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Quantitative attribute reduction exhibits applicability but complexity when compared to qualitative
reduction. According to the two-category decision theoretic rough set model, this paper mainly investi-
gates quantitative reducts and their hierarchies (with qualitative reducts) from a regional perspective. (1)
An improved type of classification regions is proposed, and its preservation reduct (CRP-Reduct) is stud-
ied. (2) Reduction targets and preservation properties of set regions are analyzed, and the set-region pres-
ervation reduct (SRP-Reduct) is studied. (3) Separability of set regions and rule consistency is verified,
and the quantitative and qualitative double-preservation reduct (DP-Reduct) is established. (4) Hierar-
chies of CRP-Reduct, SRP-Reduct, and DP-Reduct are explored with two qualitative reducts: the Paw-
lak-Reduct and knowledge-preservation reduct (KP-Reduct). (5) Finally, verification experiments are
provided. CRP-Reduct, SRP-Reduct, and DP-Reduct expand layer by layer Pawlak-Reduct and exhibit
quantitative applicability, and the experimental results indicate their effectiveness and hierarchies
regarding Pawlak-Reduct and KP-Reduct.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Rough set theory (RS-Theory) [1,2] is a novel mathematical the-
ory for uncertainty descriptions and an important applicable meth-
odology for knowledge discovery. In particular, it can effectively
process uncertain, imprecise, and incomplete information. Thus,
the model-based uncertainty description and reduction-based
knowledge discovery become its two main issues, where the qual-
itative mechanism-based quantitative extension plays an increas-
ingly important role.

The classical Pawlak-Model [1,2] is qualitative and thus has
accuracy. However, the qualitative absoluteness can also cause
some limitations and problems, such as over-fitting. In fact,
Pawlak-Model cannot fully capture latent useful knowledge in
the uncertainty boundary. In contrast, quantitative models resort
to some measures and thresholds to express quantization
approximation and fault tolerance, so they can tackle data sets
with noises, thus holding important application significance;
moreover, they usually conduct theoretical expansion for
qualitative Pawlak-Model. Thus, the probabilistic rough set (PRS)
[3–6] utilizes the probability uncertainty measure to exhibit
application merits regarding measurability, generality, and
robustness, and it includes several concrete models, such as the
decision-theoretic rough set (DTRS) [7] and variable precision
rough set (VPRS) [8].

Attribute reduction is a fundamental subject in RS-Theory due
to its optimization and generalization for data mining. The classical
reduction is related to Pawlak-Model and thus reflects a qualitative
approach, and different reduction algorithms were extensively
explored in [9–14]. In contrast, quantitative reduction mainly
utilizes the quantitative mechanisms and advantages to achieve
deep development and extensive applications; for example, Refs.
[15–26] studied DTRS-Reduction and VPRS-Reduction, respec-
tively. For the decision table, the classical reduction theory mainly
depends on the classification-positive region (C-POS). Thus,
Pawlak-Reduction directly preserves C-POS due to the change
monotonicity of qualitative C-POS. However, quantitative region
exhibits the change non-monotonicity, and quantitative reduction
usually accompanies some anomalies [15,24,25]. In fact, Ref. [27]
verified that quantitative regions have the essential change
uncertainty, which determines the change non-monotonicity.
Thus, quantitative reduction has already transcended qualitative
Pawlak-Reduction and thus becomes a complex problem. For this
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difficulty, we aim to conduct some systematical studies by virtue of
a concrete quantitative model.

PRS usually needs thresholds for quantitative applications, so
threshold determination becomes a critical task. In particular,
DTRS achieves thresholds’ semantics and calculation by using the
Bayesian risk decision and three-way decision semantics [7];
moreover, DTRS also establishes a basic platform for quantitative
explorations via its expansion and representativeness. For DTRS,
Refs. [28,29] analyzed three-way decisions and their superiority,
Refs. [30–33] discussed model development and threshold calcula-
tion, Refs. [34–38] researched model applications (regarding
regression, clustering, and semi-supervised leaning), Refs. [38–
41] exploited multi-category construction. For DTRS-Reduction,
Ref. [15] proposed general reducts by mining transcendental mea-
sures for the dependency degree; moreover, Refs. [16–20] summa-
rized the existing methods, including the positive-based reduct,
nonnegative-based reduct, cost-based reduct, and distribution-
based reduct.

Against the above backgrounds, quantitative reduction exhibits
applicability but complexity, and DTRS is a fundamental PRS and
its attribute reduction can reflect some essence of quantitative
reduction. Thus, this paper concentrates on DTRS-Reduction in
the decision table. Note that the two-category case corresponds
to the fundamental issue for DTRS, and it is also linked to a usual
classification task in the decision table. In fact, it causes relatively
clear regional structure for RS-Theory by complementary simplifi-
cation, thus underling multiple-category generalization; moreover,
it can also provide some verification analyzes by degeneration.
Therefore, our discussion is mainly within the two-category frame-
work, and this restriction becomes a rational strategy in view of
the complexity of quantitative reduction. In particular, granular
computing (GrC) [42,43] emphasizes multiple levels and provides
a structural approach for hierarchical information processing, and
Refs. [44–48] conducted GrC studies for RS-Theory. Based on the
GrC technology, we will construct hierarchical regional targets to
systematically investigate hierarchical DTRS-Reduction on a basic
premise of reduction expansion.

According to the two-category DTRS-Model, this paper mainly
investigates quantitative reducts and their hierarchies (with qual-
itative reducts) from a regional perspective. It involves the fol-
lowing five parts. (1) An improved type of classification regions
is proposed, and its preservation reduct (CRP-Reduct) is studied.
(2) Reduction targets and preservation properties of set regions
are analyzed, and the set-region preservation reduct (SRP-Reduct)
is studied. (3) Separability of set regions and rule consistency is
verified, and the quantitative and qualitative double-preservation
reduct (DP-Reduct) is established. (4) Hierarchies of CRP-Reduct,
SRP-Reduct, and DP-Reduct are explored with two qualitative
reducts: the Pawlak-Reduct and knowledge-preservation reduct
(KP-Reduct). (5) Finally, verification experiments are provided.
In summary, the main contribution of our works is to construct
three types of quantitative reducts and to further investigate
their hierarchies with two types of qualitative reducts, and
structural regions act as a main perspective in view of the
two-category feature. As a result, CRP-Reduct, SRP-Reduct, and
DP-Reduct expand layer by layer Pawlak-Reduct and exhibit
quantitative applicability, and the experimental results indicate
their effectiveness and hierarchies regarding Pawlak-Reduct and
KP-Reduct.

The rest of this paper is organized as follows. Section 2 reviews
basic models and reducts. Section 3 constructs an improved type of
classification regions, and CRP-Reduct. Section 4 studies set-region
preservation and SRP-Reduct. Section 5 discusses double-preserva-
tion and DP-Reduct. Section 6 investigates hierarchies of five
reduction types. Section 7 conducts experimental analyzes. Finally,
Section 8 concludes this paper.
2. Preliminaries

For simplification, abbreviations are first provided for several
repeated terms. First alphabet-based replacement includes: Set
! S, Classification ! C, Region ! R, Preservation ! P, Double !
D, and Knowledge ! K.

(1) S-Region and C-Region denote the set region and classifica-
tion region, respectively. Concretely, POS, BND, and NEG
denote the set positive, boundary, negative regions, respec-
tively, while C-POS, C-BND, and C-NEG denote the classifica-
tion positive, boundary, negative regions, respectively.

(2) CR-Preservation, SR-Preservation, D-Preservation, and
K-Preservation denote C-Region preservation, S-Region
preservation, double preservation (of set regions and rule
consistency), and knowledge preservation, respectively.
Furthermore, CRP-Reduct, SRP-Reduct, DP-Reduct, and
KP-Reduct denote corresponding preservation reducts.

Next, this section reviews Pawlak-Model, DTRS-Model, and
their reducts.

2.1. Pawlak-Model and Pawlak-Reduct

Pawlak-Model and Pawlak-Reduct [1,2] are first reviewed.
U is a finite universe, R is a family of equivalence relations, and

ðU;RÞ constitutes a knowledge base. Let ;– R #R;\R determines
an equivalence relation – INDðRÞ. Knowledge R refers to classified
structure U=INDðRÞ with granule ½x�R. Thus, ðU;RÞ constitutes an
approximate space, where set X # U is also called a concept. In
Pawlak-Model, the lower and upper approximations of X are
defined by

aprRX ¼ fxj½x�R # Xg; aprRX ¼ fxj½x�R \ X – ;g:

POSRðXÞ ¼ aprRX;

NEGRðXÞ ¼ U � aprRX;

BNDRðXÞ ¼ aprRX � aprRX

8><
>: ð1Þ

further denotes POS, NEG, and BND.
The decision table (D-Table) is an important information table

with classification tasks. In D-Table ðU;C [ DÞ;C and D include
condition and decision attributes, respectively, and the decision
rule is related to the function dxðaÞ ¼ aðxÞ, where x 2 U; a 2 C [ D.
D-Table is consistent, if all its decision rules are consistent, i.e.,
arbitrary decision rule dx satisfies dxjC¼dyjC)dxjD¼dyjD;8x – y;
otherwise, it is inconsistent. Moreover, condition attribute subset
A determines an equivalence relation and knowledge, where
;– A#C.

Definition 2.1 (Qualitative Type). In Pawlak-Model, C-Regions are
qualitative and are composed of following C-POS and C-BND:
POSAðDÞ ¼
[

X2U=INDðDÞ
aprINDðAÞX;

BNDAðDÞ ¼ U � POSAðDÞ;

8<
: ð2Þ

POSAðDÞ describes certain granules for classification. POSB0 ðDÞ#
POSBðDÞ if B0 # B # C, so C-POS change has monotonicity. Thus,
Pawlak-Reduct is naturally established by preserving C-POS; more-
over, dependency degree cAðDÞ ¼

jPOSAðDÞj
jUj is important for evaluating

classification quality.
Definition 2.2 (Pawlak-Reduct). B is Pawlak-Reduct of C, if it
satisfies C-POS preservation and set independence, i.e.,
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(1) POSBðDÞ ¼ POSCðDÞ;
(2) POSB�fbgðDÞ – POSBðDÞ;8b 2 B.

CoreðCÞ ¼ fc 2 CjPOSC�fcgðDÞ– POSCðDÞg becomes the reduc-
tion core, and REDðCÞ denotes the reduction set.
Proposition 2.3. If U=INDðDÞ ¼ fX;:Xg, then

POSAðDÞ ¼ POSAðXÞ [ POSAð:XÞ ¼ POSAðXÞ [NEGAðXÞ;
BNDAðDÞ ¼ BNDAðXÞ;

�

cAðDÞ ¼
jPOSAðXÞj
jUj þ jNEGAðXÞj

jUj :

Proposition 2.3 provides the two-category result, where
jU=INDðDÞj ¼ 2. Thus, C-Regions and S-Regions exhibit clear rela-
tionships, e.g., C-POS is composed of two S-Regions – POS and
NEG; moreover, the dependency degree is integrated by two mea-
sures of POS and NEG.
2.2. DTRS-Model and DTRS-Reduct

Herein, DTRS-Model [7,28] is reviewed by the two-category
problem.

Two states X;:X indicate that an element is in X and not in X,
respectively, while three actions aP; aB; aN decide that an object is
in sets POSðXÞ;BNDðXÞ;NEGðXÞ, respectively. When an object
belongs to X, let kPP; kBP; kNP denote costs of taking actions
aP ; aB; aN , respectively; in contrast, kPN ; kBN ; kNN denote costs of tak-
ing the same three actions in the contrary condition. Thus, the loss
functions are expressed as the following matrix:
aP
 aB
 aN
X
 kPP
 kBP
 kNP
:X
 kPN
 kBN
 kNN
By the Bayesian minimum-risk decision, the three-way deci-
sions (regarding acceptance, rejection, and deferment) are
obtained as follows:

If PðXj½x�RÞP a; then decide ½x�R # POSðXÞ;
If PðXj½x�RÞ 6 b; then decide ½x�R # NEGðXÞ;
If b < PðXj½x�RÞ < a; then decide ½x�R # BNDðXÞ:

8><
>:
Herein, PðXj½x�RÞ ¼

jX\½x�R j
j½x�R j

denotes the conditional probability for

state X, and thresholds follow calculation formulas:

a ¼ kPN�kBN
ðkPN�kBN ÞþðkBP�kPP Þ

;

b ¼ kBN�kNN
ðkBN�kNNÞþðkNP�kBP Þ

;

c ¼ kPN�kNN
ðkPN�kNN ÞþðkNP�kPPÞ

:

8>><
>>:
Usually, 0 6 b < 0:5 < a � 1. Furthermore, three S-Regions are
established as follows:

POSa;b
R ðXÞ ¼ fxjPðXj½x�RÞP ag;

NEGa;b
R ðXÞ ¼ fxjPðXj½x�RÞ 6 bg;

BNDa;b
R ðXÞ ¼ fxjb < PðXj½x�RÞ < ag:

8><
>: ð3Þ

The two-category case is fundamental for DTRS, where regio-
nal structure is relatively clear and can be fully described by only
three S-Regions. For multi-category extension, there are two main
approaches of DTRS development. One utilizes multiple two-cat-
egory bases to make composite construction, while the other
resorts to performing a Bayesian decision in a high-dimensional
space. Accordingly, based on the S-Region construction and
optimal decision, two types of DTRS C-Regions are used currently
and widely.

Definition 2.4 (Type I). [15–17]

IPOSa;b
A ðDÞ ¼

[
X2U=INDðDÞ

POSa;b
A X;

IBNDa;b
A ðDÞ ¼

[
X2U=INDðDÞ

BNDa;b
A X;

INEGa;b
A ðDÞ ¼ U � ðPOSa;b

A ðDÞ [ BNDa;b
A ðDÞÞ:

8>>>>>><
>>>>>>:

ð4Þ
Definition 2.5 (Type II). [18–20]

IIPOSa;b
A ðDÞ ¼ fxjPðDmaxð½x�AÞj½x�AÞP ag;

IIBNDa;b
A ðDÞ ¼ fxjb < PðDmaxð½x�AÞj½x�AÞ < ag;

IINEGa;b
A ðDÞ ¼ fxjPðDmaxð½x�AÞj½x�AÞ 6 bg;

8>><
>>: ð5Þ

Dmaxð½x�AÞ ¼ arg max
X2U=INDðDÞ

j½x�A \ Xj
j½x�Aj

� �
:

Furthermore, there are two corresponding types of DTRS-
Reduct by adopting C-POS preservation. Next, a uniform form is
provided but has two different C-POS connotations.
Definition 2.6 (DTRS-Reduct). [17,20] B is DTRS-Reduct of C, if it
satisfies two conditions:

(1) POSa;b
B ðDÞ ¼ POSa;b

C ðDÞ;
(2) POSa;b

B�fbgðDÞ – POSa;b
B ðDÞ;8b 2 B.

Note that we mainly investigate two-category DTRS-Reduction
and U=INDðDÞ ¼ fX;:Xg becomes the general but omitted premise
in the whole paper. Thus, we will make simple but complete
descriptions by only X, because it can express :X by complemen-
tation; in other words, the two-category feature essentially deter-
mines efficiencies of the region-based approach. For the multi-
category issue, our works can make degeneration inspection and
also underlie generalization explorations.

3. An improved type of classification regions and its
preservation reduct (CRP-Reduct)

By virtue of S-Regions, this section proposes an improved type
of C-Regions by degenerate analyzes for the existing two types.
Furthermore, the relevant preservation reduct (CRP-Reduct) is
investigated.

3.1. An improved type of classification regions

This subsection first makes degenerate analyzes of Types I and
II, and it further proposes a new type and analyzes its relevant
improvement.

Theorem 3.1 (Type I’s Formula).

IPOSa;b
A ðDÞ¼fxjPðXj½x�AÞPag[fxjPðXj½x�AÞ�1�ag;

IBNDa;b
A ðDÞ¼ fxjb<PðXj½x�AÞ<ag[fxj1�a< PðXj½x�AÞ<1�bg;

INEGa;b
A ðDÞ¼ ;;

8>><
>>:
IBNDa;b

A ðDÞ¼
fxj1�a<PðXj½x�AÞ<ag; if aþbP 1;

fxjb< PðXj½x�AÞ<1�bg; if aþb<1:

(
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Proof. Pð:Xj½x�AÞ¼1�PðXj½x�AÞ. Thus, IPOSa;b
A ðXÞ¼fxjPðXj½x�AÞPag;

IPOSa;b
A ð:XÞ ¼ fxjPð:Xj½x�AÞPag¼ fxjPðXj½x�AÞ6 1�ag; IBNDa;b

A ðXÞ ¼
fxjb < PðXj½x�AÞ < ag; IBNDa;b

A ð:XÞ ¼ fxj1 � a < PðXj½x�AÞ < 1 � bg.
Furthermore, (1) if a þ b P 1, then 0 � 1 � a 6 b < 0:5 <

1 � b 6 a � 1. Thus, IBNDa;b
A ðDÞ ¼ fxj1 � a < PðXj½x�AÞ < ag;

IPOSa;b
A ðDÞ\IBNDa;b

A ðDÞ ¼ ;. (2) If aþ b < 1, then 0 6 b < 1� a <
0:5 < a < 1� b � 1. Thus, IBNDa;b

A ðDÞ¼ fxjb< PðXj½x�AÞ<1�bg;
IPOSa;b

A ðDÞ\IBNDa;b
A ðDÞ– ;. Hence, the C-Region results are

obtained. h
Corollary 3.2 (Type I’s Structure).

IPOSa;b
A ðDÞ[IBNDa;b

A ðDÞ¼U;

IPOSa;b
A ðDÞ\IBNDa;b

A ðDÞ¼
;; if aþbP 1;
fxjb< PðXj½x�AÞ�1�ag[fxja
6 PðXj½x�AÞ<1�bg– ;; if aþb<1:

8><
>:
Corollary 3.3 (Type I’s Expansion).

(1) IPOSa;b
A ðDÞ � POSAðDÞ, IBNDa;b

A ðDÞ# BNDAðDÞ.
(2) When a ¼ 1; INEGa;b

A ðDÞ ¼ /, IPOSa;b
A ðDÞ ¼ POSAðDÞ;

IBNDa;b
A ðDÞ ¼ BNDAðDÞ.

For Type I, Theorem 3.1 provides a basic formula, Corollary 3.2
reflects systemic structure, while Corollary 3.3 exhibits expansion
for Qualitative Type, where POSAðDÞ ¼ fxjPðXj½x�AÞ ¼ 1g [
fxjPðXj½x�AÞ ¼ 0g and BNDAðDÞ ¼ fxj0 < PðXj½x�AÞ < 1g. Next, its
improvement spaces are analyzed.

(1) Type I is directly constructed by its basic element – S-Regions,
thus exhibiting a structural characteristic. However, it relates
NEG to C-NEG rather than C-POS, but NEG more yields classi-
fication certainty. Thus, C-NEG has vague classification
semantics, while C-POS completeness can be improved.

(2) Both C-POS and C-BND are related to only an independent
threshold – a or b. In fact, DTRS is a double-threshold system
and the double-threshold representation can exhibit sys-
tematicness and stability. Thus, we need a more systematic
and rational description based on a and b.

(3) Type I has an improvement space for systemic structure
because IPOSa;b

A ðDÞ\IBNDa;b
A ðDÞ – ; when aþ b < 1.

(4) Based on S-Regions, DTRS-Model exhibits point expansion
regarding ða; bÞ ¼ ð1;0Þ for Pawlak-Model. However, Type I
corresponds to wider plane expansion regarding a ¼ 1.
Thus, the essential point expansion is worth inheriting for
C-Regions.

Next, we provide Type II’s degenerate results and improvement
spaces.

Theorem 3.4 (Type II’s Formula).

IIPOSa;b
A ðDÞ ¼ fxjPðXj½x�AÞP ag [ fxjPðXj½x�AÞ � 1� ag;

IIBNDa;b
A ðDÞ ¼ fxj1� a < PðXj½x�AÞ < ag;

IINEGa;b
A ðDÞ ¼ ;:

8><
>:
Proof. Type II is mainly described by MAX ¼ maxðPðXj½x�AÞ;
Pð:Xj½x�AÞÞ ¼ maxðPðXj½x�AÞ;1� PðXj½x�AÞÞ.
MAX ¼
PðXj½x�AÞ; if PðXj½x�AÞP 0:5;
1� PðXj½x�AÞ; if PðXj½x�AÞ � 0:5:

�

Thus, MAX P 0:5 > b, so IINEGa;b
A ðDÞ ¼ fxjMAX 6 bg ¼ ;. Moreover,

IIPOSa;b
A ðDÞ ¼ fxjMAX P ag ¼ fxjPðXj½x�AÞP ag [ fxjPðXj½x�AÞ � 1� ag,

IIBNDa;b
A ðDÞ ¼ fxjb < MAX < ag ¼ fxj0:5 6 PðXj½x�AÞ < ag [ fxj1 � a

< PðXj½x�AÞ � 0:5g ¼ fxj1 � a < PðXj½x�AÞ < ag. h
Corollary 3.5 (Type II’s Structure).

IIPOSa;b
A ðDÞ[IIBNDa;b

A ðDÞ ¼ U;

IIPOSa;b
A ðDÞ\IIBNDa;b

A ðDÞ ¼ ;:

8<
:

Corollary 3.6 (Type II’s Expansion).

(1) IIPOSa;b
A ðDÞ � POSAðDÞ, IIBNDa;b

A ðDÞ# BNDAðDÞ.
(2) When a ¼ 1; IINEGa;b

A ðDÞ ¼ ;, IIPOSa;b
A ðDÞ ¼ POSAðDÞ,

IIBNDa;b
A ðDÞ ¼ BNDAðDÞ.

For Type II, Theorem 3.4 provides a basic formula, Corollary 3.5
reflects systemic structure (where C-POS and C-BND construct a
universe division), while Corollary 3.6 exhibits expansion for Qual-
itative Type. Next, the improvement spaces are simply provided by
referring to Type I’s relevant analyzes.

(1) Type II adopts an optimal strategy on decisions and thus has
application optimization. However, it lacks a necessary link
with essential S-Regions; thus, its classification semantics
(especially C-NEG’s) becomes weak and ambiguous.

(2) Both C-POS and C-BND are related to only one independent
threshold – a, and this result implies a flaw due to the
neglect of b. Thus, a systemic double-threshold description
is needed.

(3) The essential point expansion is also expected in view of the
same plane expansion.

Types I and II are fundamental for relevant DTRS-Reduction, and
the above studies provide their degenerate results at the two-
category level. First, C-NEG is always empty (though it may be
non-empty in the multi-category case), so there are only two
C-Regions. Second, Type I concerns only a if aþ b P 1, and
IPOSa;b

A ðDÞ\IBNDa;b
A ðDÞ– ; if aþ b < 1; in contrast, Type II concerns

only a. Moreover, they exhibit plane expansion for Qualitative
Type by virtue of only a. In view of quantitative essence of DTRS,
a double-threshold description becomes more reasonable; more-
over, a structural division is also needed for C-Regions. According
to these improvement spaces, we next propose an improvement
type at the two-category level by completely considering the
S-Region system.

Definition 3.7 (Type III). Type III of C-Regions is defined by
following C-POS, C-BND, and C-NEG:
POSa;b
A ðDÞ ¼ POSa;b

A ðXÞ [NEGa;b
A ðXÞ;

BNDa;b
A ðDÞ ¼ BNDa;b

A ðXÞ;

NEGa;b
A ðDÞ ¼ U � ðPOSa;b

A ðDÞ [ BNDa;b
A ðDÞÞ:

8>>><
>>>:

ð6Þ

Proposition 2.3 provides S-Region-based C-Regions for Pawlak-
Model, where C-NEG does not exist. In contrast, Definition 3.7 pro-
poses S-Region-based C-Regions for DTRS-Model, so Type III natu-
rally simulates Qualitative Type by promoting S-Regions. Herein,
three S-Regions are completely used and NEG information is
related to C-POS; moreover, C-NEG is always empty but is also
set up for multi-category generalization.
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Theorem 3.8 (Type III’s Formula).

POSa;b
A ðDÞ ¼ fxjPðXj½x�AÞP ag [ fxjPðXj½x�AÞ 6 bg;

BNDa;b
A ðDÞ ¼ fxjb < PðXj½x�AÞ < ag;

NEGa;b
A ðDÞ ¼ ;:

8>>><
>>>:
Corollary 3.9 (Type III’s Structure).

POSa;b
A ðDÞ [ BNDa;b

A ðDÞ ¼ U;

POSa;b
A ðDÞ \ BNDa;b

A ðDÞ ¼ ;:

8<
:

Fig. 1. Regions and their non-monotonicity change.

Table 1
D-Table of Example 1.

U a b d U a b d

x1 0 1 1 x7 2 2 1
x2 0 1 1 x8 2 2 1
x3 0 1 1 x9 2 2 1
x4 1 1 1 x10 3 2 1
x5 1 1 0 x11 3 2 1
x6 1 1 0 x12 3 2 0
Corollary 3.10 (Type III’s Expansion).

(1) POSa;b
A ðDÞ � POSAðDÞ, BNDa;b

A ðDÞ# BNDAðDÞ.
(2) If ða; bÞ ¼ ð1;0Þ, then NEGa;b

A ðDÞ ¼ ;, POSa;b
A ðDÞ ¼ POSAðDÞ,

BNDa;b
A ðDÞ ¼ BNDAðDÞ.

For Type III, Theorem 3.8 provides a basic formula, Corollary 3.9
reflects divided systemic structure, and Corollary 3.10 exhibits
point expansion for Qualitative Type. These performances are com-
pared to those of Types I and II.

Finally, Type III’s superiority and improvement are concluded
by some comparison. Type II has weak structural relationships
with S-Regions in spite of its application optimization. In contrast,
Types I and III mainly utilize S-Regions to construct C-Regions, and
this constructive strategy more adheres to the hierarchical devel-
opment of RS-theory. In particular, there are two equivalent forms
of qualitative C-POS, i.e., POSAðDÞ ¼ POSAðXÞ [ POSAð:XÞ and
POSAðDÞ ¼ POSAðXÞ [ NEGAðXÞ. In the quantitative expansion
process, Type I uses the former with two POS regions – POSa;b

A ðXÞ
and POSa;b

A ð:XÞ, while Type III uses the latter with two usual

certainty S-Regions – POSa;b
A ðXÞ and NEGa;b

A ðXÞ. Accordingly, Type
III more adheres to the double-approximation thought and the
two-category feature, thus exhibiting completeness and stationa-
rity from the S-Region viewpoint.

(1) Type III originates from S-Regions’ integration and promo-
tion, so it has the thorough construction mechanism and
clear classification semantics. In particular, POSa;b

A ðDÞ
describes certain and approximate granules for classification
in a condition of tolerant threshold ða; bÞ.

(2) Type III concerns both thresholds a; b, thus exhibiting a sys-
tematic description. In fact, Type III’s C-POS mainly intro-
duces threshold b to add initial NEG information. Thus,
Type III becomes reasonable for it closely adheres to the
DTRS feature.

(3) Type III has a perfect division feature, which improves upon
Type I.

(4) Type III inherits the essential point expansion to extend
Qualitative Type. Thus, Type III has a thorough expansion
mechanism and more quantitative application spaces.

In summary, we analyze Types I and II by degeneration and dis-
cover their improvement spaces, so we propose novel Type III. In
fact, Type III rationally considers not only POS but also NEG, so it
more adheres to the RS-Theory thought and DTRS-Model feature.
Therefore, Type III becomes rational and effective in view of its
thorough mechanism, clear semantics, perfect completeness, sci-
entific system, benign expansion, and natural formulas; moreover,
it particularly improves upon usual Types I and II at the two-
category level.
3.2. Classification-region preservation reduct (CRP-Reduct)

Based on improved Type III, this subsection investigates its
preservation reduct – CRP-Reduct. Note that only Type III is con-
cerned in the surplus research.

Proposition 3.11. DTRS C-POS and C-BND exhibit change non-
monotonicity in attribute deletion.
Example 1. In D-Table ðU;C [ DÞ from Table 1, U ¼ fx1; x2;

. . . ; x12g; C ¼ fa; bg; D ¼ fdg. U=fa; bg ¼ U=fag ¼ fY1;Y2;Y3;Y4g;
Y1 ¼ fx1;x2;x3g; Y2 ¼ fx4;x5;x6g; Y3 ¼ fx7;x8;x9g; Y4 ¼ fx10;x11;x12g;
U=fbg ¼ fZ1; Z2g; Z1 ¼ fx1; . . . ; x6g; Z2 ¼ fx7; . . . ; x12g; U=INDðDÞ ¼
fX;:Xg; X ¼ fx1; x2; x3; x4; x7; x8; x9; x10; x11g.

PðXjY1Þ ¼ 1;PðXjY2Þ ¼ 1=3;PðXjY3Þ ¼ 1;PðXjY4Þ ¼ 2=3; PðXjZ1Þ ¼
2=3;PðXjZ2Þ ¼ 5=6. Let 0 < b < 1=3 < 2=3 < a < 5=6 < 1. Thus,

POSa;b
fa;bgðXÞ ¼ Y1 [ Y3;BNDa;b

fa;bgðXÞ ¼ Y2 [ Y4;NEGa;b
fa;bgðXÞ ¼ ;;POSa;b

fa;bg

ðDÞ ¼ Y1 [ Y3. When deleting fag;POSa;b
fbgðXÞ ¼ Z2 ¼ Y3 [ Y4;BNDa;b

fbg

ðXÞ ¼ Z1 ¼ Y1 [ Y2;NEGa;b
fbgðXÞ ¼ ;;POSa;b

fbgðDÞ ¼ Z2 ¼ Y3 [ Y4. Fig. 1

exhibits the old and new S-Regions and their following change. (1)

Neither POSa;b
fbgðXÞ# POSa;b

fa;bgðXÞ nor POSa;b
fbgðXÞ � POSa;b

fa;bgðXÞ holds;

(2) neither BNDa;b
fbgðXÞ# BNDa;b

fa;bgðXÞ nor BNDa;b
fbgðXÞ � BNDa;b

fa;bgðXÞ
holds; (3) C-POS exhibits a similar result (for it is equal to POS), i.e.,

POSa;b
fbgðDÞ� POSa;b

fa;bgðDÞ and POSa;b
fbgðDÞ+POSa;b

fa;bgðDÞ. Thus, the

change non-monotonicity is verified for POS/BND and C-POS.

Moreover, jPOSa;b
fbgðXÞj¼ jPOSa;b

fa;bgðXÞj; jBNDa;b
fbgðXÞj¼ jBNDa;b

fa;bgðXÞj;

jPOSa;b
fbgðDÞj¼ jPOSa;b

fa;bgðDÞj, because jY1j¼ jY4j. h

Qualitative C-POS has the change monotonicity, so C-POS pres-
ervation becomes a natural target for Pawlak-Reduct to achieve the
initial classification ability. However, DTRS C-POS produces the
change non-monotonicity, which is verified by Proposition 3.11
and Example 1. According to the reduction thought and initial
D-Table, DTRS C-POS preservation becomes a reasonable and reli-
able reduction strategy in the new situation with the C-Region
change non-monotonicity. Moreover, the requirement of C-POS
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preservation also becomes natural for expanding Pawlak-Reduct.
Based on this reduction target, we next discuss the corresponding
DTRS-Reduct. In particular, C-POS preservation is equivalent to C-
Region preservation (CR-Preservation), so we usually use the CR-
Preservation form but the C-POS essence.

Definition 3.12 (CRP-Reduct). c is called an indispensable attri-

bute in C, if POSa;b
C�fcgðDÞ – POSa;b

C ðDÞ; otherwise, c is dispensable. B

is independent, if b is indispensable in B;8b 2 B. B is a C-Region
preservation reduct (CRP-Reduct) of C, if B is independent and

POSa;b
B ðDÞ ¼ POSa;b

C ðDÞ. Herein, REDa;b
CRPðCÞ denotes the set of all CRP-

Reducts, and COREa;b
CRPðCÞ denotes the core with all indispensable

attributes in C.

Based on CR-Preservation, Definition 3.12 defines CRP-Reduct
by using the set independence. Next, the set independence will
be equivalently described with the set maximality. For this pur-
pose, a basic principle is first established.

Theorem 3.13 (Squeeze Principle). Let ;– B1 # B # B2 # C. If

POSa;b
B1
ðDÞ ¼ POSa;b

B2
ðDÞ, then POSa;b

B1
ðDÞ ¼ POSa;b

B ðDÞ ¼ POSa;b
B2
ðDÞ.

The regional change monotonicity is usually utilized in qualita-
tive reduction but no longer holds in quantitative reduction. To
study DTRS-Reduction, its function should be replaced by a more
general property. Thus, Squeeze Principle is constructed by bidirec-
tional clamp approximations. Concretely, if C-POS has the same
classification ability at a coarser and a finer knowledge levels, then
it necessarily has the same classification ability at a middle level.
Clearly, Squeeze Principle originates from the essential reduction
feature – knowledge monotonicity, thus holding general signifi-
cance for DTRS-Reduction.

Proposition 3.14. The following two items are equivalent:

(1) POSa;b
B�fbgðDÞ – POSa;b

B ðDÞ;8b 2 B;
(2) POSa;b

B�fB0gðDÞ– POSa;b
B ðDÞ;8;– B0 � B.
Proof. 8;– B0 � B; 9b 2 B� B0, s.t., B0 # B� fbg � B. Based on
Squeeze Principle, if POSa;b

B0 ðDÞ ¼ POSa;b
B ðDÞ, then POSa;b

B0 ðDÞ ¼
POSa;b

B�fbgðDÞ ¼ POSa;b
B ðDÞ, but this result contradicts POSa;b

B�fbgðDÞ–

POSa;b
B ðDÞ. Hence, ð1Þ ) ð2Þ holds. In contrast, ð2Þ ) ð1Þ is easy by

setting up B0 ¼ fbg. h

For CR-Preservation, Proposition 3.14 reflects equivalence of the
set independence (Item (1)) and set maximality (Item (2)). Thus, an
equivalent CRP-Reduct is defined by the latter.

Definition 3.15 (CRP-Reduct). B is CRP-Reduct of C, if

(1) POSa;b
B ðDÞ ¼ POSa;b

C ðDÞ;
(2) POSa;b

B0 ðDÞ – POSa;b
B ðDÞ;8;– B0 � B.
Theorem 3.16 (CRP-Reduct’s Expansion). CRP-Reduct expands
Pawlak-Reduct to DTRS-Reduct, and it degenerates into Pawlak-
Reduct when ða; bÞ ¼ ð1; 0Þ.

Herein, CRP-Reduct is established by two approaches.
CR-Preservation acts as the natural reduction target, and the set
independence and maximality are equivalently required. Thus,
CRP-Reduct is a minimal subset to provide the initial classification
ability. By virtue of rational CR-Preservation, CRP-Reduct naturally
expands qualitative reduction to quantitative reduction, thus
becoming scientific and valuable. Moreover, in view of Type III’s
improvement, CRP-Reduct also improves upon relevant two-cate-
gory DTRS-Reduct based on Types I and II [17,20], thus holding
more powerful efficiencies.

Theorem 3.17. COREa;b
CRPðCÞ ¼

T
REDa;b

CRPðCÞ.
Proof. (1) If c R
T

REDa;b
CRPðCÞ, then 9B 2 REDa;b

CRPðCÞ but c R B. Thus,
B # C � fcg � C; POSa;b

B ðDÞ ¼ POSa;b
C ðDÞ. Based on Squeeze Principle,

POSa;b
C�fcgðDÞ ¼ POSa;b

C ðDÞ. Hence, c R COREa;b
CRPðCÞ;COREa;b

CRPðCÞ#T
REDa;b

CRPðCÞ. (2) If c R COREa;b
CRPðCÞ, then POSa;b

C�fcgðDÞ ¼ POSa;b
C ðDÞ.

9B 2 REDa;b
CRPðC � fcgÞ, so POSa;b

C�fcgðDÞ ¼ POSa;b
B ðDÞ and B is indepen-

dent. Hence, POSa;b
C ðDÞ ¼ POSa;b

B ðDÞ; B 2 REDa;b
CRPðCÞ, but c R B.

Hence, c R
T

REDa;b
CRPðCÞ;

T
REDa;b

CRPðCÞ# COREa;b
CRPðCÞ. h

Theorem 3.17 provides a fundamental relationship between
CRP-Reducts and the core, which is similar to the classical conclu-
sion of qualitative reduction. Example 1 can provide some illustra-
tion by COREa;b

CRPðfa; bgÞ ¼ fag and REDa;b
CRPðfa; bgÞ ¼ ffagg. Thus, the

core holds significance for all CRP-Reducts computation, because
it is included in every CRP-Reduct and its computation is straight-
forward. Next, a core-based algorithm for CRP-Reduct is con-
structed by adopting an attribute addition strategy.

Algorithm 1. A core-based attribute addition algorithm for CRP-
Reduct

Input:

D-Table ðU;C [ DÞ and threshold ða; bÞ;
Output:
CRP-Reduct B 2 REDa;b
CRPðCÞ;
1:
 Compute COREa;b
CRPðCÞ.
2:
 B ¼ COREa;b
CRPðCÞ.
3:
 while POSa;b
B ðDÞ – POSa;b

C ðDÞ do

4:
 c is randomly chosen in C � B and let B ¼ B [ fcg;

5:
 end while

6:
 return B.
In Algorithm 1, Step 1 yields the core, and Steps 3, 4 further seek
an attribute subset including the core on the CR-Preservation pre-
mise, where the added attribute is random. Thus, this algorithm is
convergent and effective, and it can usually obtain one CRP-Reduct
regardless of the set independence/maximality. As is known, attri-
bute heuristic information can accelerate relevant algorithms, so
the basic dependency degree is inspected.
Definition 3.18 (Dependency Degree). Dependency degree of D on

A is defined by CRPca;b
A ðDÞ ¼

jPOSa;b
A ðDÞj
jUj .
Proposition 3.19. If A1 # A2 # C, then POSa;b
A1
ðDÞ ¼ POSa;b

A2

ðDÞ)CRPca;b
A1
ðDÞ¼CRPca;b

A2
ðDÞ, and the opposite does not hold.

Herein, qualitative CRPca;b
A ðDÞ is naturally proposed by referring

to qualitative cAðDÞ. Clearly, CRPca;b
A ðDÞ 2 ½0;1�;CRPca;b

A ðDÞP cAðDÞ,
and CRPca;b

A ðDÞ ¼ cAðDÞ when ða; bÞ ¼ ð1;0Þ. In qualitative reduction,
cAðDÞ inherits the change monotonicity and can make a sufficient
and necessary measurement. However, CRPca;b

A ðDÞ inherits the
change non-monotonicity. Furthermore, Proposition 3.19 shows
that CRPca;b

A ðDÞ equality acts as only a necessary condition for
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CR-Preservation. In particular, the insufficiency can be verified by
Example 1, where CRPca;b

fa;bgðDÞ ¼ 0:5¼CRPca;b
fbgðDÞ but POSa;b

fa;bgðDÞ–

POSa;b
fbgðDÞ. Thus, the dependency degree acts as only a necessary

measure for CR-Preservation, so it can provide only some heuristic
information for CRP-Reduct; furthermore, benign heuristic mea-
sures are worth deep mining.

4. Set-region preservation and set-region preservation reduct
(SRP-Reduct)

At the C-Region level, Section 3 studies CRP-Reduct by con-
structing an improved type of C-Regions, where S-Regions play a
core role in integrated C-Regions construction. In fact, original
S-Regions can fully realize regional descriptions in view of the
two-category characteristic. Thus, at the S-Region level, this
section mainly discusses reduction targets, preservation proper-
ties, and SRP-Reduct.

4.1. Set-region preservation target

This subsection first analyzes reduction targets according to S-
Regions’ monotonic expansion, and it finally concludes the rational
criterion of S-Region preservation (SR-Preservation).

Proposition 4.1. In Pawlak-Reduction, the following six targets are
equivalent: (1) CR-Preservation; (2) C-POS preservation; (3) C-BND
preservation; (4) SR-Preservation; (5) POS and NEG preservation; (6)
BND preservation.
Table 2
DTRS-Reduction targets based on S-Regions’ monotonic expansion.

Case POS change NEG change BND change

(1) � � #

(2) � ¼ #

(3) � # �
(3a) � # �
(3b) � # #

(3c) � # ¼
(4) # � �
(4a) # � �
(4b) # � #

(4c) # � ¼
(5) # ¼ �
(6) # # �
(7) ¼ � #

(8) ¼ ¼ ¼
(9) ¼ # �

Table 3
D-Table of Example 2.

U a b d

x1 1 1 1
x2 0 1 1
x3 0 1 0
x4 0 0 1
x5 0 0 1
x6 0 0 1
Proof. Herein, only ð2Þ ) ð5Þ needs proving. When obtaining B
from C; POSBðXÞ# POSCðXÞ;NEGBðXÞ# NEGCðXÞ, so POSBðDÞ ¼
POSBðXÞ [NEGBðXÞ# POSCðXÞ [ NEGCðXÞ ¼ POSCðDÞ. If ðPOSBðXÞ;
NEGBðXÞÞ– ðPOSCðXÞ;NEGCðXÞÞ, then suppose POSBðXÞ � POSCðXÞ.
Thus, POSBðXÞ \ NEGBðXÞ ¼ ;;POSCðXÞ \ NEGCðXÞ ¼ ;, so POSBðDÞ
¼ POSBðXÞ [NEGBðXÞ � POSCðXÞ [NEGCðXÞ ¼ POSCðDÞ. However,
POSBðDÞ– POSCðDÞ contradicts POSBðDÞ¼POSCðDÞ. Hence,
ðPOSBðXÞ; NEGBðXÞÞ¼ ðPOSCðXÞ;NEGCðXÞÞ if POSBðDÞ¼ POSCðDÞ. h

Proposition 4.1 provides several equivalent targets for qualita-
tive reduction. Thus, SR-Preservation is equivalent to CR-Preserva-
tion (where regional change monotonicity plays a key role in
granularity transformation), so SR-Preservation becomes a new
reduction viewpoint within the two-category framework. In partic-
ular, SR-Preservation implies that only three ¼ symbols emerge for
qualitative S-Region change, and this conclusion should be highly
consulted in quantitative reduction construction.

In fact, DTRS-Reduct should rationally expand Pawlak-Reduct
because DTRS-Model expands Pawlak-Model. Thus, this necessary
expansion becomes an important requirement to choose potential
targets and to further construct DTRS-Reducts. Next, only reduc-
tion targets are analyzed due to their fundamental role for reduct
construction, and we begin to seek potential DTRS-Reduction
targets.

Proposition 4.2. DTRS S-Regions exhibit change non-monotonicity in
attribute deletion.

Example 1 shows the change non-monotonicity of DTRS
S-Region, which underlies the change non-monotonicity of DTRS
C-POS. Thus, three kinds of DTRS S-Regions have much change
possibility, and we mainly analyze the monotonic expansion change
from the usual set theory. In other words, ¼ can be reasonably
extended to only three cases regarding ¼; # ;�, which express
new S-Region’s equality change, non-enlargement change, and
non-lessening change for corresponding old S-Region, respectively.
Proposition 4.3. Within a framework of monotonic expansion, there
are and only are 13 types of DTRS S-Region change, i.e., Cases (1) (2)
(3a) (3b) (3c) (4a) (4b) (4c) (5–9) in Table 2.
Proof. The systemic change symbols are easily obtained by first
choosing ¼; # ;� for POS and NEG, because independent POS and
NEG determine BND. h

The 13 cases originate from both the Pawlak-Reduction target
and DTRS extension feature, and based on the set inclusion rela-
tion, each one has the expansion property for SR-Preservation.
Moreover, each case can exactly emerge, and following Example
2 provides the example illustration. In Table 2, they can be further
concluded to only nine cases, i.e., Cases (1–9), where �means arbi-
trary symbols of ¼; # ;�. In particular, Cases (1–4, 7) exhibit tran-
scendence, because there are only four types (Cases (5) (6) (8) (9))
for Pawlak-Model. Moreover, many criteria exhibit symmetry
regarding three S-Regions.

Example 2. In D-Table ðU;C [ DÞ from Table 3, U ¼ fx1; . . . ; x6g;
C ¼ fa; bg; D ¼ fdg; U=fdg ¼ ffx1; x2; x4; x5; x6g; fx3gg; X ¼ fx1; x2;

x4; x5; x6g. Thus, U=fa; bg ¼ ffx1g; fx2; x3g; fx4; x5; x6gg; U=fag ¼
ffx1g; fx2; x3; x4; x5; x6gg. PðXjfx1gÞ¼1;PðXjfx2;x3gÞ¼0:5;PðXjfx4;

x5;x6gÞ¼1;PðXjfx2;x3;x4;x5;x6gÞ¼0:8. Let 0<b< 0:5<a<0:8.

Old S-Regions are POSa;b
fa;bgðXÞ¼ fx1;x4;x5;x6g;BNDa;b

fa;bgðXÞ¼

fx2;x3g;NEGa;b
fa;bgðXÞ¼ ;; when deleting b, new S-Regions become

POSa;b
fagðXÞ¼U;BNDa;b

fagðXÞ¼ ;;NEGa;b
fagðXÞ¼ ;. This regional change

reflects practical existence of Table 2’s Case (2), which never
happens in Pawlak-Model. h

The 13 cases fully provide a rational range for DTRS-Reduction
targets from a usual viewpoint of set theory. In other words, we
yield complete targets of DTRS-Reduction. Next, our task is to
select a rational target by some analyzes. Cases (5) (6) (9) which
lessen C-POS are suspectable, because Pawlak-Reduct never less-
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ens C-POS even when it has operational possibility. In contrast,
enlarging POS, enlarging NEG, or lessening BND seem preferable
because POS, NEG, and BND correspond to positive, negative, and
deferred decisions, respectively. For example, Cases (1) (2) seem
to be perfect directions. Next, an imaginary reduct is provided as
an example.

Definition 4.4. B is an imaginary reduct of C, if it satisfies two
conditions:

(1) NEGa;b
B ðXÞ ¼ NEGa;b

C ðXÞ;POSa;b
B ðXÞ � POSa;b

C ðXÞ;
(2) If NEGa;b

B0 ðXÞ ¼ NEGa;b
C ðXÞ, then POSa;b

B0 ðXÞ+POSa;b
C ðXÞ;8;–

B0 � B.

The imaginary reduct is mainly according to Case (2) – POS non-
lessening, NEG preservation (and BND non-enlargement). In Exam-
ple 2, fag acts as the sole imaginary reduct of fa; bg, and
POSa;b

fagðXÞ ¼ U. Thus, x2 and x3 originally adopt the deferred deci-
sion for initial fa; bg, but by attribute reduction, they finally corre-
spond to the positive decision for reduct fag. In a vivid treatment
explanation, two deferred patients are transferred to be treated
only by removing a medical examination of b. This contradiction
originates from inconformity between theoretical change and
practical processing for approximation. In fact, deleting attribute
b necessarily leads to uncertainty reinforcement, and DTRS-POS
can be enlarged because it has already concerned uncertainty;
however, DTRS-POS is directly related to the positive decision in
the practical approximation processing. Thus, the imaginary reduct
is worth deeply discussing. In DRTS-Model, three DTRS S-Regions
actually exhibit equality in some degree within the framework of
quantitative uncertainty, and S-Region change implies decision
change, so other regional change reducts are not sure as well.

In fact, only SR-Preservation of Case (8) does not change all S-
Regions and decisions, thus becoming the surest target in view of
the S-Region change non-monotonicity. Based on DTRS modeling,
SR-Preservation can necessarily keep optimal structure which is
related to original application decisions. Moreover, SR-Preserva-
tion is the most natural for DTRS-Reduction because it is exactly
Pawlak-Reduction target. In a word, for DTRS-Reduction targets
based on quantitative expansion, more choices do not necessarily
bring better reducts, but the initial one must be sure and feasible.
Therefore, SR-Preservation becomes the most appropriate DTRS-
Reduction target at the S-Region level.

Theorem 4.5. In DTRS-Model, SR-Preservation and CR-Preservation
are separate. Furthermore, SR-Preservation induces CR-Preservation,
but the opposite does not hold.

In Pawlak-Model, SR-Preservation and CR-Preservation are
equivalent (Proposition 4.1), which is mainly attributed to the regio-
nal change monotonicity. However, in DTRS-Model, SR-Preservation
is not only different from but also stronger than CR-Preservation;
herein, C-POS integration leads to the natural induction and its
opposite for both targets. Thus, this target separability provides us
new development spaces beyond CR-Preservation and CRP-Reduct.

4.2. Set-region preservation properties

SubSection 4.1 analyzes the SR-Preservation rationality. Thus,
this subsection further provides several SR-Preservation proper-
ties, which underlie later SRP-Reduct development. Herein, in D-

Table ðU;C;DÞ;C ¼ B [ C0;C0 ¼ fa1; a2; . . . ; atg (t P 2); C�!�C0
C � C0

or C�!� C � C0 describe the process of deleting C0, and

C�!�a
C � fag is also used. Moreover, SRP and SRNP are used to
denote S-Region preservation and S-Region none-preservation,
respectively; thus, for attribute deletion u : :�!� .,
‘‘:�!� : � SRP’’ means that u preserves S-Regions, while
‘‘:�!� : � SRNP’’ denotes the opposite.

Lemma 4.6. 8a1; a2; . . . ; at ,

C�!�a1 B� fa1g�!
�a2 	 	 	 �!�at B� fa1; a2; . . . ; atg () C�!�C0

B:

According to element deletion, Lemma 4.6 describes inter-
changeability and composition for a deletion sequence. Further-
more, this result is also applicable to subset deletion. Herein, let

C0 # C0; :�!�C0 . is in sequence T for C�!�C0
B.
Proposition 4.7 (Infection Principle).

9T;9:�!�C0
: � SRNP () C�!�C0

B � SRNP;

9C�0 # C 0;C�!
�C�0 C � C�0 � SRNP () C�!�C0

C � C 0 � SRNP:
Proof. (1) For :�!�C0
: � SRNP, two granules ½x�1 and ½x�2 from two

different old S-Regions will be merged into a new granule ½x�3,

i.e., ½x�1 [ ½x�2 # ½x�3. Based on Lemma 4.6, :�!�C0 . is supposed to be
the first SRNP process in the sequence. In the later deletion, ½x�3
would not be decomposed due to knowledge roughening. Hence,

C�!�C0
B � SRNP, because both ½x�1 and ½x�2 are finally in a new

S-Region of B. The opposite is clear by setting up C0 ¼ C0 and

T ¼ fC�!�C0
Bg. (2) C�!�C0

B() C�!
�C�0 C � C�0�!

�
B. C�!

�C�0 C � C�0 �

SRNP, so C�!�C0
B � SRNP according to (1). The opposite can be

obtained by setting up C�0 ¼ C0. h
Corollary 4.8 (Purity Principle).

C�!�C0
B � SRP () 8T;8:�!�C0

: � SRP;

C�!�C0
C � C 0 � SRP () 8C�0 # C 0;C�!

�C�0 C � C�0 � SRP:

Based on Infection Principle, arbitrary SRNP sub-deletion at
arbitrary a stage necessarily leads to SRNP for the whole deletion.
In other words, SRNP has infection from interior deletion. Thus,
Infection Principle mainly cancels our worry whether global SRP
can be implemented by local SRNP. In contrast, dual Purity Princi-
ple reflects SRP harmony between global and local deletion.

To extract SRP and SRNP elements, let SRPðAÞ ¼ fa 2
AjA�!�a

A� fag � SRPg and SRNPðAÞ¼ fa2AjA�!�a
A�fag� SRNPg.

Thus, SRPðAÞ defines the elements in A, whose deletion on A
preserves S-Regions, while SRNPðAÞ describes the opposites.

Proposition 4.9 (Core Principle). SRNPðCÞ\C0–;)C�!�C0
B�SRNP.
Proof. SRNPðCÞ\C0– ; implies that 9ai 2C0;C�!�ai C�faig� SRNP.

Based on Infection Principle, C�!�C0
B� SRNP. h

Corollary 4.10. C�!�C0
B � SRP ) C0 # SRPðCÞ.

According to SRP in single attribute deletion, condition attri-
butes are divided into two classes – SRPðCÞ and SRNPðCÞ. For SRP,
we cannot delete attributes in SRNPðCÞ but may delete some in
SRPðCÞ, so SRNPðCÞ acts as the attribute core. However, neither
opposite of Core Principle and its dual Corollary 4.10 holds.
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The change monotonicity of qualitative regions is a specific
characteristic for Pawlak-Model. It is so perfect that it determines
many important processing, such as the SR-Preservation require-
ment and Pawlak-Reduction construction. However, for DTRS
S-Region, the change monotonicity has been collapsed while the
change non-monotonicity emerges. In this new situation, Infection
and Purity Principles transcend the regional change monotonicity
by utilizing initial knowledge monotonicity, so they play a funda-
mental role for quantitative DTRS-Reduction. In fact, they ensure
the SR-Preservation stability and provide the attribute core, thus
underling the next SRP-Reduct construction.

4.3. Set-region preservation reduct (SRP-Reduct)

Based on SR-Preservation and its properties, this subsection
naturally constructs SRP-Reduct.

Definition 4.11 (SRP-Reduct). c is an indispensable attribute in C,

if C�!�c
C � fcg � SRNP; otherwise, c is dispensable. B is indepen-

dent, if b is indispensable in B;8b 2 B. B is SRP-Reduct of C, if B is

independent and C�!� B � SRP. Moreover, COREa;b
SRPðCÞ and

REDa;b
SRPðCÞ denote the core and reduct set, respectively.
Proposition 4.12. The following two items are equivalent:

(1) B�!�b
B� fbg � SRNP;8b 2 B;

(2) B�!� B0 � SRNP;8;– B0 � B.
Proof. 8;– B0 � B; 9b 2 B� B0, s.t., ;– B0 # B� fbg. Based on

Lemma 4.6, B�!� B0 () B�!�b
B� fbg�!� B0. B�!�b

B� fbg � SRNP,
so B�!� B0 � SRNP according to Infection Principle; thus, (1) ) (2)
holds. In contrast, (2) ) (1) can be proved by setting up
B0 ¼ B� fbg. h

According to SR-Preservation, Definition 4.11 defines SRP-
Reduct by using the set independence. Furthermore, Proposition
4.12 reflects equivalence of the set independence and maximality
for SR-Preservation. Thus, SRP-Reduct can also be given by the
set maximality.

Definition 4.13 (SRP-Reduct). B is SRP-Reduct of C, if it satisfies
two conditions:

(1) C�!� B � SRP;

(2) B�!� B0 � SRNP;8;– B0 � B.
Theorem 4.14 (SRP-Reduct’s Expansion). SRP-Reduct expands
Pawlak-Reduct to DTRS-Reduct, and it degenerates into Pawlak-
Reduct when ða; bÞ ¼ ð1;0Þ.

SRP-Reduct is equivalently defined by the set independence and
maximality to achieve SR-Preservation, so it is a minimal subset to
provide the optimal structure and decision regarding C. By virtue of
rational SR-Preservation, SRP-Reduct naturally expands qualitative
reduction to quantitative reduction in the environment of the
change non-monotonicity, thus becoming scientific and valuable.
In particular, SRP-Reduct becomes a distinctive reduct for the
two-category case.

Theorem 4.15. COREa;b
SRPðCÞ ¼

T
REDa;b

SRPðCÞ.
Proof. (1) If c R
T

REDa;b
SRPðCÞ, then 9B 2 REDa;b

SRPðCÞ but c R B. Thus,

C �!�ðC�BÞ
B � SRP; c 2 C � B # C; based on Purity Principle, C�!�c

C�
fcg � SRP, i.e., c 2 SRPðCÞ; c R SRNPðCÞ. Hence, c R COREa;b

SRPðCÞ;
COREa;b

SRPðCÞ#
T

REDa;b
SRPðCÞ. (2) If c R COREa;b

SRPðCÞ, then C�!�c
C�

fcg � SRP. 9B 2 REDa;b
SRPðC � fcgÞ, so C � fcg�! B � SRP and B is inde-

pendent. Based on Lemma 4.6, C�!� B � SRP. Thus, B 2 REDa;b
SRPðCÞ,

but c R B. Hence, c R
T

REDa;b
SRPðCÞ;

T
REDa;b

SRPðCÞ# COREa;b
SRPðCÞ. h

To construct SRP-Reduction, Infection and Purity Principles are
utilized to prove the set maximality/independence and attribute
core, so they fulfil basic functions of the qualitative change mono-
tonicity. Herein, core COREa;b

SRPðCÞ exhibits the similar relationship
and significance for SRP-Reduct, and the related conclusion can
be verified by the previous two examples. In Example 1,
COREa;b

SRPðfa; bgÞ ¼ fag and REDa;b
SRPðfa; bgÞ ¼ ffagg. In Example 2,

fa; bg�!�b fag � SRNP, so b 2 COREa;b
SRPðfa; bgÞ. When deleting a, there

is only a granular merging process – fx1g [ fx2; x3g ¼ fx1; x2; x3g;
fx1g# POSa;b

fa;bgðXÞ; fx2; x3g# BNDa;b
fa;bgðXÞ, so fa; bg�!�a fbg � SRNP.

Thus, COREa;b
SRPðfa; bgÞ ¼ fa; bg;REDa;b

SRPðfa; bgÞ ¼ ffa; bgg.

Definition 4.16 (Dependency Degree). Positive, boundary, negative
dependency degree of D on A are defined by:

cPOS
A ðDÞ ¼

jPOSa;b
A
ðXÞj

jUj ;

cBND
A ðDÞ ¼ jBNDa;b

A
ðXÞj

jUj ;

cNEG
A ðDÞ ¼ jNEGa;b

A
ðXÞj

jUj ;

8>>>><
>>>>:
SRPcAðDÞ ¼ ðcPOS

A ðDÞ; cNEG
A ðDÞÞ

is further called the dependency degree array of D on A.

In Pawlak-Model, cAðDÞ describes only a part – C-POS. In DTRS-
Model, three S-Regions are utilized to construct three measures,
i.e., cPOS

A ðDÞ; cBND
A ðDÞ; cNEG

A ðDÞ, and they measure classification pro-
portions for three parts – POS, NEG, BND, respectively. Moreover,
cAðDÞ is addition fusion of two related regional measures (Proposi-
tion 2.3); in contrast, array SRPcAðDÞ mainly makes a systemic
description by independent POS and NEG. Clearly,
cPOS

A ðDÞ; cNEG
A ðDÞ; cBND

A ðDÞ 2 ½0;1�; cPOS
A ðDÞ þ cNEG

A ðDÞ þ cBND
A ðDÞ ¼ 1.

Proposition 4.17.
(1) CRPcAðDÞ ¼ cPOS
A ðDÞ þ cNEG

A ðDÞ. CRPcAðDÞP j
SRPcAðDÞj;CRPcAðDÞ

¼ jSRPcAðDÞj, if cPOS
A ðDÞ ¼ 0 or cNEG

A ðDÞ ¼ 0.

(2) cPOS
A ðDÞþcNEG

A ðDÞP cAðDÞ;cPOS
A ðDÞþcNEG

A ðDÞ¼ cAðDÞ, if ða;bÞ
¼ ð1;0Þ.
Proposition 4.18. Let A1 # A2 # C. If A2�!
�

A1 � SRP,
cPOS

A1
ðDÞ þ cNEG

A1
ðDÞ ¼ cPOS

A2
ðDÞ þ cNEG

A2
ðDÞ,

SRPcA1
ðDÞ¼SRPcA2

ðDÞ.

Based on Proposition 4.17, addition fusion cPOS
A ðDÞ þ cNEG

A ðDÞ of
SRP-Reduct is equal to CRPcAðDÞ of CRP-Reduct because of C-POS’s
combination, and it also exhibits monotonicity for cAðDÞ of Paw-
lak-Reduct because of S-Regions’ expansion. Based on Proposition
4.18, SRPcAðDÞ equality acts as only a necessary condition for SR-
Preservation, which is attributed to the change non-monotonicity
of cPOS

A ðDÞ; cBND
A ðDÞ; cNEG

A ðDÞ. In particular, the insufficiency can be
verified by Example 1, where SRPcfa;bgðDÞ ¼ ð0:5;0Þ¼SRPcfbgðDÞ but
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fa; bg�!�a fbg � SRNP. Thus, the dependency degree array, as only a
necessary measure, can partly reflect attribute significance and
heuristic information for SRP-Reduct.

5. Double-preservation and double-preservation reduct (DP-
Reduct)

By analyzing rule consistency and its regional essence, this sec-
tion first establishes consistency preservation, which is essentially
qualitative preservation. Furthermore, DP-Reduct is proposed to
dually preserve S-Region and consistency, which is essentially a
quantitative and qualitative dual reduct.

Except the usual regional way, there is another fundamental
approach for Pawlak-Reduct, i.e., the consistency method. In fact,
qualitative reduction mainly preserves rule consistency of both
consistent and inconsistent D-Tables in the decision logic and algo-
rithm [2]. Thus, the consistency requirement further provides us a
novel viewpoint and development power for quantitative reduc-
tion construction. Since the two-category feature more adheres
to the region-based approach, we first explore regional essence
of rule consistency and consistency preservation.

Definition 5.1. 8E 2 2U , mappings cstA; icstA : 2U�!2U are defined
as follows:

cstAðEÞ ¼ fx 2 Ej8½x�A; ð½x�A # XÞ _ ð½x�A #:XÞg;
icstAðEÞ ¼ fx 2 Ej8½x�A; ð½x�A \ X – ;Þ ^ ð½x�A \ :X – ;Þg:

�

cstAðEÞ and icstAðEÞ are called consistent and inconsistent regions of
E on A, respectively.
Proposition 5.2

cstCðEÞ ¼ E� BNDCðXÞ;
icstCðEÞ ¼ E \ BNDCðXÞ:

�

By using mappings, consistent and inconsistent regions are
mined (in Definition 5.1) to extract objects connected with consis-
tent and inconsistent rules, respectively. Thus, they equivalently
describe rule consistency and inconsistency from the regional per-
spective, and they are mainly related to BNDCðXÞ according to their
macroscopical formulas (Proposition 5.2).
Corollary 5.3

cstCðUÞ ¼ U � BNDCðXÞ;
icstCðUÞ ¼ BNDCðXÞ:

�

Regional essence of consistency and inconsistency are reflected
(in Corollary 5.3) by assessing consistent and inconsistent regions
of the universe. Thus, consistency and inconsistency are actually
related to only qualitative Pawlak-BND, so they are completely
determined by D-Table’s formal structure on C and D (rather than
by concrete models or quantitative regions). In other words, qual-
itative S-Regions (especially Pawlak-BND) have been promoted to
be related to not only Pawlak-Regions but also consistency/incon-
sistency (for all models).
Corollary 5.4 (Consistency Change Monotonicity). In attribute
deletion, consistency has change monotonicity, i.e., the consistent
and inconsistent regions of the universe are not enlarged and lessened,
respectively.

For quantitative reduction, consistency preservation is also a
considerable target, because qualitative reduction acts as the sole
reference. It becomes a rational criterion based on the consistency
change monotonicity, which is related to the consistency’s regional
essence. In particular, consistency preservation is equivalent to
qualitative CR-Preservation, i.e., it maintains qualitative Pawlak-
Regions. Thus, let us further analyze its scientific nature in the
quantitative environment. In fact, preserving rule consistency aims
to maintain absolute and complete certainty due to qualitative fac-
tors. In other words, the certainty position cannot change even in
slight degree, and real certainty cannot be fused with other
approximate certainty because both are completely two different
notions from the qualitative viewpoint; in contrast, inconsistency
and uncertainty also need qualitative preservation. In summary,
based on certainty/uncertainty, qualitative regions are no longer
limited to only Pawlak-Reduction but further determine all models
reduction; thus, based on consistency/inconsistency, Pawlak-
Reduct has been promoted to extensively describe quantitative
reduction.

Theorem 5.5. Consistency preservation is equivalent to qualitative
CR-Preservation. CR-Preservation, SR-Preservation, and consistency
preservation are equivalent in Pawlak-Model but are separate in
DTRS-Model.

Theorem 5.5 reflects uniformity and separability of usual three
targets of Pawlak-Reduction and DTRS-Reduction, respectively. In
Pawlak-Model, SR-Preservation and consistency preservation are
uniformly implemented by CR-Preservation, i.e., qualitative C-
POS plays a dual role for both region and consistency parts. How-
ever, in DTRS-Model, both CR-Preservation and SR-Preservation
correspond to only quantitative regions rather than qualitative
consistency/inconsistency blocks. Thus, consistency preservation
further provides a new development space for hierarchical con-
struction of DTRS-Reduction, and the integration of SR-Preserva-
tion and consistency preservation becomes a rational and novel
strategy due to their separability.

Definition 5.6 (D-Preservation). In DTRS-Model, D-Preservation
means both SR-Preservation and consistency preservation, i.e.,
C�!� B � SRP and BNDBðXÞ ¼ BNDCðXÞ for C�!� B. Herein,
C�!� B � DP and C�!� B � DNP denote D-Preservation and its
opposite.
Theorem 5.7. D-Preservation induces SR-Preservation and consis-
tency preservation, but neither opposite holds.

Clearly, integrated D-Preservation holds a dual preservation
function. In fact, it perfectly fulfils all Pawlak-reduction targets,
and it essentially preserves five parts by introducing Pawlak-BND
into three DTRS S-Regions. By adding consistency factors and qual-
itative ideas, D-Preservation becomes a novel and valuable crite-
rion for quantitative reduction.

Theorem 5.8 (DP-Reduct). B is DP-Reduct of C, if it satisfies two
conditions:

(1) C�!� B � DP;
(2) B�!� B0 � DNP;8;– B0 � B.

Herein, REDa;b
DP ðCÞ denotes the reduct set, and the intersection of all

reducts constitutes core COREa;b
DP ðCÞ.
Theorem 5.9 (DP-Reduct’s Expansion). DP-Reduct expands Paw-
lak-Reduct to DTRS-Reduct, and it degenerates into Pawlak-Reduct
when ða; bÞ ¼ ð1;0Þ.

By virtue of D-Preservation, DP-Reduct naturally expands qual-
itative reduction to quantitative reduction. In particular, D-Preser-
vation and DP-Reduct adopt a quantitative and qualitative dual
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strategy to implement expansion completeness, and they go
beyond SR-Preservation and SRP-Reduct. Therefore, they provide
a novel thought and a nice prospect for quantitative reduction.

Based on complete D-Preservation, we can further make in-
depth structural construction. For example, accurate reducts can
be considered by feasible internal structure. For explanation, we
finally provide an optimal reduct with measures. Herein, a set of
measures M ¼ ðm1;m2; . . .Þ is given for evaluating C regarding D,
and Ref. [15] provided multiple measures.

Definition 5.10 (Optimal Reduct). B is an optimal reduct of C on
measure set M, if it satisfies two conditions:
(1) C�!� B � DP, and mðBÞ 
 mðCÞ;8m 2 M;
(2) 8;– B0 � B, if B�!� B0 � DP,

then mðB0Þ � mðBÞ;8m 2 M.
Proposition 5.11. On the D-Preservation premise, optimal reducts
exhibit nondecreasing optimization for given measures.

Based on D-Preservation, the optimal reduct mainly makes an
optimal adjustment of internal structure by considering multiple
measures. Thus, it can seek optimization for given measures within
the structural framework of D-Preservation.

6. Reduction hierarchies

Thus far, we have established three systems of quantitative
reduction, i.e., (1) CR-Preservation and CRP-Reduct, (2) SR-Preser-
vation and SRP-Reduct, (3) D-Preservation and DP-Reduct. In this
section, we first introduce the fourth reduction system – (4)
knowledge preservation (K-Preservation) and K-Preservation
reduct (KP-Reduct); furthermore, we emphatically analyze reduc-
tion hierarchies of the four systems and the Pawlak-Reduction sys-
tem (which is labeled by symbol (0)). Finally, a D-Table example is
provided for illustration.
Fig. 2. Hierarchies of five
Definition 6.1 (K-Preservation and KP-Reduct). C�!� A satisfies K-
Preservation, if INDðAÞ ¼ INDðCÞ. B is KP-Reduct of C, if it satisfies
two conditions:

(1) INDðBÞ ¼ INDðCÞ;
(2) INDðB0Þ – INDðBÞ;8;– B0 � B.

Herein, COREKPðCÞ and REDKPðCÞ denote the natural core and
reduct set, respectively.

For D-Table reduction, K-Preservation is the highest require-
ment and the surest strategy. In particular, KP-Reduct is applicable
to D-Table ðU;C [ DÞ, but it is actually the usual qualitative reduct
for information table ðU;CÞ. Moreover, KP-Reduct also falls into the
category of quantitative reduction though it essentially corre-
sponds to qualitative reduction.

Theorem 6.2 (Target Hierarchies).

(1) If INDðAÞ ¼ INDðCÞ, then C�!� A � DP.
(2) If C�!� A � DP, then C�!� A � SRP and POSAðDÞ ¼ POSCðDÞ.
(3) If C�!� A � SRP, then POSa;b

A ðDÞ ¼ POSa;b
C ðDÞ.

Moreover, all opposites do not hold.

For four DTRS-Reduction systems, Theorem 6.2 provides their
target hierarchies, i.e., K-Preservation induces D-Preservation,
D-Preservation induces SR-Preservation, while SR-Preservation
induces CR-Preservation. Note that all opposites cannot hold, and
some verification will be provided in next Example 3. For the four
targets, their hierarchies reflect their strong and weak features.
In fact, CR-Preservation and K-Preservation act as the lowest
and highest targets, respectively, so they determine a complete
range which includes SR-Preservation and D-Preservation. From a
regional perspective, CR-Preservation, SR-Preservation, and
D-Preservation actually correspond to macroscopical two-way,
three-way, and five-way region preservation, respectively;
types of reduction.
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moreover, K-Preservation aims to preserve microscopical granular
structure with jU=INDðCÞj regions. In particular, these targets’
regional structure and their hierarchies are exhibited by the upper
half of Fig. 2, where Pawlak-Reduction target is also added by using
its two-way region preservation at the C-Region level. In this sub-
figure, the five targets are marked by symbols (0–4), and their
development and induction are reflected by the arrow directions
and opposite directions, respectively.

In view of targets’ pivotal position, the target hierarchies essen-
tially determine the following core hierarchies and reduct hierar-
chies. For convenience, the core and reduct with a weak target is
called the weak core and reduct, respectively, and so are the strong
core and reduct. Thus, CRP-Reduct and KP-Reduct become the
weakest and strongest DTRS-Reducts, respectively.

Theorem 6.3 (Core Hierarchies). COREa;b
CRPðCÞ # COREa;b

SRPðCÞ #

COREa;b
DP ðCÞ# COREKPðCÞ. Moreover, COREðCÞ# COREa;b

DP ðCÞ.
Fig. 4. Reduction hierarchy figure of (3) Voting database.
Theorem 6.4 (Reduct Hierarchies).

(1) 8BKP 2 REDKPðCÞ, 9BDP 2 REDa;b
DP ðCÞ, s.t., BDP # BKP .

(2) 8BDP 2 REDa;b
DP ðCÞ,9BSRP 2 REDa;b

SRPðCÞ, s.t., BSRP # BDP;
9B 2 REDðCÞ, s.t., B # BDP .

(3) 8BSRP 2 REDa;b
SRPðCÞ,9BCRP 2 REDa;b

CRPðCÞ, s.t., BCRP # BSRP.

Theorem 6.3 reflects the core hierarchies – a weak core is nec-
essarily included by a strong one. Theorem 6.4 reflects the reduct
hierarchies – each strong reduct necessarily includes at least a
weak reduct; as a result, strong reducts can provide some guidance
for weak reducts. However, a weak reduct could still exist beyond
the embedded relationship from its strong reduct. In fact, the
above hierarchies have provided the imperfect but complete con-
clusion for reducts, because the reduct requirement of the set max-
imality/independency hinders more necessary hierarchical results.

By following targets’ strong evolutionary, CRP-Reduct�!SRP-
Reduct�!DP-Reduct�!KP-Reduct reflects the corresponding reduct
development from the weak to the strong. In particular, the lower
half of Fig. 2 exhibits hierarchies for the four reducts and Pawlak-
Reduct. There, development and expansion of reducts are reflected
by the solid and virtual arrows, respectively, and marked symbols
(0–4) are also used. In fact, CRP-Reduct, SRP-Reduct, and DP-
Reduct exhibit expansion for Pawlak-Reduct, and DP-Reduct is also
Fig. 3. Reduction hierarchy figure of Example 3.
stronger than Pawlak-Reduct. Moreover, Pawlak-Reduct and KP-
Reduct are qualitative, while the surplus four are quantitative.
Next, generalization and accuracy are analyzed for four DTRS-
Reducts. In fact, the weak/strong reducts imply their strong/weak
generalization and weak/strong accuracy. Thus, the weakest CRP-
Reduct has the strongest generalization but the weakest accuracy,
while the strongest KP-Reduct exhibits the opposites; moreover,
SRP-Reduct and DP-Reduct hold a middle level.

In Fig. 2, the target and reduct hierarchies are exhibited in the
upper and lower halves, respectively. Moreover, from the regional
perspective, the granular development is also marked in the mid-
dle location. In fact, this evolutionary of C-Region Level�!S-Region
Level�!Integration Level�!Knowledge Level corresponds to granu-
lar decomposition and fine granulation. In particular, reduction
hierarchies have natural transitivity, and the inclusion relation
of subsets plays an important role, especially for both the core
and reduct hierarchies. Thus, by adopting a dendrogram
approach, we will particularly organize a reduction hierarchy
figure (e.g., Figs. 3–5) to vividly exhibit reduction results,
where arrow �! and its opposite represent relations # and �,
respectively.
Fig. 5. Reduction hierarchy figure of (4) SPECT Heart database.



Table 5
Five types of reducts and their cores of Example 3.

Type Core Reduct

(0) Pawlak-Reduct fc2g fc2; c3g; fc1; c2; c4g
(1) CRP-Reduct fc1g fc1; c2g; fc1; c3g
(2) SRP-Reduct fc1g fc1; c2g; fc1; c3g
(3) DP-Reduct fc1; c2g fc1; c2; c3g; fc1; c2; c4g
(4) KP-Reduct fc1; c2; c4g fc1; c2; c4g

158 X. Zhang, D. Miao / Knowledge-Based Systems 71 (2014) 146–161
Based on the reduct hierarchies, a strong reduct can provide
some guidance for seeking weak reducts (especially only one).
Thus, we propose a strong reduct-based hierarchial algorithm for
weak reducts. In Algorithm 2, Step 1 establishes the guidance of
a strong reduct, Step 2 yields the weak core, and Step 3 searches
the weak reducts between the weak core and strong reduct.
Clearly, this algorithm is convergent and effective and can neces-
sarily achieve all weak reducts included in the given strong reduct.
In particular, this hierarchial algorithm’s result can be vividly
reflected (by the opposite of arrow �!) in the reduction hierarchy
figure (e.g., Figs. 3–5). Moreover, KP-Reduct can be particularly uti-
lized due to its strength and simplicity.

Algorithm 2. A strong reduct-based hierarchial algorithm for
weak reducts

Input:
Ta
C

ble 4
class-

½x�i
½x�1
½x�2
½x�3
½x�4
½x�5
½x�6
½x�7
½x�8
D-Table ðU;C [ DÞ;

Output:
Weak reduct;

1:
 Give a strong reduct Bstrong;
2:
 Yield the weak core – COREweakðCÞ;

3:
 Search Bweak in range COREweakðCÞ# Bweak # Bstrong to

satisfy the weak reduct requirement;

4:
 return Bweak.
Finally, for illustrating the reduction hierarchies, a D-Table
example is provided and analyzed.
Example 3. In D-Table ðU;C [ DÞ;U ¼ fx1; x2; . . . ; x36g;C ¼ fc1; c2;

c3; c4g;U=INDðCÞ ¼ f½x�1; . . . ; ½x�8g;U=INDðDÞ ¼ fX;:Xg, and C class-
based statistical information is provided by Table 4. Herein, let
ða; bÞ ¼ ð0:8;0:2Þ.

Qualitative S-Regions are POSCðXÞ ¼ ½x�7 [ ½x�8;NEGCðXÞ ¼ ½x�1[
½x�2;BNDCðXÞ ¼ ½x�3 [ . . . [ ½x�6. In contrast, DTRS S-Regions become

POSa;b
C ðXÞ ¼ ½x�6 [ ½x�7 [ ½x�8; NEGa;b

C ðXÞ ¼ ½x�1 [ ½x�2 [ ½x�3; BNDa;b
C

ðXÞ ¼ ½x�4 [ ½x�5. Thus, Table 5 provides reduction results of five
types, and Fig. 3 further constructs the reduction hierarchy
figure.

Based on the reduction results, we provide the following
illustration for the reduction hierarchies.

(1) By virtue of fc1; c2g;C �!�fc3 ;c4g fc1; c2g � SRP but C �!�fc3 ;c4g

fc1; c2g � DNP, so SR-Preservation cannot induce D-Preser-

vation; by virtue of fc1; c2; c3g;C�!
�c4 fc1; c2; c3g � DP but

INDðfc1; c2; c3gÞ– INDðCÞ, so D-Preservation cannot induce
K-Preservation; moreover, by virtue of fc2; c3g;POSfc2 ;c3g

ðDÞ ¼ POSCðDÞ but C �!�fc1 ;c4g fc2; c3g � DNP, so qualitative
CR-Preservation cannot induce D-Preservation. Thus, these
based statistical information of Example 3.

j½x�ij c1 c2 c3 c4 j½x�i \ Xj

5 2 1 3 1 0
3 1 1 1 2 0
6 1 2 1 2 1
6 3 1 2 1 3
4 3 1 2 2 3
6 2 2 1 2 5
4 2 2 2 1 4
2 1 3 2 2 2
results act as counterexamples to illustrate several opposites
of the target hierarchies (Theorem 6.2), where positive
induction is clear.

(2) COREa;b
CRPðCÞ ¼ COREa;b

SRPðCÞ ¼ fc1g # fc1; c2g ¼ COREa;b
DP ðCÞ #

fc1;c2;c4g¼COREKPðCÞ; moreover, COREðCÞ¼ fc2g#fc1;c2g¼
COREa;b

DP ðCÞ. The results reflect the core hierarchies
(Theorem 6.3).

(3) Next, we verify the reduct hierarchies (Theorem 6.4). Sole
KP-Reduct fc1; c2; c4g is also DP-Reduct, and this DP-Reduct
includes SRP-Reduct fc1; c2g; the other DP-Reduct
fc1; c2; c3g includes all SRP-Reducts fc1; c2g and fc1; c3g, and
both SRP-Reducts are also CRP-Reducts. Moreover,
DP-Reduct fc1; c2; c4g is also Pawlak-Reduct, and the other
DP-Reduct fc1; c2; c3g includes Pawlak-Reduct fc2; c3g. In
particular, DP-Reduct fc1; c2; c3g � fc1; c2; c4g though
ffc1; c2; c4gg ¼ REDKPðCÞ, so this result acts as a counterex-
ample to verify a specific conclusion that a weak reduct could
exist by transcending the embedded relation regarding its
strong reducts.

For the hierarchial algorithm (Algorithm 2), the reduction
hierarchy figure (Fig. 3) exhibits the relevant results. For example,
if strong KP-Reduct/DP-Reduct fc1; c2; c4g is provided, then weak
SRP-Reduct/CRP-Reduct fc1; c2g will be achieved; if strong DP-
Reducts fc1; c2; c3g is given, then weak SRP-Reducts/CRP-Reducts
fc1; c2g and fc1; c3g as well as weak Pawlak-Reduct fc2; c3g will be
obtained. h

7. Experiments

This section mainly performs experiments to illustrate effec-
tiveness of relevant reduction systems and their hierarchies, and
they are three quantitative reduction systems (regarding CRP-
Reduct, SRP-Reduct, and DP-Reduct) and two qualitative reduction
systems (regarding Pawlak-Reduct and KP-Reduct).

Four data sets from the UCI Machine Learning Repository [49]
were used in our empirical study, and their information regarding
D-Table ðU;C [ DÞ are summarized in Table 6. Herein, each data set
has only two decision classes, and decision concept X selectively
corresponds to the first element.

For convenience of calculations, symbols 1; 0 are used to repre-
sent selectivity of a condition attribute, and a binary code and its
decimal result are further used to represent and label a condition
attribute subset. For example, fc1; c2; c3; c9; c11; c13; c16g with
jCj ¼ 16 corresponds to binary code 1110000010101001 and
decimal Result 57513, so it is labeled by C57513 ¼
Table 6
Description of four UCI data sets.

ID Data sets jUj jCj jU=INDðDÞj

(1) Monks-3 432 6 2
(2) Tic-Tac-Toe 958 9 2
(3) Voting 435 16 2
(4) SPECT Heart 267 22 2
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1110000010101001. Moreover, six groups of threshold ða; bÞ are
mainly considered in experiments, i.e., ð0:9;0:1Þ; ð0:9;0:2Þ;
ð0:8;0:1Þ; ð0:8; 0:2Þ; ð0:7;0:3Þ; ð0:6;0:4Þ. Next, relevant experimen-
tal results are exhibited and analyzed one by one, and some
comprehensive conclusions are provided finally.

(I) Table 7 provides the reduction results of (1) Monk-3 data-
base for the first four threshold groups. Thus, the cores and
reducts are correspondingly equal, and their hierarchies
are clear by virtue of relation # . Moreover, when
ða; bÞ ¼ ð0:7;0:3Þ, only CRP-Core and CRP-Reduct become
fc2; c4g; when ða; bÞ ¼ ð0:6;0:4Þ, only CRP-Core and CRP-
Reduct become ; and fc2g; fc5g, respectively.

(II) For (2) Tic-Tac-Toe database, all reduction systems yield the
same results – the empty core and nine reducts C � fcig
(i ¼ 1;2; . . . ;9) – for all the six threshold groups. Thus, the
attribute system has relative redundancy, and the symmetry
of the nine reducts highly accords with the geometrical fea-
ture of this database. In particular, this database also illus-
trates effectiveness of qualitative reduction, but it cannot
clearly reflect reduction hierarchies because all reduction
results become the same. In other words, five types of reduc-
tion systems exhibit indifference and thus cannot be vividly
distinguished for Tic-Tac-Toe database. As is shown by this
example, the reduction hierarchies may be masked in prac-
tice, though they objectively exist in theory. Therefore, the
reduction hierarchies also depend on practical data
structure.
Table 7
Five types of reducts and their cores of (1) Monks-3 database.

Type Core Reduct

(0) Pawlak-Reduct fc2; c4; c5g fc2; c4; c5g
(1) CRP-Reduct fc2; c4; c5g fc2; c4; c5g
(2) SRP-Reduct fc1; c2; c3; c4; c5g fc1; c2; c3; c4; c5g
(3) DP-Reduct fc1; c2; c3; c4; c5g fc1; c2; c3; c4; c5g
(4) KP-Reduct fc1; c2; c3; c4; c5; c6g fc1; c2; c3; c4; c5; c6g

Herein, ða; bÞ is ð0:9;0:1Þ or ð0:9;0:2Þ or ð0:8;0:1Þ or ð0:8;0:2Þ.

Table 8
CRP-Core and CRP-Reduct of (3) Voting database.

Threshold ða;bÞ CRP-Core CRP-Reduct

ð0:9;0:1Þ; ð0:9;0:2Þ C57513 C59135;C61611;C62
ð0:8;0:1Þ; ð0:7;0:3Þ C57481 C59103;C61611;C62
ð0:8;0:2Þ C57513 C59103;C61611;C62
ð0:6;0:4Þ C57481 C57999;C61583;C61

Table 9
Five types of reducts and their cores of (3) Voting database.

Type Core

(0) Pawlak-Reduct C57513 ¼ 11100000101

(1) CRP-Reduct C57481 ¼ 11100000100

(2) SRP-Reduct C61439 ¼ 11101111111
(3) DP-Reduct C61439 ¼ 11101111111
(4) KP-Reduct C61439 ¼ 11101111111

Herein, ða; bÞ is ð0:8;0:1Þ or ð0:7;0:3Þ.
(III) For (3) Voting database, only CRP-Core and CRP-Reduct exhi-
bit difference for the six threshold groups, and Table 8 pro-
vides relevant results, where the inclusion/extension
relation does not necessarily exist among different types of
reducts. According to threshold ð0:8;0:1Þ or ð0:7;0:3Þ, Table 9
provides all reduction results, where the reducts include (or
equal) the corresponding cores, and Fig. 4 further exhibits
the core hierarchies and reduct hierarchies.

(IV) Table 10 provides the reduction results of (4) SPECT Heart
database for the first four threshold groups, where the
reducts include (or equal) the corresponding cores, and
Fig. 5 further exhibits the core hierarchies and reduct hierar-
chies. Moreover, when ða; bÞ ¼ ð0:7;0:3Þ, only CRP-Reduc-
tion results change as follows: C2683725 becomes the core
and there are six reducts – C2685791, C2816847,
C2880335, C3011423, C3865421, C3928909; when
ða; bÞ ¼ ð0:6;0:4Þ, only CRP-Core and CRP-Reduct variedly
correspond to C2679369 and 40 reducts, respectively.

Based on these reduction results and experiment analyzes, the
three quantitative reduction systems (regarding CRP-Reduct, SRP-
Reduct, and DP-Reduct) exist with structural difference to pursue
different hierarchical reduction targets, so they and their hierar-
chies with the two qualitative reduction systems (regarding Paw-
lak-Reduct and KP-Reduct) are usually effective for practical
applications. For complexities, the two qualitative reduction
approaches do well in experiments because they can be equiva-
lently described by some basic measures (such as the granular
number and dependency degree); moreover, because of the target
integration, DP-Reduction needs more computing time when com-
pared to the other two quantitative reduction methods. In particu-
lar, all reduction ways can achieve better performances if their
non-empty cores are fully utilized, and practical data structure also
underlies application efficiencies. Moreover, the hierarchical algo-
rithm (Algorithm 2) also has good efficiencies (to seek part reducts)
by virtue of a strong reduct’s guidance, and relevant processes can
be demonstrated by the reduction hierarchy figures of Voting data-
base and SPECT Heart database (i.e., Figs. 4 and 5).
Reduct number

637 3
091;C62637;C62923;C62925;C63117 7
091;C62637;C62923;C62925;C63117 7
609;C62089;C62619;C62621;C62923;C62925 8

Reduct

01001 C59135 ¼ 1110011011111111
C61611 ¼ 1111000010101011
C62637 ¼ 1111010010101101

01001 C59103 ¼ 1110011011011111
C61611 ¼ 1111000010101011
C62091 ¼ 1111001010001011
C62637 ¼ 1111010010101101
C62923 ¼ 1111010111001011
C62925 ¼ 1111010111001101
C63117 ¼ 1111011010001101

11111 C61439 ¼ 1110111111111111
11111 C61439 ¼ 1110111111111111
11111 C61439 ¼ 1110111111111111



Table 10
Five types of reducts and their cores of (4) SPECT Heart database.

Type Core Reduct

(0) Pawlak-Reduct C2945871 ¼ 1011001111001101001111 C3011423 ¼ 1011011111001101011111
C3142479 ¼ 1011111111001101001111
C3996511 ¼ 1111001111101101011111
C4127567 ¼ 1111101111101101001111

(1) CRP-Reduct C2945871 ¼ 1011001111001101001111 C3011423 ¼ 1011011111001101011111
C3142479 ¼ 1011111111001101001111
C3996511 ¼ 1111001111101101011111
C4127567 ¼ 1111101111101101001111

(2) SRP-Reduct C3012607 ¼ 1011011111011111111111 C3014655 ¼ 1011011111111111111111
C4061183 ¼ 1111011111011111111111

(3) DP-Reduct C3012607 ¼ 1011011111011111111111 C3014655 ¼ 1011011111111111111111
C4061183 ¼ 1111011111011111111111

(4) KP-Reduct C3014655 ¼ 1011011111111111111111 C3014655 ¼ 1011011111111111111111

Herein, ða;bÞ is ð0:9;0:1Þ or ð0:9;0:2Þ or ð0:8;0:1Þ or ð0:8;0:2Þ.
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Herein, we summarize the effect of threshold change for the
reduction systems. By adjusting approximation degrees or control-
ling tolerance measures, ða; bÞ can impact not qualitative reduction
but quantitative reduction, and it determines only region-struc-
tural measures regarding reduction targets rather than necessary
reduction hierarchies regarding parameter variation. However,
appropriate thresholds can better exhibit reduction hierarchies
among the five reduction systems. In the experiments, threshold
change mainly affects CRP-Reduction results and reduction hierar-
chies related to them.

Furthermore, based on these data sets and their quantitative
reducts, decision rules can be extracted to establish rule bases.
Finally, we provide an example for illustration. For (3) Voting data-
base, C62925 is CRP-Reduct for threshold ð0:8;0:1Þ or ð0:7;0:3Þ or
ð0:8;0:2Þ or ð0:6;0:4Þ; thus, within the threshold-approximate
framework, C62925 can be used to establish a rule base with the
following 259 decision rules (where drep and ddem simply denote
drepublican and ddemocrat , respectively):

ðc1Þnðc2Þyðc3Þnðc4Þyðc6Þyðc8Þnðc9Þnðc10Þyðc13Þyðc14Þyðc16Þy ! drep;

ðc1Þnðc2Þyðc3Þnðc4Þyðc6Þyðc8Þnðc9Þnðc10Þnðc13Þyðc14Þyðc16Þ? ! drep;

ðc1Þ?ðc2Þyðc3Þyðc4Þ?ðc6Þyðc8Þnðc9Þnðc10Þnðc13Þyðc14Þyðc16Þn ! ddem;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;

ðc1Þyðc2Þnðc3Þyðc4Þnðc6Þnðc8Þyðc9Þyðc10Þyðc13Þnðc14Þ?ðc16Þy ! ddem;

ðc1Þnðc2Þnðc3Þyðc4Þyðc6Þyðc8Þnðc9Þyðc10Þyðc13Þyðc14Þyðc16Þy ! drep;

ðc1Þnðc2Þnðc3Þnðc4Þyðc6Þyðc8Þ?ðc9Þ?ðc10Þ?ðc13Þyðc14Þyðc16Þy ! drep:
8. Conclusions

Quantitative reduction exhibits applicability but complexity
when compared to qualitative reduction. According to two-cate-
gory DTRS-Model, this paper mainly investigates quantitative
reducts and their hierarchies (with qualitative reducts) from a
regional perspective. First, we summarize equivalent Pawlak-
Reduction targets at different levels, i.e., CR-Preservation, SR-Pres-
ervation, and D-Preservation at the C-Regional, S-Regional, and
integrated levels, respectively. Thus, quantitative CRP-Reduct,
SRP-Reduct, and DP-Reduct are naturally constructed to expand
Pawlak-Reduct. Furthermore, hierarchies among these three types
of quantitative reducts and two types of qualitative reducts (Paw-
lak-Reduct and KP-Reduct) are emphatically investigated. Finally,
the experiments verify effectiveness of relevant reducts and their
hierarchies.

Qualitative reducts pursue a perfect absoluteness. In contrast,
quantitative reducts mainly consider the quantitative approxima-
tion and tolerance. In fact, they exhibit measurability, generality,
and robustness so can avoid over-fitting. Thus, CRP-Reduct, SRP-
Reduct, and DP-Reduct are particularly useful for processing dat-
abases with noises due to their approximation accuracy and fault
tolerance. Furthermore, the three quantitative reducts and their
hierarchies (with Pawlak-Reduct and KP-Reduct) express the gran-
ularity pursuit for different measures of generalization and accu-
racy. In fact, CRP-Reduct more adheres to Pawlak-Reduct and
holds extensive generalization; in contrast, DP-Reduct fully inte-
grates qualitative and quantitative reduction essence to achieve
powerful accuracy; moreover, SRP-Reduct – a distinctive reduct
of two categories – seeks a balance at a middle level. Therefore,
the three quantitative reducts can be chosen according to different
requirements of generalization and accuracy. Moreover, these
reducts and their hierarchies can make good performances if the
databases have inherent structural diversity, such as Voting data-
base and SPECT Heart database used in our experiments.

The proposed DTRS-Reduction systems and their hierarchies
have basic expansion, quantitative applicability, and structural sys-
tematicness; in particular, we have already utilized the reduction
target structures to conduct some subsequent and in-depth works
in Ref. [50]. The relevant thoughts and results provide some new
insight into quantitative reduction and thus are worth generalizing
for the multi-category problem and other quantitative models
(especially PRS-Models).
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