
Pattern Recognition 46 (2013) 1638–1647
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32

http://d

n Corr

Tongji U

China. T

E-m
journal homepage: www.elsevier.com/locate/pr
A global structure-based algorithm for detecting the principal
graph from complex data
Hongyun Zhang a,b,c,n, Witold Pedrycz b,d, Duoqian Miao a,c, Caiming Zhong a,e

a Department of Computer Science and Technology, Tongji University, Shanghai 201804, PR China
b Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G7
c Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai 201804, PR China
d System Research Institute, Polish Academy of Sciences, Warsaw, Poland
e College of Science and Technology, Ningbo University, Ningbo 315211, PR China
a r t i c l e i n f o

Article history:

Received 1 March 2012

Received in revised form

10 October 2012

Accepted 11 November 2012
Available online 5 December 2012

Keywords:

Principal curve

Complex data

Global structure

Principal graph

Vertex-merge step

Improved fitting-smoothing phase
03/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.patcog.2012.11.015

esponding author at: Department of Compu

niversity, No. 4800, Cao’an Road, Jiading D

el.: þ86 21 69589867/13917907676; fax: þ

ail address: zhanghongyun@tongji.edu.cn (H.
a b s t r a c t

Principal curves arising as an essential construct in dimensionality reduction and pattern recognition

have recently attracted much attention from theoretical as well as practical perspective. Existing

methods usually employ the first principal component of the data as an initial estimate of principal

curves. However, they may be ineffective when dealing with complex data with self-intersecting

characteristics, high curvature, and significant dispersion. In this paper, a new method based on global

structure is proposed to detect the principal graph—a set of principal curves from complex data. First,

the global structure of the data, called an initial principal graph, is extracted based on a thinning

technique, which captures the approximate topological features of the complex data. In terms of the

characteristics of the data, vertex-merge step and the improved fitting-and-smoothing phase are then

proposed to control the deviation of the principal graph and improve the process of optimizing the

principal graph. Finally, the restructuring step introduced by Kégl is used to rectify imperfections of the

principal graph. By using synthetic and real-world data sets, the proposed method is compared with

other existing algorithms. Experimental results show the effectiveness of the global structure based

method.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Principal component analysis [1] is a well-known technique in
multivariate analysis. It is used in dimensionality reduction, feature
extraction, and image coding and enhancement. As a nonlinear
generalization of principal component analysis, principal curves
are defined as one-dimensional (1D) curves that pass through the
‘‘middle’’ of a set of p-dimensional data points, providing smooth
and curvilinear summaries of p-dimensional data. These curves
satisfy the self-consistency property, i.e., a point on the curve is an
average of all data points that project onto it. Principal curves have
received significant attention since Hastie and Stuetzle (hereafter
HS) introduced the notion of principal curves to solve the problems
in traditional machine learning and multivariate data analysis [2].
Considerable work has been reported on the applications of
principal curves, such as high-dimensional data partition [3], shape
detection [4,5], image skeletonization [6,7], speech recognition [8],
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noise robustness improvement of time warping methods [9],
feature extraction, bill recognition [10–12], intelligent transporta-
tion analysis [13], and regression analysis [14].

HS first proposed the concept of principal curve and developed an
algorithm for constructing principal curves. The HS’s principal curves
algorithm (HSPC) finds principal curves by iterating between pro-
jecting data onto the curve and estimating conditional expectations
on projectors by the scatter smoother or the spline smoother [2].
Referring to the HS’s algorithm, many researchers have offered
improvements to the theory as well as algorithmic developments.
To address the problem of model bias of the HSPC algorithm,
Tibshirani introduced a semi-parametric principal curve model
(hereafter TPC), in which an EM algorithm was used to estimate
principal curves [15]. In 2000, Kégl et al. defined a polygonal curve
with k segments and length L as principal curves to solve the
problem of convergence of the HSPC algorithm (KPC). The KPC
algorithm seeks principal curves by starting with the shortest
segment of the first principal component line f 1,n which contains
all of the projected data points, and in each iteration of the algorithm,
it increases the number of segments by one by adding a new vertex
to the polygonal curve f k,n produced in the previous iteration. After
adding a new vertex, the positions of all vertices are updated so that
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Fig. 1. Projecting points on a curve.
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the value of a penalized distance function becomes minimized
[16,22]. Delicado in 2001 defined principal curves as principal curves
of oriented points to correct bias (DPC). The DPC algorithm finds the
principal oriented points one by one and orderly links them to
estimate principal curves [17,18]. Verbeek et al. defined K-segment
principal curves (VPC). The VPC algorithm estimates principal curves
by incrementally combining local line segments into the polygonal
line to achieve an objective similar to that of Tibshirani’s [19]. More
recently, Einbeck et al. introduced local principal curves, which were
based on the localization of principal component analysis (hereafter
LPC). The LPC algorithm generates principal curves by connecting a
series of local centers of mass of the data using interpolation or
splines, which is similar to Delicado’s algorithm [20]. Zhang et al.
proposed Riemannian principal curves to address the problem of
non-constant data distributions in 2010 (hereafter RPC). The RPC
algorithm constructs principal curves by revisiting the projection of
the samples onto the curve and incorporating Riemannian distances
to reflect the middle of data distribution [21]. Ozertem and Erdog-
mus in 2011 introduced principal curves and surfaces from a new
point of view. They expressed principal curves and surfaces in terms
of gradient and the Hessian (hereafter OEPC). OEPC algorithm
generates principal curves and surfaces by using subspace con-
strained mean shift (SCMS) based on kernel density estimation and
Gaussian mixture models [23]. Gérard et al. in 2011 proposed
parameter selection for principal curves. They considered the princi-
pal curve problem from an empirical risk minimization perspective
and addressed the parameter selection issue using the point of view
of model selection via penalization [24].

Despite the progress reported in the development of principal
curve algorithms, there are still some issues that need to be
resolved. For instance, the first principal component is often used
as the initial estimate of the principal curve when lacking the
prior knowledge in existing principal curves algorithms. However,
for the complex data with high curvature, significant dispersion
and self-intersecting, such as spiral-shaped data, fingerprint data,
and alike, the first principal component cannot reflect topological
features of these data, so good results cannot be achieved during
implementation process of these algorithms. Though some recent
PC algorithms do not depend on initial estimates and can achieve
good results on data with loops, self-intersecting and bifurcations,
such as the OEPC algorithm proposed by Ozertem and Erdogmus
in 2011 [23], a good initial estimate may be helpful to improve
the performance of the principal curves algorithm, especially for
processing the complex data mentioned above. Therefore, we
refer to the ideas of Granular Computing [25–30] and propose a
global principal graph method (referred to as GPG), which is
based on a global structure to detect the principal graph—a set of
principal curves from the complex data. Instead of starting with a
simple topology such as the first principal component, the GPG
directly generate an initial principal graph, which captures the
approximate topological features of the complex data by using
thinning algorithm. However, the principal graph is not smooth
and does not satisfy the self-consistency property. To remedy
these drawbacks, we adopt the fitting-and-smoothing step intro-
duced by Kégl [16] to optimize the principal graph by updating
the positions of all vertices. During the process of optimizing the
principal graph, we find that the complex data may cause
the deviation of the principal graph and result in a low efficiency
of the algorithm. To address these problems, a vertex-merge step
and improved the fitting-and-smoothing step are proposed.
Finally, the restructuring step introduced by Kégl [16] is used to
further rectify imperfections of the principal graph.

The remainder of this paper is organized as follows. Section 2
gives a brief overview of the concept of principal curves. In Section
3, the global structure based principal curve algorithm is described
in detail. Section 4 evaluates and analyzes the performance of the
proposed algorithm on synthetic and real-world data sets. Finally,
Section 5 provides some conclusions of this study.
2. Principal curves-some preliminaries

In this section, we review some basic concepts of principal
curves. For more details, the reader is referred to [2].

Hastie and Stuetzle generalized the self-consistency property
of principal components and introduced the notion of principal
curves. Let X denote a random vector in Rd, and f ðlÞ ¼ ðf 1ðlÞ, . . . ,
f dðlÞÞ be a smooth curve in Rd parameterized by lAR. For any
XARd, let lf ðXÞ denote the largest parameter value l for which the
distance between X and f ðlÞ is minimized. More formally, the
projection index lf ðXÞ is defined by

lf ðXÞ ¼ supfl : JX�f ðlÞJ¼ inf
t
JX�f ðtÞJg ð1Þ

where J:J denotes the Euclidean norm in Rd. Accordingly, the
projection point of X to f is f ðlf ðXÞÞ, see Fig. 1.

Definition 1. The smooth curve f ðlÞ is a principal curve if and
only if [2]:
(1)
 f ðlÞ does not intersect itself,

(2)
 f ðlÞ has finite length inside any bounded subset of Rd,

(3)
 f ðlÞ is self-consistent, that is

f ðlÞ ¼ E½X9lf ðXÞ ¼ l� 8lAR,XARd
ð2Þ
Roughly speaking, principal curves are smooth one-dimensional
(1D) curves that pass through the ‘‘middle’’ of a set of p-dimen-
sional data points [2]. The goal is to provide smooth and low
dimensional summaries of these data. Here, a 1D curve in a
p-dimensional space is a vector f of p functions indexed by one
single variable l. The parameter l is the arc length along the curve.
The definition of a principal curve states that any point of a
principal curve is the condition expectation of those points that
project to this point, and a principal curve satisfies the property of
self-consistency. Principal curves form a nonlinear generalization
of principal component analysis. The theoretical foundations of
these curves are a low-dimensional nonlinear manifold embedded
in a high-dimensional space [2,3]. Fig. 2 shows a first principal
component line and a principal curve. Compared with the corre-
sponding principal component, two obvious advantages of a
principal curve can be observed: a principal curve can retain more
information about the data. Furthermore, it follows the data more
closely and captures a geometric shape of data more accurately.

3. The global principal graph algorithm

Assume that a set of data Xn ¼ fx1, . . . ,xng is given. We
determine the smooth principal graph which passes through the
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Fig. 2. The comparison between first principal component and principal curve: (a) first principal component; (b) principal curve.
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‘‘middle’’ of such cloud of data. The principal graph is constructed
following the strategy outlined below:
(1)
 Initialize the data points to extract global structure called an
initial principal graph G0

vs;

(2)
 Merge the adjacent vertices of G0

vs to increase the ratio of
graph vertex vi number to the data point xi number;
(3)
 Project the data points Xn and partition them into ‘‘the nearest
neighbor regions’’ through the projection step;
(4)
 Fit and smooth the G0
vs by updating the positions of all vertices

on a basis of the results of projection obtained during in the
step of vertex optimization;
(5)
 Repeat steps (3) and (4) until a local minimum of the
penalized distance function En

ðGÞ has been achieved. In this
way, principal curves Gk

vs is formed;

(6)
 Further rectify the structural imperfections of Gk

vs during the
restructuring step.
In the following sections, we elaborate on these steps in more
detail.

3.1. Extraction of the global structure

To overcome the ineffectiveness of the first principal compo-
nent when it is used as an initial estimate of complex data, we
initialize the complex data based on the thinning algorithm [31]
to extract the global structure called here an initial principal
graph G0

vs, which captures the approximate topological features of
the complex data. It roughly follows the medial axis of the
complex data. G0

vs is defined by two sets V and S, where
V ¼ fv1, . . . ,vng is a set of vertices, and S¼ fðvi1,vj1Þ, . . . , ðvik,
vjkÞg ¼ fsi1,j1, . . . ,sik,jkg, 1r i1,j1, . . . ,ik, jkrm is a set of edges, while
sij is a line segment that connects vi and vj. For the sake of
simplicity, we write S¼ fS1, . . . ,skg.

3.2. Merging the adjacent vertices

The initial principal graph G0
vs does not satisfy the self-

consistency property [2] and it is not smooth meaning it contains
a number of spurious branches and short loops. In light of this, G0

vs

requires further refinements.
Note that G0

vs includes hundreds of vertices, and the distribu-
tion of the complex data is scattered. In other words, the ratio of
the number of data point to the vertex number of G0

vs, which is
denoted as a, is low. Through observations coming from experi-
ments, the value of a is usually less than 6. This indicates that
only a small number of data points, on average, are involved in
adjusting the vertices of G0

vs, which causes the deviation of the G0
vs

and the low efficiency of the algorithm during the process of
optimizing the principal graph G0

vs. In order to address these
problems, a vertex-merge step based on the distance and curva-
ture criterion has to be completed prior to the optimization of G0

vs.
The reason is as follows: (a) The vertex-merge step can effectively
reduce the number of vertices, which need to be adjusted. As a
result, the efficiency of the algorithm is improved. (b) Vertex-
merge step increases the proportion of data points to principal
graph vertices. More data points, on average, are involved in
adjusting a vertex of G0

vs, so that the deviation of principal graph
G0

vs can be controlled to a certain degree. Vertex-merge algorithm
based on the distance and curvature criterion (DCVM) can be
summarized as follows:

Algorithm 1. Vertex-merge algorithm.

Input: G0
vs ¼ ðV ,SÞ, the initial principal graph of vertices to be

merged

Output: G1
vs, reduction of G0

vs.

01: for every vertex viAG0
vs do;

02: Let vl be the left adjacent vertex of vi;
03: Let vr be the right adjacent vertex of vi;

04: Compute the Euclidean distance, dðvl,viÞ ¼ Jvl�viJ and

dðvi,vrÞ ¼ Jvi�vrJ;

05: Compute the threshold dt, dt ¼
1
m

Pm
i ¼ 1 dðvi�1,viÞ;

06: if dðvl,viÞþdðvi,vrÞok� dt , Then
07: connect vl and vr, and remove vi;
08: end if
09: if dðvl,viÞ=dðvi,vrÞ4au or dðvl,viÞ=dðvi,vrÞoal, Then
10: connect vl and vr, and remove vi;
11: end if
12: end for

13: for every vertex viAG0
vs do;

14: Compute the directional angle of vl and vi;

yvlvi
¼ arctan½ðvi � y�vl � yÞ=ðvi � x�vl � xÞ�

15: Compute the directional angle of vi and vr;

yvivr ¼ arctan½ðvr � y�vi � yÞ=ðvr � x�vi � xÞ�

16: Let b¼+vlvivr be the included angle of -vlvi
and

-vivr ;

17: Compute b, b¼ 9yvlvi
�yvivr 9

18: if b4p, Then

19: b¼ 2p�b
20: end if
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21: if p�boy, Then
22: connect vl and vr, and remove vi;
23: end if
24: end for
Note that in the algorithm k, au, al and y are the parameters
whose values have to be determined in an experimental fashion.
This problem will be discussed in Section 4.1.
3.3. Fitting and smoothing the principal graph

After reducing the G0
vs by using vertex-merge algorithm based

on the distance and curvature criterion (DCVM), we adopt the
fitting-and-smoothing step introduced by Kégl’s [16] to optimize
G1

vs. However, the fitting-smoothing step of the original algorithm
is of low efficiency for complex data. To remedy this drawback,
we improve the projection strategy and redefine the penalized
distance function in the vertex optimization step to improve the
efficiency of the algorithm. For the sake of simplicity, the
principal graph is denoted as G in the following formulas. The
main idea is as follows:

First, we project the data points onto the principal graph G1
vs

and partition them into ‘‘the nearest neighbor regions’’ in this
projection step. Then, the penalized distance function En

ðGÞ is
calculated according to the partition. Finally, we iterate over the
vertices, and relocate each vertex by using a gradient (steepest
descent) method while all the others are kept fixed, until a local
minimum of En

ðGÞ has been achieved in the vertex optimization
step.

The improved projection step: For every data point xi, scanning
the whole principal graph and partitioning the data point xi into
‘‘the nearest neighbor regions’’ according to which segment or
vertex it projects onto in the original algorithm [16]. This step is
the most time-consuming, since thousands of scans are required.
Considering the characteristic of the complex data, the projection
step of the original algorithm can be improved. We only scan
certain areas of the graph around the data point xi and partition it
into the nearest neighborhood region instead of the whole graph.
Width of the areas of the graph around a data point xi could be
adjusted experimentally, which is denoted as o. The resulting
partition is illustrated in Fig. 3.

The improved vertex optimization step: The penalized distance
function E(G) presented in the original algorithm [16] is defined as

EðGÞ ¼DðGÞþlPðGÞ ð3Þ
Fig. 3. A nearest-neighbor partition induced by the vertices and edges of a graph.
The first component DðGÞ is the average squared distance of
points in Xn to the graph G defined by

DðGÞ ¼
1

n

Xn

i ¼ 1

Dðxi,GÞ ð4Þ

where n is the number of the data points and Dðxi,GÞ is the
Euclidean squared distance between a point xi and the nearest
point of the principal graph G to xi. The second component P(G) is
a penalty of the total curvature of the graph defined by

PðGÞ ¼
1

m

Xm

i ¼ 1

PvðviÞ ð5Þ

where m is the number of vertices and PvðviÞ is the curvature
penalty at vertex vi.

Since a lot of triangle functions and piecewise functions are
used in the original penalty function P(G) [16], the related
computing becomes really time-costing. We have figured out a
way to solve this problem by replacing P(G) with a new penalty
function D(G). Accordingly, we redefine the penalized distance
function as follows:

En
ðGÞ ¼DðGÞþlDðGÞ ð6Þ

The second component D(G) is a penalty imposed on the total
curvature of the graph defined by

DðGÞ ¼
1

m

Xm

i ¼ 1

X

xAVi[Si

Dðx,viÞ ð7Þ

From the experimental perspective, the function D(G) exhibits
three advantages: (1) it makes the optimization converge fast;
(2) it reduces the principal graph deviation; (3) since D(G) only
involves simple calculation of addition and average, it is more
efficient than P(G) which uses triangle functions.

The decision step: Decide if the adjusted principal graph meets
the convergence condition, which means a local minimum of
En
ðGÞ has been achieved. If it is satisfied, output Gk

vs and go to
Section 3.4, else go to the improved projection step.

Remark 1. It should be noted that l is a penalty coefficient that
trade-offs between the accuracy of the approximation and
smoothness of the curves [16]. The smaller the value of DðGÞ is,
the better Gk

vs fits the data; D(G) is a penalty on the total curvature
of the principal graph. The lower the value of D(G), the smoother
Gk

vs is.

3.4. Restructuring the principal graph

In the fitting-and-smoothing step, we relocate vertices and
edges of the principal graph based on En

ðGÞ, but we do not modify
the principal graph in a graph theoretical sense. In the step, we
use geometric properties of the principal graph to modify the
configuration of vertices and edges by deleting short paths and
small loops to get more accurate principal graph. The step is the
same as the restructuring step of the original algorithm [16].

3.5. The pseudo-code of GPG algorithm

The essence of the GPG algorithm is outlined as follows:

Algorithm 2. The principal graph algorithm based on global
structure (GPG algorithm).

Input: the complex data set Xn ¼ fx1, . . . ,xng

Output: the principal graph Gk
vs.

01: extract the global structure G0
vs for Xn, by thinning

algorithm;

02: reduce the G0
vs by DCVM algorithm. Set k¼1;
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03: do fitting and smoothing Gk
vs

04: for every data point xiAXn do;

05: for every vertex viAGk
vs and dðxi,viÞoo do

06: compute the min dðxi,viÞ, GðlGðxiÞÞ, and

min¼min dðxi,viÞ

07: end for

08: for every vertex viAGk
vs do

09: if dðxi,viÞ ¼ Jxi�GðlGðxiÞÞJ and dðxi,viÞ ¼min, Then
10: add xi to the nearest neighbor regions Vi of vi;
11: end if
12: end for

13: for every line segment siAGk
vs and dðxi,siÞoo do

14: compute the min dðxi,siÞ, GðlGðxiÞÞ, and

min¼min dðxi,siÞ;
15: end for

16: for every line segment siAGk
vs do

17: if dðxi,siÞ ¼ Jxi�GðlGðxiÞJ and dðxi,siÞ ¼min, Then
18: add xi to the nearest neighbor regions Si of si;
19: end if
20: end for
21: end for
22: compute the average squared distance of points in Xn

to the graph Gk
vs

DðGÞ ¼ ð1=nÞ
Pn

i ¼ 1 Dðxi,GÞ

23: compute penalty function

DðGÞ ¼ ð1=mÞ
Pm

i ¼ 1

P
xAVi[Si

Dðx,viÞ

24: compute the penalized distance function En
ðGÞ

En
ðGÞ ¼DðGÞþlDðGÞ

25: for every vertex viAGk
vs do;

26: compute the gradient rvi
En
ðGÞ of En

ðGÞ with respect to vi;

27: execute a line search in the direction of �rvi
En
ðGÞ

(steepest descent) and relocate vi;
28: end for
29: k¼ kþ1

30: until find a local minimum of En
ðGÞ

31: further delete short paths and small loops of Gk
vs

3.6. Comparison with Kégl’s principal graph

The proposed algorithm comes as an extension and improve-
ment of Kégl’s principal graph. The differences between Kégl’s
method and our algorithm are, therefore, the following: (a) Our
algorithm is more widely applicable than Kégl’s method. Kégl’s
principal graph algorithm is an extension of the polygonal line
algorithm for finding some smooth skeletons of hand-written
character. Since complex data with self-intersecting characteris-
tics, high curvature, and significant dispersion are different from
character data, through observations coming from experiments,
we find that Kégl’s method is not suitable for detecting the
principal graph from complex data such as fingerprint data, spiral
data, and alike. However, the algorithm presented here can
effectively extract the principal graph not only from the hand-
written characters but also from other complex data. (b) Vertices-
Merge step is added to further preprocess the initial principal
graph G0

vs. The distribution of the complex data is scattered, and
scattered data cause the low efficiency of Kégl’s algorithm and the
deviation of the principal graph Gk

vs obtained Kégl’s method. We
propose vertex-merge step based on the distance and curvature
criterion to address this problem. (c) Projection strategy and the
objective function of our algorithm are different from those of
Kégl’s algorithm. When the fitting-smoothing step of Kégl’s
algorithm is adopted to optimize G1
vs, it is of low efficiency for

complex data due to the characteristic of the complex data. To
remedy this drawback, we improve the projection strategy and
redefine the penalized distance function to increase the efficiency.
4. Experimental results and analysis

In this section, we first discuss the parameter setting of the
GPG algorithm. Then synthetic data sets and real images are
used to demonstrate the performance of GPG algorithm and
contrast this performance with the results produced by some
traditional methods. Finally, the performance of the GPG algo-
rithm and the impact of noise on the performance of algorithms
are investigated.

4.1. Setting parameters

In the proposed GPG algorithms, the parameters k, au, al and y
are crucial for merging the adjacent vertices. Different values of
parameters lead to different levels of reduction. The parameter o
determines whether certain area of the graph is scanned or not.
However, it is difficult to select proper values for these para-
meters because they would be different for data sets with
different density distributions. Since for given k, au, al, y and o,
it is computationally simple to reduce G0

vs and project data points,
we can inspect all possible values to find optimal result. Empiri-
cally, it was found that when we set kA ½2:6,3:3�, auA ½3:8,4:3�,
alA ½0:21,0:29�, yA ½0:32,0:38� and oA ½60,70�, respectively, the
parameters form a sound option. According to these empirical
intervals, in the reported experiments, the values of the five
parameters are further adjusted until the algorithm achieves good
performance.

4.2. Experimental results

We carry out two typical experiments on complex data sets.
The first experiment tested the capability of the our algorithm for
extracting principal curves from data distribution of synthetic
data sets, and the second one tested the effectiveness of the
proposed algorithm in the real images.

4.2.1. Synthetic datasets

The method has been tested on several synthetic datasets. We
generated data sets distributed along some curves by the com-
monly used additive Gaussian noise, which is independently
imposed on different dimensions of the corresponding true curves.

We constructed various shaped curves, such as circle, zigzag-
shaped, spiral-shaped, etc. Then we compared the results of our
algorithm with the results of Kégl et al. (hereafter KKLZ) principal
curves, Delicado principal curves, HS principal curves and Ozer-
tem et al. (hereafter OE) principal curves on these datasets.
(The curves from KKLZ are obtained via the Principal Curves Java
program from Balázs Kégl, available at http://www.iro.umontreal.
ca/�kégl/research/pcurves/. The HS curves are obtained by Has-
tie’s Splus function http://lib.stat.cmu.edu/S/principal.curve. Prin-
cipal curves according to Delicado are determined with a
Cþþ program, which is available at http://www-eio.upc.es/
�delicado/PCOP/. The OE curves are obtained using the Principal
Curves Matlab code coming from Deniz Erdogmus, available at
http://indigo.ece.neu.edu/erdogmus/pubs.html.). We consider
several different scenarios: first, n¼200 data points are generated
by means of an underlying circle of radius r¼1, contaminated
with large noise ðs¼ 0:2Þ, we then consider three types of spirals:
a simple spiral with large noise (s¼ 0:07), a complex spiral with
large noise ðs¼ 0:06Þ, and a complex spiral with small noise

http://www.iro.umontreal.ca/~k&eacute;gl/research/pcurves/
http://www.iro.umontreal.ca/~k&eacute;gl/research/pcurves/
http://www.iro.umontreal.ca/~k&eacute;gl/research/pcurves/
http://lib.stat.cmu.edu/S/principal.curve
http://www-eio.upc.es/~delicado/PCOP/
http://www-eio.upc.es/~delicado/PCOP/
http://indigo.ece.neu.edu/erdogmus/pubs.html
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ðs¼ 0:01Þ, The first two spirals are composed of 1300 data points,
and the third one includes 34,675 data points. Finally, we
investigate a zigzag pattern with small ðs¼ 0:02Þ and large noise
ðs¼ 0:1Þ, where in both cases 800 data points were generated.
The results are shown in Fig. 4. The experimental results indicate
our principal curves algorithm performs better than the ones by
Kégl, Delicado, HS and the OE algorithm.

By looking at the data with moderate noise shown in Fig. 4,
respectively, one notices that most algorithms yield satisfactory
results, except the HS algorithm. Delicado and KKLZ algorithms
fail to handle the complex spiral, however, the result of KKLZ
seems to better than that produced by the Delicado principal
curves. The results of the OE algorithm are good, except for the
peaks of the zigzag curve and the starting part of the spiral curve.
In the two cases, the curves obtained by our proposed algorithm
Fig. 4. Principal graphs obtained for synthetic datasets: (a) circle with large noise; (b) si

with small noise; (e) zigzag with large noise; (f) zigzag with small noise.
are nearly indistinguishable from the true curves. Regarding the
noisy data, one can notice that the circle is reconstructed quite
differently by all five algorithms, whereby only the proposed
algorithm, OE, and Delicado form a closed curve. HS and Delicado
have serious problems with the simple noisy spiral. The results of
KKLZ and OE seem to be perfect in this case. The results of the
proposed algorithm are quite good. HS, Delicado, and KKLZ
algorithms fail in case of the complex noisy spiral. The curve
obtained by the OE method succeeds to follow the spiral, with an
exception for some artificial lines connecting the start of the
spiral, however, the result of the algorithm developed in this
paper seems to be better than that of OE. The noisy zigzag data
are fitted best by KKLZ and the worst results are observed for the
HS method. In Section 4.3 we will evaluate the performance of the
principal curves in a quantitative way.
mple spiral with large noise; (c) complex spiral with large noise; (d) complex spiral



H. Zhang et al. / Pattern Recognition 46 (2013) 1638–16471644
4.2.2. Real-world images

The self-consistency property of principal curves is quite
similar to the equidistance property of medial axis of shapes. If
foreground pixels of a shape are represented by a two dimen-
sional data set, then the principal curves of this data set are the
approximation to its principal graph of shape.

The performance of the algorithm was tested on three suites of
real images. The first one comprises the images of isolated
handwritten characters captured by using a graphics tablet. The
second one is the logo of the Tongji University. The last one is the
fingerprint pictures from FVC2000 and FVC2002 finger-
print database [32,33]. Experimental results are shown in Fig. 5.
Fig. 5. Principal graphs produced for real-world images: (a) han
The results confirm the effectiveness of our algorithm on real
images whose data distribution follows quite complex pattern.

4.3. Performance analysis

We analyze the performance of the proposed method and the
impact of noise (its standard deviation s) on the performance of
the algorithms.

4.3.1. The Quantitative comparison of performance of the algorithms

To further discuss and compare the results of the algorithms,
there is a need for some criterion that evaluates the performance
dwritten characters; (b) logo image; (c) fingerprint images.
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of a principal graph. This can be done by means of a quantitative
measure as fitting deviation. Given a set of data points
Xn ¼ fx1, . . . ,xng � Rd, for any xiAXn, let Dðxi,f Þ is the Euclidean
squared distance between a point xi and the nearest point of the
principal graph f to xi. We suppose that ft is true principal graph
and fe is the estimation of true principal graph by the algorithm
called the estimating principal graph. Then fitting deviation (Df)
between estimating principal graph fe and true principal graph ft
Fig. 6. The relationship between algorithm performance and noise s in diffe

Table 1
The quantitative comparison for the performance of GPG, HSPC, KKLZPC, OEPC and

DPC in the six datasets of Fig. 4.

Method (a) (b) (c) (d) (e) (f)

HS 0.257 0.726 0.812 0.781 0.269 0.243

KKLZ 0.213 0.145 0.713 0.479 0.135 0.094

Delicado 0.102 0.687 0.826 0.809 0.213 0.186

OE 0.093 0.128 0.288 0.157 0.151 0.139

Proposed method (GPG) 0.089 0.107 0.269 0.143 0.164 0.084
can be defined as

Df ¼ 1�

1

n

Pn
i ¼ 1 Dðxi,f

t
Þ

1

n

Pn
i ¼ 1 Dðxi,f

e
Þ

�������

�������
ð8Þ

where Dðxi,f
t
Þ ¼minlJxi�f t

ðlÞJ2 and Dðxi,f
e
Þ ¼minlJxi�f e

ðlÞJ2.
The smaller the value of Df, the closer fe fits ft. We calculate the
fitting deviation of the five algorithms obtained on the six
datasets. The quantitative comparison of the performance of the
algorithms is shown in Table 1. For zigzag affected by a low level
of noise, the results of KKLZ and our method are comparable,
however, for the complex noisy spiral (low level of noise), our
method and the OE algorithm exhibit good performance. In this
case, result produced by the method developed in this study is
slightly better than the one formed by the OE. In this case, the HS
algorithm and the Delicado’s algorithm perform quite poorly. For
the noisy data, the HS, KKLZ and Delicado algorithms demonstrate
a quite poor performance for the complex spiral. In contrast, the
OE comes with a comparatively good performance. For the simple
rent dataset: (a) circle; (b) simple spiral; (c) complex spiral; (d) zigzag.
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spiral, the results generated by the KKLZ and OE seem to be
perfect. It is worth noting that our method is always among the
best, but is slightly inferior to those of OE and KKLZ when used for
the zigzag data.

Since the algorithm starts with some global structure that
approximately captures topological features of the complex data
instead of the first principal component, good results can be
achieved during implementation process of our algorithm. How-
ever, our algorithm cannot work the best for zigzag with noise of
high standard deviation. The reason is that the thinning algorithm
is sensitive to noise s, which lead to the generated initial
principal graph G0

vs cannot effectively reflect the sharp peak of
the zigzag data.

4.3.2. The impact of noise s on the algorithm performance

The algorithm’s sensitivity with regard to noise variations can
be detected via modifying values of noise s. Through four syn-
thetic datasets, we analyse the impact of noise s on the perfor-
mance of the algorithm. The relationship between algorithm
performance and noise s is shown in Fig. 6. For a simple spiral,
Delicado algorithm is the most sensitive to noise. However, KKLZ
algorithm is most sensitive to noise s for complex spiral and
circle. Note that the larger the noise s, the more sensitive our
method. So when noise s is too large, our algorithm performance
is not the best, except for the complex spiral. The reason is that
thinning algorithm is sensitive to noise s, and large noise leads to
loss of continuity and distortion of initial principal graph G0

vs.
Anyway, our method has obvious advantage in comparison with
other several methods when dealing with the complex spiral.

4.3.3. Comparison of computation time

The algorithms were implemented on DELL E7200, Intel CORE 2,
WinXP, 2.47 GHz. The average running time of the algorithm was
0.56 s on several simulated data sets, while that of HS, Delicado, and
KKLZ algorithms took about 0.47, 0.51 and 0.72 s, respectively. The
running time of PL algorithm proposed by KKLZ is almost 1.6 times
that of our algorithm, yet the running time of PL algorithm is almost
2.2 times that of SCMS algorithm proposed by Ozertem and
Erdogmus (hereafter OE) in 2011 on a simple noisy spiral
(s¼ 0:08) [23]. Therefore, the algorithm proposed in this paper is
less efficient than HS, Delicado and OE. However, it is more efficient
than the KKLZ algorithm. The reason is that the initialization step of
the algorithm is time-consuming, but step 2 and step 3 of the
proposed algorithm help reduce the running time.
5. Conclusions

Principal curves are nonlinear generalizations of principal
components. Since the notion of principal curves was put forward,
there have been many methods of how to find principal curves
from data sets. However, for the complex data with self-inter-
secting, high curvature and dispersion, those existing methods
may not perform well. On the basis of researching existing work
on constructing principal curves, the paper proposed a novel
method based on global structure to solve this problem. The basic
idea was to initialize data by using thinning algorithm to generate
a principal graph which captures the approximate topological
features of complex data, and the algorithm optimized the
principal graph by updating the positions of all vertices using
the fitting-and-smoothing step introduced by Kégl’s. During the
process of optimizing the principal graph, we found that the
complex data might cause the deviation of the principal graph
and the low efficiency of algorithm. We proposed vertex-merge
step and improved the projection strategy and the penalized
distance function in the fitting-and-smoothing step to address the
problems in terms of the characteristics of complex data. Our
algorithm had been tested on synthetic datasets and applied to
real images. Experimental results obtained for selected data
confirmed the effectiveness of the proposed method on finding
principal curves from complex data. Our future work will focus on
if the proposed algorithm can be extended to obtain principal
surfaces or even principal manifolds of higher dimensions by
developing new concepts and techniques.
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