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Automatic image annotation is concerned with the task of assigning one or more semantic
concepts to a given image. It is a typical multi-label classification problem. This paper
presents a novel multi-label classification framework MLNRS based on neighborhood rough
sets for automatic image annotation which considers the uncertainty of the mapping from
visual feature space to semantic concepts space. Given a new instances, its neighbors
in the training set are firstly identified. After that, based on the concept of upper and
lower approximations of neighborhood rough sets, all possible labels of the given instance
are found. Then, based on the statistical information gained from the label sets of the
neighbors, maximum a posteriori (MAP) principle is utilized to determine the label set for
the given instance. Experiments completed for three different image datasets show that
MLNRS achieves more promising performance in comparison with to some well-known
multi-label learning algorithms.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, we are faced with a plethora of images. As the images databases grow in size and number, a large body
of research has been carried out to explore effective and efficient image retrieval (IR) approaches. In general, IR research
pursuits can be categorized into three main areas [1]. In the first area, we are concerned with traditional text based image
retrieval (TBIR) where the images are annotated manually by human. However, manual image annotation is time-consuming
and expensive. Then the research focuses on the content-based image retrieval (CBIR) [2], where images are retrieved
based on content features such as color, shape and texture. However, recent research has shown that there is a significant
semantic gap between low-level content features and high-level semantic concepts. To bridge the semantic gap, the IR
research has been shifted to semantic-level approaches [3,4], where the images are annotated with semantic labels based
on the automatic image annotation (AIA) technology and then can be retrieved by keywords similar to TBIR.

With much effort devoted to semantic-level image retrieval, automatic image annotation has started drawing more atten-
tion [5–10]. Previous main approaches towards automatic image annotation modeled the learning problem as machine trans-
lation [5,6], correlations learning tasks [7,8]. In addition, some other researches regarded the automatic image annotation as
multi-label classification problem [9,10] for the reason that an image could be related to more than one semantic concept
simultaneously. However, the previously mentioned methods suffer from some limitations. First, most of these approaches
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Fig. 1. Examples of multi-label images.

are based on a strong assumption that the visual similarity guarantees semantic similarity which is in conflict with the se-
mantic gap. In fact, two images with the similar visual contents may correspond to quite different semantic concepts. Taking
Fig. 1 for example, an autumn scene and a sunset scene may share some warm, bright colors. Therefore there is confusion
between the two scenes in the feature space when the color features are used. Second, they ignore the impact from the lim-
ited quantity of the training instances which leads to inexact distribution of each class during the process of classification.
For these reasons, there exists some uncertainty in the mapping of visual feature space to semantic concepts space.

Rough sets form a vehicle to deal with the ambiguous, vague, and uncertain knowledge. In order to reduce the bias
between visual similarity and semantic similarity, we propose a multi-label classification framework based on the neigh-
borhood rough sets, named MLNRS. By introducing the concept of upper and lower approximations of neighborhood rough
set model, the framework can find all the possibly related labels of the given instance and then confirm the final labels
according to the information of the neighborhood of the given instance. Empirical results using three image annotation data
sets suggest that the proposed approach can improve the performance and reduce the training time compared with other
standard multi-label algorithms.

The rest of this paper is organized as follow. Sections 2 and 3 provide background material on multi-label classification
and neighborhood rough sets respectively. Section 4 introduces the proposed approach. Section 5 contains experimental
results obtained by applying our algorithms and other multi-label learning algorithms to multi-labeled scene classification.
Finally Section 6 concludes this work and points to future research direction.

2. Multi-label classification

Multi-label classification [11] is a supervised learning problem that an instance may be associated with multiple labels.
This is different from the traditional single-label classification tasks [12]. In single-label classification tasks, an instance is
only associated with one label and the classes are mutually exclusive by definition. Let Γ be the domain of the instances
to be classified, Y be a finite set of labels and H be the set of the classifiers for X → Y . The goal of the single-label
classification task is to find the classifier h ∈ H for each given instance x ∈ X by maximizing the probability of h(x) = y, i.e.
y = arg maxi P (yi |x). While in multi-label classification tasks, the base classes are non-mutually exclusive and may overlap
in the selected feature space. As before, let X be the domain of the examples to be classified and L be the finite set of
labels. Now let Y be a set of binary vectors, each of length |L|. Each vector y ∈ Y indicates membership in the base classes
in L(1 = member,0 = non-member). H is the set of classifiers for X → Y . The goal of the multi-label classification task is
to output a classifier h ∈ H which optimizes the specific evaluation metric (e.g., Hamming loss) for h(x) = y.

2.1. Learning algorithms

Multi-label classification algorithms can be categorized into 2 different groups [11]: (i) problem transformation methods
and (ii) algorithms adaptation methods. The first group includes methods that are algorithm independent. They transform
the multi-label problem into one or more single-label problems. The representative transformation method include binary
relevance method (BR) [9,13,14], binary pairwise classification approach (PW) [15] and label combination or label power-set
method (LC) [16,17]. BR transforms a multi-label problem into multiple binary problems. Each binary model is trained
to predict one label; Classifier Chain (CC) [18] is a BR-based methods which can overcome the label-independent defect
while maintaining the acceptable computational complexity of BR. PW can also be used to address multi-label problem,
where a binary model is trained for each pair of labels; LC transforms a multi-label problem into a single-label problem by
treating all label sets as atomic labels. The second group includes methods that extend specific learning algorithms in order
to handle multi-label data directly. Well-known approaches include Adaboost [19], decision trees [20], and lazy methods
[21–24]. Adaboost.MH and Adaboost.MR [19] are two extensions of Adaboost for multi-label classification. Comité et al. [20]
extended the alternating decision tree learning algorithm for multi-label classification. ML-kNN [21] is an adaptation of the
kNN lazy learning algorithm for multi-label data. In ML-kNN, in order to assign a set of label to an instance, a decision is
made separately for each label by taking into account the number of neighbors containing the label to be assigned. ML-kNN
fails to take into account the dependency between labels, while DMLkNN [22] considers the dependencies between classes.
In order to decide whether a particular label should be included among the unseen instance’s labels, DMLkNN takes into
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account the numbers of different labels in the neighborhood, instead of considering only the number of neighbors having
the label in question. Younes et al. [23] and Denoeux et al. [24] extended the D-S theory to manipulate multi-label data and
proposed a new method EML–kNN for multi-label classification based on multi-label evidence-theoretic k-NN rule where the
uncertain and imprecise is represented by D-S theory. MLNRS proposed in this paper is also a lazy method based algorithm,
where the relation among labels is considered and the uncertain is represented by Rough sets.

2.2. Related studies

Nowadays, the research of the automatic image annotation (AIA) as well as text or music categories [13,15,25] that uses
multi-label classification methods is receiving increased attention. Boutell et al. [9] present a framework which uses a new
training strategy Cross-training to build classifiers and three classification criteria in testing. In addition, Boutell et al. [9]
propose a generic evaluation metric that can be tailored to applications needing different error forgiveness. Nasiereling
et al. [10] propose a framework that comprises an initial clustering phase that breaks the original training set into several
disjoint clusters of data. It then trains a multi-label classifier from the data of each cluster. Given a new test instance, the
framework first finds the nearest cluster and then applies the corresponding model. The empirical results show that the
proposed approach can improve the performance and reduce the training time in the case of large number of label. More
recently, a hidden-concept driven image annotation and label ranking algorithm (HDIALR) [26] is explored which conducts
label propagation based on the similarity over a visually semantically consistent hidden-concepts space. Particularly, to our
interests, M. Wang et al. [27], Tang et al. [28] and C. Wang et al. [29] handled the semantic gap problem in multi-label
image annotation from different perspective. M. Wang et al. explore an image annotation approach based on weighted
kNN multi-label classification [27], which focus on establishing the correlations between semantic concepts and low-level
features. They develop an iterative solution to achieve ‘optimal margins’ in both of the semantic feature space and the visual
feature space in order to reduce the semantic gap problem. An active learning method is explored to tackle the semantic
gap [28]. The user interaction is regarded as an effective way to handle the semantic gap problem in image annotation and
the size of the semantic gap of each concept is looked as an important factor that affects the performance of user feedback.
It combines the semantic gap measures of concepts with the information minimization criterion to account for the effect
of semantic gap in the sample selection strategy. C. Wang et al. [29] present a multi-label sparse coding framework for
feature extraction and classification within the context of automatic image annotation. It answers the question that how
to effectively measure the semantic similarity between two image ages with multiple objects/semantics. It claims that the
semantic similarity of two images with overlapped labels should be measured in a reconstruction-based way rather than in
a one-to-one way.

2.3. Evaluation measures

Performance evaluation of multi-label classification algorithm is different from that of classic single-label classification
algorithm. We calculate a variety of multi-label evaluation metrics that are available in the Mulan library [30] including
Hamming loss, coverage, one-error, ranking loss, average precision.

Before introducing the evaluation metrics, we first present the formal notation that we use throughout. Let X = Rd

denote the domain of input instances. The set L = {l1, l2, . . . , lm} is a finite domain of possible labels. An instance is repre-
sented as a d-dimensions vector x = [x1, x2, . . . , xd] (x ∈ X). Each instance x ∈ X is associated with a subset of L. The subset
is denoted by an m-dimension vector y = [y1, y2, . . . , ym], where y j = 1 only if instance x has label l j and 0 otherwise.

Let T = {(xi, yi) | i = 1,2, . . . ,n} be a training data set of n labeled instances and D = {(xi, yi) | i = 1,2, . . . ,q} be a
testing set composed of q labeled instances. We use subscripts here to avoid ambiguity with the label dimension. Therefore
y j

i corresponds to the binary relevance of the jth label belonging to the ith instance.

(1) Hamming loss: evaluates how many times an instance–label pair is misclassified between the predicted set of labels y′
and the ground-truth set of labels y, i.e. a label not belonging to the instance is predicted or a label belonging to the
instance is not predicted. The smaller the value of Hamming loss, the better the performance.

hloss = 1 − 1

mq

q∑
i=1

m∑
j=1

1
y′ j

i =y j
i

(2) Coverage: evaluates how far we need, on average, to go down the ranked list of labels in order to cover all the relevant
labels of the example. The smaller the value of coverage, the better the performance. ri(l) is a ranking function, which
maps the predicted outputs for any l ∈ yi .

cov = 1

q

q∑
i=1

max
l∈yi

ri(l) − 1

(3) One-error: evaluates how many times the top-ranked label is not in the set of relevant labels of the instance. The smaller
the value of one-error, the better the performance.
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one-error = 1

q

q∑
i=1

δ
(
arg max

l∈L
ri(l)

)

where

δ(λ) =
{

1 if l /∈ L
0 otherwise

(4) Ranking loss: expresses the number of times that irrelevant labels are ranked higher than relevant labels:

rloss = 1

q

q∑
i=1

1

|yi||yi|
∣∣{la, lb: ri(la) > ri(lb), (la, lb) ∈ yi × yi

}∣∣
where yi denotes the complementary set of yi with respect to L.

(5) Average precision: evaluates the average fraction of labels ranked above a particular label λ ∈ yi which actually are
in yi . The bigger the value of avgprec, the better the performance.

avgprec = 1

q

q∑
i=1

1

|yi |
∑
λ∈yi

|{λ′ ∈ yi: ri(λ
′) � ri(λ)}|

ri(λ)
(1)

3. Neighborhood rough sets

Rough set theory [31,32], introduced by Pawlak, has been developed as a tool to conceptualize, organize and analyze
various types of data, in particular, to deal with inexact, uncertain or vague knowledge in applications [33,34] related to
Artificial Intelligence.

Pawlak’s rough set model is built on equivalence relations and equivalence classes. Equivalence relations are directly
induced from nominal attributes based on the attribute values. However, some attributes in data are numeric in real-world
applications. In order to extend the rough set model to support numeric attributes, Yao [35] and Hu et al. [36–38] proposed
the neighborhood rough set model based on the neighborhood relations. Here we use the framework proposed by Hu et al.,
where nominal features generate equivalence information granules and numeric features produce neighborhood information
granules, and then they are both used to approximate the decision class in the rough sets. In the following, we present
several important concepts of neighborhood rough sets which are the basis of this paper.

Formally, let universe IS = 〈U , A〉 be the samples for classification, where U is the nonempty set of samples
{x1, x2, . . . , xn} and A denotes the nonempty set of attributes. To be more specific, A = C ∪ D , where C is a set of con-
dition attributes and D is a decision attribute.

Definition 1. (See [36].) Given arbitrary xi ∈ U , B ⊆ C and metric function, the neighborhood δB(xi) of xi in the subspace B
is defined as

δB(xi) = {
x j

∣∣ Γ (xi, x j)� τ , x j ∈ U
}
, where τ � 0

δB(xi) is called a neighborhood information granule induced by attribute B and object xi . There are some ways to define
the metric function. One can define it with the fixed radius or define it with fixed k instances in the neighborhood, like
k-nearest-neighbor. Here we select the second approach. Obviously, δB(xi) is a subset of instances close to xi and the family
of neighborhood information granules {δB(x) | x ∈ U } forms a set of elemental concepts in the universe.

Definition 2. (See [36].) Given a neighborhood decision table NDT = 〈U , C ∪ D〉, X is the subsets of instances with decisions
attribute value ω j ( j = 1,2, . . . , c), δB(xi) (xi ∈ U , i = 1,2, . . . ,n) is the neighborhood information granules including xi and
generated by attributes B ⊆ C . Then the lower and upper approximations of the decision class X with respect to attributes B
are respectively defined as

R B X = {
xi

∣∣ δB(xi) ⊆ X, xi ∈ U
}

R B X = {
xi

∣∣ δB(xi) ∩ X �= ∅, xi ∈ U
}

For each decision class X , the neighborhood rough set model divides the universe into three subsets: (1) the positive region
of decision class X , (2) the boundary region of decision class X and (3) the negative region of decision class X . The positive
region, namely the lower approximation of the decision class X , is denoted by POSB(X) = R B X . The positive region is a
subset of instances whose neighborhoods consistently belong to decision class X . The boundary region of decision class X
with respect to attributes B is defined as BNB(X) = R B X − R B X . The boundary region is a subset of instances whose
neighborhoods come from more than one decision class. Therefore, they are inconsistent and the instance in the boundary
region is easy to be misclassified. The size of the boundary region reflects the degree of roughness of the decision. Usually
we hope that the boundary region of the decision is as little as possible for decreasing uncertainty in decision. In addition,
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Fig. 2. An example of binary classification using neighborhood decision function.

Fig. 3. Illustration of multi-label classification with two classes.

the negative region is denoted as NEGB(X) = U − R B X . The negative region of decision class X is a subset of instances
whose neighborhoods have no relation with decision class X .

Definition 3. (See [37].) Given NDT = 〈U , C ∪ D〉, xi ∈ U , δ(xi) is the neighborhood of xi and P (ω j |δ(xi)) ( j = 1,2, . . . , c)
is the probability of instance xi belonging to class ω j . The neighborhood decision function of xi is defined as ND(xi) = ωl ,
if P (ωl|δ(xi)) = max j P (ω j |δ(xi)), where P (ω j |δ(xi)) = n j/k, k is the number of instances in the neighborhood and n j is the
number of instances with decision ω j in δ(xi).

ND(xi) is the class assigned to xi according to the classification probability in the neighborhood of xi . Obviously,
ND(xi) = ω if xi is located in the positive region of class ω, or ND(xi) �= ω if xi is located in the negative region of class ω, or
if xi is located in the boundary region of class ω, we should compute the probability for giving a class label to xi according
to δ(xi) and ND(xi) = ω if majority of the instances in δ(xi) belong to class ω.

Fig. 2 shows an example of binary classification using neighborhood decision function in a 2-D numerical space, where
class X1 is marked with ‘∗’ and class X2 is marked with ‘+’. We associate a neighborhood to every object in the sample
space such as a, b, c and the number of instances in the neighborhood is fixed at 5. It is easy to find that a and c
are respectively located in the positive regions of class X1(δ(a) ⊆ X1) and class X2(δ(c) ⊆ X2), while b is located in the
boundary region (δ(b) ∩ X1 �= ∅ and δ(b) ∩ X2 �= ∅) and the majority of instances in δ(b) belong to X2. According to the
above definitions, ND(a) = X1, ND(c) = X2 and ND(b) = X2.

4. Multi-label classification based on neighborhood rough sets

Contrary to single-label classification, the base classes in multi-label classification are non-mutually exclusive and may
overlap by definition and the objects could be associated with a set of labels simultaneously. Generally speaking, the object
with multiple labels is located in the overlapped region. Fig. 3 illustrates a binary multi-label classification task. As before,
two classes X1 and X2 are denoted by ‘∗’ and ‘+’ respectively. Examples simultaneously belonging to ‘∗’ and ‘+’ classes
are denoted by ‘x’. It can be seen from Fig. 3 that the instances in the overlapped region have one or two labels while
the instances in non-overlapped region are only related with one label. Because some instances belong to multiple classes,
the multi-label classification problem can be regarded as an inconsistent decision problem that two objects which have the
same condition values may not have the same decision value. The neighborhood rough set theory introduced above aims at
the single-label consistent decision problem. In order to predict the labels of instances in inconsistent decision problem, we
extend the neighborhood decision function for multi-label classification as follows.
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Definition 4. Given a multi-label neighborhood decision table NDT = 〈U , C ∪ D〉, xi ∈ U , δ(xi) is the neighborhood of xi .
For each label l j ( j = 1,2, . . . ,m), P (l1j |Eλ

l j
) is the probability of instance xi having label l j and P (l0j |Eλ

l j
) is probability of

instance xi having no label l j . P (l1j |Eλ
l j
) is defined as

P
(
l1j

∣∣Eλ
l j

) =
⎧⎨
⎩

1 if |δl j (xi)| = k
0 if |δl j (xi)| = 0
ξ otherwise

|δl j (xi)| denotes the number of instances with label l j in δl j (xi) and P (l0j |Eλ
l j
) = 1 − P (l1j |Eλ

l j
). The multi-label neighborhood

decision of xi for label l j is defined as NDl j (xi) = l1j if P (l1j |Eλ
l j
) = arg maxb∈{0,1} P (lbj |Eλ

l j
). k is the number of instances in

δ(xi). Eλ
l j

means the event that the instances with label l j in δ(xi) account for λ proportion of all kinds of instances in δ(xi)

and λ = |δl j (xi)|/∑
η=1,...,m(|δlη (xi)|). How to calculate ξ when 0 < |δl j (xi)| < k will be described later.

Using the Bayesian rule, the probability for determining whether the label l j belongs to instance xi can be written as
follows:

y j
i = arg max

b∈{0,1}
P
(
lbj

∣∣Eλ
l j

) = arg max
b∈{0,1}

P (lbj )P (Eλ
l j
|lbj )

P (Eλ
l j
)

P (Eλ
l j
) is the same for l1j and l0j , so the y j

i is actually determined by arg maxb∈{0,1} P (lbj )P (Eλ
l j
|lbj ). The priori probability P (lbj )

and conditional probability P (Eλ
l j
|lbj ) can be directly estimated from the training instances based on frequency counting.

In Definition 4, the multi-label classification task is transferred into m binary classification tasks and the neighborhood
decision function is used in each binary classification task respectively. Meanwhile, the correlation and non-exclusion among
the labels are considered during the process of classification. Obviously, for each label l j , NDl j (xi) = l1j if xi is located in the

positive region of class l j ; NDl j (xi) = l0j if xi is located in the negative region of class l j ; Moreover, if xi is located in the
boundary region of class l j , we should compute the probability of label l j for xi according to the statistics information from
samples.

Algorithm 1 gives the complete description of MLNRS according to Definition 4:

Algorithm 1 Multi-label classification based on neighborhood rough sets (MLNRS).
Input: T , k, t, s, φ

Output: y

// Computing the prior probability P (l1j ).
1: for each l j ∈ L

2: P (l1j ) = (
∑n

i=1 y j
i + s)/(n + s × 2)

3: P (l0j ) = 1 − P (l1j )
//Counting the number of training instances with specific λ.
4: for each training instance xi ∈ T
5: compute the neighborhood δ(xi)

6: for l j = l1, . . . , lm
7: count proportion λ for l j

8: if (y j
i == 1) wλ

j = wλ
j + 1

9: else w ′ λ
j = w ′ λ

j + 1

//Estimating the conditional probability P (Eλ
l |lbj ) for each label.

10: for l j = l1, . . . , lm
11: count the number of the different λ and save it in the α
12: for each λ

13: P (Eλ
l j
/l1j ) = (wλ

j + s)/(
∑

wλ
j + s × m)

14: P (Eλ
l j
/l0j ) = (w ′ λ

j + s)/(
∑

w ′ λ
j + s × m)

15: get two fitting curves from P (Eλ
l j
/l1j ) and P (Eλ

l j
/l0j ) with degree φ

// Computing the posterior probability of the testing instance t
16: compute the neighborhood δ(t)
17: for l j = l1, . . . , lm
18: count the number β of instances with label l j in δ(t)
19: if (β = k) NDl j (t) = l1j
20: else if (β = 0) NDl j (t) = l0j
21: else count proportion λ for l j

22: if P (l1j |Eλ
l j
) = arg maxb∈{0,1} P (lbj |Eλ

l j
) NDl j (t) = l1j else NDl j (t) = l0j

23: if NDl j (t) = l1j y j
t = 1 else y j

t = 0
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Fig. 4. Illustration of multi-label classification using MLNRS.

Here, we still use the formal notation introduced in Section 2.3. The input arguments include T , k, t , s and φ. T is the
training set and t denotes the testing instance. k denotes the number of the nearest neighbors of the given instance. φ

means the degree of the polynomial fitting function. Furthermore, in order to avoid the zero times in frequency counts, a
smoothing parameter s is used to control the strength of uniform prior (s is set to be 1 which yields the Laplace smoothing).
y = [y1, y2, . . . , ym] is the predicted result of testing instance and y j is the value on label l j .

As shown in Algorithm 1, based on the training set, steps from 1 to 3 estimate the prior probabilities P (l1j ) and

P (l0j ). Steps from 4 to 9 count the number of training instances with specific λ, where vector wλ
j ( j ∈ [1,m], λ ∈ [0,1])

saves the number of instances with label l j whose neighbors with label l j exactly account for proportion λ. Correspond-
ing, w ′ λ

j saves the number of instances without label l j whose neighbors with label l j account for proportion λ. Steps

from 10 to 15 estimate the conditional probabilities P (Eλ
l |lbj ) for each label l j at specific λ. Steps 13 and 14 only get

some data points about P (Eλ
l j
/l1j ) and P (Eλ

l j
/l0j ) with different λ. In order to infer probability values where no data

are available, two probability curves are constructed to fit the known data points. Here, Polynomial Fitting is used. Fi-
nally, using the Bayesian rule, steps from 16 to 23 compute the outputs for a given instance based on the estimated
probabilities.

In order to explain MLNRS clearly, we use an example (Fig. 4) to illustrate how to classify a multi-label instance using
MLNRS. In Fig. 4, there are two classes X1 and X2 respectively marked by ‘∗’ and ‘+’ in a 2-D space. Instances belonging
to both X1 and X2 simultaneously are denoted by ‘X’. For convenience, we assume that the distribution of two classes is
circular. Firstly, we associate a neighborhood to each instance, such as a, b, c, d and the number of instances in neighborhood
is fixed at five. Then the labels are predicted by MLNRS. All instances in δ(a) only have one label X1, so a is only located in
the positive region of class X1 and it is non-overlapped. The label X1 should be assigned to a. Instance d is similar and d
should be assigned label X2. As for instances b and c which are in the boundary region for their impure neighborhood.
Among the five instances in δ(b), all of them have label X1(|δX1(b)| = 5). So b is located in the positive region of X1 and
NDX1 (t) = X1

1 , while in δ(b), there are only one instance belonging to class X2(|δX2 (b)| = 1 and λ = 1/6). So b is in the
boundary region of X2 and the probability for label X2 will be estimated according to λ. The analysis of c is similar to that
of b.

5. Experiments

In this section, we will empirically evaluate the proposed methods by comparing MLNRS with other multi-label al-
gorithms. In this paper, we will compare the MLNRS with the binary relevance method (BR) [11], the classifier chains
algorithm (CC) [18], the random k label-set method for multi-label classification RAkEL [16] and back-propagation multi-
label learning (BPMLL) [39] learner, which are all well-known modern high-performing multi-label learning algorithms.
Furthermore, we will show the influence of parameters k and φ used in MLNRS.

5.1. Datasets

We conducted comparative experiments using these algorithms on three data sets containing multi-label multimedia
objects. The first one, scene [9] is a benchmark for image classification containing 2407 natural scene images. The second
one, Corel5k [40], is based on 5000 Corel images, which is used for the ECCV 2002 paper. The last one, Corel16k001 [41],
is produced from the first (001) subset of the data accompanying [41] and it contains 13 766 images.

Table 1 shows multi-label datasets and their associated properties including the number of instances, the number of
attributes and the number of labels for each data set. Moreover, the label cardinality and density of each data set are also
displayed. Label cardinality is a standard measure of the average number of labels of the instances in the given dataset.
Label density is the average number of labels of the instances in the given dataset divided by the number of labels.
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Table 1
Multi-label datasets used for experiments and associated properties.

Name Instances Attribute Labels Cardinality Density Train Test

Scene 2407 294 6 1.074 0.179 1211 1196
Corel5k 5000 499 374 3.522 0.009 4500 500
Corel16k001 13 766 500 153 2.867 ± 0.033 0.018 ± 0.001 5188 1744

Fig. 5. Average precision varies with k and φ over Scene.

5.2. Experimental setting

The implementation of the compared algorithms comes from the open source Mulan library [30], which is based on the
open source Weka library [42]. BR, RAkEL and CC use the C4.5 decision tree learning algorithm for training the underlying
single-label classifier. As recommended in [39], BPMLL is run with 0.05 learning rate, 100 epochs and the number of hidden
units equal to 20% of the input units. MLNRS is implemented by Matlab and the polynomial function is used as a fitting
function. Here the neighborhood is defined by the number of neighbors k rather than radius. We evaluate all multi-label
learning algorithms based on ten-fold cross-validation on the datasets mentioned above and use the average results to
display and test for significance. The exception is that for some parameter analysis, the cross-validation is too intensive.
So the analysis of influence of parameters is conducted on the train/test split datasets which will not affect the analysis.
These splits are shown in Table 1 where train is the training set and test is the testing set. They are all provided by the
Mulan library.

All experiments were run on a workstation equipped with a 3.0 GHz processor and 6.0 G memory.

5.3. Results and discussion

Firstly, we empirically study the impact of parameters k and φ based on split datasets. The number of nearest neighbors k
varies from 2 to 40 with step 2 and the degree of the polynomial fitting function φ varies from 2 to 10 with step 1.

It can be seen from Figs. 5–19 that the values of the evaluation metrics change along with the change of parame-
ters k and φ. However, when the parameters k and φ change to a certain range, such as k > 5, 9 > φ > 2, the per-
formance is relatively stable. This indicates that we can assign the parameters with values in wide arranges. Then we
can select relatively smaller values for parameters k and φ to reduce the calculation but maintain acceptable perfor-
mance.

Furthermore, we compare MLNRS with various state-of-art multi-label algorithms including BR, RAkEL, BPMLL and CC
based on ten-fold cross-validation. Results of ten-fold cross-validation in terms of Hamming loss, average precision, coverage,
one-error and ranking loss are shown in Tables 2–4. The value following “±” gives the standard deviation and the best result
on each metric is shown in bold face. The number of the nearest neighbors is set to k = 10. The three degree polynomial
function is used to construct a fitting curve. The higher degree of the polynomial function maybe result in more exact
match, but we actually prefer the effect of averaging out questionable data points in a sample, rather than distorting the
curve to fit them exactly. The three datasets are quite different in the dataset properties. We will study the results of the
MLNRS algorithm separately for each data set.
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Fig. 6. Average precision varies with k and φ over Corel5k.

Fig. 7. Average precision varies with k and φ over Corel16k001.

Fig. 8. One error varies with k and φ over Scene.
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Fig. 9. One error varies with k and φ over Corel5k.

Fig. 10. One error varies with k and φ over Corel16k001.

Fig. 11. Ranking loss varies with k and φ over Scene.
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Fig. 12. Ranking loss varies with k and φ over Corel5k.

Fig. 13. Ranking Loss varies with k and φ over Corel16k001.

Fig. 14. Coverage varies with k and φ over Scene.
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Fig. 15. Coverage varies with k and φ over Corel5kx.

Fig. 16. Coverage varies with k and φ over Corel16k001.

Fig. 17. Hamming loss varies with k and φ over Scene.
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Fig. 18. Hamming loss varies with k and φ over Corel5k.

Fig. 19. Hamming loss varies with k and φ over Corel16k001.

Table 2
MLNRS vs. other multi-label algorithms-predictive performance over the dataset Scene.

Performance BR RAkEL BPMLL CC MLNRS

hloss 0.1368 ± 0.0078 0.1012 ± 0.0075 0.2667 ± 0.0508 0.1444 ± 0.0164 0.0905 ± 0.0053
avgprec 0.7109 ± 0.0283 0.8379 ± 0.0156 0.6852 ± 0.0235 0.7176 ± 0.0354 0.8676 ± 0.0144
cov 1.3345 ± 0.1501 0.5862 ± 0.0593 0.9405 ± 0.0855 1.3504 ± 0.2002 0.4926 ± 0.0548
one-error 0.4138 ± 0.0402 0.2663 ± 0.0258 0.5450 ± 0.0381 0.3914 ± 0.0453 0.2293 ± 0.0246
rloss 0.2465 ± 0.0296 0.0999 ± 0.0121 0.1714 ± 0.0165 0.3914 ± 0.0453 0.0809 ± 0.0108

Table 3
MLNRS vs. other multi-label algorithms-predictive performance over the dataset Corel5k.

Performance BR RAkEL BPMLL CC MLNRS

hloss 0.0098 ± 0.0001 0.0097 ± 0.0001 0.5547 ± 0.0213 0.0099 ± 0.0001 0.0107 ± 0.0001
avgprec 0.2494 ± 0.0093 0.1075 ± 0.0080 0.0563 ± 0.0097 0.2364 ± 0.0102 0.2456 ± 0.0096
cov 126.9872 ± 3.945 336.0374 ± 2.6687 169.0732 ± 4.6338 165.3946 ± 5.8193 131.5248 ± 5.5082
one-error 0.6964 ± 0.0174 0.7734 ± 0.0201 0.9974 ± 0.0025 0.7076 ± 0.0172 0.7442 ± 0.0154
rloss 0.1472 ± 0.0043 0.6565 ± 0.0116 0.2273 ± 0.0096 0.1869 ± 0.0083 0.1530 ± 0.0052

Table 2 shows that MLNRS performs fairly well over Scene where no algorithm outperforms MLNRS on all the evalu-
ation criteria. Table 3 shows the performance comparison over Corel5k. With the enormous increasing of the amount of
instances and labels, MLNRS still can performs well compared to other multi-label algorithms. It shows that MLNRS has
some scalability. Table 4 shows the performance comparison over Corel16k001. We can see that the MLNRS performs well
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Table 4
MLNRS vs. other multi-label algorithms-predictive performance over the dataset Corel16k001.

Performance BR RAkEL BPMLL CC MLNRS

hloss 0.0197 ± 0.0001 0.0196 ± 0.0001 0.6730 ± 0.1085 0.0206 ± 0.0003 0.0187 ± 0.0002
avgprec 0.2892 ± 0.0045 0.1656 ± 0.0036 0.0444 ± 0.0045 0.2677 ± 0.0068 0.2788 ± 0.0069
cov 56.1436 ± 1.0587 100.6580 ± 0.8441 92.9266 ± 2.4173 64.1887 ± 0.8631 51.2341 ± 1.4363
one-error 0.7035 ± 0.0098 0.7582 ± 0.0101 0.9935 ± 0.0031 0.7473 ± 0.0182 0.7269 ± 0.0138
rloss 0.1883 ± 0.0042 0.3963 ± 0.0038 0.4029 ± 0.0171 0.2194 ± 0.0036 0.1727 ± 0.0047

on the evaluation measures except for average precision and one-error. It is may be due to the sparse distribution of in-
stances which affects the estimation of conditional probability. In a word, compared with other multi-label algorithms,
MLNRS yields superior predictive performance overall. It performs best on more evaluation measures than any other meth-
ods. The reason for its good performance is that by introducing the upper and lower approximation of neighborhood rough
sets to estimate the location of testing object, MLNRS can eliminate the disturbance of irrelevant labels and give confidence
to the absolutely relevant labels. As for the instance located in the boundary region, MLNRS predicts the probabilities of
its labels by considering the correlation among labels, which is closer to the reality. On the other hand, we also find that
MLNRS performs worse than the simplest multi-label method BR on some datasets, such as Corel5k. It is because MLNRS is
based on the neighborhood and the process of finding nearest neighbors is affected by the high dimensional feature space.
So in order to improve the performance of MLNRS, the future work will focus on the dimensionality reduction of multi-label
dataset.

As for the time complexity, it can be calculated in two stages. During the process of training, we need to calculate
the distance between arbitrary pair of instances and find the k nearest neighbors for each training instance. So the time
complexity of training is O(n2 × k). During the process of testing, a testing instance need to find its k nearest neighbors
among n training instances and the time complexity is O(n × k).

6. Conclusion

This paper presented a novel method for multi-label classification algorithm. We derived this method from the neigh-
borhood rough set model, which we argued has many advantages over more sophisticated methods currently in use.
By introducing the lower approximation and upper approximation of rough sets, our method obtains high predictive perfor-
mance compared to a variety of complex methods while maintaining low computational complexity.
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