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Abstract This paper develops a supervised discriminant

technique, called graph embedding discriminant analysis

(GEDA), for dimensionality reduction of high-dimensional

data in small sample size problems. GEDA can be seen as a

linear approximation of a multimanifold-based learning

framework in which nonlocal property is taken into

account besides the marginal property and local property.

GEDA seeks to find a set of perfect projections that not

only can impact the samples of intraclass and maximize the

margin of interclass, but also can maximize the nonlocal

scatter at the same time. This characteristic makes GEDA

more intuitive and more powerful than linear discriminant

analysis (LDA) and marginal fisher analysis (MFA). The

proposed method is applied to face recognition and is

examined on the Yale, ORL and AR face image databases.

The experimental results show that GEDA consistently

outperforms LDA and MFA when the training sample size

per class is small.

Keywords Graph embedding � Face recognition �
Marginal fisher analysis (MFA) � Manifold learning �

Linear discriminant analysis (LDA) � Pattern recognition �
Principal component analysis (PCA)

1 Introduction

Dimensionality reduction is to reconstruct a meaningful

low-dimensional representation of high-dimensional data.

Since there are large volumes of high-dimensional data in

numerous real-world applications, dimensionality reduc-

tion is a fundamental problem in many scientific fields.

From the perspective of pattern recognition, dimensionality

reduction is an effective method of avoiding the ‘‘curse of

dimensionality’’ [1] and improving the computational

efficiency of pattern matching. Therefore, techniques for

dimensionality reduction in supervised or unsupervised

learning tasks have attracted much attention in computer

vision and pattern recognition. Among them, the linear

algorithms principal component analysis (PCA) [2, 4] and

linear discriminant analysis (LDA) [3, 4] have been the two

most popular algorithms because of their relative simplicity

and effectiveness. In the past few years, many manifold-

based algorithms [5–10, 13–18] have been proposed to

discover intrinsic low-dimension embedding of high-

dimensional data. A linear technique, locality preserving

projections (LPP) [5], has been proposed for dimension-

ality reduction that can preserve local relationships within

the data set that lies on a lower dimensional manifold.

Other nonlinear methods, such as isometric feature map-

ping (ISOMAP) [6], local linear embedding (LLE) [7] and

Laplacian Eigenmap [8], have been proposed to find the

intrinsic low-dimensional nonlinear data structures hidden

in observation space. Two-dimensional local graph

embedding discriminant analysis (2DLGEDA) [13] could

directly extract the optimal projective vectors directly from
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images based on the scatter difference criterion. Wan et al.

[14] presented a Laplacian bidirectional maximum margin

criterion to avoid inverse problem. However, current

manifold learning algorithms [6–14] might be unsuitable

for pattern recognition tasks in that they concentrate on

representing the high-dimensional data with low-dimen-

sional data instead of classification or that they only con-

sidered the locality and could not give a clear nonlinear

map when applied to a new sample, such as ISOMAP and

LLE. Moreover, some of recent researches [15–21] pre-

sented a novel feature extraction method from multi-scale

and sparse views.

Fortunately, Yan et al. [9] proposed a newly general

framework called graph embedding for dimensionality

reduction, from which many algorithms, such as PCA,

LDA, LPP, ISOMAP, LLE, Laplacian Eigenmap can all be

reformulated. Using the graph embedding framework as a

platform, they developed a novel dimensionality reduction

algorithm, marginal fisher analysis (MFA), to overcome the

limitation of LDA. The powerful strength of their algo-

rithm came from the intrinsic graph and the penalty graph

that defined in local neighborhood. This suggested that

their framework did not take the nonlocality into account.

However, Yang et al. [10] proposed an unsupervised dis-

criminant projection (UDP) algorithm considering the non-

local and local quantities at the same time. The effect of

neglecting nonlocality in MFA algorithm framework is that its

projection direction cannot ensure that all the distances

between two classes in low-dimension will be farer than that in

observation space. This means some samples in different

classes might be closer in feature space than in observation

space. Therefore, this will degrade the recognition rates.

To address this disadvantage, we borrow the forms of

UDP and MFA and propose a new criterion method with

the cue of PCA and LDA: graph embedding discriminant

analysis (GEDA). Firstly, the intrinsic graph is designed to

characterize the intraclass compactness, the penalty graph

formulated for interclass separability and the nonlocal

graph out of intraclass for nonlocal quality. Then, based on

these characterizations, we proposed a criterion that is

similar to the classical fisher criterion. The optimal solu-

tions can be obtained by solving a generalized eigen-

equation. GEDA not only has the same advantages of MFA

compared to LDA mentioned in [9], such as no assumption

on the data distributions, obtaining more projections and

more separability of different classes, but also captures the

sum scatter of nonlocal neighborhood with the form of

nonlocal graph instead of global scatter that PCA captures.

Furthermore, because we absorb the nonlocal property out

of intraclass and use the maximal criterion, the solutions of

GEDA are optimal in total and more robust than MFA and

LDA in small sample size problems. In a word, the main

contribution of our paper is threefold:

1. This paper proposes a novel graph embedding dis-

criminant analysis (GEDA) method. GEDA seeks to

find a set of perfect projections that not only can

impact the samples of intraclass and maximize the

margin of interclass, but also can maximize the

nonlocal scatter at the same time.

2. This paper provides the theoretical foundations of the

proposed method. Based on the above theory, three graphs

can be constructed using the relatively low-dimensional

data in PCA subspace and the singularity difficulty can be

avoided without losing important information.

3. The proposed method is applied to face recognition

and is examined on the Yale, ORL and AR face image

databases. The experimental results show that GEDA

consistently outperforms LDA and MFA when the

training sample size per class is small.

The rest of this paper is organized as follows: we review

the linear methods in Sects. 2, 3 develops the relevant

theory and method of GEDA, experiments are shown in

Sect. 4 and finally, Sect. 5 offers our conclusions.

2 Outline of linear methods

Let us consider a set of N samples fx1; x2; . . .; xNg taking

values in an m-dimensional space and assume that each

sample belongs to one of c classes. Let us also consider a linear

transformation mapping the original m-dimensional space

into an n-dimensional feature space, where m [ n. The new

feature vectors yk [ Rn are defined by the following linear

transformation:

yk ¼ AT xkðk ¼ 1; . . .;NÞ ð1Þ

where A 2 Rm�n is a transformation matrix.

2.1 Linear discriminant analysis (LDA)

Linear discriminant analysis is a supervised learning algo-

rithm. Let l denotes the total class number and li denotes the

number of training samples in the ith class. Let x
j
i denotes the

jth sample in ith class,�x be the mean of all the training samples,

�xi be the mean of the ith class. The between-class and within-

class scatter matrices can be evaluated by the following:

Sb ¼
Xl

i¼1

lið�xi � �xÞ ð�xi � �xÞT ; ð2Þ

Sw ¼
Xl

i¼1

Xli

j¼1

ðx j
i � �xiÞðx j

i � �xiÞT : ð3Þ

Linear discriminant analysis aims to find an optimal

projection Uopt such that the ratios of the between-class

scatter to within-class scatter is maximized, that is,
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Uopt ¼ arg min
U

UTSbU
�� ��

UT ST
wU

�� �� ¼ ½/1 /2 . . . /n�; ð4Þ

where f/iji ¼ 1; 2; . . .; ng is the set of generalized

eigenvectors of Sb and Sw corresponding to the n largest

generalized eigenvalues fkiji ¼ 1; 2; . . .; ng; that is,

Sb/i ¼ kiS
�1
w /i; i ¼ 1; 2; . . .; n: ð5Þ

Note that there are at most c-1 nonzero generalized

eigenvalues.

2.2 Principal component analysis (PCA)

A fundamental unsupervised dimensionality reduction

method is PCA. Let ST be the total scatter matrix:

ST ¼
XN

i¼1

ðxi � �xÞ ðxi � �xÞT ; ð6Þ

where �x is the mean of all the training samples. The PCA

transformation matrix is defined as

Popt ¼ arg max
P
½trðPT ST PÞ� ¼ ½p1 p2. . .pn�; ð7Þ

where pi ði ¼ 1; 2; . . .; nÞ is the eigenvector corresponding

to the largest eigenvalue of ST.

2.3 Marginal fisher analysis (MFA)

For a classification problem, the sample set for model

training is represented as a matrix X ¼ ½x1; x2; . . .; xN �,
where xi 2 Rmði ¼ 1; 2; . . .;NÞ; N is the sample number

and m is the feature dimension. For supervised learning

problems, the class label of the sample xi is assumed to be

ci 2 f1; 2; . . .;Ncg, where Nc is the number of classes. Let

pc and nc denote the index set and number of the samples

belonging to the cth class, respectively.

Let G ¼ fX;Wg be an undirected weighted graph with

vertex set X and similarity matrix W 2 RN�N . It is easy to

see that W is a symmetric matrix and each element of W

measures the similarity of a pair of vertices. The diagonal

matrix D and the Laplacian matrix L of a graph G are

defined as

L ¼ D�W ;Dii ¼
X

i 6¼j

Wij ð8Þ

In MFA algorithm, intrinsic graph and penalty graph are

introduced. Intraclass compactness is characterized from

the intrinsic graph by the term

Sin ¼
X

i

X

i2Nþ
K
ðjÞ or j2Nþ

K
ðiÞ

xT xi � xT xj

�� ��2

¼ 2xT XðDin �W inÞXTx

ð9Þ

W
in

ij
¼ 1; if ði; jÞ 2 pc; and i 2 NþK ðjÞ or j 2 NþK ðiÞ;

0; else:

�

where NþK ðiÞ indicates the index set of the K-nearest

neighbors of the sample xi in the same class. Then, we have

Lin ¼ Din �W in. From the form of Sin, it is easy to see that

it exactly characterizes the sum scatter of the samples in K-

neighborhood in the same class.

Interclass separability can be characterized by a penalty

graph with the term

Sp ¼
X

i

X

i2P
Kp
ðjÞ or j2P

Kp
ðiÞ

xTxi � xT xj

�� ��2

¼ 2xT XðDp �WpÞXTx

ð10Þ

W
p

ij
¼ 1; if ði; jÞ 2 PKp

ðciÞ or ði; jÞ 2 PKp
ðcjÞ

0; else:

�

where PKp
ðcÞ is a set of data pairs that are in the Kp nearest

pairs among the set I ¼ fði; jÞji 2 pc ; j 62 pcg. Then, we

have Lp ¼ Dp �Wp. From the form of Sp, it is easy to see

that it exactly characterizes the sum scatter of the margin in

K-neighborhood of interclass.With the intrinsic graph and

penalty graph, MFA algorithm solves corresponding

generalized eigen-equation of the following criterion:

x� ¼ arg min
x

xT XLinXTx
xT XLpXTx

: ð11Þ

3 Graph embedding discriminant analysis (GEDA)

3.1 Discussions and our motivation

Linear discriminant analysis searches for the directions that

minimize the ratio between the intraclass and interclass

scatters globally. But it cannot guarantee that any pair of

classes will be more apart from each other in feature space

because of not considering the local qualities. This means it

may happen that two mutually distant classes (or samples)

may be closer in feature space, that is, it cannot maximize

the margin of interclass in locality because of not consid-

ering the locality. Therefore, LDA does not necessarily

yield a perfect projection. But it does give us a good

direction to develop our algorithm: the smaller the distance

of intraclass is and the bigger the distance of interclass is,

the higher the classifier accurate might be.

Principal component analysis seeks projections with

maximal variances. In other words, when it points to

classification, the bigger are the variances the better are the

results from PCA’s viewpoint. As an unsupervised learning

algorithm, PCA only considers the global scatter infor-

mation. This gives us a cue that the bigger the global

scatter is the higher is the classifier rate even if it is not true
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in some cases. This also suggests if the distance of each

pair of classes or samples in different classes becomes farer

in feature space, the higher rate might be obtained.

What is a perfect projection from the viewpoints com-

bining PCA and LDA? In our opinions, for a classification

problem, the perfect projections may be those that can

impact the samples of intraclass, maximize the margin of

interclass and the sum scatter of local K-neighborhood out

of intraclass at the same time. However, none of the

algorithms mentioned above can guarantee these three

requests at the same time. Our motivation is to absorb and

combine the ideas of PCA and LDA to develop an algo-

rithm to find a set of projections that can simultaneously

satisfy these three requests based on graph embedding, that

is, GEDA.

3.2 Marginal graph and nonlocal graph of GEDA

In GEDA algorithm, there are three graphs: intrinsic graph,

marginal graph and nonlocal graph. We call them as basic

graphs. Usually, there are two variations for weighting the

nearest neighbors: heat kernel and simple-minded [8]. In

this paper, we adopt the form of ‘‘simple-minded’’.

For simplicity, the following graphs we construct only

give the form of K-neighborhood (d-neighborhood graph

has the same form). Similar to 2.3., marginal separability

can be characterized by the marginal graph defined with the

term:

Sm ¼
X

i

X

j

W
m

ij
xT xi � xT xj

�� ��2

¼ 2xTXðDm �WmÞXTx

ð12Þ

W
m

ij
¼ 1; if i 2 NðjÞ or j 2 NðiÞ

0; else:

�

where W denotes the similar matrix, and N(i) indicates the

index set of the K0-nearest neighbors of the sample xi in the

different class. Then, we have Lm = Dm-Wm. From the

form of Sm, it is easy to see that it exactly characterizes the

sum scatter of the samples in marginal graph.

The nonlocal graph is constructed as follows:

Sn ¼
X

i

X

j

W
n

ij
xT xi � xT xj

�� ��2

¼ 2xT XðDn �WnÞXTx

ð13Þ

W
n

ij
¼ 1; if i 2 N�k ðjÞ or j 2 N�k ðiÞ

0; else:

�

where N-(i) indicates the index set out of the K-nearest

neighbors of the sample xi or in the K-nearest neighbors of

the sample xi but not in the same class. Then, we have

Ln ¼ Dn �Wn. From the form of Sn, it is easy to see that it

exactly characterizes the sum scatter of the samples in

nonlocal graph.

3.3 The criterion of GEDA

Graph embedding discriminant analysis seeks to find a set

of perfect projections. The projections not only can impact

the samples of intraclass and maximize the margin of

interclass, but also can maximize the nonlocal scatter out of

intraclass at the same time. Based on the three basic graphs

mentioned above, we have the criterion of GEDA:

x� ¼ arg max
x

xT XLmXTx
xTXLinXTx

þ xT XLnXTx
xT XLinXTx

� �
ð14Þ

¼ arg max
x

xTXðLm þ LnÞXTx
xT XLinXTx

ð15Þ

The above criterion is formally similar to the Fisher

criterion since they are both Rayleigh quotients. Therefore,

we can obtain its optimal solutions by solving a generalized

eigen-equation:

XðLm þ LnÞXTx ¼ kXLinXTx: ð16Þ

where k is generalized eigenvalue, x is generalized

eigenvector correspondingly.

Linear discriminant analysis searches for the directions that

minimize the ratio between the intraclass and interclass scat-

ters. That is to say when the distance of intraclass is smaller

and interclass bigger, the classifier accurate will be higher.

PCA seeks projections with maximal variances. In other

words, when it points to classification, the bigger are the

variances the better the results in PCA’s viewpoint. MFA finds

the projections that minimize the ratio between the intraclass

compactness and the interclass separability. UDP seeks the

projections that maximize the local scatter and maximize the

nonlocal scatter in the same time. Even if the authors did not

point out clearly, MFA and UDP absorbed the idea of LDA

and PCA in their frameworks, in which the ideas were shown

in penalty graph and nonlocality, respectively, in a sense.

For a classification problem, the perfect projections may

be those that can impact the samples of intraclass, maxi-

mize the margin of interclass and the sum scatter of local

K-neighborhood out of intraclass at the same time. None of

the algorithms mentioned above can guarantee these three

requests at the same time. However, GEDA can achieve

this propose. GEDA absorbs and develops the idea of the

methods mentioned above in clear way: the first part of its

criterion (14) impacts the samples of intraclass and maxi-

mizes the margin of interclass, and the second part maxi-

mizes the sum scatter nonlocal neighborhood at the same

time. Therefore, we can say that GEDA finds a balance

point of impacting the samples of intraclass, maximizing

the margin of interclass and the sum scatter out of nonlocal
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neighborhood at the same time. Thus, it outperforms the

algorithms mentioned above.

3.4 GEDA algorithm for SSS problem

Usually, feature dimension in observation space is very high

and the numbers of training samples in one class are undecided

and small. On the one hand, it is very expensive computa-

tionally to construct the large size of three basic graphs directly

with high-dimensional data. On the second hand, it should be

guaranteed that XLinXT is irregular. Therefore, it is helpful to

preprocess with PCA for dimensionality reduction. Based on

the following theory, three graphs can be constructed using the

relatively low-dimensional data in PCA subspace and the

singularity difficulty can be avoided without losing important

information. The relevant theory is given below.

Suppose b1; b2; . . .; bm0 are m0 orthonormal eigenvectors

of ST and the first n0 eigenvectors corresponding to positive

eigenvalues l1� l2� � � � � ln0 , where n0 ¼ rankðSTÞ.
Define the subspace WT ¼ spanðb1; b2; . . .; bn0 Þ and denote

its orthogonal complement W?T ¼ spanðbn0þ1; bn0þ2; . . .;

bm0 Þ. Obviously, WT is the range space of ST and W?T is the

corresponding null space.

Lemma 1 [12] Suppose that A is ann 9 nnonnegative

definite matrix and u is an n-dimensional vector, then

uT Au ¼ 0if and onlyif Au ¼ 0.

Corollary 1 If STis singular, uT STu ¼ 0if and only if

STu ¼ 0. Since Rn0 ¼ spanðb1; b2; . . .; bn0 Þ, for an arbitrary

u 2 Rn0 ; ucan be denoted by

u ¼ k1b1 þ � � � þ kn0bn0 þ kn0þ1bn0þ1 þ � � � þ km0bm0 : ð17Þ

Let w ¼ k1b1 þ � � � þ kn0bn0and u ¼ kn0þ1bn0þ1 þ � � � þ
km0bm0 ;then, from the definitionofWTand W?T , u can be

denoted by u = w ? u, wherew [ WTand u 2 W?T .

Proposition 1 The compression mapping F : Rm0 ! WT

defined by u ¼ wþ u! w is a linear transformation.

Denote JðwÞ ¼ wT XðLmþLnÞXT w

wT XLinXT w
; and ~JðuÞ ¼ uT ~XðLmþLnÞ~XT u

uT ~XLin ~XTu
;

then we have the theorem:

Theorem 1 Under the compression mapping F, the

GEDA criterion satisfies JðwÞ ¼ ~JðuÞ.

Proof Let Q ¼ ðb1; b2; . . .; bn0 Þ. Then, we get ~X ¼ QT X,

that is X ¼ Q~X

JðwÞ ¼ wT XðLm þ LnÞXT w

wT XLinXT w
¼ xTðQ~XÞðLm þ LnÞðQ~XÞTx

xTðQ~XÞLinðQ~XÞTx

¼ uT ~XðLm þ LnÞ~XTu

uT ~XLin ~XTu
¼ ~JðuÞ;

where u ¼ QT w. h

According to theorem 1, we can draw a conclusion that

the basic graphs can be constructed in PCA transformed

space WT without losing any effective discriminant infor-

mation with respect to the GEDA criterion. From linear

algebra theory, compression mapping F is isomorphic to an

n
0
-dimensional Euclidean space Rn0 and the corresponding

isomorphic mapping is w = Pv, where P ¼ ðb1; b2; . . .;

bn0 Þ; v 2 Rn0 , which is a one-to-one mapping from Rn0onto

WT.

By the property of isomorphic mapping and theorem 1,

it is easy to see that the following theorem holds:

Theorem 2 Let w = Pv be an isomorphic mapping from

Rn0onto WT. Then w* = Pv*is the stationary point of the

GEDA’s criterion function ~JðuÞif and only if v*is the sta-

tionary point of thefunction J(w).

Proposition 2 If v1; v2; . . .; vd are the generalized eigen-

vectors of (16) corresponding to the d largest eigenvalues

k1� k2� � � � � kd � 0, then w1 ¼ Pv1; . . .;wd ¼ Pvdare

the optimal projection axes of GEDA.

It should be noted that the above derivation is based on

the whole range space of ST (i.e., all nonzero eigenvectors

of ST are used to form this subspace). In practice, however,

we always choose the number of principal eigenvectors, m,

smaller than the real rank of ST such that most of the

spectrum energy is retained and ~XLin ~XT is well-conditioned

(at least nonsingular) in the transformed space. In this case,

the developed theory can be viewed as an approximate one

and the generalized eigenvectors of ~JðuÞ can be calculated

directly using the classical algorithm.

In summary of the preceding description, the following

provides the GEDA algorithm:

Step 1. Perform PCA transform of data: calculate the k

eigenvectors a1; a2; . . .; ak corresponding to k largest posi-

tive eigenvalues, let P = (a1, a2,…, ak). Then, we get
~X ¼ PT X.

Step 2. Construct the three basic graphs in PCA sub-

space and obtain Lm, Ln, Lin.

Step 3. Solve the generalized eigen-equation (16) and

obtain the generalized eigenvectors v1; v2; . . .; vd corre-

sponding to the d largest positive eigenvalues. Then, the d

projection axes of GEDA are wj ¼ Pvj; j ¼ 1; . . .; d:

After obtaining the projection axes, we can form the

following linear transform for a new sample x:

y ¼ WT x; where W ¼ w1;w2; . . .;wdð Þ: ð18Þ

The feature vector y is used to represent the sample in

the low-dimension feature space and used for recognition

purposes.

Graph embedding discriminant analysis (GEDA) and

MFA are both supervised subspace learning techniques
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based on graph embedding. They are closely related to

each other on the intrinsic graph in local neighborhood.

Their criteria and idea, however, are quite different: firstly,

GEDA adopts the maximal criterion and MFA adopts the

minimal criterion instead. Secondly, GEDA introduces the

nonlocal graph to characterize the nonlocal scatter, but

MFA does not. Thus, GEDA will be more robust than MFA

in data predicting. Thirdly, MFA finds the projections that

only minimize the ratio between the intraclass compactness

and the interclass separability, and thus, it cannot guarantee

the three requests mentioned in Sect. 3.3. But EGDA can

make it.

4 Experiments

To evaluate the proposed GEDA algorithm, we system-

atically compare it with the PCA, LDA and MFA algo-

rithm in three face databases: ORL, Yale and AR. The

ORL database is used to evaluate the performance of

GEDA under conditions where the pose and sample size

are varied. The Yale database is used to examine the

system performance when both facial expressions and

illumination are varied. The AR database is employed to

test the performance of the system under conditions where

there is a variation over time, in facial expressions and in

lighting conditions. Euclidean distance and nearest

neighborhood classifier are used in all the experiments.

The number of local neighborhood, K, is chosen as

K = l-1, where l denotes the number of training samples

per class.

4.1 Experiments on ORL database

The ORL database is used to evaluate the performance of

GEDA under conditions where the pose, face expression

and sample size vary. The ORL face database contains

images from 40 individuals, each providing 10 different

images. The facial expressions and facial details (glasses or

no glasses) also vary. The images were taken with a tol-

erance for some tilting and rotation of the face of up to 20�.

Moreover, there is also some variation in the scale of up to

about 10 %. All images normalized to a resolution of

56 9 46. Figure 1 shows sample images of one person.

Note that LDA, MFA and GEDA all involve a PCA phase.

Some projections of null space of Sb are used in LDA. The

results are show in Table 1. From this experiment, we find

that GEDA can achieve higher recognition rate on ORL

face database when the training sample number is small.

The reason is that the local neighbor relationship can

proved important discriminant information. Moreover, the

nonlocal graph and marginal graph of SDP can provide

more discriminant information than the penalty graph

cannot provide, and thus, the top recognition rates of

GEDA is higher than MFA (Fig. 2).

4.2 Experiments on Yale database

The Yale face database contains 165 images of 15 indi-

viduals (each person providing 11 different images) under

various facial expressions and lighting conditions. In our

experiments, each image was manually cropped and re-

sized to 100 9 80 pixels. Figure 3 shows sample images of

one person. For computational effectiveness, we down

sample it to 50 9 40 in this experiment. The experiment

was performed using the first six images (i.e., center-light,

with glasses, happy, left light, without glasses and normal)

per class for training and the remaining five images (i.e.,

right light, sad, sleepy, surprised, and winking) for testing.

For feature extraction, we used, respectively, PCA (ei-

genface), LDA (Fisherface), MFA and the proposed

GEDA. Note that LDA, MFA and GEDA all involve a

PCA phase. In this phase, we keep 90% image energy. The

maximal recognition rate of each method and the corre-

sponding dimension are given in Table 2. As is shown in

Table 2 and Fig. 4, and the top recognition rate of GEDA

is significantly higher than the other methods. Why can

GEDA significantly outperform the other algorithm? An

important reason may be that GEDA not only characterizes

Fig. 1 The sample images of one person from ORL face database

Table 1 The maximal recognition rates (%) of PCA, LDA, MFA,

GEDA on the ORL database and the corresponding dimensions

(shown in parentheses) when the first 3, 4, 5 samples per class are

used for training and the remaining for testing

Training sample

number

PCA LDA MFA GEDA

5 89.00 (34) 92.50 (33) 94.00 (50) 94.50 (60)

4 88.33 (73) 91.25 (38) 93.75 (40) 94.17 (38)

3 86.07 (95) 87.86 (41) 88.57 (40) 89.64 (35)
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the nonlocal scatter but also builds the adjacency rela-

tionship of data points using K-nearest neighbors at the

same time, thus eliminates more negative influence of

outliers.

4.3 Experiments on the AR face database

The AR face [40], [41] contains over 4,000 color face

images of 126 people (70 men and 56 women), including

frontal views of faces with different facial expressions,

lighting conditions and occlusions. The pictures of 120

individuals (65 men and 55 women) were taken in two

sessions (separated by 2 weeks), and each section contains

13 color images. Seven images of these 120 individuals are

selected and used in our two experiments. The face portion

of each image is manually cropped and then normalized to

50 9 40 pixels. The sample images of one person are

shown in Fig. 5. These images vary as follows: (1) neutral

expression (2) smiling (3) angry (4) screaming (5) left light

Fig. 2 The recognition rates (%) of PCA, LDA, MFA and GEDA

versus the dimensions when the first four images per person were used

for training on the ORL face database

Fig. 3 Sample images of one person in the Yale database

Table 2 The maximal recognition rates (%) of PCA, LDA, MFA,

GEDA on the Yale database and the corresponding dimensions when

the first six samples per class are used for training

PCA LDA MFA GEDA

Recognition rates (%) 92 93.33 94.67 97.33

Dimensions 30 18 16 24

Fig. 4 The recognition rates (%) of PCA, LDA, MFA and GEDA

versus the dimensions when the first six images per person were used

for training on the Yale face database
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on (6) right light on (7) all sides light on. We select them to

form two subsets: subset 1 and subset 2.

4.3.1 Different facial expressions and lighting conditions

but in the same section (time)

In our first experiment, the first 7 images in the first

section (the first line images in Fig. 5) are used as subset

1. The first l images (l varies from 3 to 5) in subset 1 are

selected from the image gallery of each individual to form

the training sample set. The remaining 7-l images are used

for testing. For each l, PCA, LDA, MFA and GEDA are,

respectively, used for face recognition. In the PCA phase

of LDA, MFA and GEDA, the energy is set to be 95 or

96%. The K-nearest neighborhood parameter K is chosen

as K = l-1. The dimension step is set to be 5. Finally, a

nearest-neighbor classifier is employed for classification.

The maximal recognition rate and the dimension are

shown in Table 3. The recognition rate curves versus the

variation of dimensions are shown in Figs. 6 and 7. From

Table 3, Figs. 6 and 7, we can see first that GEDA sig-

nificantly outperforms MFA and LDA, and second that as

supervised methods, GEDA is more robust than MFA and

LDA when there are different facial expressions and

lighting conditions, irrespective of the variation in train-

ing sample size and dimensions. These two points are

consistent with the experimental results in Sects. 4.1 and

4.2. Moreover, it should be noted that the recognition rate

of MFA is lower than LDA and affected the most when

the training numbers are 3 and 4. The reason may be that

when there are no lighting samples in training set, the

local neighbor of MFA cannot reflect or predict the

relationship with the lighting samples in text set in a

Fig. 5 Sample images of one subject of the AR database. The first line and the second line images were taken in different time (separated by

2 weeks)

Table 3 The maximal recognition rates (%) of PCA, LDA, MFA,

GEDA on the subset 1 of AR database and the corresponding

dimensions (shown in parentheses) when the first 3, 4, 5 samples per

class are used for training and the remaining for testing

Training

sample

number

PCA LDA MFA GEDA

5 75 (120) 95.5 (115) 97.08 (170) 98.33 (135)

4 66.67 (120) 91.33 (115) 88.06 (125) 93.33 (100)

3 73.54 (95) 94.17 (100) 93.75 (100) 94.79 (95)

Fig. 6 The recognition rates (%) of PCA, LDA, MFA and GEDA

versus the dimensions when the first three images per person were

used for training and the remaining 4 images per person for testing on

the subset 1 of AR face database
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certain sense. However, when the training number is 5,

that is, there is one lighting image on the training set, and

the local graph and penalty graph can characterize the

property of the data. Thus, MFA is superior to LDA when

the training number is 5.

4.3.2 Not only with different facial expressions

and lighting conditions but also in different section

(time)

In our second experiment, the first 3 images in the first

section (the first line images in Fig. 5) and the 4th to 7th

images in the second section (4th to 7th images in the

second line in Fig. 5) are used as subset 2. There are 7

images for each subject. The first 3 images are selected

from the image gallery of each individual to form the

training sample set. The remaining 4 images are used for

testing. The energy in PCA step is kept 95%. The top

recognition rate and corresponding dimension are shown in

Table 4. The top recognition rate of GEDA is the highest.

This experiment also supports our analysis mentioned

above and suggests that GEDA has more robust than MFA

and LDA on facial expressions and lighting conditions and

time variations.

4.4 Overall observations and evaluations

of the experimental results

The above experiments show that the top recognition rate

of GEDA is always higher than LDA and MFA. From the

experiments, we can draw the following conclusions in

details:

1. Graph embedding discriminant analysis consistently

outperforms LDA, MFA and PCA despite the variation

of dimensions and the number of training samples.

2. It should be pointed out that both MFA and GEDA can

obtain more projections. However, when the numbers

of projections are beyond the dimension number that

LDA can provide, that is, rank of Sb, GEDA’s

projections are more effective than that of MFA (see

Table 1 when training number is 5 and Fig. 7).

3. When the class number is not too large, such as in Yale

and ORL database, LDA can achieve higher recogni-

tion rate in lower subspace. However, with the increase

of dimensionality, LDA is significantly inferior to

MFA and GEDA, which are shown in Figs. 2 and 4.

On the other hand, if there are not or few lighting

samples in training set, MFA is not necessary superior

than LDA (see Figs. 6, 7; Table 3).

4. It should be noted that the recognition rates of GEDA

often no less than MFA and LDA in the dimensions

that MFA and LDA achieve their highest recognition

rates (see Figs. 4, 6, 7).

5 Conclusion

In this paper, we develop a supervised discriminant tech-

nique, called graph embedding discriminant analysis

(GEDA), for dimensionality reduction of high-dimensional

data in small sample size cases. The projection of GEDA

can be viewed as a linear approximation of the nonlinear

map that uncovers and separates embeddings correspond-

ing to different manifolds in the final embedding space.

GEDA considers the local property, marginal property and

nonlocal property and seeks to find a projection that not

only can impact the samples of intraclass and maximize the

margin of interclass, but also can maximize the nonlocal

scatter at the same time. The consideration of the three

aspects makes GEDA more intuitive and more powerful

than LDA and MFA for classification tasks. Our experi-

mental results on three popular face image databases

demonstrate that GEDA is more effective than LDA and

MFA in small sample size problems.

Fig. 7 The recognition rates (%) of PCA, LDA, MFA and GEDA

versus the dimensions when the first five images per person were used

for training and the remained two images per person for testing on the

subset 1 of AR face database

Table 4 The maximal recognition rates (%) of PCA, LDA, MFA,

GEDA on the subset 2 of AR database and the corresponding

dimensions

PCA LDA MFA GEDA

Recognition rates (%) 39.58 52.08 50.20 53.54

Dimensions 110 110 100 100
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