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Abstract. In multi-label classification, each instance may be associated
with multiple labels simultaneously which is different from the traditional
single-label classification where an instance is only associated with a
single label. In this paper, we propose two types of approaches to deal
with multi-label classification problem based on rough sets. The first
type of approach is to transform the multi-label problem into one or
more single-label problems and then use the classical rough set model to
make decisions. The second type of approach is to extend the classical
rough set model in order to handle multi-label dataset directly, where
the new model considers the correlations among labels. The effectiveness
of multi-label rough set model is presented by a series of experiments
completed for two multi-label datasets.
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1 Introduction

Multi-label classification problems [1] widely exist in various applications where
each instance is normally associated with multiple labels and the classes encoun-
tered in the problem are not mutually exclusive but may overlap.

There exists uncertainty during the process of multi-label classification due to
the finite number of training instances and the ambiguity of concept themselves,
which impacts the precision of the prediction. However, there is a lack of study
on the uncertainty existing in the multi-label classification. Rough sets form a
conceptual vehicle to deal with ambiguous, vague, and uncertain knowledge [2].
In this paper, several methods based on rough sets are proposed for the multi-
label decision system.

The rest of this paper is organized as follows. Section 2 briefly reviews the re-
lated studies about rough sets and multi-label learning. In Section 3, two types of
approaches for multi-label problem are proposed, which are respectively based

� This paper is partially supported by the National Natural Science Foundation of
China (Serial No. 61075056, 61273304, 61075056, 61103067, 61202170), and the State
Scholarship Fund of China (File No. 201206260047).

D. Ciucci et al. (Eds.): RSFDGrC 2013, LNAI 8170, pp. 119–126, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



120 Y. Yu et al.

on classical rough set model and multi-label rough set model. Section 4 illus-
trates the effectiveness of multi-label rough set model through some experiments.
Finally, Section 5 concludes the studies.

2 Related Works

This section briefly reviews some existing works on rough sets and multi-label
learning that are pertinent to our study.

2.1 Rough Sets

Rough set theory, proposed in 1982 by Pawlak [2], is regarded as a tool to process
inexact, uncertain or vague knowledge. Indiscernibility relation and Approxima-
tions are two important concepts in Pawlak rough set theory.

Rough set theory has attracted worldwide attention of many researchers and
practitioners, who have contributed essentially to its development and applica-
tions. For example, in order to deal with incomplete information system, some
researchers extend the equivalence relations to non-equivalence relations such
as tolerance relation [3], similarity relation [4], limited tolerance relation [5],
etc.. In order to support numerical attributes, Yao [6] and Hu [7] proposed the
neighborhood rough set model based on the neighborhood relations.

2.2 Multi-label Learning

Multi-label classification is different from the traditional task of single-label clas-
sification where each instance is only associated with a single class label. An in-
tuitive approach to multi-label learning is to decompose the task into a number
of binary classification problems and each for one class. This kind of approaches
include binary relevance method (BR) [1], binary pairwise classification approach
(PW) [8] and label combination or label power-set method (LC) [9]. Such an ap-
proach, however, usually suffers from the deficiency that the correlation among
the labels is not taken into account.

There are also numbers of multi-label classification algorithms derived from
traditional machine learning methods. For example, Boostexter system [10] pro-
vides two boosting algorithms, Adaboost.MH and Adaboost.MR, which are two
extensions of Adaboost for multi-label classification. Comit et al. [11] extended
the alternating decision tree learning algorithm for multi-label classification. In
addition, a number of multi-label methods are based on the popular k Nearest
Neighbors (kNN) lazy learning algorithm [12].

3 Rough Sets Based Approaches for Multi-label
Classification

In multi-label decision table, an object is associated with a subset of labels and
different classes may overlap by definition in the feature space. Fig. 1(a) shows a
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multi-label dataset which includes five instances with four labels grass, tree, sky
and water. If we transfer Fig. 1(a) into Fig. 1(b), we find it looks like a single-
label inconsistent decision table, where two objects with the same conditional
features belong to different decision classes. In single-label classification system,
the classes are mutually exclusive and the inconsistent problem was considered
to be caused by noise, such as mistakes in recording process [13], which is in
conflict with the definition of multi-label classification. We cannot directly cope
with multi-label problem using the existing single-label inconsistent approaches.
In this paper, we will present two types of rough sets based approaches for
multi-label classification problem.

Fig. 1. Example of multi-label dataset and its transformation

Before introducing the methods, we present the formal notation in this paper.
Let MDT = 〈U,A〉 be a multi-label decision table, where U is a finite, nonempty
set called the universe, and A = C ∪D; C = {c1, . . . , cn} is the set of conditional
attributes and D = {l1, . . . , lm} is the set of labels.

The first type of approach is to directly transform the multi-label problem into
one or more traditional single-label problems and then use the classical rough
set theory to obtain rules. As for the methods of transformation, we can refer to
literature [1]. Fig. 1(a) is used as an original example to briefly exemplify these
transformations.

For example, we can learn binary classifiers from original dataset, and one
for each different label lj ∈ D. Each dataset contains all instances of original
dataset. The instance is labeled as 1, if the original label lj is included and as
0, otherwise. Fig. 2 shows the result of transformation of Fig. 1(a) using this
method. For a new object, its prediction is a set of labels which are output
by classifiers. However, the precision of the decision suffers from the imbalance
problem existing in the dataset.

In addition, we also can consider each different set of labels that exists in the
multi-label dataset as a single-label. Fig. 3 shows the result of transformation of
Fig. 1(a) using this method. The new labels come from the power set of D. This
method suffers from the sparse problem that the dataset has a large number of
classes as well as few examples per class.
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Fig. 2. Four datasets with binary labels

Fig. 3. Transformed dataset with power set

The second type of approach is to extend specific rough set model in order to
handle multi-label data directly. It can be noticed from Fig. 1(a) that in multi-
label dataset, different labels often co-occur in practice. Namely, the labels are
not independent with each other. Taking Fig. 1(a) as an example, the probability
of an image being annotated with label sky would be high if we know it has
label grass. Thus, effective exploitation of correlation information among labels
is crucial for the success of multi-label rough sets.

Generally speaking, the co-occurrence of labels is related with the location of
instance. Those instances with multiple labels are usually located in the over-
lapped region. Fig. 4 gives an example to illustrate the relation between location
and co-occurrence. Two labels are respectively marked by ‘*’ and ‘+’ in a 2-D
space and examples simultaneously belonging to l1 and l2 are denoted by ‘X’.
For convenience, we assume that the distribution of two classes is circular. There
are several instances in example space such as a, b, c,d and we associate a neigh-
borhood with five neighbors to each instance. It can be seen that the instances
located in the non-overlapped region only have one label while the instances
located in the overlapped region may have two labels simultaneously. Let δ(x)
denote the neighborhood of instance x and |δj(x)| is the number of instance with
label lj(j = 1, . . . ,m) in δ(x). Let Γ (x) denote the sum of all kinds of neighbors
in δ(x) and |Γ (x)| = ∑m

q=1 |δq(x)|. The proportion that the neighbors with label
lj accounts for of all kinds of neighbors is represented as Υj(x) = |δj(x)|/|Γ (x)|.
Taking instances a and c as examples, Υ1(a) = 1 and Υ2(a) = 0 while Υ1(b) = 1/6
and Υ2(b) = 5/6 . The proportion Υj(x) varies along the changing of location
of instances. A larger value for Υj(x) will increase the probability of instance
x having label lj . Here, we first introduce the inclusion degree and then give
the definition of upper and lower approximations of multi-label decision table
according to the proportion Υj(x).
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Fig. 4. Illustration of location estimation in multi-label system

Definition 1. Given two sets A and B in the universe, the inclusion degree of
A in B is defined as

I(A,B) =
Card(A ∩B)

Card(A)
(1)

where Card(Φ) stands for the number of elements in set Φ. The proportion Υj(x)
can be described using inclusion degree as follows.

Υj(x) = I(Γ (x), Y ) =
Card(Γ (x) ∩ Y )

Card(Γ (x))
(2)

where Y represents the set of instances with label lj in universe. Then the upper
and lower approximations of decision class are defined as follows.

Definition 2. Given a multi-label decision table MDT = 〈U,A〉, Xi ∈ U and
A = C ∪D; Y is the subset of instances with label lj(j = 1, . . . ,m) and B ⊆ C.
Then the lower and upper approximations of decision class Y with respect to
neighborhood relation R are denoted as Rβ

BY and Rα
BY respectively, and defined

as follows.
Rβ

BY = {xi|I(Γ (x), Y ) � β, xi ∈ U} (3)

Rα
BY = {xi|I(Γ (x), Y ) � α, xi ∈ U} (4)

From the definition, we can see that just as decision-theoretic rough set
models [14,15], the multi-label rough set model incorporates probabilistic ap-
proaches into rough set theory. For each label lj ∈ D, inclusion degree β and
α(0 � α < β � 1) are different and they are estimated from the training dataset
according to maximum posterior probability. Let l1j denote the event of instance

xi having label lj and l0j denotes the event of instance xi having no label lj .

P (l1j |Υj(xi)) denotes the probability of instance xi having label lj , when the

proportion is Υj(xi)) and P (l0j |Υj(xi)) means just the opposite. Then according

to Bayesian decision theory, if P (l1j |Υj(xi)) � P (l0j |Υj(xi)) then the instance xi

has label lj , and otherwise the instance xi has no relation with label lj . The
threshold β is determined when P (l1j |Υj(xi)) = P (l0j |Υj(xi)) and the threshold

α is determined when P (l1j |Υj(xi)) reaches a satisfied value. Taking Fig. 5 as
an example, β is the threshold of lower approximation and α is selected as the
threshold of upper approximation when P (l1j |Υj(xi)) approaches zero.
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Fig. 5. Illustration of estimation of inclusion degree

For each label lj, the multi-label rough set model divides the universe into

three regions. Decision positive region is denoted by POSB(Y ) = Rβ
BY where the

instances certainly belongs to class lj. Negative region is denoted byNEGB(Y ) =
U −Rα

BY where the instances have no relation with class lj. The boundary re-

gion denoted by BNB(Y ) = Rα
BY −Rβ

BY is a subset of instances that may have
relation with class lj .

After defining the upper and lower approximations of decision class, we will
give the definition of multi-label decision function based on rough sets, which
can be used for multi-label classification problem.

Definition 3. Given a multi-label decision table MDT = 〈U,A〉, xi ∈ U . Υj(xi)
(j = 1, . . . ,m) is the proportion that the neighbors with label lj in δ(xi) have of
all kinds of neighbors in δ(xi). The multi-label decision function of xi for label
lj is defined as MDj(xi) = l1j , if Υj(xi) � β or MDj(xi) = l0j , if Υj(xi) � α.

MDj(xi) is the result assigned to xi according to the inclusion degree. Obvi-
ously,MDj(xi) = l1j if xi is located in the positive region of class lj , orMDj(xi) =

l0j if xi is located in the negative region of class lj , or if xi is located in the boundary
region of class lj , we will assign it a probability of having label lj .

4 Experiments

To test the effectiveness of the multi-label rough set model(MLRS) presented
in this paper, we apply it to two multi-label datasets which come from the the
open source Mulan library [1] and Table 1 shows their associated properties.
We compare MLRS with various state-of-art multi-label algorithms including
the classifier chains algorithm CC, the random k label-set method for multi-
label classification RAkEL and back-propagation multi-label learning (BPMLL)
learner.

Experimental results of ten-fold cross-validation in terms of Hamming loss,
average precision, coverage, one-error and ranking loss are shown in Table 2 and
Table 3. The value following ± gives the standard deviation and the best result
on each metric is shown in bold face. The number of the nearest neighbors is set
as 10.
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It can be seen from Table 2 and Table 3 that MLRS performs well on most
evaluation criteria when it applied to the multi-label classification problem. With
the enormous increasing of the amount of instances and labels, MLRS still can
performs well compared to other multi-label algorithms. It shows that MLRS
has some scalability.

Table 1. Multi-label datasets used for experiments

name instances attribute labels cardinality density
Scene 2407 294 6 1.074 0.179
Corel5k 5000 499 374 3.522 0.009

Table 2. MLNRS vs. other multi-label algorithms over Scene

performance RAkEL BPMLL CC MLRS
hloss 0.1012±0.0075 0.2667±0.0508 0.1444±0.0164 0.0912±0.0082

avgprec 0.8379±0.0156 0.6852±0.0235 0.7176±0.0354 0.8652±0.0153
cov 0.5862±0.0593 0.9405±0.0855 1.3504±0.2002 0.4818±0.0539

one-error 0.2663±0.0258 0.5450±0.0381 0.3914±0.0453 0.2255±0.0248
rloss 0.0999±0.0121 0.1714±0.0165 0.3914±0.0453 0.0790±0.0116

Table 3. MLNRS vs. other multi-label algorithms over Corel5k

performance RAkEL BPMLL CC MLRS
hloss 0.0097±0.0001 0.5547±0.0213 0.0099±0.0001 0.0105±0.0001

avgprec 0.1075±0.0080 0.0563±0.0097 0.2364±0.0102 0.2463±0.0092
cov 336.0374±2.6687 169.0732±4.6338 165.3946±5.8193 132.1238±5.4093

one-error 0.7734±0.0201 0.9974±0.0025 0.7076±0.0172 0.7398±0.0154
rloss 0.6565±0.0116 0.2273±0.0096 0.1869±0.0083 0.1513±0.0049

5 Conclusion

We study the problem of classification under multi-label dataset in this paper.
Based on rough set theory, we propose two kinds of approaches to deal with the
multi-label problem and present a multi-label rough set model. After applying
the model to multi-label datasets, we obtain promising results compared with
other well-known multi-label algorithms. Future work will focus on the dimension
reduction of multi-label dataset which can improve the accuracy and efficiency
of prediction.
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