; x3; x4g

Similarly, we can obtain that

ER
U 2ðR2ðY1ÞÞ ¼ ;# ER

U 1ðR1ðY1ÞÞ ¼ fx1; x2; x4g

R2ðR2ðY1ÞÞ ¼ fy1; y4g# R1ðR1ðY1ÞÞ ¼ fy1; y2; y3; y4g

ER
U 2ðR2ðY1ÞÞ ¼ fx1; x2; x3; x4; x5; x6g � ER

U 1ðR1ðY1ÞÞ ¼ fx1; x2; x3; x4g

R2ðR2ðY1ÞÞ ¼ fy1; y2; y3; y4g � R1ðR1ðY1ÞÞ ¼ fy2; y3g

R2ðER
V 2ðY1ÞÞ ¼ fx1g � R1ðER

V 1ðY1ÞÞ ¼ ;

R2ðER
V 2ðY1ÞÞ ¼ fx2; x4g# R1ðER

V 1ðY1ÞÞ ¼ fx1; x2; x3; x4g
5. The application of GRSTU

In this section, we shall discuss the application of the graded
rough set model based on two universes given in Section 3. In fact,
we can also find some existing applications of the rough set model
based on two universes from the existing references [31].

Assume that we are considering a certain group of patients in a
medical diagnosis system. A patient may show several symptoms
at the same time and a disease may be accompanied by several
symptoms, which will establish a relation between a patient and
a disease. In the current situation, how a doctor could decide what
kind of treatments that a patient should be taken according to the
existing symptoms? This question can be answered by applying
the graded rough set model based on two universes to the medical
diagnosis system.
Let U denote the set of patients and V the set of symptoms. Then
for any patient u 2 U, there exist some symptoms in V correspond
to u. For any Y # V, Y is a certain disease which contains some ba-
sic symptoms in V. Then, given a patient, if he or she belongs to set
POS(Y), then he or she is certainly suffered from the disease de-
noted by Y. Therefore, all of the patients belonging to POS(Y) are
suitable for the remedy to Y immediately. On the other hand, if
he or she belongs to set BND(Y), then his or her disease is con-
nected with Y, but the connection is not certain. Therefore, the doc-
tor should further analyze the pathogeny for the current patient
and adopt an appropriate treatment. Furthermore, if he or she be-
longs to set NEG(Y), then his or her disease has no connection with
Y, and the doctor should adopt other strategies.

We will show the above discussion by the following example.

Example 4. Let U = {x1,x2,x3} be the set of patients,
V = {y1,y2,y3,y4} the set of symptoms, and n 2 N. Assume that
R # U � V is a binary relation between U and V, which can be
described by the following relation matrix MR = (aij) (where if
patient i has symptom j then aij = 1 else aij = 0):
MR ¼
1 0 0 1
1 1 0 0
0 1 1 1

2
64

3
75:

From matrix MR, we can obtain that

rðx1Þ ¼ fy1; y4g; rðx2Þ ¼ fy1; y2g; rðx3Þ ¼ fy2; y3; y4g:

Let Y = {y2,y4} # V denote a certain disease, that is, Y shows two
symptoms in the clinic. Meanwhile, we suppose that n = 1.

From Definitions 3 and 4, we can calculate the lower approx-
imation, the upper approximation, the positive region, the negative
region and the boundary region of Y as follows.
R1ðYÞ ¼ fx1; x2; x3g;
R1ðYÞ ¼ fx3g;
POS1ðYÞ ¼ R1ðYÞ \ R1ðYÞ ¼ fx3g;
NEG1ðYÞ ¼� ðR1ðYÞ [ R1ðYÞÞ ¼ ;;
BND1ðYÞ ¼� ðpos1ðYÞ [ neg1ðYÞÞ ¼ fx1; x2g

Then, we can obtain the following conclusions:

(1) It is certain that patient x3 has disease Y and the doctor
should take the corresponding treatment immediately.

(2) The doctor cannot decide whether patients x1 and x2 have
disease Y or not according to the symptoms at present. The
patients should be examined further.

(3) None of the three patients is healthy after diagnosis.

6. Conclusions

Rough set theory based on two universes is a generalization of
Pawlak’s rough set theory. In this paper, the graded rough set mod-
el based on two distinct but related universes was proposed. We
gave some interesting properties and conclusions about the graded
rough set model on two universes, which can help us understand
the structure of GRSTU. Moreover, an efficient method for calculat-
ing the lower and upper approximations of a given set in GRSTU
was proposed and several examples were also given. The outcomes
of these examples demonstrated that GRSTU is more suitable to the
decision of clinical diagnosis than the traditional rough set model.

In the future work, we shall further discuss other aspects of
GRSTU, for instance, the issue of attribute reduction or rules
extraction in GRSTU.
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