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Nowadays, multi-label classification methods are of increasing interest in the areas such as text catego-
rization, image annotation and protein function classification. Due to the correlation among the labels,
traditional single-label classification methods are not directly applicable to the multi-label classification
problem. This paper presents two novel multi-label classification algorithms based on the variable pre-
cision neighborhood rough sets, called multi-label classification using rough sets (MLRS) and MLRS using
local correlation (MLRS-LC). The proposed algorithms consider two important factors that affect the accu-
racy of prediction, namely the correlation among the labels and the uncertainty that exists within the
mapping between the feature space and the label space. MLRS provides a global view at the label corre-
lation while MLRS-LC deals with the label correlation at the local level. Given a new instance, MLRS deter-
mines its location and then computes the probabilities of labels according to its location. The MLRS-LC
first finds out its topic and then the probabilities of new instance belonging to each class is calculated
in related topic. A series of experiments reported for seven multi-label datasets show that MLRS and
MLRS-LC achieve promising performance when compared with some well-known multi-label learning
algorithms.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, multi-label classification problem (Tsoumakas,
Katakis, & Vlahavas, 2010) has received an increased attention
finding applicability in various applications. For example, in text
categorization, a document may belong to multiple classes simul-
taneously (Jiang, Tsai, & Lee, 2012). In the video indexing domain,
each audio clip can have several different labels (Snoek et al.,
2006). In functional genomics, a gene may have multiple functions
(Vens, Struyf, Schietgat, et al., 2008). In automatic image annota-
tion, a scene may be associated with several concepts as well
(Yu, Pedrycz, & Miao, 2013). In all the cases identified above, each
instance is associated with multiple labels and the classes encoun-
tered in the problem are not mutually exclusive but may overlap.
This situation is different from the traditional single-label classifi-
cation (i.e, multi-class) where an instance is only associated with a
single label and by definition, the classes are mutually exclusive
(see Fig. 1).

In what follows, we provide a formal definition of the multi-
label classification problem.
Definition 1. Let X � Rd denote a d-dimensions input domain of
instances and let Y = {l1, l2, ..., lm} be an output domain of possible
labels. Given a training set T = {(xi, yi)|1 6 i 6 n, xi e X, yi � Y}, the
goal of learning system is to form a multi-label classifier f:X ? 2Y

which optimizes some specific evaluation metric. For a testing
instance x e X, its associated label set y � Y is expressed with the
use of f.

According to Definition 1, it is clear that a single-label classifica-
tion is a particular case of the multi-label classification. When the
number of labels of instances is equal to 1 (|yi| = 1), the multi-label
classification problem transforms into a single-label classification
problem.

Due to the existence of relevance and co-occurrence among
labels in multi-label classification, single-label classification meth-
ods cannot be used to directly address the multi-label classification
problem (Streich & Buhmann, 2008; Tsoumakas et al., 2010). A large
body of research has been carried out to explore effective and effi-
cient multi-label classification approaches which are generally
grouped into two main categories: problem transformation meth-
ods and algorithm adaptation methods (Tsoumakas et al., 2010).
However, most of these methods neglect a fact that there exists
some uncertainty during the process of classification. The uncer-
tainty is caused by some reasons. First, due to the finite number of
training instances, we cannot acquire an exact distribution of each
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Fig. 1. Single-label example with two classes.

2990 Y. Yu et al. / Expert Systems with Applications 41 (2014) 2989–3004
class. Second, because of the overlap existing among different
classes, there exists some ambiguity in the feature space for a given
instance. The uncertainty affects the precision of prediction. Rough
sets form a conceptual vehicle to deal with ambiguous, vague, and
uncertain knowledge while the neighborhood rough set model is
an extension of traditional rough set model to deal with the uncer-
tainty in the numerical data. The problems indicated above stimu-
late us to propose two multi-label classification algorithms based
on neighborhood rough sets to cope with the uncertainty as well
as the correlation among labels. The two proposed algorithms
referred to as MLRS and MLRS-LC consider the global and local
correlation among the labels. By introducing the concept of upper
and lower approximations of neighborhood rough set model, MLRS
and MLRS-LC firstly find out all the possibly related labels for a given
instance and exclude all unrelated labels. Then they confirm the
final labels according to the neighborhood of given instance. Exper-
imental results concerning seven multi-label datasets show that the
proposed approaches exhibit a promising performance when con-
sidering uncertainty and correlation aspects. They can not only
improve the classification precision but also reduce the training
time compared with other standard multi-label algorithms.

The paper is organized as follows. In Section 2, basic notation
and evaluation metrics used in multi-label classification are briefly
introduced. Section 3 provides some background material on multi-
label classification and neighborhood rough sets respectively. Sec-
tions 4 and 5 respectively introduce the proposed approaches MLRS
and MLRS-LC. Section 6 contains experimental results obtained by
applying the proposed algorithms and other multi-label learning
algorithms to multi-labeled datasets. Finally, Section 7 concludes
the study and identifies some future research directions.

2. Preliminaries

In this section, we present the formal notation to be used
throughout the paper.

We assume that X � Rd denotes an input domain of instances
and any instance is represented as a d-dimensional vector x = [x1, -
x2, ..., xd], (x e X). Let Y = {l1, l2, ..., lm} be a finite domain of possible
labels. Each instance is associated with a subset of Y and this subset
is described as an m-dimensional vector y = [y1, y2, ..., ym] where
yj = 1 only if instance x has label lj and 0 otherwise.

Let T = {(xi, yi)|1 6 i 6 n, xi e X, yi � Y} be a training set composed
of n labeled instances and D = {(xi, yi)|1 6 i 6 q, xi e X, yi � Y}be a
testing set composed of q labeled instances. The subscript in this
description is used to avoid the confusion with the label dimen-
sion. Therefore, yj

i corresponds to the binary relevance of the jth la-
bel belonging to the ith instance.

The performance evaluation of the multi-label classification
system is different from that of the singe-label classification
system. In multi-label classification, the evaluation is much more
complicated. In experimental evaluation, we consider some mea-
sures proposed in literature Schapire & Singer (2000) and Godbole
& Sarawagi (2004).
(1) Hamming loss (Schapire & Singer, 2000): this measure evalu-
ates how many times an instance-label pair is misclassified
considering the predicted set of labels y

0
and the ground-

truth set of labels y.
hloss ¼ 1� 1
mq

Xq

i¼1

Xm

j¼1

1y0j
i
¼yj

i

(2) Average precision (Schapire & Singer, 2000): this measure
evaluates the average fraction of labels ranked above a par-
ticular label k 2 yi which actually are in yi.
avgprec ¼ 1
q

Xq

i¼1

1
yij j
X
k2yi

fk0 2 yi : riðk0Þ 6 riðkÞgj j
riðkÞ
where ri(l) denotes the rank of label l e Y predicted by the algorithm
for a given instance xi.

(3) Accuracy (Godbole & Sarawagi, 2004): the measure gives an
average degree of similarity between the predicted and the
ground truth label sets of all testing examples.
accuracy ¼ 1
q

Xq

i¼1

jyi \ y0ij
jyi [ y0ij
(4) F1-measure (Godbole & Sarawagi, 2004): for completeness of
the analysis, we include the F1-measure. This is the harmonic
mean between precision and recall, common to information
retrieval. It can be calculated from true positives, true
negatives, false positives and false negatives based on the
predictions and the corresponding actual values.
F1 ¼ 1
q

Xq

i¼1

jyi \ y0ij
jyij þ jy0ij
Smaller values of Hamming loss correspond to higher classification
quality, while larger values of average precision, accuracy and
F-measure relate to higher classification quality.
3. Related work

Before embarking on an introduction of MLRS and MLRS-LC
presented in this paper, let us review some existing works on mul-
ti-label learning and neighborhood rough sets.

3.1. Multi-label classification

As mentioned in Section 1, multi-label classification algorithms
can be categorized into two different groups: (i) problem transfor-
mation methods and (ii) algorithm adaption methods. The first
group includes methods that are algorithm independent. They
transform the multi-label problem into one or more single-label
problems. The representative problem transformation methods in-
clude binary relevance method (BR) Boutell, Luo, Shen, et al.
(2004), binary pair wise classification approach (PW) Hüllermeier,
Fürnkranz, Cheng, et al. (2008) and label combination or label
power-set method (LC) Tsoumakas & Vlahavas (2007). The second
group includes methods that extend specific learning algorithms in
order to handle multi-label data directly. Well-known approaches
include Adaboost (Schapire & Singer, 2000), BP-MLL (Zhang &
Zhou, 2006), lazy methods (Denœux, Younes, & Abdallah, 2010;
Spyromitros, Tsoumakas, & Vlahavas, 2008; Zhang & Zhou, 2007)
and others.

BR (Boutell et al., 2004) is a popular problem transformation
method that learns m binary classifiers for each different label in
Y. Then each binary model is trained to predict the relevance of
one of labels. Although BR is mentioned throughout the literature,
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it has often been overlooked on the ground that it does not directly
model correlations which exist between labels in the training data.
The argument is that, due to this information, BR’s predictive per-
formance suffers. In order to address this problem, Read et al. pro-
posed a new multi-label method Classifier Chain (CC) Read,
Pfahringer, Holmes, et al. (2009) based on the BR method. CC can
overcome the label-independent defect while maintaining the
acceptable computational complexity of BR.

PW (Hüllermeier et al., 2008) can also be used to address multi-
label problem as a problem transformation method, where a binary
model is trained for each pair of labels. The prediction of these mod-
els result more naturally in a set of pairwise preferences than a mul-
ti-label prediction (thus becoming popular in ranking schemes), but
this method has been adapted in Hüllermeier et al. (2008) to make
multi-label predictions. Although PW performs well in several do-
mains, it faces quadratic complexity in terms of the number of labels
and for this reason its applicability could be limited.

Another well-known problem transform method is the LC
(Tsoumakas & Vlahavas, 2007) which transforms a multi-label
problem into a single-label problem by treating all label sets as
atomic labels, i.e. each label set is treated as a single label in a sin-
gle-label problem. Although being able to model correlations be-
tween labels, LC is challenged by application domains with large
number of labels and training examples, due to high computational
complexity (exponential with the number of labels) and tendency
to over-fit the training data because it can only model label sets ob-
served in the training set. In order to deal with the aforementioned
problems of LP, Tsoumakas, Katakis, & Vlahavas (2011) proposed a
new method called RAkELd which randomly breaks the initial set
of labels into a number of small-sized label sets, and employing
LP to train a corresponding multi-label classifier. This way, the
resulting single-label classification tasks are computationally sim-
pler and the distribution of their class values is less skewed.

The Boostexter system (Schapire & Singer, 2000) is an important
milestone in multi-label classification and ranking. The Boostexter
provides two boosting algorithms, Adaboost.MH and Adaboost.MR,
which are two extensions of Adaboost for multi-label classification.
While Adaboost.MH is designed to minimize Hamming loss, Ada-
Boost.MR is design to find a hypothesis which places the correct la-
bels at the top of the ranking. De Comité, Gilleron, and Tommasi
(2003) extended the alternating decision tree learning algorithm
for multi-label classification where the Adaboost.MH algorithm is
explored to train the multi-label alternating decision trees. These
Adaboost-based methods have been recognized as having compu-
tational complexity (Petrovskiy, 2006).

BP-MLL (Zhang & Zhou, 2006) is an adaptation of popular back-
propagation algorithm for multi-label learning. The main modifica-
tion to the algorithm is the introduction of a new error function
that takes multiple labels into account.

A number of multi-label methods are based on the popular k
Nearest Neighbors (kNN) lazy learning algorithm Denœux et al.,
(2010), Spyromitros et al. (2008) and Zhang & Zhou (2007). The
first step in all these approaches is the same as in kNN, i.e. retriev-
ing the k nearest examples. What differentiates them is the aggre-
gation of the label set of these examples. Taking the MLkNN (Zhang
& Zhou, 2007) for example, it uses the maximum a posteriori prin-
ciple in order to determine the label set of the test instance, based
on prior and posterior probabilities for the frequency of each label
within the k nearest neighbors. ML-kNN uses the kNN algorithm
independently for each label and has the capability of producing
a ranking of the labels as an output.

3.2. Neighborhood rough sets

Rough set theory (Pawlak, Grzymala-Busse, Slowinski, et al.,
1995), introduced by Pawlak, has been introduced as a tool to
conceptualize, organize and analyze various types of data, in
particular, to deal with inexact, uncertain or vague knowledge.

Pawlak’s rough set model is built on equivalence relations and
equivalence classes. The samples are said to be equivalent or indis-
cernible if their attribute values are identical to each other. How-
ever, some attributes in data are numerical in real-world
applications. In order to extend the rough set model to support
numerical attributes, Yao (1998) and Hu, Yu, & Xie (2008a) pro-
posed the neighborhood rough set model based on the neighbor-
hood relations. Formally speaking, the decision table IS = hU, Ai
embraces the samples for classification, where U is the nonempty
set of samples {x1, x2, ..., xn}, A is the nonempty set of attributes.
To be more specific, A = C [ D, where C is a set of condition attri-
butes and D is a decision attribute.

Definition 2. Given arbitrary xi e U, B # C and metric function D,
the neighborhood dB(xi) of xi in the subspace B is defined as

dBðxiÞ ¼ fxjjDðxi; xjÞ 6 d; xj 2 Ug; where d P 0

We also call dB(xi) a neighborhood information granule in-
duced by attribute B and object xi. The family of neighborhood
information granules {dB(x)|x e U} forms a set of elemental con-
cepts in the universe, which cover the universe, rather than par-
titioning it. In fact, neighborhood of xi is a subset of samples close
to xi. There are several ways to define the neighborhoods d of
samples. One can define it using the fixed radius from the proto-
type sample or define the neighborhood with fixed k samples in
the neighborhood, like the one considered in the k-nearest-neigh-
bor method.

The neighborhood relation R over the universe can be written as
a matrix M(R) = (rij)n�n, where

ri;j ¼
1; xj 2 dBðxiÞ
0; otherwise

�

Definition 3. Given a neighborhood approximate space hU, Ri, for
arbitrary subset X # U, xi e U and a family of neighborhood infor-
mation granules dB(xi), i = 1,2, . . .,n, we define the lower and upper
approximations of X in terms of the neighborhood relation R as

RBX ¼ fxijdBðxiÞ# X; xi 2 Ug

RBX ¼ fxijdBðxiÞ \ X–£; xi 2 Ug
The lower approximation is the maximal union of the elements

consistently contained in X, while the upper approximation is the
minimal union of elements containing X. The difference between
lower approximation and upper approximate is called approxima-
tion boundary of X : BNðXÞ ¼ RBX � RBX: The element in the bound-
ary region are inconsistent because only part of their neighbors
belong to X.
Definition 4. Given a neighborhood decision table NDT =
hU, C [ Di, X1, X2, ..., XN are the object subsets with decisions 1–N,
dB(xi) is the neighborhood information granules including xi and
generated by attributes B # C, Then the lower and upper approx-
imations of the decision D with respect to attributes B are defined
as

RBD ¼ [N
i¼1RBXi

RBD ¼ [N
i¼1RBXi

where
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RBX ¼ fxijdBðxiÞ# X; xi 2 Ug

RBX ¼ fxijdBðxiÞ \ X – £; xi 2 Ug

The decision boundary region of D with respect to attributes B is
defined as BNðDÞ ¼ RBD� RBD.

The size of the decision boundary region reflects the degree of
roughness of the decision. Usually we hope that the boundary
region of the decision is as little as possible for decreasing uncer-
tainty in decision. The lower approximation of the decision is
called decision positive region which is denoted by POSB(D).

In practice, the above definition of the lower and the upper
approximations are too strict to tolerate noise in the data. Hu,
Liu, & Yu, (2008b) introduced the variable precision neighborhood
rough sets to deal with the problem.

Definition 5. Given two sets A and B expressed in the universe U,
the inclusion degree of A in B is defined as
IðA;BÞ ¼ CardðA \ BÞ
CardðAÞ

where Card(U) stands for the number of the elements of set U.
Definition 6. Given any subset X # U, then we define b lower and
upper approximations of X as

Rb
BX ¼ fxijIðdBðxiÞ;XÞP b; xi 2 Ug

Rb
BX ¼ fxijIðdBðxiÞ;XÞP 1� b; xi 2 Ug

The upper definitions are given in the context of single-label
classification. The neighbors of the object in the decision positive
region consistently belong to one of the decision classes. The
neighbors of the object in the decision boundary region come from
more than one decision class. Namely, according to the information
of the neighborhoods, the object in the positive region can be clas-
sified into one of the classes without uncertainty, while the object
in the boundary region cannot be completely classified because of
its various neighbors.

Fig. 2 shows a single-label example of binary classification in a
2-D numerical space, where class X1 is marked with ‘⁄’ and class X2
is marked with ‘+’. We associate a neighborhood to every object in
the sample space such as a, b, c. It is easy to find that the neighbor-
hood of a is completely contained in class X1 (d(a) # X1) and
neighborhood of c is completely contained in class X2
(d(c) # X2), while the objects in the neighborhood of b come from
class X1 and class X2 (d(b) \ X1 – £ and d(b) \ X2 – £). According
to the above definition, a and c are located in the positive region of
class X1 and class X2 and they respectively and constantly belong
to one of the decision classes. On the other hand, b is positioned
Fig. 2. Illustration of multi-label classification with two labels.
in the boundary region which is inconsistent in which misclassifi-
cation could easily happen.
4. Multi-label classification using neighborhood rough sets
(MLRS)

Contrary to single-label classification (consistent decision prob-
lem), the multi-label classification is regarded as inconsistent deci-
sion problem that two instances who have the same condition
values may have different decision values. Namely, in multi-label
classification, the base classes are non-mutually exclusive and
may overlap by definition. A multi-label instance could be associ-
ated with a set of labels simultaneously. Generally speaking, the
object with multiple labels is located in the overlapped region.
Fig. 2 illustrates a binary multi-label classification task. Two classes
X1 and X2 denoted by ‘⁄’ and ‘+’ respectively. Examples belonging to
both ‘⁄’ and ‘+’ classes simultaneously are denoted by ‘x’.

Because the classes in consistent decision system are mutually
exclusive, it is easy to classify the instance according to some dis-
criminative principle, such as maximum posterior probability
Pðxl dðxiÞj Þ ¼ max

j
Pðxj dðxiÞj Þ. However, in inconsistent decision

system, it is unreasonable to predict the labels with the same
criteria as in consistent system. As shown in Fig. 2, there is
co-occurrence among labels in multi-label classification. The
co-occurrence states that the appearance of one label may improve
the probability of appearance of other related labels. So it is
indispensable to consider the correlation among labels during the
process of classification. More specially, the probability p(l e yi) of
label l belonging to instance xi can be formulated as follows.

pðl 2 yiÞ ¼
X

16j6m

pðl 2 yi lj 2 yiÞpðlj 2 yiÞ
�� ð1Þ

p(lj e yi) denotes the probability of the label lj belonging to instance
xi. p(l e yi|lj e yi) represents the conditional probability of the label l
belonging to instance xi when the label lj belongs to instance xi .

As mentioned above, there exists uncertainty during the pro-
cess of classification. So we introduce the neighborhood rough
set model to construct a new framework MLRS for the multi-label
classification, which considers the uncertainty as well as the corre-
lation among labels.

For each testing instance xi, MLRS first finds its k nearest neigh-
bors d(xi) from the training set. Then for each label l, let |dl(xi)| denote
the number of the neighbors with label l in the neighborhood d(xi).
Let b (0.5 6 b 6 1) be the inclusion degree of the neighborhood
rough sets and k is the number of neighbors, which represents the
granularity level of the neighborhood granules. We observed that
the complexity of the classification depends not only on the given
feature space but also on the assumed granularity level. In order
to get better results, we should specify a proper level of granularity.

According to the definition of neighborhood rough sets, if
|dl(xi)| P k � b, namely object xi is located in the positive region
of class l and it should be assigned label l, namely p(l e yi) = 1; If
|dl(xi)| < k � (1 � b), it can be confirmed that the object xi is located
in the negative region of class l and it should have no relation with
label l, namely p(l e yi) = 0; If k � (1 � b) 6 |dl(xi)| < k � b, the object
xi is located in the boundary region of class l and the algorithm will
predict the ground truth labels for the instance xi according to the
neighborhood d(xi) and the correlation among different labels. Here
probability formula (1) is employed for the prediction of probabil-
ity of label l. p(lj e yi) is calculated following the formula
pðlj 2 yiÞ ¼ jdlj ðxÞj=

P
1�f�mjdlf ðxÞj. The more the neighbors with label

lj, the greater the probability p(lj e yi) will be obtained and the
higher the possibility of instance xi related with label lj will be
gotten. p(l e yi|lj e yi) is denoted by the percentage of training



Fig. 3. Illustrationof the prediction in multi-label classification system.
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instances simultaneously with label l and lj among the training
instances only with label lj.

Considering an example in Fig. 3, it illustrates how to predict the
labels for some testing instances. As before, two classes X1 and X2

respectively marked by ‘⁄’ and ‘+’ in a 2-D space. Examples belonging
to both X1 and X2 simultaneously are denoted by ‘X’. For convenience,
we assume that the distribution of two classes is circular and the
number of the nearest neighbors k = 5. We associate a neighborhood
to each object in example space such as a, b, c, d and assume the inclu-
sion degree b = 1. For instance a, its each neighbor only has one label
X1, so jdX1 ðaÞj ¼ 5 and jdX2 ðaÞj ¼ 0. According to MLRS, the instance a
only has label X1. Similarly, the instance d is assigned label X2. For in-
stance b and c, both of them are in the overlapped region and their
neighbors are not homogeneous. jdX1 ðbÞj ¼ 5 and jdX2 ðbÞj ¼ 1 indi-
cates that we cannot decide the label for instance b directly and then
formula pðX1 2 ybÞ ¼

P
16j62pðX1 2 yb Xj 2 ybÞpðXj 2 ybÞ

�� is used for
the prediction of label X1 of instance b. The analysis is the same for
other situations.

The multi-label classification based on neighborhood rough sets
algorithm MLRS can be formulated in the form of Algorithm 1.
Here, we still use the formal notation introduced in Section 2.
The input arguments include T, k, x, b and s. T is the training set
and x denotes the testing instance. k denotes the number of the
nearest neighbors, namely the granularity level of the neighbor-
hood granules. b is the inclusion degree. Furthermore, s is the
smoothing parameter controlling the value of conditional
probability (s is set to be 1 which yields the Laplace smoothing).
y = [y1, y2, ...ym] is the predicted result of testing instance and yi is
the value for label li.

Algorithm 1: Multi-label classification based on neighborhood
rough sets (MLRS)

Input: T, k, x, b, s
Output: y
Train:
// Computing the conditional probability
1: for each lj e Y, 1 6 j 6m
2: for each li e Y, 1 6 i 6m

3: pðli 2 yjlj 2 yÞ ¼
Pn

/¼1yi\j
/ =ð

Pn
a¼1yj

a þ sÞ
Test:
// Computing the prior probability
4: compute the neighborhood d(x) of testing instance x
5: for each lj e Y, 1 6 j 6m
6: pðlj 2 yÞ ¼ jdlj ðtÞj=

P
16i6mjdli ðtÞj

// Computing the probability of the testing instance x
7:for each li e Y, 1 6 i 6m
8: if jdli ðtÞjP k� b

9: p(yi) = 1
10: else if jdli ðtÞj 6 k� ð1� bÞ
11: p(yi) = 0
12: else
13: pðyiÞ ¼

P
16j6mpðli 2 yjlj 2 yÞpðlj 2 yÞ

14: if p(yi) P threshold yi = 1 else yi = 0
As shown in Algorithm 1, based on the training set, steps from 1
to 3 are used to estimate the conditional probability p(l e y|lj e y)
where lj e y means the training instance with label lj. In steps from
4 to 6, we estimate the prior probability p(lj e y) from the neighbor-
hood of instance x. Finally, steps from 7 to 13 count the probability
of the testing instance x belonging to each class and step 14 pro-
duces the prediction of some label by comparing the values of
probability with some thresholds.
5. The MLRS-LC approach

MLRS exploits label correlations in a global way by assuming that
the correlations are shared by all instances. In real-word tasks, the
label correlations are naturally local, where a label correlation may
be shared by only a subset of instances rather than all instances.
For example, as shown in Fig. 4, we consider the strong correlation
between water and boat. For the image (b), boat are less prominent
and thus could be difficult to predict; in this case, the correlation be-
tween water and boat can be helpful in learning label boat since the
label water is relatively easier to predict in this image. For the image
(c), with the water clearly presented, this correlation turns to be mis-
leading since it suggests including the label boat, whereas this label
is not proper for the image. Exploiting such correlations at the global
level will enforce unnecessary or even misleading constraints on in-
stances that do not contain such correlations, and therefore may
hurt the performance by predicting some irrelevant labels.

In this section, we present MLRS-LC (MLRS using local correla-
tion) approach by exploiting label correlations locally, which tries
to exploit label correlations in the data locally. We do not assume
that there are external knowledge sources specifying the locality of
label correlations. Instead, we assume that the instances can be di-
vided into different topics according to the label correlations and
each topic includes related instances.

Alluding to the previous discussion, we know that for a specific
instance, only a subset of label correlations is helpful while the
others are less informative or even harmful and the instances in
the same topic share the same label correlations. We assume that
the training data can be divided into w topics T = {T1, T2, ..., Tw},
where instances in the same topic share the same subset of label
correlations. The topics can be discovered via clustering. The prob-
ability p(l e yi) of label l belonging to instance xi is expressed as
follows.

pðl 2 yiÞ ¼
X

16D6w

X
16j6m

pðl 2 yijlj 2 yi; xi 2 TDÞpðlj 2 yijxi 2 TDÞpðxi 2 TDÞ

ð2Þ

p(xi e TD) is the probability of xi belonging to topic TD. p(lj e yi|xi

e TD) denotes the probability of the label lj belonging to instance
xi when instance xi belongs to topic TD. p(l e yi|lj e yi, xi e TD) repre-
sents the conditional probability of the label l belonging to instance
xi when the label lj belongs to instance xi in topic TD.

During the training process, the training instances are clustered
into several topics in the label space. Then in each topic, the label
correlations are exploited with the same method as in MLRS and
the conditional probabilities p(l e yi|lj e yi, xi e TD) is obtained in
each topic. Given a testing instance, its k nearest neighbors d(xi)
are found from the overall training set. The probability of instance
xi belonging to topic TD is determined according to the number of
neighbors belonging to topic TD. Namely, pðxi 2 TDÞ ¼ jdTD

ðxiÞj=k,



Table 1
Multi-label datasets used in experiments.

Name Domain Instances Attributes Labels Cardinality Density

Emotions music 593 72 6 1.869 0.311
CAL500 music 502 68 174 26.044 0.150
Yeast biology 2417 103 14 4.237 0.303
Medical text 978 1449 45 1.245 0.028
Enron text 1702 1001 53 3.378 0.064
Scene image 2407 294 6 1.074 0.179
Corel5k image 5000 499 374 3.522 0.009

(a) water, sky,
boat, mountain

(c) water, mountain,
tree, sky

(b) water, sky, tree, 
mountain, boat

Fig. 4. Illustration of local label correlations.
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where jdTD
ðxiÞj denotes the number of the neighbors belonging to

topic TD. Then in each topic, the k nearest neighborhood of the test-
ing instance are found and the probabilities p(lj e yi|xi e TD) are
calculated for each topics according the number of neighbors com-
ing with label lj, which are the same as in MLRS.

The computing of MLRS-LC is presented in the form of Algo-
rithm 2. Here a commonly used clustering algorithm of k-means
is used to form topics. The number of clusters (the number of
topics) is decided by the number of labels. The input and the
output arguments are as same as those used in MLRS.

Algorithm 2: MLRS using Local Correlation (MLRS-LC)

Input: T, k, x, b, s
Output: y
Train:
// Obtain topics from training set and compute the conditional

probability in each topic
1: cluster the training set into topics T = {T1, T2, ..., Tw} using k-

means
2: for each TD e T, 1 6D 6w
3: for each lj e Y, 1 6 j 6m
4: for each li e Y, 1 6 i 6m

5: pðli 2 yjlj 2 y; x 2 TDÞ ¼
P

/2TD
yi\j

/ =ð
P

a2TD
yj
a þ sÞ

Test:
// Compute the probability p(l e y) of the testing instance x
6: Determine the neighborhood d(x) of testing instance x

from training set
7: get the probabilities p(x e TD) for each topic TD according

to d(x)
8: for each TD e T, 1 6 D 6 w
9: compute the neighborhood dTD

ðxÞ from topic TD

10: for each li e Y, 1 6 i 6m
11: if jdli ;TD

ðxÞjP k� b

12: p(l e y|x e TD) = 1
13: else if jdli ;TD

ðxÞj 6 k� ð1� bÞ
14: p(l e y|x e TD) = 0
15: else
16: pðl 2 yjx 2 TDÞ ¼ jdl;TD

ðtÞj=
P

16j6mjdlj;TD
ðtÞj

17: for each li e Y, 1 6 i 6m
18: pðyiÞ ¼

P
16D6w

P
16j6mpðl 2 yjlj 2 y; x 2 TDÞ

pðlj 2 yjx 2 TDÞpðx 2 TDÞ
19: if p(yi) P threshold yi = 1 else yi = 0

As shown in Algorithm 2, in steps from 1 to 5, we estimate the
correlations among labels for each topic. Steps from 6 to 18 are
used to calculate the probability of each label l belonging to testing
instance x. Step 19 produces the final prediction for each label
according to the probability compared with the threshold. The
threshold is automatically produced.
6. Experiments

As mentioned above, there are many approaches to address
multi-label problem. In this paper, we compare MLRS and MLRS-
LC with the binary relevance method (BR) Tsoumakas et al.,
2010, the kNN-based multi-label algorithms MLkNN (Zhang &
Zhou, 2007) and BRkNN, the random k label-set method for mul-
ti-label classification RAkELd (Tsoumakas et al., 2011), the ensem-
ble classifier chains algorithm ECC (Read, Pfahringer, Holmes, et al.,
2011) and the back-propagation multi-label learning (BPMLL)
Zhang & Zhou, 2006 learner, which are all well-known multi-label
learning algorithms applicable to various multi-label problem.
Furthermore, we show the influence of parameters k and b used
in MLRS and MLRS-LC.

6.1. Datasets

We conducted comparative experiments using these algorithms
on seven datasets containing multi-label instances coming from a
variety of domains. Data statistics are listed in Table 1. In the table,
‘‘name’’ is the name of the dataset, ‘‘domain’’ represents the do-
main that the datasets come from. ‘‘instances’’ denotes the number
of instances in the dataset. ‘‘attributes’’ is the number of attributes
and ‘‘labels’’ means the number of labels. Label Cardinality is the
average number of labels associated with each instance and
showed by ‘‘cardinality’’. Label density is the average number of
labels of instances dataset divided by the number of instances in
the dataset and described as ‘‘density’’.

In Table 1, the first two datasets come from the music domain.
Emotions (Tsoumakas et al., 2008) consists of 593 songs with six
clusters of music emotions and CAL500 (Turnbull, Barrington,
Torres, et al., 2008) is composed of 500 popular western musical
tracks. Yeast (Elisseeff & Weston, 2001) has 2,417 instances that
each instance in the dataset represents a yeast gene and there



Table 2
MLRS and MLRS-LC vs. other multi-label algorithms: Hamming loss.

algorithm emotions Yeast Scene Enron Medical CAL500 Corel5k

BR 0.2474 ± 0.0248 0.2454 ± 0.0091 0.1368 ± 0.0078 0.0508 ± 0.0022 0.0103 ± 0.0014 0.1615 ± 0.0049 0.0098 ± 0.0001
RAkELd 0.2642 ± 0.0177 0.2734 ± 0.0078 0.1371 ± 0.0082 0.0527 ± 0.0028 0.0101 ± 0.0015 0.1950 ± 0.0054 0.0098 ± 0.0001
BPMLL 0.2060 ± 0.0218 0.2225 ± 0.0099 0.2767 ± 0.0544 0.2589 ± 0.0594 0.7255 ± 0.2603 0.2478 ± 0.0155 0.5792 ± 0.0342
MLkNN 0.1951 ± 0.0243 0.1933 ± 0.0123 0.0862 ± 0.0084 0.0523 ± 0.0022 0.0151 ± 0.0018 0.1388 ± 0.0050 0.0094 ± 0.0001
BRkNN 0.1934 ± 0.0182 0.1952 ± 0.0119 0.0920 ± 0.0091 0.0580 ± 0.0023 0.0180 ± 0.0019 0.1425 ± 0.0036 0.0094 ± 0.0001
ECC 0.2030 ± 0.0243 0.2070 ± 0.0097 0.0926 ± 0.0111 0.0481 ± 0.0024 0.0102 ± 0.0013 0.1450 ± 0.0025 NaN
MLRS 0.1807 ± 0.0200 0.2032 ± 0.0093 0.0927 ± 0.0042 0.0568 ± 0.0025 0.0186 ± 0.0015 0.1366 ± 0.0042 0.0094 ± 0.0001
MLRS-LC 0.2054 ± 0.0379 0.2139 ± 0.0076 0.0990 ± 0.0099 0.0640 ± 0.0024 0.0212 ± 0.0038 0.1642 ± 0.0063 0.0117 ± 0.0003

Table 3
MLRS and MLRS-LC vs. other multi-label algorithms: average precision.

Algorithm Emotions Yeast Scene Enron Medical CAL500 Corel5k

BR 0.7014 ± 0.0316 0.6216 ± 0.0151 0.7109 ± 0.0283 0.5929 ± 0.0213 0.8341 ± 0.0278 0.3513 ± 0.0141 0.2494 ± 0.0093
RAkELd 0.6919 ± 0.0270 0.6138 ± 0.0160 0.7296 ± 0.0155 0.5272 ± 0.0227 0.8165 ± 0.0297 0.2800 ± 0.0100 0.1402 ± 0.0067
BPMLL 0.7911 ± 0.0318 0.7451 ± 0.0166 0.6743 ± 0.0198 0.3382 ± 0.0708 0.1037 ± 0.0118 0.5095 ± 0.0143 0.0550 ± 0.0050
MLkNN 0.7965 ± 0.0406 0.7620 ± 0.0144 0.8662 ± 0.0174 0.6322 ± 0.0239 0.8062 ± 0.0275 0.4942 ± 0.0168 0.2465 ± 0.0087
BRkNN 0.8037 ± 0.0337 0.7599 ± 0.0189 0.8496 ± 0.0218 0.5479 ± 0.0175 0.7686 ± 0.0310 0.4589 ± 0.0143 0.1857 ± 0.0065
ECC 0.8000 ± 0.0404 0.7476 ± 0.0210 0.8495 ± 0.0184 0.6875 ± 0.0247 0.8842 ± 0.0163 0.4665 ± 0.0140 NaN
MLRS 0.8046 ± 0.0223 0.7462 ± 0.0116 0.8520 ± 0.0094 0.5874 ± 0.0263 0.7599 ± 0.0221 0.5081 ± 0.0128 0.2388 ± 0.0098
MLRS-LC 0.8187 ± 0.0296 0.7331 ± 0.0147 0.8250 ± 0.0237 0.5069 ± 0.0286 0.7131 ± 0.0329 0.4541 ± 0.0117 0.1641 ± 0.0190

Table 4
MLRS and MLRS-LC vs. other multi-label algorithms: F1-measure.

Algorithm Emotions Yeast Scene Enron Medical CAL500 Corel5k

BR 0.5566 ± 0.0380 0.5635 ± 0.0194 0.5732 ± 0.0319 0.5257 ± 0.0348 0.7771 ± 0.0335 0.3375 ± 0.0170 0.0923 ± 0.0109
RAkELd 0.5260 ± 0.0354 0.5285 ± 0.0153 0.5757 ± 0.0253 0.5020 ± 0.0373 0.7816 ± 0.0352 0.3357 ± 0.0121 0.0914 ± 0.0099
BPMLL 0.6640 ± 0.0307 0.6346 ± 0.0215 0.4886 ± 0.0414 0.3106 ± 0.0350 0.0578 ± 0.0208 0.4586 ± 0.0105 0.0232 ± 0.0004
MLkNN 0.6138 ± 0.0527 0.6204 ± 0.0270 0.6811 ± 0.0330 0.4288 ± 0.0306 0.6065 ± 0.0428 0.3240 ± 0.0168 0.0194 ± 0.0060
BRkNN 0.5902 ± 0.0338 0.5984 ± 0.0246 0.6277 ± 0.0300 0.2532 ± 0.0150 0.4746 ± 0.0472 0.3059 ± 0.0094 0.0035 ± 0.0017
ECC 0.5855 ± 0.0400 0.5973 ± 0.0257 0.6533 ± 0.0381 0.5652 ± 0.0292 0.7806 ± 0.0286 0.3385 ± 0.0108 NaN
MLRS 0.7818 ± 0.0287 0.625 ± 0.0111 0.7335 ± 0.0277 0.4879 ± 0.0102 0.6077 ± 0.0289 0.4756 ± 0.0115 0.0491 ± 0.0078
MLRS-LC 0.7805 ± 0.0248 0.6426 ± 0.0256 0.7209 ± 0.0162 0.451 ± 0.0265 0.6329 ± 0.0435 0.452 ± 0.0140 0.1223 ± 0.0173

Table 5
MLRS and MLRS-LC vs. other multi-label algorithms: Accuracy.

Algorithm Emotions Yeast Scene Enron Medical CAL500 Corel5k

BR 0.4623 ± 0.0352 0.4395 ± 0.0186 0.5353 ± 0.0318 0.4129 ± 0.0313 0.7465 ± 0.0330 0.2067 ± 0.0125 0.0633 ± 0.0077
RAkELd 0.4388 ± 0.0346 0.4054 ± 0.0155 0.5418 ± 0.0254 0.3937 ± 0.0351 0.7520 ± 0.0346 0.2053 ± 0.0088 0.0622 ± 0.0073
BPMLL 0.5736 ± 0.0371 0.5218 ± 0.0221 0.3645 ± 0.0420 0.1985 ± 0.0270 0.0301 ± 0.0108 0.3043 ± 0.0085 0.0118 ± 0.0002
MLkNN 0.5326 ± 0.0515 0.5162 ± 0.0300 0.6670 ± 0.0307 0.3316 ± 0.0264 0.5813 ± 0.0421 0.1972 ± 0.0121 0.0147 ± 0.0047
BRkNN 0.5149 ± 0.0349 0.5002 ± 0.0268 0.6198 ± 0.0285 0.2027 ± 0.0152 0.4563 ± 0.0452 0.1856 ± 0.0061 0.0025 ± 0.0013
ECC 0.5112 ± 0.0343 0.4924 ± 0.0249 0.6417 ± 0.0382 0.4558 ± 0.0297 0.7542 ± 0.0274 0.2093 ± 0.0083 NaN
MLRS 0.6585 ± 0.0300 0.485 ± 0.0113 0.6738 ± 0.0302 0.3818 ± 0.0091 0.5325 ± 0.0318 0.3218 ± 0.0097 0.035 ± 0.0052
MLRS-LC 0.6692 ± 0.0310 0.5271 ± 0.0120 0.6766 ± 0.0133 0.3566 ± 0.0185 0.5815 ± 0.0472 0.3048 ± 0.0189 0.0869 ± 0.0068
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are 14 labels indicating gene functional groups. Enron is used for
UC Berkeley Enron Email Analysis Project and medical is used in
the Computational Medicine Center’s 2007 Medical Natural
Language Processing Challenge. The last two datasets are
composed of images. Scene (Boutell et al., 2004) is a benchmark
for image classification containing 2407 natural scene images
and Corel5k (Duygulu, Barnard, de Freitas, et al., 2006) is based
on 5000 Corel images, which is used for the ECCV 2002 paper.
6.2. Threshold selection

Given a vector w of real-valued probability outputs, a multi-la-
bel prediction y

0
can be obtained by applying a threshold function

ft(w) such that:
y0j ¼
1 if wj P t
0 if wj < t

�

Some approaches, such as ML-kNN use 0.5 as the value of the
threshold. Fan & Lin (2007) point out that it is better to use
threshold implied by some threshold function than considering
an arbitrary value. Our experience is that calibrating a single
threshold t to be used across the entire evaluation is more effective
and efficient. We calibrate the threshold t as follows:

t ¼ arg max
t
ðsumðandðy; y0wjPtÞÞÞ

where function and ðy; y0wjPtÞ forms a vector whose corresponding
value is 1 when yi ¼ y0i and 0 otherwise.
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Fig. 5. Hamming-loss of MLRS for different levels of granularity k.
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Fig. 6. Average precision of MLRS for different levels of granularity k.
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6.3. Experimental setting

The implementation of the compared algorithms comes from
the open source Mulan library (Tsoumakas, Xioufis, Vilcek, et al.,
2011), which is based on the open source Weka library (Witten,
Frank, & Hall, 2011). BR and RAkELd use the C4.5 decision tree
learning algorithm for training the underlying single-label classi-
fier. As recommended in Zhang and Zhou (2007), MLkNN is run
with 10 nearest neighbors and a smoothing factor equal to 1. As
recommended in Zhang and Zhou (2006), BPMLL is run with 0.05
learning rate, 100 epochs and the number of the hidden units
equal to 20% of the input units. The neighborhood is defined
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Fig. 7. Accuracy of MLRS for different levels of granularity k.
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Fig. 8. F1-measure of MLRS for different levels of granularity k.
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by the number of neighbors k. We evaluate all learning algo-
rithms using 10 fold cross evaluation on the datasets mentioned
above and use the average results to display the significance of
results.All experiments were run on a workstation equipped with
a 3.0GHZ processor and 8.0G memory.
6.4. Results and discussion

The results of ten cross validation in terms of predictive
performances: Hamming loss, average precision, accuracy and
F1-measure are shown in Tables 2–5 where k = 10, namely the
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Fig. 10. Average precision of MLRS-LC for different levels of granularity k.
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Fig. 9. Hamming-loss of MLRS-LC for different levels of granularity k.
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size of the granularity is 10 and the inclusion degree b is 1. NaN
means the training process failed. The entries in boldface indi-
cate the best performance. We study the results produced by
the MLRS and MLRS-LC algorithms separately for each dataset.

In comparison with other methods known in the literature,
MLRS and MLRS-LC yield superior predictive performance (see
Tables 2–5) than any other methods on most data sets. The
exception is enron and medical whose attributes are high-
dimensional.

In multi-label classification, it cannot be expected that a
method performs best over all types of evaluation measures,
except in cases where the method is tailored to each and run
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Fig. 11. Accuracy of MLRS-LC for different levels of granularity k.
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Fig. 12. F1-measure of MLRS-LC for different levels of granularity k.
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separately. Therefore it comes as no surprise that different meth-
ods performed best under different measures. The nearest-neigh-
bors-based methods MLkNN, RAkEL, MLRS and MLRS-LC perform
well on Hamming-loss compared with other measures: it votes rel-
atively more conservatively than other methods and is rewarded
for it. However, nearest-neighbors-based methods give poor per-
formance on high-dimensional datasets. This is because that the
calculation of distances suffers from the sparse training instances
caused by high-dimensional feature space. ECC perform well in
several situations but its complexity prohibits its completion on
anything but small datasets. In average precision, BPMLL perform
best on CAL500 while its hamming-loss is highest.
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Fig. 13. Hamming-loss of MLRS for different levels of granularity t.
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Fig. 14. Average precision of MLRS for different levels of granularity t.
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In conclusion, the overall advantage of MLRS and MLRS-LC is
clear: they prove competitive not only under label set-based
like accuracy measures but also label-based measures like
Hamming-loss. On the other hand, the simple baseline BR often
performs surprisingly well against other methods on some data-
sets, such as Corel5k and medical.
The comparison between MLRS and MLRS-LC illustrates that
none of them always perform significantly better than other under
different measures. The performance depends on the character of
datasets. In addition, we find that the performance of MLRS-LC is
affected by the initial centroids which are used in the clustering
of topics.
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Fig. 16. F1-measure of MLRS for different levels of granularity t.
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Fig. 15. Accuracy of MLRS for different levels of granularity t.
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In order to consider the impact of parameters k and b, we exper-
imented with different parameter values. For convenience, all
datasets are split into training sets and testing sets which are same
as those presented in mulan. Firstly, the number of nearest neigh-
bors k varies from 5 to 60 with step 5 and the inclusion degree b is
fixed at 1. From Figs. 5 and 9, we can see that with the increasing of
parameter k, both MLRS and MLRS-LC show slowly growing ten-
dency on most datasets in Hamming-loss while on Corel5k they
perform stably due to the abundant instances of datasets. From
Figs. 6–8 and Figs. 10–12, it can be seen that with the increasing
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Fig. 17. Hamming-loss of MLRS-LC for different levels of granularity t.
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Fig. 18. Average precision of MLRS-LC for different levels of granularity t.
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of parameter k, both MLRS and MLRS-LC generally experience
downward trend in average precision, F1-measure and accuracy on
all datasets, although different datasets show different fluctuation.
The different datasets arriving at optimum performance at differ-
ent value of parameter k states that different datasets have differ-
ent best levels of granularity k. We can select an appropriate value
as the level of granularity of for all datasets, such as 10, which can
not only reduce the amount of calculation but also obtain a nice
performance.

Secondly, the inclusion degree b varies from 0.5 to 1 with
step 0.01 and the number of nearest neighbors k is fixed at
10. From Figs. 13–16, it can be seen that MLRS presents the
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Fig. 19. Accuracy of MLRS-LC for different levels of granularity t.
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Fig. 20. F1-measure of MLRS-LC for different levels of granularity t.
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trend of growth overall in average precision, accuracy and F1-
measure while performs stably in Hamming-loss (Fig. 12). It
also can be seen that the performance numbers almost
remain unchanged when the inclusion degree b arrives at
some value. So we can select an appropriate value, such as
0.9, for inclusion degree b; for MLRS, which can maintain
high performance as well as low computational cost. From
Fig. 17, it can be seen that MLRS-LC presents a downward
trend on most datasets, while from Figs. 18–20, it can be
seen that MLRS-LC shows a rising trend on most datasets
except for medical on which MLRS-LC fluctuated significantly
in average precision and accuracy. We can select an
appropriate parameter value for MLRS-LC, such as 0.95, which
can reduce the calculation amount while obtain an acceptable
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performance. In short, the inclusion degree b has great impact
on the performance. That the performances can maintain
stability when the inclusion degree b arrives at some value
illustrates that both MLRS and MLRS-LC can tolerate the exis-
tence of uncertainty.

6.5. Time complexity

As for the time complexity for MLRS and MLRS-LC, we analyze
them in two phases. During the process of training, MLRS only
need to go through each instance once to obtain the conditional
probability p(l e yi|lj e yi) and the time complexity is o(n) while
MLRS-LC need time to cluster firstly and the time complexity is
o(nkt), where n is the number of instances; k is the number of clus-
ters and t is the iterative time. Generally speaking, k� n and t� n.
So the time complexity can be regarded as o(n). Then MLRS-LC ob-
tains the correlation p(l e yi|lj e yi) in each topic, which need to go
through each instance and the total time complexity for MLRS-LC
is o(n). During the process of testing, both MLRS and MLRS-LC
calculate the neighborhood of testing instance firstly and the time
complexity is o(n � k) where k is the number of nearest neighbors
and n is the number of training instances. Then MLRS-LC need time
to compute neighborhood in some topic again and the time
complexity is o(n � k) in worst case. So the total time complexity
for MLRS-LC is o(n � k).

7. Conclusions and future work

In this paper, we developed two approaches named MLRS and
MLRS-LC for multi-label classification, which we argued have
many advantages over more sophisticated methods currently in
use. MLRS and MLRS-LC consider the uncertainty existing in the
process of classification, which are neglected by existing
algorithms. In addition, MLRS and MLRS-LC respectively make
use of global and local correlation among labels to improve the
precision of prediction, which more comprehensively reflect the
influence of correlation. In other words, MLRS and MLRS-LC pro-
vide new ideas for the problem of uncertainty and correlation
among labels.

Through the empirical multi-label classification evaluation, we
compared the proposed methods versus a variety of existing
multi-label classification methods. MLRS and MLRS-LC come with
high predictive performance while maintaining low computational
complexity compared to other more complex methods. The exper-
imental results indicate that it is beneficial for performance to
consider the uncertainty and correlation among labels. As for the
global and local correlations, it can be seen that none of them
always produce better performance better than the other one
under different measures. Namely, the performance depends on
the nature of the data. However, it should be noted that both MLRS
and MLRS-LC do not perform well for high-dimensional datasets. In
light of this finding, the future work will focus on the dimension-
ality reduction for high-dimensional multi-label datasets.
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