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Recently, much attention has been given to multi-granulation rough sets (MGRS) and
different kinds of multi-granulation rough set models have been developed from various
viewpoints. In this paper, we propose four types of multi-granulation covering rough
set (MGCRS) models under covering approximation space, where a target concept is
approximated by employing the maximal or minimal descriptors of objects in a given
universe of discourse U . And then, we investigate a number of basic properties of the four
types of MGCRS models, and discuss the relationships and differences among the classical
MGRS model and our MGCRS models. Moreover, the conditions for two distinct MGCRS
models which produce identical lower and upper approximations of a target concept in a
covering approximation space are also studied. Finally, the relationships among the four
types of MGCRS models are explored. We find that for any subset X ⊆ U , the lower
approximations of X and the upper approximations of X under the four types of MGCRS
models can construct a lattice, if we consider the binary relation of inclusion.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

To enlarge the usage scope of the Pawlak’s rough set model [1], many meaningful extensions have been proposed for
various requirements in the past decades, such as the graded rough sets [2], arbitrary binary relations based rough sets
[9,29], tolerance or similarity relations based rough sets [30–32], rough fuzzy sets and fuzzy rough sets [33], and variable
precision rough sets [34,35], etc. As one of the extension models, covering rough sets, which was first proposed by Zakowski
[5], has attracted much attention and induced lots of interesting results [6–9,36,37,40–42]. Recently, Yao et al. [4] proposed
a framework for the study of covering based rough set approximations, which enables us to reproduce many existing
approximation operators and introduce some new approximation operators.

In the viewpoint of Granular Computing [3,10], Pawlak’s rough set model and most of its extensions are constructed
based on only one granular structure, which is induced by a binary relation (a partition or a covering). Thus, one may call
those models the single-granulation rough sets. As Qian et al. [12] have mentioned that, in many cases, a target concept
is needed to describe concurrently from some independent environments, that is, multi-granulation spaces are needed.
Therefore, Qian and Liang [11,12] introduced the concept of multi-granulation rough sets (MGRS), where the approximations
of a set of objects are defined by using multi-equivalence relations. The main difference between single-granulation rough
sets and multi-granulation ones lies in that the approximations of a target concept in multi-granulation rough sets are
constructed by using multi-distinct sets of information granules. When two attribute subsets in an information system
contradict each other or possess an inconsistent relationship, MGRS will show its advantages for knowledge discovery [12].
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By now, much attention has been given to the multi-granulation rough sets. For instance, Qian et al. [13] presented a
multi-granulation rough set model based on multiple tolerance relations in incomplete information systems. In [14], Qian
et al. introduced the concept of positive approximation. The positive approximation can be regarded as a special kind of
multi-granulation rough set model, in which the granulation structure of a rough set is characterized by using a granula-
tion order, that is, the granulation structure is characterized by a sequence of attribute sets with granulations from coarse to
fine. Based on the positive approximation, Qian et al. developed a common accelerator for improving the time efficiency of a
heuristic attribute reduction, which provides a vehicle of making algorithms of rough set based feature selection techniques
faster. Based on Ref. [13], Yang et al. [15] further discussed the properties of multi-granulation rough sets in incomplete
information systems. Moreover, Yang et al. [16] and Xu et al. [21,24,26] constructed multi-granulation rough sets based on
the fuzzy approximation space. Yang et al. [17] discussed the hierarchical structures of multi-granulation rough sets and
She et al. [28] investigated the topological and lattice-theoretic properties of multi-granulation rough sets. Liang et al. [39]
introduced an efficient rough feature selection algorithm with a multi-granulation view. Liu et al. [18,19] introduced the
concepts of multi-granulation covering rough sets and multi-granulation covering fuzzy rough sets in a covering approxi-
mation space. Lin et al. [20] discussed two kinds of neighborhood-based multi-granulation rough sets and three kinds of
covering based multi-granulation rough sets [43]. Xu et al. [22,25,27] constructed three kinds of multi-granulation rough
sets based on the tolerance, ordered and generalized relations respectively. Qian et al. [44] developed the multi-granulation
decision-theoretic rough set and proved that many existing multi-granulation rough set models can be derived from the
multi-granulation decision-theoretic rough set framework.

As an extension of our previous work [18], the purpose of this paper is to further generalize the classical multi-
granulation rough sets to covering environment. Through combining the multi-granulation rough sets with covering rough
sets, we aim to solve the limitation of classical multi-granulation rough sets induced by equivalence relations. To define
the approximations of a target concept in the multi-granulation covering environment, we respectively employ the maximal
and minimal descriptors of objects in a given universe of discourse U . For any subset X ⊆ U and object x ∈ U , we first
respectively define the type-1 and type-2 approximations (including low and upper approximations) of X by using the in-
tersection and union of all elements in the minimal descriptor of x. Second, the type-3 and type-4 approximations of X are
respectively defined based on the intersection and union of all elements in the maximal descriptor of x. Correspondingly, we
can obtain four types of multi-granulation covering rough set (MGCRS) models under a covering approximation space. The
basic properties of the four types of MGCRS models, and the relationships among the classical MGRS model and our MGCRS
models are discussed. Moreover, the conditions for two distinct MGCRS models which produce identical lower and upper
approximations of a target concept in a covering approximation space are also studied. Finally, the relationships among the
four types of MGCRS models are explored.

The remainder of this paper is organized as follows. The next section deals with some preliminary concepts and prop-
erties regarding the Pawlak’s rough sets, covering rough sets and multi-granulation rough sets. In Section 3, we introduce
four types of multi-granulation covering rough set models and investigate the basic properties of them. Moreover, based on
the concept of reduct of a covering, we give the sufficient conditions for two different MGCRS models to produce identical
lower and upper approximations of a target concept. In Section 4, we investigate the relationships among the four types of
MGCRS models. Finally, Section 5 concludes the paper.

2. Preliminaries

In this section, we review some basic concepts about the Pawlak’s rough sets, covering rough sets and multi-granulation
rough sets. The detailed descriptions can be found in [1,2,5,6,11,12].

2.1. The Pawlak’s rough sets

Let U be a universe of discourse, and R an equivalence relation on U . R partitions the universe U into disjoint subsets,
each subset is called an equivalence class or equivalence granule, the family of all equivalence classes is denoted by U/R .
For any X ⊆ U , one can describe X by a pair of lower and upper approximations defined as follows.

R(X) = {
x ∈ U |[x]R ⊆ X

};
R(X) = {

x ∈ U |[x]R ∩ X �= ∅}
.

R(X) is called the lower approximation of X , which is the union of all the equivalence classes which are subsets of X ,
and R(X) is called the upper approximation of X , which is the union of all equivalence classes which have non-empty
intersection with X . Then (R(X), R(X)) is called the rough sets of X .

Let ∼X = U − X , we have the following basic properties of Pawlak’s rough sets.
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(L1) R(X) ⊆ X (U 1) X ⊆ R(X)

(L2) R(∅) = ∅ (U 2) R(∅) = ∅
(L3) R(U ) = U (U 3) R(U ) = U
(L4) R(X ∩ Y ) = R(X) ∩ R(Y ) (U 4) R(X ∪ Y ) = R(X) ∪ R(Y )

(L5) X ⊆ Y ⇒ R(X) ⊆ R(Y ) (U 5) X ⊆ Y ⇒ R(X) ⊆ R(Y )

(L6) R(X ∪ Y ) ⊇ R(X) ∪ R(Y ) (U 6) R(X ∩ Y ) ⊆ R(X) ∩ R(Y )

(L7) R(∼X) = ∼R(X) (U 7) R(∼X) = ∼R(X)

(L8) R(R(X)) = R(X) (U 8) R(R(X)) = R(X)

(L9) ∀K ∈ U/R ⇒ R(K ) = K (U 9) ∀K ∈ U/R ⇒ R(K ) = K

2.2. Basic concepts of covering rough sets

Let U be a universe of discourse and C a family of non-empty subsets of U . If ∪C = U , then C is called a covering of U .
Obviously, a partition of U is also a covering of U .

Definition 1. (See [5].) The pair 〈U , C〉 is called a covering approximation space, where U is a universe of discourse and C
a covering of U .

Definition 2. (See [5].) Let 〈U , C〉 be a covering approximation space, where C = {C1, C2, . . . , C p}. For any X ⊆ U , the cover-
ing lower and upper approximations of X with respect to C can be respectively defined as follows.

C(X) = ∪{
Ci ⊆ X, i ∈ {1,2, . . . , p}}, C(X) = ∪{

Ci ∩ X �= ∅, i ∈ {1,2, . . . , p}}.

Definition 3. Given a covering approximation space 〈U , C〉, for any x ∈ U , sets mdC (x) and MDC (x) are respectively called the
minimal and maximal descriptors of x with respect to C , where mdC (x) = {K ∈ C |x ∈ K ∧ (∀S ∈ C ∧ x ∈ S ∧ S ⊆ K ⇒ K = S)},
MDC (x) = {K ∈ C |x ∈ K ∧ (∀S ∈ C ∧ x ∈ S ∧ S ⊇ K ⇒ K = S)}.

Based on the minimal descriptor of x, Xu et al. [23] have introduced a kind of covering rough set, which is the basis of
Definition 7.

C∗(X) = {
x ∈ U |(∩md(x)

) ⊆ X
}
, C∗(X) = {

x ∈ U |(∩md(x)
) ∩ X �= ∅}

.

Definition 4. Let C be a covering of U and K ∈ C . If K is a union of some elements in C − {K }, then we call K a reducible
element of C , otherwise we call K an irreducible element of C . If all the reducible elements have been removed from C ,
then the obtained subset is called the reduct of C on U , denoted by reduct(C).

From Definitions 3 and 4, it is not difficult to obtain that for any x ∈ U , the minimal descriptor of x with respect to C is
the same as that of x with respect to reduct(C), but the maximal descriptor of x with respect to C may be different from
that of x with respect to reduct(C).

2.3. Multi-granulation rough sets

In recent years, Qian et al. [11,12] have proposed a new rough set model called multi-granulation rough set model. In
this model, a target concept is approximated by multiple binary relations. Next, we briefly outline two definitions of multi-
granulation rough set models, i.e., optimistic and pessimistic multi-granulation rough sets respectively. Detailed descriptions
could be found in [11,12].

Definition 5. Let K = (U ,R) be a knowledge base, where R is a family of equivalence relations on the universe U . Let
A1, A2, . . . , Am ∈ R, where m is a natural number. For any X ⊆ U , its optimistic lower and upper approximations with
respect to A1, A2, . . . , Am are respectively defined as follows.

m∑

i=1

Ai(X) = {
x ∈ U |[x]A1 ⊆ X or [x]A2 ⊆ X or . . . or [x]Am ⊆ X

};

m∑

i=1

Ai(X) = ∼
m∑

i=1

Ai(∼X).

(
∑m

i=1 Ai(X),
∑m

i=1 Ai(X)) is called the optimistic multi-granulation rough sets of X . Here, the word “optimistic” means that
only one granular structure is needed to satisfy with the inclusion condition between an equivalence class and a target
concept when multiple independent granular structures are available in problem processing.
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Definition 6. Let K = (U ,R) be a knowledge base, where R is a family of equivalence relations on the universe U . Let
A1, A2, . . . , Am ∈ R, where m is a natural number. For any X ⊆ U , its pessimistic lower and upper approximations with
respect to A1, A2, . . . , Am are respectively defined as follows.

m∑

i=1

Ai(X) = {
x ∈ U |[x]A1 ⊆ X and [x]A2 ⊆ X and . . . and [x]Am ⊆ X

};

m∑

i=1

Ai(X) =∼
m∑

i=1

Ai(∼X).

(
∑m

i=1 Ai(X),
∑m

i=1 Ai(X)) is called the pessimistic multi-granulation rough sets of X . Here, the word “pessimistic” means
that all granular structures are needed to satisfy with the inclusion condition between an equivalence class and a target
concept when multiple independent granular structures are available.

3. Multi-granulation covering rough sets (MGCRS)

In this section, we extend the classical multi-granulation rough sets to a multi-granulation covering approximation space.
First, we introduce four types of multi-granulation covering rough set models by employing the maximal or minimal de-
scriptors of objects in a given universe of discourse. Second, we investigate the basic properties of the four types of MGCRS
models. Finally, we give the conditions for two distinct MGCRS models which produce identical lower and upper approxi-
mations of a target concept.

It should be noted that in the remainder of this paper, differing from the definition of covering approximation space
introduced by Zakowski [5], we define the pair 〈U ,C〉 as a multi-granulation covering approximation space, where U is a
universe of discourse and C is a family of coverings on the universe U .

Given an approximation space 〈U ,C〉, for any object x ∈ U , the minimal descriptor of x contains the core objects in the
approximation space that are related to x, and the minimal descriptor may provide a simple and key description for x when
we discuss the issue of set approximations in 〈U ,C〉. By virtue of the minimal descriptors of objects in U , we first give the
following two types of MGCRS models, which are respectively called type-1 and type-2 multi-granulation covering rough
sets.

Definition 7 (Type-1 MGCRS). (See [18].) Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2,

. . . , Cm ∈ C, where m is a natural number. For any X ⊆ U , its type-1 lower and upper approximations with respect to
C1, C2, . . . , Cm are respectively defined as follows.

FR∑m
i=1 Ci

(X) = {
x ∈ U | ∩ mdC1(x) ⊆ X or ∩ mdC2(x) ⊆ X or . . . ∩ mdCm (x) ⊆ X

};
FR∑m

i=1 Ci
(X) = {

x ∈ U |(∩mdC1(x)
) ∩ X �= ∅ and

(∩mdC2(x)
) ∩ X �= ∅ and . . . and

(∩mdCm (x)
) ∩ X �= ∅}

.

If FR∑m
i=1 Ci

(X) �= FR∑m
i=1 Ci

(X), then X is called a type-1 multi-granulation covering rough set with respect to

C1, C2, . . . , Cm , else X is called a definable set.

From Definition 7, we can see that for any X ⊆ U and x ∈ U , the intersection of all elements in the minimal descriptor
of x is used to calculate the type-1 lower and upper approximations of X . Moreover, since the above approximations of
X are defined in the multi-granulation environment, the minimal descriptors of x with respect to coverings C1, C2, . . . , Cm

are simultaneously used. In a word, if at least one of {∩mdCi (x),1 � i � m} is a subset of X , then object x belongs to the
lower approximation of X , and if all the intersections between ∩mdCi (x) with X are not empty, then x belongs to the upper
approximation of X , where mdCi (x) denotes the minimal descriptor of x with respect to covering Ci , 1 � i � m.

Definition 8 (Type-2 MGCRS). Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2, . . . , Cm ∈ C, where
m is a natural number. For any X ⊆ U , its type-2 lower and upper approximations with respect to C1, C2, . . . , Cm are
respectively defined as follows.

SR∑m
i=1 Ci

(X) = {
x ∈ U | ∪ mdC1(x) ⊆ X or ∪ mdC2(x) ⊆ X or . . . or ∪ mdCm(x) ⊆ X

};
SR∑m

i=1 Ci
(X) = {

x ∈ U |(∪mdC1(x)
) ∩ X �= ∅ and

(∪mdC2(x)
) ∩ X �= ∅ and . . . and

(∪mdCm (x)
) ∩ X �= ∅}

.

If SR∑m
i=1 Ci

(X) �= SR∑m
i=1 Ci

(X), then X is called a type-2 multi-granulation covering rough set with respect to

C1, C2, . . . , Cm , else X is called a definable set.
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From Definition 8, we can see that for any X ⊆ U and x ∈ U , the union of all elements in the minimal descriptor of x
is used to calculate the type-2 lower and upper approximations of X . Moreover, since the above approximations of X are
defined in the multi-granulation environment, the minimal descriptors of x with respect to coverings C1, C2, . . . , Cm are
simultaneously used.

The maximal descriptor of x contains all objects in the approximation space that are related to x, and the maximal
descriptor may provide a detailed and comprehensive description for x when we discuss the issue of set approximations
in 〈U ,C〉. As Yao et al. [4] have pointed out that the utilization of the maximal descriptors of objects is equally reasonable
as the utilization of the minimal ones in a covering approximation space. Therefore, we also give the following two types
of MGCRS models by virtue of the maximal descriptors of objects in U , which are respectively called type-3 and type-4
multi-granulation covering rough sets.

Definition 9 (Type-3 MGCRS). Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2, . . . , Cm ∈ C, where
m is a natural number. For any X ⊆ U , its type-3 lower and upper approximations with respect to C1, C2, . . . , Cm are
respectively defined as follows.

TR∑m
i=1 Ci

(X) = {
x ∈ U | ∩ MDC1(x) ⊆ X or ∩ MDC2(x) ⊆ X or . . . ∩ MDCm (x) ⊆ X

};
TR∑m

i=1 Ci
(X) = {

x ∈ U |(∩MDC1(x)
) ∩ X �= ∅ and

(∩MDC2(x)
) ∩ X �= ∅ and . . . and

(∩MDCm (x)
) ∩ X �= ∅}

.

If TR∑m
i=1 Ci

(X) �= TR∑m
i=1 Ci

(X), then X is called a type-1 multi-granulation covering rough set with respect to

C1, C2, . . . , Cm , else X is called a definable set, then X is called a type-3 multi-granulation covering rough set with re-
spect to C1, C2, . . . , Cm , else X is called a definable set.

From Definition 9, we can see that for any X ⊆ U and x ∈ U , the intersection of all elements in the maximal descriptor
of x is used to calculate the type-3 lower and upper approximations of X . Moreover, since the above approximations of X
are defined in the multi-granulation environment, the maximal descriptors of x with respect to coverings C1, C2, . . . , Cm are
simultaneously used.

Definition 10 (Type-4 MGCRS). Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2, . . . , Cm ∈ C, where
m is a natural number. For any X ⊆ U , its type-4 lower and upper approximations with respect to C1, C2, . . . , Cm are
respectively defined as follows.

LR∑m
i=1 Ci

(X) = {
x ∈ U | ∪ MDC1(x) ⊆ X or ∪ MDC2(x) ⊆ X or . . . or ∪ MDCm (x) ⊆ X

};
LR∑m

i=1 Ci
(X) = {

x ∈ U |(∪MDC1(x)
) ∩ X �= ∅ and

(∪MDC2(x)
) ∩ X �= ∅}

and . . . and
(∪MDCm (x)

) ∩ X �= ∅}.
If LR∑m

i=1 Ci
(X) �= LR∑m

i=1 Ci
(X), then X is called a type-4 multi-granulation covering rough set with respect to

C1, C2, . . . , Cm , then X is called a type-4 multi-granulation covering rough set with respect to C1, C2, . . . , Cm , else X is
called a definable set.

From Definition 10, we can see that for any X ⊆ U and x ∈ U , the union of all elements in the maximal descriptor of x
is used to calculate the type-4 lower and upper approximations of X . Moreover, since the above approximations of X are
defined in the multi-granulation environment, the maximal descriptors of x with respect to coverings C1, C2, . . . , Cm are
simultaneously used.

It is obvious that Definitions 5, 7–10 will be the same if C is a family of partitions on the universe U , i.e. the above four
multi-granulation covering rough sets will degenerate into the optimistic multi-granulation rough sets when C is a family
of partitions. Hence, each of the above four MGCRS model is an extensional model of the classical MGRS model. It is easy
to prove that the above four MGCRS models are also extensions of the Pawlak’s model and covering rough set model.

Next, we give an example to show the differences among the four MGCRS models defined above.

Example 1. Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2 ∈ C, where U = {a,b, c,d}, C1 =
{{a,b}, {b, c,d}, {c,d}}, and C2 = {{a, c}, {b,d}, {a,b,d}, {d}}.

Given a subset X = {a,d} of U , from Definitions 7–10, we can obtain the following results.

FRC1+C2(X) = {a,d}, FRC1+C2(X) = {a, c,d};
SRC1+C2(X) = {d}, SRC1+C2(X) = {a,b, c,d};
TRC1+C2(X) = {a}, TRC1+C2(X) = {a, c,d};
LRC1+C2(X) = ∅, LRC1+C2(X) = {a,b, c,d}.
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Table 1
Properties of the eight approximation operators.

FR SR TR LR FR SR TR LR

(L1) y y y y (U 1) y y y y
(L2) y y y y (U 2) y y y y
(L3) y y y y (U 3) y y y y
(L4) n n n n (U 4) n n n n
(L5) y y y y (U 5) y y y y
(L6) y y y y (U 6) y y y y
(L7) y y y y (U 7) y y y y
(L8) y y y y (U 8) y y y y
(L9) y y y y (U 9) n n n n

From Example 1, we can see that for a given subset X = {a,d} of U , the four types of approximations of X are different
with each other, which means that the above four types of MGCRS models are also different with each other.

Theorem 1. Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2, . . . , Cm ∈ C, for any X ⊆ U , we have that

(1) FR∑m
i=1 Ci

(∼X) =∼ FR∑m
i=1 Ci

(X), FR∑m
i=1 Ci

(∼X) =∼ FR∑m
i=1 Ci

(X);

(2) SR∑m
i=1 Ci

(∼X) =∼ SR∑m
i=1 Ci

(X), SR∑m
i=1 Ci

(∼X) =∼ SR∑m
i=1 Ci

(X);

(3) TR∑m
i=1 Ci

(∼X) =∼ TR∑m
i=1 Ci

(X), TR∑m
i=1 Ci

(∼X) =∼ TR∑m
i=1 Ci

(X);

(4) LR∑m
i=1 Ci

(∼X) =∼ LR∑m
i=1 Ci

(X), LR∑m
i=1 Ci

(∼X) =∼ LR∑m
i=1 Ci

(X).

Proof. We only prove (1) here, the rest can be proved in a similar way.
(1) From Definition 7, we have that

FR∑m
i=1 Ci

(∼X) = {
x ∈ U | ∩ mdC1(x) ⊆ ∼X or ∩ mdC2(x) ⊆ ∼X or . . . or ∩ mdCm(x) ⊆ ∼X

}

= {
x ∈ U | ∩ mdC1(x) ∩ X = ∅ or ∩ mdC2(x) ∩ X = ∅ or . . . or ∩ mdCm (x) ∩ X = ∅}

= ∼ {
x ∈ U | ∩ mdC1(x) ∩ X �= ∅ and ∩ mdC2(x) ∩ X �= ∅ and . . . and ∩ mdCm(x) ∩ X �= ∅}

= ∼ FR∑m
i=1 Ci

(X).

Analogously, we have that

FR∑m
i=1 Ci

(∼X) = {
x ∈ U |(∩mdC1(x)

) ∩ ∼X �= ∅ and
(∩mdC2(x)

) ∩ ∼X �= ∅ and . . . and
(∩mdCm (x)

) ∩ ∼X �= ∅}

= ∼ {
x ∈ U |(∩mdC1(x)

) ∩ ∼X = ∅ or
(∩mdC2(x)

) ∩ ∼X = ∅ or . . . or
(∩mdCm (x)

) ∩ ∼X = ∅}

= ∼ {
x ∈ U | ∩ mdC1(x) ⊆ X or ∩ mdC2(x) ⊆ X or . . . or ∩ mdCm(x) ⊆ X

}

= ∼ FR∑m
i=1 Ci

(X). �
From Theorem 1, we can see that for any subset X ⊆ U , the lower and upper approximations of X in each of the above

four MGCRS models satisfy the property of duality, i.e., the upper approximation of ∼X can be defined by the complement
of the lower approximation of X , and the lower approximation of ∼X can also be defined by the complement of the upper
approximation of X .

We respectively call the operators FR∑m
i=1 Ci

, SR∑m
i=1 Ci

, TR∑m
i=1 Ci

and LR∑m
i=1 Ci

the lower approximation operators on U ,

and FR∑m
i=1 Ci

, SR∑m
i=1 Ci

, TR∑m
i=1 Ci

and LR∑m
i=1 Ci

the upper approximation operators on U . Table 1 shows whether the eight
approximation operators satisfy the properties (L1)–(L9) and (U 1)–(U 9) given in Section 2.1, where ‘y’ denotes “yes” and
‘n’ denotes “no”.

From Table 1, we can see that the eight approximation operators defined in our MGCRS models satisfy all the properties
listed above, with the exception of (L4), (U 4) and (U 9).

Next, we only prove some of properties listed in Table 1. It is not difficult to prove the other properties of the eight
approximation operators. Moreover, we also give some examples to show the properties listed in Table 1. In the following,
we shall use symbol ∇ to denote FR, SR, TR or LR.

Proposition 1. Let 〈U ,C〉 be a multi-granulation covering approximation space and C1, C2, . . . , Cm ∈ C, where m is a natural number.
For any X ⊆ U , the lower approximation operators satisfy property (L8) and the upper approximation operators satisfy property (U 8),
that is,
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(1) ∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(X)) = ∇∑m
i=1 Ci

(X);

(2) ∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(X)) = ∇∑m
i=1 Ci

(X).

Proof. (1) From (L1) in Table 1, we have that ∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(X)) ⊆ ∇∑m
i=1 Ci

(X). Moreover, according to (4) of Theorem 2

in Ref. [13], we can obtain that

∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(X)
)

= ∇C1

(∇∑m
i=1 Ci

(X)
) ∪ ∇C2

(∇∑m
i=1 Ci

(X)
) ∪ · · · ∪ ∇Cm

(∇∑m
i=1 Ci

(X)
)

= ∇C1

(∇C1(X) ∪ ∇C2(X) ∪ · · · ∪ ∇Cm (X)
) ∪ ∇C2

(∇C1(X) ∪ ∇C2(X) ∪ · · · ∪ ∇Cm (X)
)

∪· · · ∪ ∇Cm

(∇C1(X) ∪ ∇C2(X) ∪ · · · ∪ ∇Cm (X)
)

⊇ ∇C1

(∇C1(X)
) ∪ ∇C2

(∇C2(X)
) ∪ · · · ∪ ∇Cm

(∇Cm (X)
)

= ∇C1(X) ∪ ∇C2(X) ∪ · · · ∪ ∇Cm (X) = ∇∑m
i=1 Ci

(X).

Hence, we can prove that ∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(X)) = ∇∑m
i=1 Ci

(X).

(2) From (U 1) in Table 1, we have that ∇∑m
i=1 Ci

(X) ⊆ ∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(X)). Moreover, according to (5) of Theorem 2 in
Ref. [13], we can obtain that

∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(X)
)

= ∇C1

(∇∑m
i=1 Ci

(X)
) ∩ ∇C2

(∇∑m
i=1 Ci

(X)
) ∩ · · · ∩ ∇Cm

(∇∑m
i=1 Ci

(X)
)

= ∇C1

(∇C1(X) ∩ ∇C2(X) ∩ · · · ∩ ∇Cm (X)
) ∩ ∇C2

(∇C1(X) ∩ ∇C2(X) ∩ · · · ∩ ∇Cm (X)
) ∩

· · · ∩ ∇Cm

(∇C1(X) ∩ ∇C2(X) ∩ · · · ∩ ∇Cm (X)
)

⊆ ∇C1

(∇C1(X)
) ∩ ∇C2

(∇C2(X)
) ∩ · · · ∩ ∇Cm

(∇Cm (X)
)

= ∇C1(X) ∩ ∇C2(X) ∩ · · · ∩ ∇Cm (X) = ∇∑m
i=1 Ci

(X).

Therefore, we can prove that ∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(X)) = ∇∑m
i=1 Ci

(X). �
Proposition 1 shows the idempotency of the eight approximation operators defined in our MGCRS models.

Remark 1. The following two properties do not hold generally.

(1) ∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(∼X)) = ∼∇∑m
i=1 Ci

(X);

(2) ∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(∼X)) = ∼∇∑m
i=1 Ci

(X).

Proof. According to Theorem 1 and Proposition 1, we have that

∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(∼X)
) = ∇∑m

i=1 Ci

(∼∇∑m
i=1 Ci

(X)
)

= ∼∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(X)
)

= ∼∇∑m
i=1 Ci

(X);
∇∑m

i=1 Ci

(∇∑m
i=1 Ci

(∼X)
) = ∇∑m

i=1 Ci

(∼∇∑m
i=1 Ci

(X)
)

= ∼∇∑m
i=1 Ci

(∇∑m
i=1 Ci

(X)
)

= ∼∇∑m
i=1 Ci

(X).

Therefore, properties (1) and (2) are true only for all definable sets. If X is not a definable set, then (1) and (2) will not
hold. �
Example 2 (Continued from Example 1). Since X = {a,d}, we have that ∼X = {b, c}. From Definitions 7–10, we have the
following results.
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(1) Since FRC1+C2 (∼X) = {b}, we have that FRC1+C2 (FRC1+C2 (∼X)) = {b}. Moreover, since ∼ FRC1+C2 (X) = {b, c}, we can
obtain that FRC1+C2 (FRC1+C2 (∼X)) �= ∼FRC1+C2 (X).

Since FRC1+C2 (∼X) = {b, c}, we have that FRC1+C2 (FRC1+C2 (∼X)) = {b, c}. Moreover, since ∼ FRC1+C2 (X) = {b}, we have
that FRC1+C2 (FRC1+C2 (∼X)) �= ∼FRC1+C2 (X).

(2) Since SRC1+C2 (∼X) = ∅, we have that SRC1+C2 (SRC1+C2 (∼X)) = ∅. Moreover, since ∼ SRC1+C2 (X) = {a,b, c}, we have
that SRC1+C2 (SRC1+C2 (∼X)) �= ∼SRC1+C2 (X).

Since SRC1+C2 (∼X) = {a,b, c}, we have that SRC1+C2 (SRC1+C2 (∼X)) = {a,b, c}. Moreover, since ∼ SRC1+C2 (X) = ∅, we can
obtain that SRC1+C2 (SRC1+C2 (∼X)) �= ∼SRC1+C2 (X).

(3) Since TRC1+C2 (∼X) = {b}, we have that TRC1+C2 (TRC1+C2 (∼X)) = {b}. Moreover, since ∼ TRC1+C2 (X) = {b, c,d}, we
have that TRC1+C2 (TRC1+C2 (∼X)) �= ∼TRC1+C2 (X).

Since TRC1+C2 (∼X) = {b, c,d}, we have that TRC1+C2 (TRC1+C2 (∼X)) = {b, c,d}. Moreover, since ∼TRC1+C2 (X) = {b}, we
can obtain that TRC1+C2 (TRC1+C2 (∼X)) �= ∼TRC1+C2 (X).

(4) Since LRC1+C2 (∼X) = ∅, we have that LRC1+C2 (LRC1+C2 (∼X)) = ∅. Moreover, since ∼LRC1+C2 (X) = {a,b, c,d}, we have
that LRC1+C2 (LRC1+C2 (∼X)) �= ∼LRC1+C2 (X).

Since LRC1+C2 (∼X) = {a,b, c,d}, we have that LRC1+C2 (LRC1+C2 (∼X)) = {a,b, c,d}. Moreover, since ∼ LRC1+C2 (X) = ∅, we
can obtain that LRC1+C2 (LRC1+C2 (∼X)) �= ∼LRC1+C2 (X). �
Proposition 2. Let 〈U ,C〉 be a multi-granulation covering approximation space and C1, C2, . . . , Cm ∈ C. For any X, Y ⊆ U , the fol-
lowing properties are satisfied.

(1) If X ⊆ Y , then ∇∑m
i=1 Ci

(X) ⊆ ∇∑m
i=1 Ci

(Y );

(2) If X ⊆ Y , then ∇∑m
i=1 Ci

(X) ⊆ ∇∑m
i=1 Ci

(Y );

(3) ∇∑m
i=1 Ci

(X ∩ Y ) ⊆ ∇∑m
i=1 Ci

(X) ∩ ∇∑m
i=1 Ci

(Y );

(4) ∇∑m
i=1 Ci

(X ∪ Y ) ⊇ ∇∑m
i=1 Ci

(X) ∪ ∇∑m
i=1 Ci

(Y );

(5) ∇∑m
i=1 Ci

(X ∪ Y ) ⊇ ∇∑m
i=1 Ci

(X) ∪ ∇∑m
i=1 Ci

(Y );

(6) ∇∑m
i=1 Ci

(X ∩ Y ) ⊆ ∇∑m
i=1 Ci

(X) ∩ ∇∑m
i=1 Ci

(Y ).

Proof. Noting that properties (3), (4), (5) and (6) can be proved by employing (1) or (2), hence we only prove (1) and (2)
here.

(1) From Definition 7, we have that FR∑m
i=1 Ci

(X) = {x ∈ U | ∩ mdC1 (x) ⊆ X or ∩ mdC2 (x) ⊆ X or . . . or ∩ mdCm (x) ⊆ X}. If

X ⊆ Y , then ∩mdC1 (x) ⊆ X ⊆ Y , ∩mdC2 (x) ⊆ X ⊆ Y , . . . ,∩mdCm (x) ⊆ X ⊆ Y hold. Therefore, FR∑m
i=1 Ci

(X) ⊆ FR∑m
i=1 Ci

(Y ).

One can prove the cases of type-2, type-3 and type-4 MGCRS in a similar manner, hence we omit them here.
(2) From Definition 7, we have that FR∑m

i=1 Ci
(X) = {x ∈ U |(∩mdC1 (x)) ∩ X �= ∅ and (∩mdC2 (x)) ∩ X �= ∅ and . . . and

(∩mdCm (x)) ∩ X �= ∅}. If X ⊆ Y , then (∩mdC1 (x)) ∩ Y �= ∅, (∩mdC2 (x)) ∩ Y �= ∅, . . . , (∩mdCm (x)) ∩ Y �= ∅. Therefore,
FR∑m

i=1 Ci
(X) ⊆ FR∑m

i=1 Ci
(Y ).

One can prove the cases of type-2, type-3 and type-4 MGCRS in a similar manner, hence we also omit them here. This
completes the proof of Proposition 2. �

In Proposition 2, (1) and (2) show the monotonicity of multi-granulation covering rough approximations, w.r.t. the variety
of target or concept, and each of (3)–(6) expresses the relationship between the rough approximation of X ∩ Y (or X ∪ Y )
with the intersection (or union) of the two rough approximations of X and Y under the multi-covering environment.

Example 3 (Continued from Example 1). Let Y = {a,b}, we have that X ∩ Y = {a}, X ∪ Y = {a,b,d}. For simplicity, we only
calculate the case of type-1 MGCRS, the results in other cases can be shown similarly. According to Definition 7, we have
the following results.

From Definition 7, we can obtain that FRC1+C2 (X ∩ Y ) = {a}, FRC1+C2 (X ∩ Y ) = {a}, FRC1+C2 (X ∪ Y ) = {a,b,d}, FRC1+C2 (X ∪
Y ) = {a,b, c,d}, FRC1+C2 (Y ) = {a,b}, and FRC1+C2 (Y ) = {a,b}.

Therefore, we have that

FRC1+C2(Y ) = {a,b} ⊂ FRC1+C2(X ∪ Y ) = {a,b,d};
FRC1+C2(Y ) = {a,b} ⊂ FRC1+C2(X ∪ Y ) = {a,b, c,d};
FRC1+C2(X ∪ Y ) = {a,b,d} ⊇ FRC1+C2(X) ∪ FRC1+C2(Y ) = {a,b,d};
FRC1+C2(X ∩ Y ) = {a} ⊆ FRC1+C2(X) ∩ FRC1+C2(Y ) = {a};
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FRC1+C2(X ∩ Y ) = {a} ⊆ FRC1+C2(X) ∩ FRC1+C2(Y ) = {a};
FRC1+C2(X ∪ Y ) = {a,b, c,d} ⊇ FRC1+C2(X) ∪ FRC1+C2(Y ) = {a,b, c,d}.

From Example 3, we can see that the results obtained from the above example are in accordance with those given in
Proposition 2.

Proposition 3. Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2, . . . , Cm ∈ C, where Ci = {Ci1, Ci2,

. . . , Cin}, 1 � i � m and m, n are two natural numbers. For any K j ∈ Ci , where j ∈ {i1, i2, . . . , in}, we have that ∇∑m
i=1 Ci

(K j) = K j .

Proof. It is straightforward according to the definitions of MGCRS. �
From Proposition 3, we can see that for any element in the coverings which construct a given MGCRS model, its lower

approximation in that model is itself, but as shown in Remark 2, its upper approximation in that model may not be itself.

Remark 2. ∇∑m
i=1 Ci

(K j) = K j may not hold.

Remark 2 can be proved by the following example.

Example 4 (Continued from Example 3). As shown in Example 3, X ∪ Y = {a,b,d} is an element of C2, but from Example 3,
we have that

FRC1+C2(X ∪ Y ) = {a,b, c,d} �= X ∪ Y , SRC1+C2(X ∪ Y ) = {a,b, c,d} �= X ∪ Y ,

TRC1+C2(X ∪ Y ) = {a,b, c,d} �= X ∪ Y , LRC1+C2(X ∪ Y ) = {a,b, c,d} �= X ∪ Y .

Definition 11. Let 〈U ,C〉 be a multi-granulation covering approximation space, C1, C2 ∈ C and reduct(C1) = {C11, C12, . . . ,

C1p}, reduct(C2) = {C21, C22, . . . , C2q}. If for each C1i ∈ reduct(C1),1 � i � p, there exists C2 j ∈ reduct(C2),1 � j � q, such
that C1i ⊆ C2 j , then we shall say that C1 is finer than C2, denoted by C1 � C2.

Obviously, if C1 � C2, then for any x ∈ U , we have that mdC1 (x) ⊆ mdC2 (x) and MDC1 (x) ⊆ MDC2 (x).

Theorem 2. Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2, . . . , Cm ∈ C. For any X ⊆ U , if C1 � C2 �
· · · � Cm, then ∇∑m

i=1 Ci
(X) = ∇C1 (X) and ∇∑m

i=1 Ci
(X) = ∇C1 (X).

Proof. For any X ⊆ U , if C1 � C2 � · · · � Cm , then from Definition 11, we have that FR∑m
i=1 Ci

(X) = {x ∈ U | ∩ mdC1 (x) ⊆
X or ∩ mdC2 (x) ⊆ X or . . . or ∩ mdCm (x) ⊆ X} = {x ∈ U | ∩ mdC1 (x) ⊆ X} = FRC1 (X).

For any X ⊆ U , if C1 � C2 � · · · � Cm , then from Definition 11, we have that FR∑m
i=1 Ci

(X) = {x ∈ U | ∪ mdC1 (x) ⊆ X and

∪ mdC2 (x) ⊆ X and . . . and ∪ mdCm (x) ⊆ X} = {x ∈ U | ∪ mdC1 (x) ⊆ X} = FRC1 (X).
One can prove the cases of type-2, type-3 and type-4 MGCRS in a similar manner, hence we omit them here. �
From Theorem 2, we can see that for any X ⊆ U , the approximations of X under multi-coverings equal to the approxi-

mations of X under the covering which is the finest among all the coverings.

Theorem 3. Let 〈U ,C〉 be a multi-granulation covering approximation space, C1, C2, . . . Cm ∈ C and reduct(C1), reduct(C2), . . . ,

reduct(Cm) are the reducts of C1, C2, . . . , Cm respectively. FR∑m
i=1 Ci

and FR∑m
i=1 reduct(Ci )

, SR∑m
i=1 Ci

and SR∑m
i=1 reduct(Ci)

produce the
identical multi-granulation covering rough sets.

Proof. For any x ∈ U , C and reduct(C) have the same md(x), therefore, from Definitions 7 and 8, we can prove Theo-
rem 3. �
Remark 3. TR∑m

i=1 Ci
and TR∑m

i=1 reduct(Ci)
, LR∑m

i=1 Ci
and LR∑m

i=1 reduct(Ci)
may not produce the identical multi-granulation cov-

ering rough sets.

Proof. For any x ∈ U , C and reduct(C) may produce different MD(x), therefore, TR∑m
i=1 Ci

and TR∑m
i=1 reduct(Ci)

, LR∑m
i=1 Ci

and
LR∑m

i=1 reduct(Ci)
may not produce the identical multi-granulation covering rough sets. �

Theorem 3 and Remark 3 tell us that for the cases of type-1 and type-2 MGCRS, the coverings and their corresponding
reducts produce identical multi-granulation covering rough sets, but it is not true for the cases of type-3 and type-4 MGCRS.



C. Liu et al. / International Journal of Approximate Reasoning 55 (2014) 1404–1418 1413
Definition 12. (See [8].) Let C be a covering of U , and K an element of C . If there exists another element K ′ of C such that
K ⊂ K ′ , we shall say that K is an immured element of covering C .

Definition 13. (See [8].) Let C be a covering of U . If we remove all immured elements from C , and the new set is still a
covering of U , then we call this new covering an exclusion of C , which is denoted by exclusion(C).

Theorem 4. Let 〈U ,C〉 be a multi-granulation covering approximation space, C1, C2, C3, C4 ∈ C and reduct(C1), reduct(C2),
reduct(C3) and reduct(C4) be the reducts of C1 , C2 , C3 and C4 respectively. ∇C1+C2 and ∇C3+C4 produce the identical lower ap-
proximation operators of MGCRS, if at least one of the following conditions is satisfied.

(1) reduct(C1) = reduct(C3) and exclusion(C1) = exclusion(C3);
(2) reduct(C1) = reduct(C4) and exclusion(C1) = exclusion(C4);
(3) reduct(C2) = reduct(C3) and exclusion(C2) = exclusion(C3);
(4) reduct(C2) = reduct(C4) and exclusion(C2) = exclusion(C4).

Proof. It is straightforward according to the definitions of MGCRS. �
Theorem 4 gives the sufficient conditions for two different MGCRS which produce the identical lower approximation

operators.

Remark 4. The reverse of Theorem 4 is not true, i.e., ∇C1+C2 and ∇C3+C4 may produce the identical lower approximation
operators of MGCRS, but their reducts or exclusions are not equal to each other.

Theorem 5. Let 〈U ,C〉 be a multi-granulation covering approximation space, C1, C2, C3, C4 ∈ C and reduct(C1), reduct(C2),
reduct(C3) and reduct(C4) be the reducts of C1 , C2 , C3 and C4 respectively. FRC1+C2 and FRC3+C4 , SRC1+C2 and SRC3+C4 produce
the identical multi-granulation covering rough sets, if one of the following conditions is satisfied.

(1) reduct(C1) = reduct(C3) and reduct(C2) = reduct(C4);
(2) reduct(C1) = reduct(C4) and reduct(C2) = reduct(C3).

Proof. We only prove (1) here, since (2) can be analogously proved.
For any x ∈ U , C and reduct(C) yield the identical md(x). If reduct(C1) = reduct(C3) and reduct(C2) = reduct(C4), then

C1 and C3 yield the same md(x), and C2 and C4 share the another md(x). From Definitions 7 and 8, FRC1+C2 and FRC3+C4 ,
SRC1+C2 and SRC3+C4 produce the identical multi-granulation covering rough sets. �

Theorem 5 gives the sufficient conditions for two different type-1 or type-2 MGCRS which produce the identical lower
and upper approximation operators.

Remark 5. The reverse of Theorem 5 does not hold, i.e., FRC1+C2 and FRC3+C4 , SRC1+C2 and SRC3+C4 may produce the same
multi-granulation covering rough sets, but their reducts may not be the same.

Remark 5 can be proved by the following example.

Example 5. Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2, C3, C4 ∈ C, where U = {a,b, c},
C1 = {{a}, {b}, {c}}, C2 = {{a,b}, {a,b, c}, {a, c}}, C3 = {{a,b}, {b, c}, {a, c}}, C4 = {{a, c}, {a,b, c}}. From Definition 4, we
can obtain that reduct(C1) = {{a}, {b}, {c}}, reduct(C2) = {{a,b}, {a, c}}, reduct(C3) = {{a,b}, {b, c}, {a, c}}, and reduct(C4) =
{{a, c}, {a,b, c}}.

Hence, we have that

reduct(C1) �= reduct(C3), reduct(C1) �= reduct(C4);
reduct(C2) �= reduct(C3), reduct(C2) �= reduct(C4).

Suppose that X = {a, c} and Y = {a,b, c}, from Definitions 7 and 8, we can obtain that

FRC1+C2(X) = {a, c} = FRC3+C4(X), FRC1+C2(X) = {a, c} = FRC3+C4(X);
SRC1+C2(Y ) = {a,b, c} = SRC3+C4(Y ), SRC1+C2(Y ) = {a,b, c} = SRC3+C4(Y ).
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Theorem 6. Let 〈U ,C〉 be a multi-granulation covering approximation space, C1, C2, C3, C4 ∈ C and reduct(C1), reduct(C2),
reduct(C3) and reduct(C4) be the reducts of C1 , C2 , C3 and C4 respectively. TRC1+C2 and TRC3+C4 , LRC1+C2 and LRC3+C4 produce
the identical upper approximation operators of MGCRS, if one of the following conditions is satisfied.

(1) reduct(C1) = reduct(C3) and reduct(C2) = reduct(C4);
(2) reduct(C1) = reduct(C4) and reduct(C2) = reduct(C3).

Proof. It can be analogously proved as Theorem 5. �
Theorem 6 gives the sufficient conditions for two different type-3 or type-4 MGCRS which produce the identical upper

approximation operators.

Remark 6. TRC1+C2 and TRC3+C4 , LRC1+C2 and LRC3+C4 may produce different lower approximation operators of MGCRS, even
if one of the following conditions is satisfied.

(1) reduct(C1) = reduct(C3) and reduct(C2) = reduct(C4);
(2) reduct(C1) = reduct(C4) and reduct(C2) = reduct(C3).

Remark 6 can be proved by the following example.

Example 6. Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2, C3, C4 ∈ C, where U = {a,b, c},
C1 = {{a, c}, {b, c}, {a,b, c}}, C2 = {{a,b}, {a,b, c}, {a, c}}, C3 = {{a, c}, {b, c}}, C4 = {{a,b}, {a, c}}. From Definition 4, we can
obtain that reduct(C1) = {{a, c}, {b, c}}, reduct(C2) = {{a,b}, {a, c}}, reduct(C3) = {{a, c}, {b, c}}, reduct(C4) = {{a,b}, {a, c}}.

Hence, we have that

reduct(C1) = reduct(C3), reduct(C2) = reduct(C4).

Suppose that X = {a, c}, from Definitions 8 and 9, we can obtain that

∅ = TRC1+C2(X) �= TRC3+C4(X) = {a, c},
∅ = LRC1+C2(X) �= LRC3+C4(X) = {a, c}.

4. Relationships among the four types of MGCRS models

In this section, we shall investigate the relationships among the four types of MGCRS models introduced in Section 3.
Moreover, some interesting properties are also discussed here.

From the definitions of MGCRS, we can obtain the following theorem.

Theorem 7. Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2, . . . , Cm ∈ C. For any X ⊆ U , we have that

(1) LR∑m
i=1 Ci

(X) ⊆ SR∑m
i=1 Ci

(X) ⊆ FR∑m
i=1 Ci

(X) ⊆ X ;

(2) X ⊆ FR∑m
i=1 Ci

(X) ⊆ SR∑m
i=1 Ci

(X) ⊆ LR∑m
i=1 Ci

(X);

(3) LR∑m
i=1 Ci

(X) ⊆ TR∑m
i=1 Ci

(X) ⊆ FR∑m
i=1 Ci

(X) ⊆ X ;

(4) X ⊆ FR∑m
i=1 Ci

(X) ⊆ TR∑m
i=1 Ci

(X) ⊆ LR∑m
i=1 Ci

(X).

The proof of Theorem 7 is easy, so we omit it. What interests us is that for any X ⊆ U , the set of all the four types of
lower and upper approximations in Theorem 7 equipped with the binary relation ⊆ of inclusion, can construct a lattice. For
the readers’ convenience, the relationships among the four types of MGCRS models are shown in Fig. 1. In Fig. 1, each node
denotes an approximation or a concept, and each line connects two approximations, where the lower node is a subset of
the upper node.

From Fig. 1, we can obtain the following meaningful conclusions.
First, from Fig. 1, we can see that among the four pairs of lower and upper approximations, the pair (FR∑m

i=1 Ci
(X),

FR∑m
i=1 Ci

(X)) is the best to describe X , since in Fig. 1 the two approximations are closer to X than other approximations.

Moreover, the pair (LR∑m
i=1 Ci

(X), LR∑m
i=1 Ci

(X)) is the worst to describe X , since in Fig. 1 the two approximations have the

furthest distance with X with respect to other approximations.
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Fig. 1. Relationships among various MGCRS models.

Second, from Fig. 1, we can also see that SR∑m
i=1 Ci

(X) and TR∑m
i=1 Ci

(X) are generally not equal, and one does not

contain another, that is, neither SR∑m
i=1 Ci

(X) ⊆ TR∑m
i=1 Ci

(X) nor TR∑m
i=1 Ci

(X) ⊆ SR∑m
i=1 Ci

(X), that is to say, SR∑m
i=1 Ci

(X) and

TR∑m
i=1 Ci

(X) are independent. So do SR∑m
i=1 Ci

(X) and TR∑m
i=1 Ci

(X).

Finally, from Fig. 1, we can obtain the following theorem, which contains some important conclusions about the rela-
tionships among the four pairs of lower and upper approximations.

Theorem 8. Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2, . . . , Cm ∈ C. For any X ⊆ U , we have that

(1) SR∑m
i=1 Ci

(X) ∪ TR∑m
i=1 Ci

(X) = FR∑m
i=1 Ci

(X);

(2) SR∑m
i=1 Ci

(X) ∩ TR∑m
i=1 Ci

(X) = LR∑m
i=1 Ci

(X);

(3) SR∑m
i=1 Ci

(X) ∪ TR∑m
i=1 Ci

(X) = LR∑m
i=1 Ci

(X);

(4) SR∑m
i=1 Ci

(X) ∩ TR∑m
i=1 Ci

(X) = FR∑m
i=1 Ci

(X).

Proof. It can be obtained directly from Fig. 1. �
From Theorem 8, we can see that there exist some meaningful relationships among the four pairs of lower and upper

approximations. For instance, from (1) of Theorem 8, we can see that for any X ⊆ U , the type-1 lower approximation of X
is equal to the union of the type-2 and type-3 lower approximations of X . Moreover, from (2)–(4) of Theorem 8, we can
obtain similar conclusions.

The above results about the four pairs of lower and upper approximations given in Fig. 1, can be shown by the following
example.

Example 7 (Continued from Example 1). Let U = {a,b, c,d}, C1 = {{a,b}, {b, c,d}, {c,d}}, C2 = {{a, c}, {b,d}, {a,b,d}, {d}}, X =
{a,d}.

From Definitions 7–10, we can obtain that FRC1+C2 (X) = {a,d}, FRC1+C2 (X) = {a, c,d}, SRC1+C2 (X) = {d}, SRC1+C2 (X) =
{a,b, c,d}, TRC1+C2 (X) = {a}, TRC1+C2 (X) = {a, c,d}, LRC1+C2 (X) = ∅, LRC1+C2 (X) = {a,b, c,d}.

Hence, we have that

(1) LRC1+C2 (X) ⊂ SRC1+C2 (X) ⊂ FRC1+C2 (X) ⊆ X ;

(2) X ⊂ FRC1+C2 (X) ⊂ SRC1+C2 (X) ⊆ LRC1+C2 (X);

(3) LRC1+C2 (X) ⊂ TRC1+C2 (X) ⊂ FRC1+C2 (X) ⊆ X ;

(4) X ⊂ FRC1+C2 (X) ⊆ TRC1+C2 (X) ⊂ LRC1+C2 (X);

(5) SRC1+C2 (X) ∪ TRC1+C2 (X) = FRC1+C2 (X);

(6) SRC1+C2 (X) ∩ TRC1+C2 (X) = LRC1+C2 (X);

(7) SRC1+C2 (X) ∪ TRC1+C2 (X) = LRC1+C2 (X);

(8) SRC1+C2 (X) ∩ TRC1+C2 (X) = FRC1+C2 (X). �
Next, we review some basic definitions of lattice theory and discuss the properties of the lattice as shown in Fig. 1.
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Definition 14. (See [38].) A lattice L is a distributive lattice if A ∪(B ∩C) = (A ∪ B)∩(A ∪C) or A ∩(B ∪C) = (A ∩ B)∪(A ∩C),
for all A, B, C ∈ L.

Definition 15. (See [38].) Let 〈L,∪,∩〉 be a lattice. We say that L has a maximal element if there exists an element 1 such
that A ∩ 1 = A for all A ∈ L. Dually, L is said to have a minimal element if there exists an element 0 such that A ∪ 0 = A
for all A ∈ L. A lattice 〈L,∪,∩〉 possessing 0 and 1 is called a bounded lattice.

Definition 16. (See [38].) Let L be a bounded lattice with a maximal element 1 and a minimal element 0. For an element
A ∈ L, we say that an element B ∈ L is a complement of A if A ∪ B = 1 and A ∩ B = 0. A lattice L is a complemented lattice
if each element has a complement.

Definition 17. (See [38].) A lattice L is called a boolean lattice if it is a complemented and distributive lattice.

Theorem 9. The lattice as shown in Fig. 1 is a distributive lattice.

Proof. The proof of Theorem 9 can be given according to Theorems 7 and 8. For any A, B , C belong to the lattice as shown
in Fig. 1, one can prove that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). We may take FR∑m

i=1 Ci
(X), SR∑m

i=1 Ci
(X) and LR∑m

i=1 Ci
(X) as an

example, other cases can be proved in a similar manner and hence omitted.
On the one hand, we have that

FR∑m
i=1 Ci

(X) ∪ (
SR∑m

i=1 Ci
(X) ∩ LR∑m

i=1 Ci
(X)

) = FR∑m
i=1 Ci

(X) ∪ SR∑m
i=1 Ci

(X) = FR∑m
i=1 Ci

(X).

On the other hand, we have that
(
FR∑m

i=1 Ci
(X) ∪ SR∑m

i=1 Ci
(X)

) ∩ (
FR∑m

i=1 Ci
(X) ∪ LR∑m

i=1 Ci
(X)

) = FR∑m
i=1 Ci

(X) ∩ LR∑m
i=1 Ci

(X) = FR∑m
i=1 Ci

(X).

Therefore,

FR∑m
i=1 Ci

(X) ∪ (
SR∑m

i=1 Ci
(X) ∩ LR∑m

i=1 Ci
(X)

)

= (
FR∑m

i=1 Ci
(X) ∪ SR∑m

i=1 Ci
(X)

) ∩ (
FR∑m

i=1 Ci
(X) ∪ LR∑m

i=1 Ci
(X)

)
. �

Theorem 10. The lattice as shown in Fig. 1 is a bounded lattice.

Proof. Obviously, the maximal element of the lattice is LR∑m
i=1 Ci

(X) and the minimal element is LR∑m
i=1 Ci

(X). �
Theorem 11. The lattice as shown in Fig. 1 is not a complemented lattice.

Proof. Noting that elements SR∑m
i=1 Ci

(X), SR∑m
i=1 Ci

(X), TR∑m
i=1 Ci

(X), TR∑m
i=1 Ci

(X) of the lattice have no complements.

Hence, from Definition 16, we can obtain that the lattice is not a complemented lattice. �
Theorem 12. The lattice as shown in Fig. 1 is not a boolean lattice.

Proof. Noting that the lattice is not a complemented lattice, thus it is also not a boolean lattice. �
Theorems 9–12 describe some important properties about the lattice given in Fig. 1.

Definition 18. (See [9].) Let C be a covering of a set U . C is said to be unary if for any x ∈ U , |md(x)| = 1, where | · | denotes
the cardinality of a set.

C is also said to be unary if for any x ∈ U , |MD(x)| = 1.

Theorem 13. Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2, . . . , Cm ∈ C. For any X ⊆ U , if both
C1, C2, . . . , Cm are unary, then we have that

(1) FR∑m
i=1 Ci

(X) = SR∑m
i=1 Ci

(X),

(2) FR∑m
i=1 Ci

(X) = SR∑m
i=1 Ci

(X),
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(3) TR∑m
i=1 Ci

(X) = LR∑m
i=1 Ci

(X),

(4) TR∑m
i=1 Ci

(X) = LR∑m
i=1 Ci

(X).

Proof. We only prove (1) and (2) here, (3) and (4) can be analogously proved.
If C1, C2, . . . , Cm are unary, then for any x ∈ U , we have that |mdC1 (x)| = 1, |mdC2 (x)| = 1, . . . , |mdCm (x)| = 1. Therefore,

for any x ∈ U , ∩mdC1 (x) = ∪mdC1 (x),∩mdC2 (x) = ∪mdC2 (x), . . . ,∩mdC2 (x) = ∪mdCm (x). According to Definitions 7 and 8, we
have that FR∑m

i=1 Ci
(X) = SR∑m

i=1 Ci
(X) and FR∑m

i=1 Ci
(X) = SR∑m

i=1 Ci
(X). �

Theorem 13 gives the sufficient condition for type-1 and type-2 MGCRS which produce the identical approximations.
Moreover, Theorem 13 also gives the sufficient condition for type-3 and type-4 MGCRS which produce the identical approx-
imations.

Remark 7. The reverse of Theorem 13 is not true, i.e., the lower (upper) approximation of type-1 MGCRS and the lower
(upper) approximation of type-2 MGCRS are identical, and the lower (upper) approximation of type-3 MGCRS and the lower
(upper) approximation of type-4 MGCRS are identical, but none of C1, C2, . . . , Cm is unary.

Remark 7 can be proved by the following example.

Example 8. Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2 ∈ C, where U = {a,b, c}, C1 =
{{a,b}, {a, c}}, C2 = {{a, c}, {b, c}}.

Suppose that X = {a, c}, we can obtain that

mdC1(a) = {{a,b}, {a, c}}, mdC1(b) = {{a,b}}, mdC1(c) = {{a, c}};
mdC2(a) = {{a, c}}, mdC2(b) = {{b, c}}, mdC2(c) = {{a, c}, {b, c}};
MDC1(a) = {{a,b}, {a, c}}, MDC1(b) = {{a,b}}, MDC1(c) = {{a, c}};
MDC2(a) = {{a, c}}, MDC2(b) = {{b, c}}, MDC2(c) = {{a, c}, {b, c}}.

Hence, we can further obtain that

∩mdC1(a) = {a}, ∩mdC1(b) = {a,b}, ∩mdC1(c) = {a, c};
∪mdC1(a) = {a,b, c}, ∪mdC1(b) = {a,b}, ∪mdC1(c) = {a, c};
∩mdC2(a) = {a, c}, ∩mdC2(b) = {b, c}, ∩mdC2(c) = {c};
∪mdC2(a) = {a, c}, ∪mdC2(b) = {b, c}, ∪mdC2(c) = {a,b, c};
∩MDC1(a) = {a}, ∩MDC1(b) = {a,b}, ∩MDC1(c) = {a, c};
∪MDC1(a) = {a,b, c}, ∪MDC1(b) = {a,b}, ∪MDC1(c) = {a, c};
∩MDC2(a) = {a, c}, ∩MDC2(b) = {b, c}, ∩MDC2(c) = {c};
∪MDC2(a) = {a, c}, ∪MDC2(b) = {b, c}, ∪MDC2(c) = {a,b, c}.

Obviously, both C1 and C2 are not unary. But from the definitions of MGCRS, we have that

FRC1+C2(X) = {a, c} = SRC1+C2(X) and FRC1+C2(X) = {a,b, c} = SRC1+C2(X);
TRC1+C2(X) = {a, c} = LRC1+C2(X) and TRC1+C2(X) = {a,b, c} = LRC1+C2(X).

Theorem 14. Let 〈U ,C〉 be a multi-granulation covering approximation space, and C1, C2, . . . , Cm ∈ C. If both C1, C2, . . . , Cm are
partitions of U , then for any X ⊆ U , we have that

(1) FR∑m
i=1 Ci

(X) = SR∑m
i=1 Ci

(X) = TR∑m
i=1 Ci

(X) = LR∑m
i=1 Ci

(X);

(2) FR∑m
i=1 Ci

(X) = SR∑m
i=1 Ci

(X) = TR∑m
i=1 Ci

(X) = LR∑m
i=1 Ci

(X).

The above lower and upper approximations are the same as the lower and upper approximations of Qian et al.’s MGRS, respectively.

Theorem 14 gives the sufficient and necessary conditions for the four types of MGCRS defined in this paper and Qian
et al.’s MGRS which produce the identical approximations.
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5. Conclusions

To extend the application domain of MGRS, this paper has introduced four types of multi-granulation covering rough
set models and studied the basic properties of these models. We have shown that our MGCRS models are generalized
versions of MGRS models. Moreover, we have given the sufficient conditions for two distinct MGCRS models which produce
identical lower and upper approximations of a given concept in a covering approximation space. Finally, the relationships
among various MGCRS models were discussed. We have shown that for any X ⊆ U , the set of all those lower and upper
approximations equipped with the binary relation ⊆ of inclusion, can construct a lattice.

In the future work, we shall further discuss other aspects of MGCRS, for example, the topological properties of MGCRS,
or MGCRS in fuzzy settings.
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