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The precision and grade of the approximate space are two fundamental quantitative in-

dexes that measure the relative and absolute quantitative information, respectively. The

double quantification of the precision and grade is a relatively new subject, and its effective

implementation remains an open problem. This paper approaches the double quantifica-

tion problem using basic rough set models. The Cartesian product is a natural operator for

combining the two indexes given their completeness and complementary natures, and we

construct twonewmodels using this strategy. The fundamental items (i.e., the complete sys-

tem, quantitative semantics and optimal computing) of the model regions are studied using

granular computing. First, the model regions (MR granules) and basic model regions (BMR

granules) are defined in the traditional fashion using logical double-quantitative seman-

tics; basic semantics (BS) is provided for the double-semantic description, and the semantic

extraction of the MR and BMR granules is realized within the BS framework. Computing

granules (BMRC granules) are then proposed for the basic model regions to optimize the

computation, and a two-dimensional plane and granular hierarchical structure are provided.

Two basic algorithms for computing the MR and BMR granules are proposed and analyzed,

and the BMRC-granules algorithm generally exhibits superior performance in terms of the

temporal and spatial complexity.Wealso explore theproperties of the approximationopera-

tors and the notions of attribute approximate dependence and reduction. Finally, we provide

an example application from themedical field. The twomodels provide a basic double quan-

tification of the precision and grade and have concrete double-quantitative semantics; they

also represent a quantitatively complete expansion of the Pawlak model.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The Pawlak, VPRS and GRS models

Rough set theory is amathematical tool for handling vague and incomplete information. This relatively new soft comput-

ing methodology has received great attention in recent years, and its effectiveness has been confirmed through successful

applications in many science and engineering fields. Rough set theory is currently one of the most promising research

directions in artificial intelligence theory and applications.

LetU beafiniteandnon-emptyuniverse, and letRbeanequivalence relationonU. Then, (U, R) constitutes anapproximate

space, and R represents the available knowledge; [x]R and U/R denote the equivalence class (i.e., the knowledge granule)
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and knowledge quotient set, respectively. The basic concept X ⊆ U. In the Pawlak Model [1], the following approximations

are made:

RX = ∪{[x]R : [x]R ∩ X �= φ}, RX = ∪{[x]R : [x]R ⊆ X}. (1)

Here,

posRX = RX, negRX =∼ RX, bnRX = RX − RX (2)

are the positive region, negative region and boundary region, respectively. These regions have qualitative semantics and

reflect the positive certainty, negative certainty and uncertainty, respectively; they therefore act as fundamental notions

for knowledge discovery. Attribute reduction is performed primarily using the positive region [2,3], while the boundary

region determines the uncertainty in the rough sets. Previous studies [4,5] have examined feature selection or attribute

reduction based on the boundary region. However, the Pawlak model has certain limitations. The relationships between

the basic concepts and knowledge granules are so strict that there are no fault-tolerance mechanisms, and the quantitative

information on the approximate space is not considered. Therefore, neitherwider relationships nor quantitative information

can be utilized. However, inclusion relationships usually occur in practice, and the extent of overlap among the sets provides

important information. Improving the Pawlak model is therefore a promising direction, and expansions of the model that

include quantification are of particular value.

Probability is an important tool for describinguncertainty andhas been introduced into rough set theory. Theprobabilistic

rough set (PRS) model [6–9] has many merits, such as the measurability of the probabilistic information, the generality and

flexibility of the model and its insensitivity to noise. The PRS model has been investigated extensively, and many concrete

realizations of the model are available, including the decision-theoretic rough sets (DTRS) [10,11], game-theoretic rough

sets (GTRS) [12,13], variable precision rough sets (VPRS) [14,15], 0.5-probabilistic rough sets [16], parameterized rough set

models [17,18] and Bayesian rough sets [19,20]. The graded rough set (GRS) model [21–23] has many features in common

with the PRS model and functions as a typical expansion model by including quantification. The VPRS and GRS models are

two fundamental expansion models that achieve strong fault tolerance capabilities by utilizing quantitative descriptions.

This paper focuses primarily on these two models.

The VPRS model was proposed by Ziarko [14]. This model allows for a relative degree of misclassification c([x]R, X) =
1 − |[x]R ∩ X|/|[x]R|, and the following approximations are made, with β ∈ [0, 0.5):

RβX = ∪{[x]R : c([x]R, X) < 1 − β}, RβX = ∪{[x]R : c([x]R, X) ≤ β}. (3)

Here,

posRβX = RβX, negRβX =∼ RβX, bnRβX = RβX − RβX (4)

are the positive region, negative region and boundary region, respectively. The symbol β was also used to denote the

proportion of correct classifications in previous studies [24–26], where β ∈ (0.5, 1]. In this paper,

p([x]R, X) = |[x]R ∩ X|/|[x]R| (5)

is referred to as the precision of [x]R with respect to X and β ∈ [0, 0.5) and 1 − β is referred to as the precision parameter.

Because the problemof noisy data is substantiallymitigated, the VPRSmodel is highly useful in data acquisition and analysis;

moreover, this model is an expansion of the Pawlak model. The VPRS model has become increasingly popular in a variety

of theoretical and practical fields, producing many thorough results. Previous researchers [25–30] have studied knowledge

reduction and rule extraction in theVPRSmodel, and some studies [31–37] have applied themodel in themedical, geological,

management andpsychological fields, amongothers. Both the relativedegreeofmisclassification c([x]R, X) and theprecision

p([x]R, X) are related to the roughmembership [38], and the latter has beenused inmany studies [39,40]. In particular, Greco

et al. [39] presented a generalized VPRS model using the absolute and relative rough membership. The inclusion degree, as

a generalization of the rough membership, has been used extensively in the study of measures, reasoning, applications of

uncertainty [29,41,42], and approximate spaces [43,44].

Yao and Lin [21] explored the relationships between rough sets and modal logics and proposed the GRS model based on

graded modal logics. The GRS model primarily considers the absolute quantitative information regarding the basic concept

and knowledge granules and is a generalization of the Pawlak model. The studies focused on the model construction, as in

[22,23,45]. In the GRS model, k ∈ N and the following approximations are made:

RkX = ∪{[x]R : |[x]R ∩ X| > k}, RkX = ∪{[x]R : |[x]R| − |[x]R ∩ X| ≤ k}. (6)

Note that RkX is the union of the equivalence classes whose numbers of elements inside X exceed k; RkX is the union of the

equivalence classes whose numbers of elements outside X are at most k. In this paper,

g([x]R, X) = |[x]R ∩ X|, g([x]R, X) = |[x]R| − |[x]R ∩ X| (7)
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are referred to as the internal and external grades of [x]R with respect to X , respectively, and k is referred to as the grade

parameter.

1.2. Precision and grade

The basic notions of the relative and absolute errors have been employed previously, for example, in the measurement

field. Here, the relative degree of misclassification c([x]R, X) and the external grade g([x]R, X) are referred to as the relative

and absolute errors regarding the basic concept X and knowledge R, respectively. The precision p([x]R, X) and the internal

grade g([x]R, X) are referred to as the relative overlap ratio and absolute overlap number. The precision and grade therefore

reflect the relative and absolute quantitative information of the approximate space, respectively, and become two fundamen-

tal quantitative indexes. Through these two indexes, the VPRS and GRSmodels provide relative and absolute quantifications,

extend the Pawlak model and achieve strong relative and absolute fault tolerance capabilities. The relative and absolute

quantitative information represent two distinct objective descriptors of the approximate space, and each descriptor has its

own merits; therefore, both indexes are needed to describe different application environments. Here, an example [46] is

provided to illustrate the importance of the absolute quantitative information.

Example (i). Let A and B be two universities with 40 and 20 proposed projects, respectively. Only 30 projects will be

implemented in total. The universities must make a final decision on which projects to implement. In this problem, the

universe consists of the 60 proposed projects, and the projects proposed for A and B constitute two equivalence classes;

thus, a simple approximate space is formed. If only the relative quantitative information is considered, then A and B should

receive 20 and 10 implemented projects, respectively. However, is this division fair in reality? If the two universities have

nearly the same research levels, then this proportionate division may be reasonable. However, if the research level of A

is much higher than that of B, then A should receive more than 20 projects and B should receive fewer than 10 projects.

The number of implemented projects becomes a pivotal index. In practice, the research evaluation of a given university

depends primarily on the total number of implemented projects (i.e., the absolute quantitative information) rather than the

implementation ratio of the proposed projects (i.e., the relative quantitative information). An ideal evaluation must employ

rational combinations of the two evaluation indexes.

Elementsof different equivalence classesmayexhibit largedifferences in an important attribute in theapproximate space;

therefore, different equivalence classes have distinct degrees of the relevant information. In practice, there are usually large

information gaps between the equivalence classes, and this situation must be emphasized and utilized. The above example

also demonstrates (in one specific case) how the grade index can be used to improve the information provided by the relative

quantitative index. Moreover, the relative ratio must be handled in discriminative fashions.

Examples demonstrating the importance of the relative quantitative information are even more readily constructed, and

we conclude that both the absolute and relative quantitative information are fundamental. The combination of the two types

of information is therefore novel and valuable. Next, another example is provided for illustration by the role ofmeasurement

errors.

Example (ii). Suppose that r andm are the real and measured values in a measurement process, respectively. It is known

that εR = (m − r)/r and εA = m − r represent the relative and absolute errors, respectively, and both of these quantities

reflect the reliability of themeasured result,m. In ameasurement evaluation, the relative and absolute errors can be utilized

individually. For example, the statement that εR = 10% reflects certainmeasurement information but provides only a partial

evaluation of the result. Suppose that εR1 = 10% and εR2 = 30%. It cannot be established that the first measurement is

more precise or superior compared to the latter. Moreover, consider the case in which εR1 = εR2. However, a more definite

determination can be made by considering both errors. Clearly, the measurement system (r,m) is two-dimensional. The

case εR = 0 (i.e., m = r) is so specific that it is not discussed here. In the usual case in which εR �= 0,

⎧⎪⎨
⎪⎩

εR = m − r

r
εA = m − r

(8)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r = εA

εR

m = 1 + εR

εR
εA

(9)

Formulas (8) and (9) are therefore equivalent. Formula (9) shows that r and m can be represented by the errors, and the

two systems (r,m) and (εR, εA) are therefore equivalent. Thus, only εR and εA can completely determine the system (r,m).
In other words, εR and εA have quantitative completeness so can reflect the exact measurement information. For example,

suppose that there are two possible projects with different costs, εR1 = 10%, εA1 = 1000(Meters) and εR2 = 30%,

εA2 = 30(Meters). Then, the following results canbeobtainedusing formula (9): r1 = 10000(Meters),m1 = 11000(Meters)
and r2 = 100(Meters), m2 = 130(Meters). Although εR2 = 30% > 10% = εR1, measurement 2 may provide a superior

evaluation because its absolute loss (30 Meters) is considerably lower than measurement 1’s (1000 Meters). In practice,

a rational strategy is usually adopted: if r (or m) is higher, then εR is more highly emphasized and controlled because εR
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will determine a more effective change – the change in εA on r (or m). Therefore, the change in the relative error is neither

balanced nor linear. Another case is as follows. If r1 = 10000, r2 = 100, 	εA1 = 10 = 	εA2 , then 	εR1 ≈ 0.1% while

	εR2 ≈ 10%. In fact,

εR = εA

r
,

∂εR

∂r
= −εA

r2
,

∂εR

∂εA
= 1

r
, dεR = −εA

r2
dr + 1

r
dεA. (10)

Formula (10) shows that the relationship between εR and εA is nonlinear, and the change in εR depends on εA. Moreover,

the reverse holds as well, i.e., the change in εA also depends on εR. Therefore, εR and εA are closely related.

For the approximate space (U, R) and the set X , |[x]R| and |[x]R ∩ X| function as two core quantitative variables. The

system (|[x]R|, |[x]R ∩ X|) is therefore a basic quantitative system for (U, R, X) and is also two-dimensional. We have the

following formulas:

⎧⎪⎨
⎪⎩

p([x]R, X) = |[x]R ∩ X|
|[x]R|

g([x]R, X) = |[x]R| − |[x]R ∩ X|
(11)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|[x]R| = g([x]R, X)

1 − p([x]R, X)

|[x]R ∩ X| = p([x]R, X)

1 − p([x]R, X)
g([x]R, X)

(12)

p([x]R, X) = 1 − g([x]R, X)

|[x]R| , (13)

∂p([x]R, X)

∂|[x]R| = g([x]R, X)

|[x]R|2 ,
∂p([x]R, X)

∂g([x]R, X)
= − 1

|[x]R| , (14)

dp([x]R, X) = g([x]R, X)

|[x]R|2 d|[x]R| − 1

|[x]R|dg([x]R, X). (15)

According to formulas (11)–(15), the system (|[x]R|, |[x]R∩X|) is similar to themeasurement system (r,m), and the relevant

results can be achieved. Therefore, p([x]R, X) and g([x]R, X) are usually complete for quantification, and the case is the same

for the other pair, p([x]R, X) and g([x]R, X). Unfortunately, most PRS models utilize only the conditional probability related

to c([x]R, X) or p([x]R, X), and there is no information regarding g([x]R, X) or g([x]R, X). The relative information has the

merits of being macroscopic, statistical, and convenient for applications. However, without the absolute information, the

relative information is incomplete for quantification. The quantitative completeness determines the degrees of accuracy

and certainty and is a primary and fundamental factor in many cases. The complexity of the model is another important

factor to consider. In practice, the computational complexity of the composite system (evaluating both the precision and

grade) has the same feasibility level as that of the individual systems to within a factor of approximately two. The combined

quantification is therefore necessary and valuable. Moreover, the mapping shows that the precision and grade are mutually

dependent and that the relationship between them is nonlinear. However, most PRSmodels have the balanced or linear fea-

ture, and the relative measurement is unified for all cases. In other words, in performing the relative extraction, the relative

single quantification does not consider the absolute information environment and also roughens and neglects the objective

environment (related to |[x]R|). For example, for two knowledge granules [x]1R �= [x]2R, if p([x]1R, X) = p([x]2R, X), then [x]1R
and [x]2R are indiscernible or equal in most PRS models. However, |[x]1R| �= |[x]2R| or |[x]1R ∩ X| �= |[x]2R ∩ X|, and [x]1R and

[x]2R can be discerned by introducing the absolute information, |[x]R| or |[x]R ∩ X|. The change in precision can be further

analyzed using the total differential formula (15). Examples (i) and (ii) and formulas (11)–(15) show that the introduction of

the absolute information is rational and necessary. The above analysis demonstrates the complementarity of the precision

and grade. Therefore, the double quantification formed by adding the absolute quantitative information can improve the de-

scriptive abilities of PRSmodels and expand their range of applicability. The relative information similarly complements the

absolute description and canbeused to improve theGRSmodel. Basedon the above examples andanalysis, the sharp contrast

between the precision and grade environments is typical of double quantification applications. For example, if the precision

varies over a small range while the grade changes significantly, then the double quantification can play an effective role.

In summary, the precision and grade are related to the relative and absolute quantitative information, respectively. Using

these two indexes, single quantificationmodels have been extended to capture more general relationships and complex sit-

uations. However, the two indexes are not equivalent, and the relationship between them is often close, complementary and

dialectical. Therefore, given the completeness and complementarity of the precision and grade, their double quantification

has substantial value. This double quantificationmethod can provide a thorough description of the approximate space, yield

new models with strong double fault tolerance capabilities to adapt to increasingly complex environments, accelerate the

development of both VPRS and GRS models, and promote knowledge discovery based on double-quantitative information.

The VPRS and GRS models, two basic quantitative models of the precision and grade, form the basis of our subject. They are
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closely interrelated; for example, the variable precision and grade approximation operators have similar basic properties.

We have performed a comparative study of the two models and provided both the relationship and formal transformations

between them [46]. The mutual transformations based on more general relations were also studied [45,47]. Therefore, the

two models provide an ideal foundation for the double quantification and render the subject feasible.

1.3. Granular computing

The term granular computing first appeared in the academic literature in the paper by Zadeh in 1997 [48]. Granular

computing is often loosely defined as an umbrella term covering all theories,methodologies, techniques, and tools thatmake

use of granules in complex problem solving [49]. Granular computing has emerged as one of the fastest growing information

processing paradigms in computational intelligence and human-centric systems. In recent years, many special issues of

journals, international conferences and books have been devoted to the topic of granular computing. Yao first proposed

the triarchic model of granular computing (i.e., the philosophy of structured thinking, methodology of structured problem

solving, and computation of structured information processing), and the basic theory was developed in several subsequent

papers, such as [49,50]. The notion of granular computing primarily reflects the use of multiple granules, multiple levels

and multiple views and provides a concrete methodology for information processing and problem solving.

Roughset theoryprovides a concrete foundation for granular computing, andcertainaspectsof rough-granular computing

have been thoroughly studied. For example, Pawlak and Skowron [17] took a rough set approach to granular computing;

Skowron and Stepaniuk [43] proposed the formation of granules based on various rough computing criteria; Skowron et al.

[44] investigated certain important issues related to rough granular computingmodels based on approximation spaces; Yao

[51] studied both information granulation and rough set approximations; Zhu [52] explored covering-based rough sets from

the topological viewpoint of granular computing; Liu et al. [53] explored granular computing from a rough logic perspective.

The dominance-based rough set approach provides an alternative granular computing methodology based on rough sets.

In particular, Pal et al. [54] investigated image object extraction within the framework of both rough sets and granular

computing.

1.4. Approach and outline

Given the completeness and complementarity of the precision and grade, the double quantification of these two indexes

is a novel, necessary, valuable and feasible objective. However, the implementation of this subject remains an open problem.

In contrast to a simple fusion, the Cartesian product usesmulti-dimensional constructs to store data and information and has

the advantages of information losslessness and data recovery ability. The Cartesian product is therefore a natural operator

for the combination of the precision and grade. We therefore construct the double quantification based on the Cartesian

product and study basic double-quantitative rough set models. The transition from the single quantification to the double

quantification is emphasized, and our development is based on the basic concepts of both rough set theory and granular

computing. The model is constructed using a Cartesian product and investigated using granular computing. The complete

system, quantitative semantics and optimal computing of macroscopic regions are fundamental issues in applications of the

rough set model. These issues will be resolved in detail using granular computing in the constructed models.

The remainder of the paper is organized as follows. In Section 2.1, we naturally construct two basic models using the

Cartesianproduct: (U, Rβ, Rk)and (U, Rk, Rβ). Both themodel regions (MRgranules) andbasicmodel regions (BMRgranules)

are defined and studied; the quantitative semantics of the MR and BMR granules are then explored, and basic semantics

(BS) is provided for the granule-semantic extraction. Section 2.2 explores the expansion and completeness of the two

models. Section 3.1 proposes and investigates computing granules for the basic model regions (i.e., BMRC granules), and

Section 3.2 explores the two-dimensional plane and granular hierarchical structure. Section 4 proposes and analyzes two

basic algorithms for computing the MR and BMR granules. We discuss the properties of the approximation operators and

the notions of attribute approximate dependence and reduction in Section 5. Sections 3–5 are primarily concerned with

(U, Rβ, Rk); Section 6 provides the corresponding results for the latter model, (U, Rk, Rβ). In Section 7, we present an

illustrative example from the medical field. Finally, the paper is concluded in Section 8.

2. Two basic double-quantitative rough set models of precision and grade

2.1. Modeling, model regions and their semantics

Based on multiple arguments, it is necessary to implement the double quantification using a Cartesian product of the

precision and grade. Based on the relative and absolute quantitative information, the VPRS and GRS models perform a

basic single quantification of the precision and grade, respectively. If the upper and lower approximations quantify both the

precision and grade, then two fundamental double-quantitative models can be naturally constructed.
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Definition 2.1.1

Rβ : 2U → 2U, Rk : 2U → 2U, ∀X ∈ 2U,

RβX = ∪{[x]R : p([x]R, X) > β}, RkX = ∪{[x]R : g([x]R, X) ≤ k}. (16)

Then, Rβ and Rk are the approximation operators. The construct (Rβ, Rk) is referred to as the Cartesian product of Rβ and

Rk , and can determine a rough set model, denoted by (U, Rβ, Rk). Similarly, the other model (U, Rk, Rβ) is defined using the

dual approximation operators Rk and Rβ , where the core mappings are given by the following approximations:

RkX = ∪{[x]R : g([x]R, X) > k}, RβX = ∪{[x]R : p([x]R, X) ≥ 1 − β}. (17)

The model is constructed using a Cartesian product, which rigorously organizes the double-quantitative information

contained in theprecisionandgrade; therefore, (U, Rβ, Rk) and (U, Rk, Rβ) arebasic double-quantitativemodels. Concretely,

the two new models are related to the crossed combinations of the approximations in the VPRS and GRS models; the

threshold ranges on β and k in the two models are equated with the corresponding ranges in the VPRS and GRS models.

The new models therefore inherit many of the merits of the VPRS and GRS models and apply primarily to the basic double-

quantitative environment. Furthermore, the combined model has concrete double-quantitative semantics and can meet

specific practical requirements in complex situations.

Definition 2.1.2. Precision-semantics refers to the precise description provided by the precision parameter, while grade-

semantics refers to the grade description provided by the grade parameter.

Here, the approximations inherit the original precision-semantics or grade-semantics. In (U, Rβ, Rk), RβX is the union

of the equivalence classes whose precision with respect to X exceeds β , and RkX is the union of the equivalence classes whose

external grade with respect to X does not exceed k. In (U, Rk, Rβ), RkX is the union of the equivalence classes whose internal

grade with respect to X exceeds k, and RβX is the union of the equivalence classes whose precision with respect to X is at least

1 − β . Therefore, the two models have double-quantitative semantics, which determines the double fault description and

fault tolerance capabilities.

The positive region, negative region and boundary region act as fundamental notions for knowledge discovery, including

attribute reduction and rule extraction. These traditional regions are first extended to the new double-quantitative model

environments.

Definition 2.1.3. (1) In (U, Rβ, Rk),

posRβ,kX = RβX ∩ RkX,

negRβ,kX =∼ (RβX ∪ RkX),

ubnRβ,kX = RβX − RkX,

lbnRβ,kX = RkX − RβX,

bnRβ,kX = ubnRβ,kX ∪ lbnRβ,kX

(18)

are referred to as the R-positive region, negative region, upper boundary region, lower boundary region and boundary

region of X , respectively. There are now a total of seven regions, including the five regions listed and the upper and lower

approximations, and each region is referred to as a model-region (MR granule). In other words, the term MR granule is

only a general designation for the seven regions. The MR granules are similarly defined for (U, Rk, Rβ), and except the

approximations, the symbols for the additional MR granules are as follows:

posRk,βX , negRk,βX , ubnRk,βX , lbnRk,βX , bnRk,βX .

Theorem 2.1.4

(1) RβX = posRβ,kX ∪ ubnRβ,kX, RkX = posRβ,kX ∪ lbnRβ,kX. (19)

(2) RkX = posRk,βX ∪ ubnRk,βX, RβX = posRk,βX ∪ lbnRk,βX. (20)

In the newmodels, because the relationships between the approximations are no longer single or simple, the additional

positive and negative regions, upper and lower boundary regions, and boundary region are proposed as generalizations of
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Fig. 1. BMR and MR granules.

the traditional regions in the Pawlak model. In the Pawlak model, posRX = RX = RX ∩ RX , and the positive region therefore

becomes the intersection set of the approximations. As for the negative and boundary regions, we have negRX =∼ RX =∼
(RX ∪ RX) and bnRX = RX − RX = (RX − RX) ∪ (RX − RX), and similar results are obtained. Similar to the qualitative

semantics of the traditional regions, each MR granule has its own quantitative semantics, which is provided below.

In knowledge discovery, the complete and classified regions act as fundamental notions. A macroscopic granulation is

therefore performed based on the MR granules.

Definition 2.1.5. The basic model regions (BMR granules) refer to the following four regions: the positive, negative, upper

boundary and lower boundary regions.

Theorem 2.1.6

(1) The BMR granules are complete and disjoint, i.e., they form a classification of the universe.

(2) The BMR granules are a decomposition of the MR granules, while the MR granules are a construction of the BMR granules.

The four BMR granules form a complete partition of the universe. In the Pawlak model, there are only three traditional

application regions (the positive, negative and boundary regions), which have been extended to the BMR granules in the

new models. The double-quantitative system has the distinctive feature of four macroscopic regions; this fact is referred

to as the four-region principle. In the double-quantitative environment, the upper and lower boundary regions can more

accurately describe the boundary region; therefore, the completeness of the double-quantification leads to a more refined

description of the uncertainty, and the uncertainty is thereby decreased to some extent. The four-region system therefore

has an advantage over the classical three-region system. Definition 2.1.3 and Theorem 2.1.4 provide the basic relationships

and structures of the MR granules and BMR granules, completely specifying the new system. Fig. 1 clearly illustrates these

results. The approximations are the core notions that generate all of the MR granules; however, the MR granules can also be

constructed from the BMR granules. These basic properties underlie the later algorithms for computing the MR granules. In

the twomodels, the BMR andMRgranules are the basic notions leading to knowledge discovery; these granules are therefore

investigated thoroughly in this paper, particularly in relation to their semantic extraction and concrete computation.

Similar to the approximations of the newmodels, all BMR granules have concrete quantitative semantics, which are first

analyzed in (U, Rβ, Rk). The concrete results are as follows:

(i) the positive region, posRβ,kX , is the union of the equivalence classes whose precision with respect to the set X exceeds

β and whose external grade with respect to X does not exceed k;

(ii) the negative region, negRβ,kX , is the union of the equivalence classeswhose precision with respect to the set X does not

exceed β and whose external grade with respect to X exceeds k;

(iii) the upper boundary region, ubnRβ,kX , is the union of the equivalence classes whose precision with respect to the set X

exceeds β and whose external grade with respect to X exceeds k;

(vi) the lower boundary region, lbnRβ,kX , is the union of the equivalence classeswhose external grade with respect to X does

not exceed k and whose precision with respect to the set X does not exceed β .

The BMR-granular semantics becomes double-quantitative and reflects the special logics of the precision-semantics and

grade-semantics. In particular, the BMR-granular semantics is related to the double fault description and fault tolerance

features. Furthermore, the semantics of the boundary region can be logically constructed using the semantics of both the

upper and lower boundary regions; the semantics of all of the BMR and MR granules have therefore been provided. The
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granular semantics arises from both the semantics and logical relationships of the approximations. Next, we present the

granular semantics in a simple and clear form using a new semantics-based technology.

Definition 2.1.7. In (U, Rβ, Rk), there are only two complete precision intervals and external grade intervals, i.e.,

0 ≤ p ≤ β , β < p ≤ 1, 0 ≤ g ≤ k, g > k, where p = p([x]R, X), g = g([x]R, X).
Therefore, based on the complete classification, only four types of double semantics occur for the precision and grade; these

four classes are referred to as the basic semantics (BS), and the results are as follows:

(1) p > β , g ≤ k;

(2) p ≤ β , g > k;

(3) p > β , g > k;

(4) p ≤ β , g ≤ k.

Theorem 2.1.8 (BS features)

(1) The BS is complete and disjoint, i.e., it constructs a classification of the quantitative semantics.

(2) The BMR granule serves as the bearing granule of the BS, and BMR-granular semantics is the corresponding BS.

(3) TheMR-granular semantics can be constructed from the BS; the BS in fact forms a basis for the double-quantitative semantics

or quantitative semantics in the model (U, Rβ, Rk).

Theorem2.1.8 demonstrates the importance of the BS and the relationships between the BS and theBMRandMRgranules.

Therefore, all of the BMR and MR granules have semantics that are constructible from the BS. In fact, the semantics of the

positive region, negative region, upper boundary region and lower boundary region are given by BS (1),(2),(3) and (4),

respectively, reflecting the corresponding relationships between the BMR granules and BS. Furthermore, the semantics of

the upper and lower approximations and boundary region are constructed from BS (1) and (3), BS (1) and (4), BS (3) and (4),

respectively. The double semantics used to construct an approximation is equivalent to the original single semantics of the

approximation. In summary, the BS is equivalent to the BMR granular semantics and therefore has carried great knowledge

discovery power; moreover, the BS forms the basic units of the model and provides a unified description of the quantitative

semantics, which is especially important for the more complex double semantics.

We have now proposed two systems for the quantitative semantics; one originates from the original semantics of the

approximations, and the other is based on the BS (BMR-granular semantics). Both systems show that all of the BMR andMR

granules have concrete quantitative semantics; the BMR and MR granules therefore serve as the basic granules for model

applications.

The semantics of the BMR andMR granules can be obtained similarly for (U, Rk, Rβ). (i) The four types of BS in thismodel

are as follows:

(1) g > k, p ≥ 1 − β;

(2) g ≤ k, p < 1 − β;

(3) g > k, p < 1 − β;

(4) g ≤ k, p ≥ 1 − β .

Here, g = g([x]R, X). (ii) The BMR-granular semantics is equivalent to the BS. (iii) The double semantics of the additional

MR granules (i.e., the upper and lower approximations and boundary region) are constructed from BS (1) and (3), BS (1) and

(4), BS (3) and (4), respectively.

2.2. Model expansion and completeness

Themodel generalization is an important issue [55], and the expansions represented by the newmodels are investigated

in this section. Both the VPRS and GRS models are expansions of the Pawlak model. The nature of the expansions is first

analyzed, and this analysis leads to a formulation of the basic model expansions.

In the VPRS model, (U, Rβ, Rβ),

β ≥ 0 ⇔ RβX ⊆ R0X, RβX ⊇ R0X, (21)

RβX − RβX ⊆ RX − RX, i.e., bnRβX ⊆ bnRX. (22)

The VPRS model degenerates to the Pawlak model when β = 0. Therefore, the VPRS model extends the Pawlak model by

lessening the upper approximation and enlarging the lower approximation, and the boundary region in the VPRS model

becomes a subset of the boundary region in the Pawlak model. An expansion with a subset boundary is preferable because

the size of the boundary region determines the roughness degree to a great extent. Similarly, when the Pawlak model is

extended to the GRSmodel, the upper approximation becomes smaller, while the lower approximation becomes larger. The
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relevant formula is as follows:

k ≥ 0 ⇔ RkX ⊆ R0X, RkX ⊇ R0X. (23)

Definition 2.2.1. A directional expansion refers to a model expansion with a reduced upper approximation and magnified

lower approximation.

Proposition 2.2.2. The VPRS and GRS models are both directional expansions of the Pawlak model.

The directional expansion defines a particular expansion direction for the approximations. For the VPRS model, the

directional expansion guides the relative reduction of the boundary region. The boundary region is related to the uncertainty,

so the directional expansion has practical significance. As for the GRS model, the directional expansion also provides a clear

framework for the change in the region. The directional expansion therefore functions as an important model expansion.

The two new models will be evaluated using this criterion.

Theorem 2.2.3 (Model expansion)

(1) In (U, Rβ, Rk), if β = 0 and k = 0, then (U, Rβ, Rk) = (U, R, R);

moreover, RβX ⊆ RX, RkX ⊇ RX.

In other words, (U, Rβ, Rk) is a directional expansion of the Pawlak model.

(2) In (U, Rk, Rβ), if β = 0 and k = 0, then (U, Rk, Rβ) = (U, R, R);

moreover, RkX ⊆ RX, RβX ⊇ RX.

In other words, (U, Rk, Rβ) is also a directional expansion of the Pawlak model.

According to Theorem 2.2.3, the two models with their thresholds exhibit favorable directional expansion properties,

which originate from the basic expansions of both the VPRS and GRS models. In contrast, the Pawlak model is merely a

special case of the two models, with k = 0 and β = 0. The generalizations represented by the new models therefore have

favorable theoretical properties.

Proposition 2.2.4. For the approximate space (U, R) and concept X, the basic quantitative system (|[x]R|, |[x]R ∩ X|) is two-

dimensional.

Theorem 2.2.5 (Model completeness). If p([x]R, X) = 1 or g([x]R, X) = 0, then [x]R ⊆ X, and this case is well-defined for

both new models. Otherwise, p([x]R, X) and g([x]R, X) can induce |[x]R|, |[x]R ∩ X|. In other words, the applied quantitative

system (p([x]R, X), g([x]R, X)) is usually two-dimensional. Furthermore, the relevant model (U, Rβ, Rk) is complete with respect

to the basic quantification. Similarly, the other model, (U, Rk, Rβ), is also complete with respect to the quantitative approximate

space.

The relevant and extensive contents were analyzed in the Introduction (Section 1.2). Proposition 2.2.4 demonstrates that

the quantitative approximate space is two-dimensional. Therefore, a one-dimensional model with quantitative incomplete-

ness may lead to some information loss in the quantitative description. Within this framework, the model completeness

theorem (Theorem 2.2.5) demonstrates that the two proposed models exhibit quantitative completeness and are therefore

of great value. Moreover, based on this novel quantitative criterion, the GRS model is also complete, while most PRS models

are not complete. Thus, using pairings related to the Cartesian product, the twomodels have improved the previous models

not only in terms of their fault tolerance capabilities but also in terms of their quantitative completeness. Moreover, the

temporal and spatial complexity of the new models is nearly twice that of the one-dimensional models with c([x]R, X) or

p([x]R, X). The new models therefore share the computational feasibility of most PRS models.

In summary (U, Rβ, Rk) and (U, Rk, Rβ) perform basic double quantification of the precision and grade. They have con-

crete quantitative semantics and therefore thoroughly describe the approximate space. They also exhibit strong double fault

tolerance capabilities (in terms of both relative and absolute fault tolerance) and can therefore adapt to complex environ-

ments. Moreover, they correspond to positive expansions of the Pawlak model and therefore exhibit a more encompassing

theoretical structure, and they have the further advantage of completeness. The new models are therefore promising for

both theoretical studies and practical applications involving double quantification. In addition, the two models are simi-

lar, parallel and symmetric; however, their upper and lower approximations have directivity, and their different Cartesian

product distributions for the relative and absolute quantification will therefore lead to concrete results, such as their spe-

cific quantitative semantics. In the following sections, we focus on the former model, (U, Rβ, Rk). Section 6 provides the

corresponding results for the latter model, (U, Rk, Rβ).
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3. Computing granules of the basic model regions (BMRC granules)

3.1. Notion and properties

In Section 2.1, the MR and BMR granules were proposed, and their quantitative semantics were obtained. Next, we cover

the computation of the granules using a new type of computing granules.

Proposition 3.1.1

RβX = ∪ {[x]R : |[x]R ∩ X| > β|[x]R|},
RkX = ∪ {[x]R : |[x]R ∩ X| ≥ |[x]R| − k}. (24)

Proposition 3.1.2

(1) If β = 0, then RβX = RX, RkX = ∪{[x]R : |[x]R ∩ X| ≥ |[x]R| − k}, posRβ,kX = RX ∩ RkX, negRβ,kX =∼ (RX ∪ RkX),

ubnRβ,kX = RX − RkX, lbnRβ,kX = RkX − RX, bnRβ,kX = (RX − RkX) ∪ (RkX − RX).

In particular, if β = 0 and k = 0, then RβX = RX, RkX = RX, posRβ,kX = posRX, negRβ,kX = negRX, ubnRβ,kX =
bnRβ,kX = bnRX, lbnRβ,kX = φ.

(2) If k = 0 and β ∈ (0, 0.5), then RβX = ∪{[x]R : |[x]R ∩ X| > β|[x]R|}, RkX = RX, posRβ,kX = RX, negRβ,kX =∼ RβX,

ubnRβ,kX = bnRβ,kX = RβX − RX, lbnRβ,kX = φ.

Proposition 3.1.1 provides the equivalent formulas for the approximations in (U, Rβ, Rk), and Proposition 3.1.2 provides

the results for MR granules in the special cases where β = 0 or k = 0, which are straightforward. We therefore explicitly

consider only the usual case: β ∈ (0, 0.5) and k �= 0. In Proposition 3.1.1, only two parameters are considered: β|[x]R|,|[x]R| − k. Full descriptions of the four BMR granules are therefore provided in a complete discussion of the parameter

relationships. Theorem 3.1.3 presents the related results.

Theorem 3.1.3. If 0 < β < 0.5 and k �= 0, then

(1) posRβ,kX = (∪{[x]R : |[x]R| > k/(1 − β), |[x]R ∩ X| ≥ |[x]R| − k})
∪(∪{[x]R : |[x]R| ≤ k/(1 − β), |[x]R ∩ X| > β|[x]R|});

(2) negRβ,kX = (∪{[x]R : |[x]R| > k/(1 − β), |[x]R ∩ X| ≤ β|[x]R|})
∪(∪{[x]R : |[x]R| ≤ k/(1 − β), |[x]R ∩ X| < |[x]R| − k});

(3) ubnRβ,kX = ∪{[x]R : |[x]R| > k/(1 − β), β|[x]R| < |[x]R ∩ X| < |[x]R| − k};
(4) lbnRβ,kX = ∪{[x]R : |[x]R| ≤ k/(1 − β), |[x]R| − k ≤ |[x]R ∩ X| ≤ β|[x]R|}.

Note. According to Definition 2.1.3, the BMR granules in (U, Rβ, Rk) originate primarily from four set operations on the

approximations: RβX , RkX , and for example, posRβ,kX = RβX ∩ RkX . Furthermore, Proposition 3.1.1 provides the equivalent

formulas for the approximations. Therefore, we need only combine the two inequalities:

|[x]R ∩ X| > β|[x]R|, |[x]R ∩ X| ≥ |[x]R| − k. (25)

In other words, the relationship between β|[x]R| and |[x]R| − k must be discussed. For a knowledge granule [x]R, there are

only two cases:

β|[x]R| < |[x]R| − k, or β|[x]R| ≥ |[x]R| − k;
i.e., |[x]R| > k/(1 − β), or |[x]R| ≤ k/(1 − β).

(26)

For each case, the results are easily obtained using Theorem 3.1.3. In particular, the common factor k/(1 − β) emerges. In

fact, |[x]R|, |[x]R ∩ X| act as two basic core variables for quantification in the approximate space; it is therefore important

to represent granular forms in terms of the two core variables. Clearly, the results of Theorem 3.1.3 on the BMR granules

have the necessary form for representation on |[x]R|, |[x]R ∩ X|. Therefore, k/(1 − β) is necessary within the framework

of |[x]R|, |[x]R ∩ X|, and this factor originates from the basic qualitative classification on the BMR granules. In other words,

the BMR granules cannot be completely identified without k/(1 − β), and the factor of k/(1 − β) also appears in other

quantitative classification systems for the model (U, Rβ, Rk).
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Table 1

BMRC granules and their properties in (U, Rβ , Rk) when β ∈ (0, 0.5) and k �= 0.

BMRC-granule No. 1: |[x]R| No. 2: |[x]R ∩ X| BMR-granule BS Basic operations Auxiliary variables

(1) > k/(1 − β) ≤ β|[x]R| negRβ,kX (2) 3 1

(2) > k/(1 − β) (β|[x]R|, |[x]R| − k) ubnRβ,kX (3) 5 2

(3) > k/(1 − β) ≥ |[x]R| − k posRβ,kX (1) 5 2

(4) ≤ k/(1 − β) < |[x]R| − k negRβ,kX (2) 3 1

(5) ≤ k/(1 − β) [|[x]R| − k, β|[x]R|] lbnRβ,kX (4) 5 2

(6) ≤ k/(1 − β) > β|[x]R| posRβ,kX (1) 5 2

Definition 3.1.4. The computing granules of the basicmodel regions (i.e., the BMRC granules) refer to the six types of subsets

that are used to construct the BMR granules in Theorem 3.1.3.

Theorem 3.1.5 (BMRC granule features)

(1) The BMRC granules are complete and disjoint, i.e., they construct a classification of the universe.

(2) The BMRC granules are a decomposition of the BMR and MR granules, while the BMR and MR granules are a construction

of the BMRC granules; in fact, the BMRC granules form a basis for the MR and BMR granules.

(3) The semantics of a BMRC granule is equivalent to the BS extracted by the BMR granule from which it was constructed.

(4) The semantics of the MR and BMR granules is a construction of the semantics of the composed BMRC granules.

Table 1 shows the BMRC granules and their relationships with the BMR granules and BS. For example, BMRC granule (3)

is given by

∪{[x]R : |[x]R| > k/(1 − β), |[x]R ∩ X| ≥ |[x]R| − k},
which is the union of the equivalence classes whose cardinal numbers exceed k/(1 − β) and whose absolute overlap numbers

with respect to X are at least |[x]R|−k. BMRC granule (3) belongs to a BMR granule (the positive region) and has the semantics

of BS (1). In fact, the positive region is a construction of two BMRC granules, BMRC granules (3) and (6). The information on

the basic operations and auxiliary variables (provided in Table 1) is useful primarily for the algorithm analyses in Section 4.

3.2. The two-dimensional plane and granular hierarchical structure

Both the form and structure of the BMRC granules are analyzed in this section; a new mathematical technology is

introduced for this purpose. As was shown previously, the cardinal number (|[x]R|) and absolute overlap number (|[x]R ∩X|)
of an equivalence class are explicitly determined and therefore act as the core indexes; moreover, the three usual indexes

– the precision, internal grade and external grade – can be completely combined using these indexes. Therefore, |[x]R| and|[x]R ∩ X| determine the basic form of the quantitative approximate space through an internal mechanism and provide an

ideal computing platform. Various explanations regarding the basic quantitative system (|[x]R|, |[x]R ∩ X|) were provided

previously in Sections 1.2 and 2.2.

We first introduce several new symbols.

Let f : U/R → N2, f ([x]R, X) = (V, Y);
here, V = V([x]R, X) = |[x]R|, Y = g([x]R, X) = |[x]R ∩ X|,
and let X serve as a mapping parameter.

Then, the equivalence classes are mapped into a two-dimensional plane by the mapping f . This plane is referred to as

the two-dimensional plane of the cardinal number and internal grade (or simply the two-dimensional plane). The equivalence

classes are therefore discretely distributed in a region 0 ≤ Y ≤ V in the two-dimensional plane as atomic granules, and a

microscopic two-dimensional mathematical form of the quantitative approximate space is produced, which is related to the

Cartesian product of |[x]R| and |[x]R ∩ X|. Moreover, the precision, internal grade and external grade (the approximations in

the VPRS and GRS models) have their own mathematical/geometric meanings in the two-dimensional plane. The equation

p([x]R, X) = Y/V means that the precision of an equivalence class is the slope of the line that passes through the origin and the

basic granular point; g([x]R, X) = Y means that the internal grade of an equivalence class is the distance from the basic granular

point to the V-axis; and g([x]R, X) = V − Y means that the external grade of an equivalence class is the difference between

the two distances from the basic granular point to the Y-axis and V-axis. Furthermore, the approximations in the VPRS model

become the regions where Y > βV and Y ≥ (1−β)V , and the approximations in the GRSmodel become the regions where

Y > k and Y ≥ V − k.

In the two-dimensional plane, theBMRgranules are the complete and classified regionswith respect to two lines:Y = βV

and Y = V − k. The relationship for the BMR granules, i.e., that between |[x]R| and k/(1 − β), is related to the vertical line

V = k/(1 − β), which passes through the intersection point of Y = βV and Y = V − k. Therefore, the BMRC granules

form the complete and classified regions with respect to the three lines. This qualitative result regarding the BMRC granules

is stable and does not depend on the quantitative parameter value. Fig. 2 shows the distribution of the six types of BMR

granules (where β = 0.4 and k = 10).
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Fig. 2. BMR granules in (U, Rβ , Rk) in the two-dimensional plane.

The BMRC granules originate from the mathematical decomposition of the BMR granules and are described by both

|[x]R| and |[x]R ∩ X|. In other words, both the BMR granules and the initial data determine the granulation of the BMRC

granules. The BMRC granules therefore comprise a fundamental granule class in BMR-granular computing (particularly in

BMR-granular optimal computing) because of their explicit function based on |[x]R| and |[x]R ∩ X|.
Finally, we provide the granular hierarchical structure in (U, Rβ, Rk). The up-bottom strategy (one of the main strategies

in granular computing) is adopted throughout our granular computing study of the model. (1) The MR and BMR granules

are both based on model applications and therefore lie in a macroscopic layer. (2) The BMRC granules are based on the

quantitative parameters (β and k) and initial data (|[x]R| and |[x]R ∩X|) and therefore lie in amicroscopic layer. (3) The two-

dimensional mathematical form of the approximate space in the two-dimensional plane is actually related to the granular

structure of the atomic granules (i.e., equivalence classes), which is determined only by the quantitative approximate space,

and therefore lies in a basic/atomic layer. The relationships between the MR, BMR and BMRC granules are linear and clear.

A figure showing the granules with labeled lines (from the bottom layer to the top layer) is provided as follows:

x →[x]R → BMRC-Granule → BMR-Granule → MR-Granule → U.

Furthermore, thegranularhierarchical structurehasprovidedmethods fordescribingand solving the correspondinggranular

problems, including the semantic extraction and concrete computation. Moreover, the finest type of granules in (U, Rβ, Rk)
can be produced by the exhaustive decomposition of the BMRC and BMR granules with respect to |[x]R| and |[x]R ∩X|. In the

two-dimensional plane, the new granules are actually further divided into regions by the horizontal line Y = βk/(1 − β)
based on the BMRC granules; these new granules are a decomposition of the BMRC, BMR and MR granules.

4. Algorithms and analysis of the MR-granular computing

The MR granules can be constructed from the BMR granules and can therefore be computed using the BMRC granules;

however, they can also be obtained using the approximations. Therefore, two basic algorithms are proposed to compute the

MR granules, the BMRC-granules algorithm and the approximation algorithm. These two algorithms will be analyzed and

compared for optimal computation.

Algorithm 1 .The BMRC-granules algorithm

Input:

The approximate space (U, R), concept X , thresholds β, k;
Output:

MR-Granules;

1: Compute BMRC-Granules;

2: Construct BMR-Granules;

3: Obtain other MR-Granules: the approximations and the boundary region.

4: return all MR-Granules.

The macroscopic approximation algorithm is conventional and natural, while the microscopic BMRC-granules algorithm

originates from the basic structure of the MR granules and the results for both the BMR and BMRC granules. According to

Proposition 3.1.2, the MR granules are uniquely determined in the special cases where β = 0 or k = 0. In this section, the

two algorithms will be analyzed and compared for optimal computation in the typical case where β ∈ (0, 0.5) and k �= 0.
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Algorithm 2 .The approximation algorithm

Input:

The approximate space (U, R), concept X , thresholds β, k;
Output:

MR-Granules;

1: Compute the approximations: RβX and RkX;

2: Obtain other MR granules: BMR granules and the boundary region.

3: return all MR-Granules.

The calculation procedure is clear for the approximation algorithm. The computing procedure for the BMRC-granules

algorithm will be described in further detail, with a particular focus on the comparison of the orders of the parameters. For

the BMRC granules, there are only two steps. Firstly, |[x]R| is compared with k/(1 − β). Secondly, (i) if |[x]R| > k/(1 − β),
then |[x]R ∩ X| is compared with β|[x]R| first and |[x]R| − k second; (ii) if |[x]R| ≤ k/(1 − β), then |[x]R ∩ X| is compared

with |[x]R| − k first and β|[x]R| second. The code implementations of the two algorithms are therefore straightforward.

Themain task of the two algorithms is to judgewhether an equivalence class belongs to a specific set. For each equivalence

class, two input data, |[x]R| and |[x]R ∩X|, are required. Suppose that there are n equivalence classes and 2n input data. All of

the operations related to |[x]R|, |[x]R ∩ X| and n, such as division, reduction, multiplication and comparison are considered

to be basic operations.

In the approximation algorithm, p([x]R, X) and g([x]R, X) are first computed, and then the relationships between [x]R
and RβX , RkX are determined. For an equivalence class, four basic operations and two auxiliary variables are needed; the

additional processes are related only to certain set operations. The temporal and spatial complexity are therefore invariant:

T(n) = 4n, S(n) = 2n.Moreover, the temporal and spatial complexity of the similar approximation algorithmare T(n) = 3n,

S(n) = n in the VPRS model. In the BMRC-granules algorithm, there are at most three comparisons and two auxiliary

variables (β|[x]R| and |[x]R| − k) in the two computing steps. For BMRC granules, Table 1 (in Section 3.1) also provides the

corresponding numbers of basic operations and auxiliary variables. For example, for an equivalence class in BMRC granules

(1) or (4), there are only three basic operations and one auxiliary variable. The temporal and spatial complexity become

T(n) = 5n, S(n) = 2n and T(n) = 3n, S(n) = n in the worst and best cases, respectively.

Theasymptoticanalysesof the temporal andspatial complexityof the twoalgorithmsyield thesameresults:T(n) = �(n),
S(n) = �(n); both algorithmsare therefore feasible andeffective. TheBMRC-granules algorithmhas an important advantage

in terms of the spatial complexity; the spatial complexity of the approximation algorithm actually provides an upper bound

for that of theBMRC-granules algorithm.The complexityof theapproximationalgorithm is invariant,whereas the complexity

of the BMRC-granules algorithm is lower in two cases in which the equivalence class belongs to BMRC granules (1) or (4).

BMRC granules (1) and (4) belong to the negative region, and the negative region is usually the largest BMR granule;

therefore, the BMRC-granules algorithm also has an advantage in terms of the time complexity under most conditions. In

fact, according to Theorem 3.1.3, the BMR granules are thoroughly described by the BMRC granules; however, the BMRC

granules are determined by the initial data, where |[x]R| is first described by k/(1 − β) and then |[x]R ∩ X| is described

by |[x]R| − k and β|[x]R|. Therefore, in the BMRC-granules algorithm, the BMR-granular description and computation have

been improved by the rational ordering of the BMRC granules.

TheMR andBMRgranules act as fundamental notions related to themodel applications, and the twoproposed algorithms

can compute all of the MR granules and, in particular, all of the BMR granules. Therefore, a firm foundation for model

applications has been constructed based on our algorithms and MR-granular computing analysis. Furthermore, the BMRC-

granules algorithm can be used to compute all of the BMRC granules and certain BMR granules explicitly; for example,

the positive region can be obtained using a modified BMRC-granules algorithm. Moreover, the MR and BMR granules are

typically more accurate in practice because of the concrete distributions of the BMRC granules.

5. Properties of the approximation operators and the notions of attribute approximate dependence and reduction

The approximation operators serve as core notions for the rough set models, and their properties, including the idempo-

tence of their actions, are provided for (U, Rβ, Rk).

Proposition 5.1

(1) Rβφ = φ, RβU = U, Rkφ = ∪{[x]R : |[x]R| ≤ k}, RkU = U.

(2) X ⊆ Y ⇒ RβX ⊆ RβY, X ⊆ Y ⇒ RkX ⊆ RkY.

(3) Rβ(X ∪ Y) ⊇ RβX ∪ RβY, Rk(X ∪ Y) ⊇ RkX ∪ RkY.

(4) Rβ(X ∩ Y) ⊆ RβX ∩ RβY, Rk(X ∩ Y) ⊆ RkX ∩ RkY.

(5) Rβ(∼ X) =∼ RβX, Rk(∼ X) =∼ RkX.

(6) β ≥ α ⇒ RβX ⊆ RαX, k ≥ l ⇒ RkX ⊇ RlX.

(7) R0X = RX, R0X = RX.
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Proposition 5.2

(1) Rβ(RβX) = RβX ⊆ Rk(RβX).

(2) Rk(RβX) − RβX = (∪{[x]R : |[x]R| ≤ k}) − RβX.

(3) Rβ(RkX) = RkX = Rk(RkX).

Corollary 5.3

R(RX) = R(RX) = RX, R(RX) = R(RX) = RX. (27)

The BMR granules comprise basic notions for knowledge discovery and have been obtained using either the BMRC-

granules or approximation algorithms, allowing model applications to be explored. Thus, the attribute approximate depen-

dence and reduction are determined by the positive region.

Definition 5.4. Let S = (U, T) be a decision table, and let T = C ∪ D. Let IND(C) denote the equivalence relation on C. In

(U, Rβ, Rk), suppose that

pos(C,D, β, k) = ⋃
Z∈U/D

posIND(C)β,kZ;

γ (C,D, β, k) = |pos(C,D, β, k)|/|U| (28)

is referred to as the approximate dependence degree of decision attribute set D and condition attribute set C.

This definition is similar to the corresponding notions in the Pawlak and VPRS models, where the positive regions are

equated with the lower approximations. This attribute approximate dependence degree is actually a comprehensive evalu-

ation index of the classification capability with respect to the double-quantitative indexes (the precision and grade). A new

definition of attribute approximate reduction is also introduced.

Definition 5.5. The set red(C,D, β, k), a subset of C, is referred to as an approximate reduct of condition attribute set C

with respect to decision attribute set D if it satisfies two conditions:

(1) γ (C,D, β, k) = γ (red(C,D, β, k),D, β, k);
(2) if any attribute is deleted from red(C,D, β, k), then (1) no longer holds.

Attribute approximate reduction is awell-established notion in data processing, and the attribute approximate reduction

in (U, Rβ, Rk) (Definition 5.5) therefore has practical value. In the double-quantitative environment, the attribute approxi-

mate reduction reflects the data relationships in the database and provides superior approximate reasoning and discovery

of decision rules.

According to Theorem2.2.3, both the attribute approximate dependence and reduction are a natural generalization of the

related notions in the Pawlak model; therefore, we have also developed these two important notions in rough set theory.

6. Corresponding results in the latter model

Proposition 6.1

(1) If β = 0, then RkX = ∪{[x]R : |[x]R ∩ X| > k}, RβX = RX, posRk,βX = RkX ∩ RX, negRk,βX =∼ (RkX ∪ RX),

ubnRk,βX = RkX − RX, lbnRk,βX = RX − RkX, bnRk,βX = (RkX − RX) ∪ (RX − RkX).

In particular, if β = 0 and k = 0, then RβX = RX, RkX = RX, posRk,βX = posRX, negRk,βX = negRX, ubnRk,βX =
bnRk,βX = bnRX, lbnRk,βX = φ.

(2) If k = 0 and β ∈ (0, 0.5), then RkX = RX, RβX = ∪{[x]R : |[x]R ∩ X| ≥ (1 − β)|[x]R|}, posRk,βX = RβX,

negRk,βX =∼ RX, ubnRk,βX = bnRk,βX = RX − RβX, lbnRk,βX = φ.

Proposition 6.1 shows the results for the MR granules in the special cases in which β = 0 or k = 0. Therefore, the results

are provided only for the typical case, β ∈ (0, 0.5) and k �= 0. Theorem 6.2 presents the full BMR-granular description of

the BMRC granules, and Table 2 provides the BMRC granules and several related results, such as the corresponding BS and

computational analysis.
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Table 2

The BMRC granules and their properties in (U, Rk, Rβ) when β ∈ (0, 0.5) and k �= 0.

BMRC-granule No. 1: |[x]R| No. 2: |[x]R ∩ X| BMR-granule BS Basic operations Auxiliary variables

(1) > k/(1 − β) ≤ k negRk,βX (2) 2 0

(2) > k/(1 − β) (k, (1 − β)|[x]R|) ubnRk,βX (3) 4 1

(3) > k/(1 − β) ≥ (1 − β)|[x]R| posRk,βX (1) 4 1

(4) ≤ k/(1 − β) < (1 − β)|[x]R| negRk,βX (2) 4 1

(5) ≤ k/(1 − β) [(1 − β)|[x]R|, k] lbnRk,βX (4) 4 1

(6) ≤ k/(1 − β) > k posRk,βX (1) 2 0

Fig. 3. BMR granules for (U, Rk, Rβ) in the two-dimensional plane.

Theorem 6.2. If 0 < β < 0.5 and k �= 0, then

(1) posRk,βX = (∪{[x]R : |[x]R| > k/(1 − β), |[x]R ∩ X| ≥ (1 − β)|[x]R|})
∪(∪{[x]R : |[x]R| ≤ k/(1 − β), |[x]R ∩ X| > k});

(2) negRk,βX = (∪{[x]R : |[x]R| > k/(1 − β), |[x]R ∩ X| ≤ k})
∪(∪{[x]R : |[x]R| ≤ k/(1 − β), |[x]R ∩ X| < (1 − β)|[x]R|});

(3) ubnRk,βX = ∪{[x]R : |[x]R| > k/(1 − β), k < |[x]R ∩ X| < (1 − β)|[x]R|};
(4) lbnRk,βX = ∪{[x]R : |[x]R| ≤ k/(1 − β), (1 − β)|[x]R| ≤ |[x]R ∩ X| ≤ k}.

In the two-dimensional plane, the BMRC granules are actually the complete and classified regions with respect to three

lines: Y = k, Y = (1 − β)V and V = k/(1 − β). The qualitative result for the BMRC granules also becomes stable, and Fig.

3 shows the distribution of the BMR granules (when k = 10 and β = 0.4). Moreover, the granular hierarchical structure is

as same as that in the former model.

The approximation and BMRC-granules algorithms are analyzed and compared in the typical case in which β ∈ (0, 0.5)
and k �= 0. As for the second computing step in the BMRC-granules algorithm, |[x]R ∩ X| is first compared with k and then

with (1−β)|[x]R|. The temporal and spatial complexity of the approximation algorithmare T(n) = 3n and S(n) = n. For the

BMRC-granules algorithm,Table2alsoprovides thecorrespondingnumbersofbasicoperationsandauxiliaryvariables for the

BMRC granules; the temporal and spatial complexity are T(n) = 4n, S(n) = n and T(n) = 2n, S(n) = c in theworst and best

cases, respectively. Therefore, the asymptotic values of the complexity of the two algorithms are at most T(n) = �(n) and
S(n) = �(n), and the algorithms are both feasible and effective. Furthermore, the BMRC-granules algorithm is necessarily

superior in terms of the spatial complexity and usually superior in terms of the temporal complexity. The BMRC-granules

algorithm is also advantageous for concrete computing and applications with respect to certain BMR granules.

Proposition 6.3

(1) Rkφ = φ, RkU = ∪{[x]R : |[x]R| > k}, Rβφ = φ, RβU = U.

(2) X ⊆ Y ⇒ RkX ⊆ RkY, X ⊆ Y ⇒ RβX ⊆ RβY.

(3) Rk(X ∪ Y) ⊇ RkX ∪ RkY, Rβ(X ∪ Y) ⊇ RβX ∪ RβY.

(4) Rk(X ∩ Y) ⊆ RkX ∩ RkY, Rβ(X ∩ Y) ⊆ RβX ∩ RβY.

(5) Rk(∼ X) =∼ RkX, Rβ(∼ X) =∼ RβX.
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Table 3

Statistical data on the patient classes.

[x]m |[x]m| g = |[x]m ∩ X| p([x]m, X) g = |[x]m| − |[x]m ∩ X|
[x]1 7 0 0 7

[x]2 2 1 0.5 1

[x]3 3 1 1/3 2

[x]4 1 1 1 0

[x]5 5 2 0.4 3

[x]6 5 3 0.6 2

[x]7 4 2 0.5 2

[x]8 6 4 2/3 2

[x]9 3 3 1 0

(6) k ≥ l ⇒ RkX ⊆ RlX, β ≥ α ⇒ RβX ⊇ RαX.

(7) R0X = RX, R0X = RX.

Proposition 6.4

(1) Rk(RkX) = RkX = Rβ(RkX).

(2) Rk(RβX) ⊆ RβX = Rβ(RβX).

(3) RβX − Rk(RβX) = RβX ∩ (∪{[x]R : |[x]R| ≤ k}).

The attribute approximate dependence and reduction in (U, Rk, Rβ) are also of practical importance in rough set theory

and its applications.

7. A medical example

In this section, themedical example [46] is introduced to illustrate the utilization of the newmodels. Let S = (U, T, V, f )
be a decision table, where U is composed of thirty-six patients, and the condition and decision attributes are fever, headache

and cold, respectively. Let R denote the equivalence relation on the condition attributes. Based on the measured medical

data, Table 3 provides the statistical data on the patient classes, where [x]m = (i, j)(m = 1, 2...9) denote the patient classes
on R, and X denotes the cold patient set. The BMRC-granular and MR-granular computing results and certain quantitative

semantics are provided for each of the two models for the case where β = 0.4 and k = 1.

The BMRC-granules algorithm

(I) In (U, Rβ, Rk), the computational results are as follows.

(i) There are only four BMRC granules. BMRC granule (1) is composed of [x]1, [x]3 and [x]5; BMRC granule (2) is

composed of [x]6, [x]7 and [x]8; BMRC granule (3) is composed of [x]2 and [x]9; BMRC granule (6) is composed

of [x]4.
(ii) The BMR granules are provided as follows: posRβ,kX = [x]2 ∪ [x]4 ∪ [x]9, negRβ,kX = [x]1 ∪ [x]3 ∪ [x]5,

ubnRβ,kX = [x]6 ∪ [x]7 ∪ [x]8, lbnRβ,kX = φ.

(iii) RβX = [x]2 ∪ [x]4 ∪ [x]6 ∪ [x]7 ∪ [x]8 ∪ [x]9, RkX = [x]2 ∪ [x]4 ∪ [x]9, bnRβ,kX = [x]6 ∪ [x]7 ∪ [x]8.
(II) In (U, Rk, Rβ), the related results are as follows.

(i) There are only four BMRC granules. BMRC-Granule (1) is composed of [x]1, [x]2 and [x]3; BMRC-Granule (2) is

composed of [x]5 and [x]7; BMRC-Granule (3) is composed of [x]6, [x]8 and [x]9; BMRC-Granule (5) is composed

of [x]4.
(ii) posRk,βX = [x]6 ∪ [x]8 ∪ [x]9, negRk,βX = [x]1 ∪ [x]2 ∪ [x]3, ubnRk,βX = [x]5 ∪ [x]7, lbnRk,βX = [x]4.
(iii) RkX = [x]5 ∪ [x]6 ∪ [x]7 ∪ [x]8 ∪ [x]9, RβX = [x]4 ∪ [x]6 ∪ [x]8 ∪ [x]9, bnRk,βX = [x]4 ∪ [x]5 ∪ [x]7.

The approximation algorithm

(I) In (U, Rβ, Rk),

(i) RβX = [x]2 ∪ [x]4 ∪ [x]6 ∪ [x]7 ∪ [x]8 ∪ [x]9, RkX = [x]2 ∪ [x]4 ∪ [x]9;
(ii) posRβ,kX = [x]2 ∪ [x]4 ∪ [x]9, negRβ,kX = [x]1 ∪ [x]3 ∪ [x]5, ubnRβ,kX = bnRβ,kX = [x]6 ∪ [x]7 ∪ [x]8,

lbnRβ,kX = φ.

(II) In (U, Rk, Rβ),
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(i) RkX = [x]5 ∪ [x]6 ∪ [x]7 ∪ [x]8 ∪ [x]9, RβX = [x]4 ∪ [x]6 ∪ [x]8 ∪ [x]9;
(ii) posRk,βX = [x]6 ∪ [x]8 ∪ [x]9, negRk,βX = [x]1 ∪ [x]2 ∪ [x]3, ubnRk,βX = [x]5 ∪ [x]7, lbnRk,βX = [x]4,

bnRk,βX = [x]4 ∪ [x]5 ∪ [x]7.

Each BMR/MR granule has its own quantitative semantics for the precision and grade. Only two examples are provided

here for brevity; the remaining results can be obtained similarly. Based on the condition attributes fever, headache, the

universe is classified into only nine patient classes. In (U, Rβ, Rk), posRβ,kX = [x]2 ∪ [x]4 ∪ [x]9 denotes those patient

classes whose precision with respect to the cold patient set exceeds 0.4 and whose external grade with respect to the cold patient

set does not exceed 1; this quantitative semantics is a kind of double-semantics on the precision and grade and corresponds

to BS (1). Equivalently, posRβ,kX denotes those patient classes whose relative degree of misclassification with respect to the

cold patient set is smaller than 0.6 and whose number of patients outside the cold patient set is at most 1. In (U, Rk, Rβ),

RkX = [x]5 ∪ [x]6 ∪ [x]7 ∪ [x]8 ∪ [x]9 denotes those patient classes whose internal grade with respect to the cold patient

set exceeds 1; equivalently, it denotes those patient classes whose number of patients inside the cold patient set exceeds 1.

The corresponding double-semantics is a construction of BS (1) and (3), i.e., RkX also denotes those patient classes either

whose internal grade with respect to the cold patient set exceeds 1 and whose precision with respect to the cold patient set is

at least 0.6 or whose internal grade with respect to the cold patient set exceeds 1 and whose precision with respect to the cold

patient set is smaller than 0.6. Clearly, the multiple-semantic descriptions are more diverse and abundant. In contrast to the

single-semantics, the double-semantics also exhibits completeness.

This medical example demonstrates how the two new models provide a double-quantification of the precision and

grade. They therefore exhibit double fault-description and fault-tolerance features and have substantial practical value.

In (U, Rβ, Rk), the temporal and spatial complexity of the BMRC-granules and approximation algorithms are T(9) = 39,

S(9) = 15 and T(9) = 36, S(9) = 18, respectively; in (U, Rk, Rβ), the corresponding values are T(9) = 30, S(9) = 6

and T(9) = 27, S(9) = 9. The spatial advantage of the BMRC-granules algorithm is clear in this example. As for the time

complexity, there is only a small gap between the two algorithms. Moreover, T(9) = 27 and S(9) = 9 in the VPRS model.

In (U, Rβ, Rk), the approximate dependence degree of the decision attribute set cold and condition attribute set fever,

headache is obtained as follows: γ (C,D, 0.4, 1) = 0.44; where, posRβ,kX = [x]2 ∪ [x]4 ∪ [x]9, posRβ,k(∼ X) = [x]1 ∪
[x]2 ∪ [x]3. In (U, Rk, Rβ), posRk,βX = [x]6 ∪ [x]8 ∪ [x]9, posRk,β(∼ X) = [x]1 ∪ [x]3 ∪ [x]5, and γ (C,D, 0.4, 1) = 0.81.

Finally,we stress a particular point on the advantages of the newmodels. For [x]2 and [x]7, p([x]2, X) = p([x]7, X) = 0.5;
therefore, [x]2 and [x]7 become indiscernible and equal in the VPRS model. However, they are essentially different; in fact,

|[x]2| = 2 �= 4 = |[x]7| and |[x]2 ∩ X| = 1 �= 2 = |[x]7 ∩ X|. For the same threshold value (β = 0.4), both [x]2
and [x]7 belong to the boundary region in the VPRS model, while they belong to the positive and upper boundary regions,

respectively, in (U, Rβ, Rk) and belong to the negative and upper boundary regions, respectively, in (U, Rk, Rβ). The two

knowledgegranuleshave thereforebeendivided into twodifferentBMRgranules andbecomediscernible in thebasicdouble-

quantitative models. This discernibility cannot be neglected in the quantification, but cannot be determined using only the

precision. Therefore, the grade information is also a fundamental factor, and the double quantification of the precision and

grade provides a complete and valuable description. Furthermore, the case in which p([x]2, X) = 0.5 is naturally the case

with the highest uncertainty for [x]2. The VPRS model cannot provide a thorough analysis and simply allocates [x]2 to the

boundary region. However, in view of both the threshold k = 1 and the grade information, g([x]2, X) = 1 or g([x]2, X) = 1,

the two newmodels allocate [x]2 to the positive and negative regions from two different directions. The certainty of [x]2 has
therefore been strengthened and improved based on themodel regions. Clearly, the double quantification becomes rational,

valuable and applicable in this case. Similarly, we can analyze the results of the GRS model when k = 1. For example,

knowledge granules [x]5, [x]7 can be compared between the GRS model and the first model. In summary, this example

also demonstrates that compared to the VPRS and GRS models, the double quantification and new models exhibit both

completeness for quantification and improvements for the applied regions.

8. Conclusion

The double-quantification of the precision and grade is a novel, necessary, valuable and feasible technique. Therefore,

given the completeness and complementarity of the two indexes, this paper explores their combination using the Cartesian

product. The proposed models, i.e., (U, Rβ, Rk) and (U, Rk, Rβ), perform a basic double quantification of the precision and

grade. They therefore have concrete double-quantitative semantics, which thoroughly describe the approximate space, and

exhibit strong double fault-tolerance capabilities, enabling them to adapt to complex environments. Moreover, the new

models are directional expansions of the Pawlak model and satisfy the quantitative completeness property; the models are

therefore promising for practical applications. The new models are therefore suitable as basic double-quantitative models

in both theoretical studies and practical applications. Based on our granular computing studies, three types of granules (MR,

BMR, and BMRC granules) have been defined to describe the structures and relationships inherent in double-quantification.

Furthermore, our semantic extraction and concrete computing methods, especially the optimal BMRC-granules algorithm,

have substantial importance for knowledgediscovery in double quantification. The fundamental issues inmodel applications
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(the complete system, quantitative semantics and optimal computing of macroscopic regions) have therefore been resolved

in thenewmodels.Moreover, the two-dimensionalplaneon |[x]R|and |[x]R∩X|hasprovidedanovel technologyandeffective
tool for the quantitative study of the approximate space, especially for the basic quantitative system (|[x]R|, |[x]R ∩ X|).

Several aspects of the new models are worth investigating in further depth, including the uncertainty measures and

the properties of the models with respect to the concept and parameter systems. Thorough studies of the new models

based on generalized relations and practical applications of the new models (e.g., based on the attribute approximate

dependence/reduction) are also interesting directions for future research. Other double-quantitative models should also be

extensively explored in future work.
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