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a b s t r a c t

Color quantization is a process to compress image color space while minimizing visual distortion. The
quantization based on preclustering has low computational complexity but cannot guarantee quantiza-
tion precision. The quantization based on postclustering can produce high quality quantization results.
However, it has to traverse image pixels iteratively and suffers heavy computational burden. Its
computational complexity was not reduced although the revised versions have improved the precision.
In the work of color quantization, balancing quantization quality and quantization complexity is always a
challenging point. In this paper, a two-stage quantization framework is proposed to achieve this balance.
In the first stage, high-resolution color space is initially compressed to a condensed color space by
thresholding roughness indices. Instead of linear compression, we propose generic roughness measure to
generate the delicate segmentation of image color. In this way, it causes less distortion to the image. In
the second stage, the initially compressed colors are further clustered to a palette using Weighted Rough
K-means to obtain final quantization results. Our objective is to design a postclustering quantization
strategy at the color space level rather than the pixel level. Applying the quantization in the precisely
compressed color space, the computational cost is greatly reduced; meanwhile, the quantization quality
is maintained. The substantial experimental results validate the high efficiency of the proposed
quantization method, which produces high quality color quantization while possessing low computa-
tional complexity.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In a high quality color image, there are millions of different
colors. Color quantization is a process that reduces the number of
distinct colors in a digital image, usually with the intention that
the reconstructed image should be as visually similar as possible
to the original image. By reducing the complexity of color space,
color quantization will benefit image storage and image transfer
on the internet. Moreover, color quantization also simpli-
fies feature spaces, which is helpful for image recognition and
retrieval.

A color quantization algorithm generally consists of two parts.
The first is color palette design and the second part is pixel
mapping. There are two kinds of methods for creating color
palette: image-independent methods and image-dependent
methods. Image-independent methods determine a generic

palette without considering any specific image contents, while
image-dependent methods generate palettes based on the color
distribution of images. Although it is fast, the image-independent
method often produces poor results because of not considering
image contents. To maintain a quality of image representation,
most of the recent works on color quantization rely on image-
dependent methods. For image-dependent methods, there are two
different strategies to build up color palette: preclustering and
postclustering [1]. The preclustering strategy partitions the origi-
nal image colors into multiple subspaces based on the statistics of
color distribution [7,9,11,19,26,39,47,48]. Because palette con-
struction is an once-off procedure, the preclustering strategy
usually has low computational complexity while sacrificing quan-
tization quality in some degree. The postclustering strategy starts
color quantization with an initial palette and improves it itera-
tively [3,13,27,35,36,38,49]. Since this strategy involves an objec-
tive function to minimize color distortion through stochastic
optimization, it has better quality than preclustering strategy.
However, it greatly increases the computational complexity.

From the discussion above, the challenge to color image
quantization is to balance the quantization quality and compu-
tational complexity. To achieve this balance, the postclustering
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quantization methods have been improved in different ways.
Puzicha et al. proposed a color quantization method incorporat-
ing spatial and contextual information, in which the quantiza-
tion was performed by an efficient multi-scale procedure to
alleviate the computational burden [34]. Mojsilović and Soljanin
proposed another quantization approach based on Fibonacci
numbers and spiral lattices, in which the sampling scheme was
used to generate color palettes [23]. Computational intelligence
theories such as neural networks [29], PSO [25], GA [37], SOM [4]
and competitive learning [2,45] were also used to optimize the
color quantization process. Zhou et al. proposed an algorithm to
adjust the color quantization results which tuned the palette by
assigning weights to pixel clusters and color distances [50]. For
the postclustering quantization based on clustering strategies,
the quantization efficiency was improved by reducing the
computational cost of pixel clustering. The modifications focused
on speeding up clustering process, in the meantime, optimizing
the clustering initialization [3,12,27,42]. The above improve-
ments of postclustering methods could produce the higher
quality of quantization results and alleviate the computational
burden to some degree. However, these methods needed to
heavily traverse pixels iteratively thus computational complexity
was still high.

To tackle the problem above, we propose a two-stage color
quantization framework based on Generic Roughness measure, which
is abbreviated as GR framework. The basic idea of this framework is to
integrate the low complexity of the histogram-based color space
segmentation and the high quality of the clustering-based color
quantization. First, the original image color is initially compressed to
a condensed color space through thresholding color components. It is
very important to form precise segmentation of color space to avoid
the severe color distortion in final quantization results. However, the
traditional histogram-like statistics cannot guarantee the segmenta-
tion precision. We propose generic roughness measure for color
segmentation in the initial compression stage. Generic roughness
can represent the spatial color homogeneity and thus generate the
delicate color segmentation results. In the second stage, the initially
compressed colors are further merged to a palette using clustering
methods. Carrying out clustering in a compressed color space rather
than on the pixel level, merging color in the second stage is very fast.
Thus the computational cost of the framework mainly depends on the
roughness thresholding in the first stage. The efficiency of the
framework is analyzed in Section 5.3. Meanwhile, because of the
precise segmentation of color space through generic roughness, the
proposed framework causes little color distortion in the initial
compression stage and guarantees the quantization quality. Therefore,
the proposed framework can well balance the quantization quality
and computational cost. The contributions of this paper are summar-
ized as follows:

� Propose a postclustering quantization strategy at color space level:
Common postclustering quantization methods are implemen-
ted at the pixel level. The proposed strategy applies the
postclustering quantization in a precisely compressed color
space. At this level, the quantization efficiency is greatly
improved. In the meantime, the quantization quality is
maintained.

� Propose a generic roughness measure for color space segmenta-
tion: Generic roughness measure is the key to precise color
space compression. It can tolerate the disturbance of imbal-
anced color distribution and thus produces the accurate seg-
mentation of image color space.

� Design an efficient two-stage quantization framework: In the first
stage, a self-adaptive algorithm is designed to threshold rough-
ness on color components to compress color space. In the
second stage, the Rough K-means algorithm [18,33] is modified

by integrating the color weights to merge the compressed
colors to obtain the final quantization result.

The rest of this paper is organized as follows: Section 2 reviews
the related work and analyzes the existing problems. Section 3
describes the basic framework and workflow of the roughness-
based quantization. Section 4 introduces the construction of
generic roughness measure. Section 5 presents the specific quan-
tization method which includes the roughness thresholding algo-
rithm and color merging algorithm. In Section 6, the
comprehensive experimental results validate the high efficiency
of the proposed color quantization framework. The work is
concluded in Section 7.

2. Related work

The clustering technique is a key component in postclustering
color quantization. To accelerate the clustering for quantization,
Celebi proposed an improved K-means algorithm which simplified
distance calculation and comparison in the clustering procedure
through sorting cluster means [3]. Using partition indices, Özde-
mir and Akarun proposed a variant of fuzzy C-means algorithm to
reduce the computational cost of the quantization based on soft
clustering [27]. The initialization strategies based on color histo-
grams were also utilized to speed up the clustering-based quanti-
zation. Tan and Isa presented a strategy for locating initial cluster
centers through thresholding the histograms on color components
[42]. Hsieh and Fan constructed 3D color histograms to pre-
partition pixels into bins and then merged colors on the color
histograms to obtain the final quantization results [12]. Although
these methods reduced the computational cost to some extent,
they still needed to traverse the pixel set iteratively and possessed
high computational complexity.

Segmentation of color space [5,28] is inevitable to color
quantization. Through color space segmentation, the image is
partitioned into homogenous regions depending on the color
properties of pixels and numerous original colors can be con-
cisely represented using only a small set of compressed colors.
Existing segmentation methods for color compression can be
roughly classified into the approaches as histogram based [6,24],
edge based [43,44], region based [20], clustering based [8], and
combination of several techniques [15,42]. As a popular seg-
mentation technique, histogram thresholding has the advan-
tages of low computational complexity and no requirement of
prior information. However, since the bins in a histogram only
count the number of pixels with the same color, the histogram
thresholding usually produces over rough segmentation results.
To refine the color segmentation based on histogram threshold-
ing, the traditional histogram was improved based on
rough sets.

As a soft computing technique, rough set theory was widely
used in the area of image analysis to handle the data uncertainty
[10,30–32]. Mohabey and Ray proposed the statistics histon as an
approximation of traditional histogram through checking the
neighborhood color similarity [22]. Compared with histogram,
the segmentation based on histon considered the spatial color
correlation. However, it is not robust to the imbalanced color
distribution. To tackle this shortage, Mushrif and Ray proposed a
roughness measure utilizing the boundary between histogram
and histon to represent the color homogeneity [24]. For an RGB
image F of size M�N, its basic roughness measure is defined as
follows:

roughnessiðlÞ ¼ 1�jhistogramiðlÞj
jhistoniðlÞj

; 0r lrL; iA R;G;Bf g ð1Þ
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histoniðlÞ ¼ ∑
M

m ¼ 1
∑
N

n ¼ 1
ð1þxðm;nÞÞ � δðFðm;n; iÞ� lÞ ð2Þ

xðm;nÞ ¼ 1; dT ðm;nÞothreshold

0 otherwise

�

where L is the number of intensity level, Fðm;n; iÞ is the intensity
of pixel Fðm;nÞ on color component i, δ is the impulse function
which outputs 1 when the input equals 0, dT ðm;nÞ is the
neighborhood color difference and xðm;nÞ is the homogeneity
indicator. At the pixel level and neighborhood level, histogram
and histon present the intensity distributions without and with
uncertainty respectively. From the rough sets view, they can be
regarded as the lower approximation and the upper approxima-
tion of color component respectively. The roughness index com-
puted based on the approximation boundary denotes the
homogeneity degree of color distribution at the corresponding
intensity. The roughness measure can tolerate the disturbance of
imbalanced color distribution for homogeneity detection. How-
ever, qualifying the homogeneity into {0, 1} and checking the
color difference just in a small eight-pixel neighborhood, the basic
roughness measure over focuses on the homogeneity of small
regions. The roughness index of a trivial region, even a noisy
point, may take over a big homogeneous region.

Fig. 1 illustrates the quantization results based on different
strategies. In Fig. 1(b) and (c), the color space segmentation based
on histogram and histon tends to merge significant small regions
into big ones and thus produces the blurred quantization results.
The basic roughness measure induces more delicate quantization
results but it is sensitive to the noisy points. In Fig. 1(d), the yellow
color hidden in background influences the whole quantization
effect. Although the above methods cannot guarantee quantization
precision, they are implemented by thresholding the histogram-
like statistics and have low computational complexity. In Fig. 1(e),
using a proper initialization strategy [48], the quantization based
on K-means clustering obtains the most precise result. Suppose
N is the pixel number, K is the number of compressed colors and
iter is the iteration times of clustering, the quantization based on
K-means needs iter � K � N distance calculations and compari-
sons. Because N is always a huge integer, this method suffers from

the heavy computational cost caused by the iterative process in K-
means. In this paper, we propose a superior quantization frame-
work which improves the roughness measure to produce the
accurate initial color segmentation and then clusters the com-
pressed colors to reduce the quantization complexity.

3. Framework

Our objective is to design a hybrid quantization framework to
balance the quantization quality and computational complexity.
The solution involves two stages. In the first stage, the color space
of original image is segmented based on the histogram-like
thresholding to form the initial color compression. In the second
stage, the initially compressed colors are merged using clustering
to form a palette for quantization. The key of this solution is to
guarantee the precision of color space segmentation in the initial
compression stage. To achieve this, we propose the generic rough-
ness measure which improves color homogeneity representation
and is regarded as a quantified and flexible version of the basic
roughness measure. Thresholding based on generic roughness
measure can form the delicate color space segmentation and
finally produce high quality quantization results.

Fig. 2 illustrates the workflow of the quantization framework
based on generic roughness measure. First, the matrix of multi-
scale color differences is established by filtering the neighborhood
color differences with the multi-scale Gaussian kernel. Second, the
homogeneity is measured based on the output of the previous
step. The color differences are mapped to the homogeneity degree
using a smoothed homogeneity function. Compared with the
qualitative description of color similarity in the basic roughness
measure, this homogeneity representation is more precisely
quantified. Third, based on the homogeneity representation, the
approximations of color components are constructed and then the
roughness indices are computed. In the fourth step, the color space
segmentation is carried out by thresholding the roughness indices
to initially compress image color. A self-adaptive thresholding
strategy is designed to make the segmentation more robust to
various color distributions. Finally the initially compressed colors
are merged to a palette using the Weighted Rough K-means

Fig. 1. (a) Image “Dragonfly”, (b–d) color quantization based on histogram, histon and basic roughness measure, (e) quantization based on K-means clustering.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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clustering. The weights are determined by the numbers of pixels
belonging to the same color segments.

4. Generic roughness measure

Roughness measure is obtained according to the boundary
between lower approximation and upper approximation. Histogram
represents certain pixels distribution in terms of intensity values of
color component. From the view of rough sets, it is considered as the
lower approximation of color component. By measuring the spatial
color homogeneity, histogram of every color component is extended to
form the upper approximation. Upper approximations of all color
components represent the color distribution with uncertainty.

4.1. Homogeneity of color distribution

In generic roughness measure, to form the upper approxima-
tion, the spatial color homogeneity is obtained based on the multi-
scale color differences and homogeneity mapping.

4.2. Multi-scale color differences

To tolerate the interference caused by noisy points and trivial
details in homogeneity detection, we utilize the linear scale-space
kernel (Gaussian kernel) to carry out the smoothing process.
This process forms a multi-scale representation of local color
consistency [17].

Definition 1. Given an RGB image F of size M � N, for a pixel
P : Fði; jÞ, 1r irM, 1r jrN, the color difference of its neighbor-
hood is defined as

Dði; jÞ ¼ d3�3
P ¼ ∑

Q ANB3�3
P

dðP;Q Þ ð3Þ

dðP;Q Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRP�RQ Þ2þðGP�GQ Þ2þðBP�BQ Þ2

q
ð4Þ

where dðP;Q Þ is the Euclidean distance between pixel P and Q in
RGB space. NB3�3

P is the set of neighboring pixels of P. The matrix

of neighborhood difference of image F is

DF ¼ fDði; jÞj1r irM;1r jrNg ð5Þ

The above neighborhood difference can be extended to multi-
scale color difference through filtering DF with the linear scale-
space kernel.

Definition 2. For M � N neighborhood difference matrix D, given
a scale parameter t and R� R template that denotes the local area,
3oR5maxfM;Ng, the difference matrix under the scale t is
generated from the convolution of D with t-scale Gaussian kernel

Dt ¼D n gt ¼ fDtði; jÞg ¼ fDði; jÞ n gti;jg; 1r irM; 1r jrN ð6Þ

where ‘n’ is the convolution operator, gti;j is the Gaussian kernel
covering the R� R template of center ði; jÞ, and each element of the
kernel is computed as gtðx; yÞ ¼ ð1=2πtÞe�ðx2 þy2Þ=2t .

The matrix of color difference under multiple scales actually
provides the multilevel observation of color homogeneity. When
scale t¼0, Dt degrades to the matrix D of neighborhood difference.

4.3. Color homogeneity measurement

The multi-scale color differences reflect the homogeneity of
color distribution. In this paper, homogeneity function is devel-
oped to map color difference into homogeneity degree.

Definition 3. Let Dt be the matrix of color difference under scale t, for
a pixel Fðm;nÞ, the homogeneity degree of the local area centering on
Fðm;nÞ is decided by the following homogeneity function:

htðm;nÞ ¼

1; Dtðm;nÞrr
1

1þ½0:25� ðDtðm;nÞ=r�1Þ�β
; rrDtðm;nÞrkr

0; krrDtðm;nÞ

8>>>><
>>>>:

ð7Þ

Referring to the fuzzy set theory, ht is a typical membership function to
measure the degree of an image area belonging to the concept

Input: Original color image 

Step1: Build the matrix of multi-scale color differences.   

Step2: Map the color differences to homogeneity degree.   

Step3: Compute the generic roughness indexes on color  
components based on the color homogeneity.  

Step4: Form the segmentation of original color space  
based on roughness thresholding. 

Step5: Cluster the initially compressed colors to a palette.  

Output: Quantized image 

Fig. 2. The workflow of the quantization based on generic roughness measure.
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‘homogeneity’. Parameter r denotes the threshold of indistinguishable
color difference and β is the function order.

It can be seen that when color difference Dt increases, homo-
geneity ht decreases. When Dtðm;nÞ exceeds the predefined kr,
Fðm;nÞ is heterogeneous. Considering the diversity of color dis-
tributions, r is assigned as one-fifth of the median value of all
distinct color differences, and k is set big enough to precisely
quantify the homogeneity. Fig. 3 illustrates the homogeneity
function with different orders. When β is big enough, ht becomes
the discrete step function in the basic roughness measure. In this
paper, we set β¼3 to obtain the smoothed homogeneity mapping.

4.4. Roughness of color components

Based on the representation of color homogeneity, we can
produce the upper approximation of color components and obtain
generic roughness measure accordingly.

Definition 4. Given an image F and its homogeneity representa-
tion under a scale t, the upper approximation of color component i,
iAfR;G;Bg is defined as

H
t
i ðlÞ ¼ ∑

M

m ¼ 1
∑
N

n ¼ 1
ð1þhtðm;nÞÞ � δðFðm;n; iÞ ¼ lÞ; 0r lrL ð8Þ

where htðm;nÞ is the homogeneity around the position Fðm;nÞ, L is
the number of intensity level on a given color component.

H
t
i ðlÞ at all intensities form the upper approximation of the ith

color component. Considering the lower approximation
Hi : iAfR;G;Bg, which consists of histograms as mentioned above,
it is obvious that H

t
i ðlÞZHiðlÞ. The boundary between these two

approximations represents the uncertainty of color distribution.
According to the approximation boundary, the generic roughness
measure under the scale t is generated. When a pixel and its
neighboring pixels have a similar color, the gap between upper
approximation and lower approximation is large. Thus the colors
of the intensity l are considered having the property of roughness.
Consequently, on a color image, the roughness index will be small
on the heterogeneous regions and large on the homogeneous
regions.

Definition 5. Given an RGB image F and a scale t, the generic
roughness of color components is defined as

rti ðlÞ ¼ 2nð1�jHiðlÞj=jH
t
i ðlÞjÞ; 0r lrL; iAfR;G;Bg ð9Þ

where L is the number of intensity level, HiðlÞ and H
t
i ðlÞ are the

lower approximation and the t-scale upper approximation of the
lth intensity at color component i respectively. The constant ‘2’ is
determined to assure the roughness value staying in interval [0,1].

Compared with the basic single-level roughness measure [24], the
proposed measure consists of multilevel approximation and rough-
ness of color components. Thus generic roughness measure is more
precise and flexible to represent the intrinsic homogeneity of color
regions. This will be further validated in the experiment section. It is
also found that when scale t¼0 and β is big enough (see Eq. (7)), the
generic roughness measure will degrade to the basic roughness
measure. Moreover, the optimal homogeneity representation relies
on the scale of Gaussian kernel. Bigger scales may ruin the significant
homogeneous region while smaller scales may not be effective to
remove the noise. Thus a reasonable strategy should be designed to
determine the proper scales for generic roughness measurement.

4.5. Selection of scale

Based on the scale-space filtering, image contents can be
represented on multiple levels. It is natural to investigate the
properties of these representations in terms of information mea-
surement [16,21,40,41]. Sporring and Weickert [40,41] proved the
monotony and smoothness properties of generalized entropies in
linear scale-spaces. Such properties were adopted for scale selec-
tion in texture image analysis. A similar strategy is developed in
this paper to select the optimal scale. The generalized entropies of
multi-scale difference matrix are defined as follows.

Definition 6. By discretizing Dt into L equal width intervals, we
have ðpt1; pt2;…; ptLÞ as the probabilistic representation of the color
differences under scale t, in which pi

t is the probability of the ith
difference level and pti 40 . The generalized entropies of the
difference matrix Dt are defined as

Stα ¼
1

1�α
log ∑

L

i ¼ 1
ðpti Þα ð10Þ

The parameter α is information order. When α¼1, it is the
Shannon entropy

St1 ¼ � ∑
L

i ¼ 1
pti log pti ð11Þ

According to [40,41], we can directly obtain two important
mathematical properties of the generalized entropies in scale-
spaces. These properties are helpful to analyze the information
contained in multi-scale color differences.

Theorem 1. Given a fixed scale t, the generalized entropies Stα
decrease with information order α.

Theorem 2. Given an information order α, the generalized entropies
Stα increase with t for α40, keep constant log L for α¼0, and
converge to constant log L for t-1.

Theorems 1 and 2 indicate for any information order α40, the
entropies of multi-scale differences keep rising as the scale t is
augmented but increase slow at large scales to converge to the limit.
Fig. 4 illustrates the entropies of the color differences of all testing
images. When the scale increases within the interval [0, 1], the
entropies grow quickly. In this stage, smooth processing removes the
trivial details and highlights the dominant color regions, thus leads to
fast rising entropies. When the scale is larger than 1, the generalized
entropies change smoothly and slowly. Extremely large scales damage

0 r 5r kr
0

0.5

1

1.2

D(m,n)

h(
m
,n
)

Homogeneity function in generic
roughness measure

Homogeneity function in basic
roughness measure

Fig. 3. Homogeneity function in roughness measure.

X.D. Yue et al. / Pattern Recognition 47 (2014) 1777–1789 1781



the visual information on both heterogeneous regions and homo-
geneous regions. In other words, the large scales tend to average color
differences and blur image regions. Fast growth of information actually
signifies the visual impact aroused by changing distinct regions.
Therefore the optimal scales should be selected from the stage where
the entropies increase fast (i.e. [0, 1]). In Section 6, the experimental
results further indicate the smoothing process under the scales in [0.6,
1] can effectively improve the color quantization quality.

5. Color quantization based on generic roughness measure

5.1. Initial color compression

In the first stage of GR quantization framework, the original
image color is compressed based on the color space segmentation
induced by generic roughness measure.

Algorithm 1. Adaptive roughness thresholding.

Input: roughness indices on each color component r(l), 0r lrL
Output: band cuts fc1; c2;…; cmg on color component
Find all peaks of roughness indices P ¼ fPl1 ; Pl2 ;…; Pln g;
Compute the threshold of peak heights Th;
Pmax ¼maxfPg; Pmin ¼min fPg; μ¼ ðPmaxþPminÞ=2;

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ¼ 1ðPli �μÞ2=n
q

;

Th ¼ μ�s;
Select peaks Ps ¼ fPl1 ; Pl2 ;…; Pls gZTh from P;
Set Tw¼5; merge adjacent peaks in Ps ¼ fPl1 ; Pl2 ;…; Pls g;
for j¼1 to s�1 do

if ljþ1� ljo ¼ Tw then
if lj ¼ arg min

l
fPlj ; Pljþ 1

gthen remove Plj from Ps;

else remove Pljþ 1
from Ps; set Pljþ 1

¼ Plj ;
end

end
Form band cuts fc1; c2;…; csþ1g, the cut ck locates between the

pair of adjacent peaks
ðPlk� 1

; Plk ÞAPs; set c1 ¼ 0; csþ1 ¼ L;
for k¼1 to s�1 do

if ckþ1 ¼ arg minlfrðlÞjlko lo lkþ1g;
end
Split the over big bands; set Ts ¼ 25;
for k¼2 to sþ1 do

if ck�ck�14Ts then
c¼ ðckþck�1Þ=2; insert new cut c into fc1; c2;…; csþ1g;

end
end
Output the set of band cuts fc1; c2;…; cmg.

Like the histogram-based color space segmentation, the roughness
fluctuation reflects the homogeneity distribution on color compo-
nents. Thus color components can be divided into bands by separating
the relevant roughness indices into segments. Considering the diver-
sity of image color, an adaptive thresholding algorithm is proposed in
order to achieve precise color space segmentation. This algorithm
utilizes the roughness distribution on intensities to compute the
roughness thresholds and locate the band cuts on the color compo-
nent. The detailed algorithm is illustrated in Algorithm 1.

5.2. Color merging

In the second stage of quantization, the initially compressed
color space is further merged to a palette using Weighted Rough
K-means clustering.

Algorithm 2. Weighted Rough K-means clustering.

Input: N segmented colors fx1…xn…xNg (xn is an RGB entry),
weights of colors fq1…qn…qNg

Output: K clusters of colors and the cluster centers
fm1…mk…mKg

Initialize the clustering by Greedy Orthogonal Bi-partitioning;
while termination criterion is not met do
Calculate the new means of clusters;

mk ¼
wl ∑

xn ACk

qnxn= ∑
xn ACk

qnþwb ∑
xn ACB

k

qnxn= ∑
xn ACB

k

qn; CB
ka|

wl ∑
xn ACk

qnxn= ∑
xn ACk

qn; otherwise

8>>><
>>>:

Ck is the lower approximation of cluster k, CB
k ¼ Ck �Ck is the

cluster boundary, parameters wl, wb define the importance
of the lower approximation and boundary;

For each entry xn, determine its closest mean:
h¼ arg min

1rkrK
fdðxn;mkÞg

Assign xn to the upper approximation of cluster h, xnACh and
check other means close to xn:

T ¼ ftjdðxn;mtÞ�dðxn;mhÞrɛ and tahg
if Ta| then

assign xn to the upper approximations of all the clusters in
T, xnACt , 8 tAT;

else
assign xn to the lower approximation of cluster h, xnACh ;

end

As a soft clustering method, Rough K-means [18,33] forms
overlap clusters of data. Each cluster has a lower approximation
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and an upper approximation. Depending on the two layer cluster-
ing strategy with both approximations, Rough K-means can
produce more stable and precise clustering results than most hard
clustering methods. We further modify the Rough K-means to a
weighted version for merging color. The weights are computed
according to the numbers of pixels belonging to different colors,
which can be directly calculated in the first stage. Moreover, the
preclustering quantization method Greedy Orthogonal Bi-
partitioning [48] is used to initialize the clustering. The output K
cluster centers form a palette and the initially compressed color
space is quantized based on the newly created palette. That is, the
original color values are replaced with the nearest values on the
palette.

5.3. Complexity analysis

The quantization process involves color space segmentation
and color merging. The complexity of color space segmentation
relies on the generic roughness calculation and thresholding.
Generating roughness needs to traverse the whole image multiple
times. The complexity of constructing the matrixes of color
differences and homogeneity is Oðð8þR2Þ � NþNÞ, in which N is
the total pixel number and R25N denotes the template size. Based
on the histograms and homogeneity on intensities, computing
roughness indices on all color components needs Oð3LÞ calcula-
tions, L is the number of intensity levels. As shown in Algorithm 1,
the complexity of thresholding roughness is Oð2Lþ3tÞ, t is the
number of candidate peaks. Finally, updating the original image
colors according to color bands needs N operations. Therefore the
complexity of color space segmentation is Oðð10þR2Þ � Nþ5Lþ3tÞ,
because t5N, we have Oðð10þR2Þ � Nþ5LÞ.

The complexity of color merging relies on the rough clustering.
Supposing M the number of colors in the initially compressed
color space, in every iteration, constructing the pairwise distance
matrix and the approximations of clusters need OðK �MÞ calcula-
tions and OðK �MÞ comparisons, updating cluster centers needs
OðMþKÞ calculations. Let iter be the iteration times, the complex-
ity of clustering the compressed colors using Rough K-means is
Oðiter � ðð2Kþ1Þ �MþKÞÞ. Through the roughness-based segmenta-
tion, the original huge color space can be reduced to hundreds of
colors, in general M5N. Compared with the complexity Oðiter �
K � NÞ of most pixel-level clustering methods, the proposed color
space compression not only leads to less computational cost in
each iteration but also speeds up clustering convergence. Con-
sidering N operations to adjust each pixel's color onto the palette,
the complexity of color merging is Oðiter � ðð2Kþ1Þ �MþKÞþNÞ.

To sum up, the complexity of GR quantization framework is
approximately Oðð11þR2Þ � Nþ iter � ð2Kþ1Þ �MÞ. Because M5N
and iter is a small integer, the computational complexity mainly
depends on the color space segmentation based on roughness thresh-
olding rather than the clustering part. Thus this quantization frame-
work can keep the low complexity similar to the histogram-based
methods. In the next section, abundant experimental results will
further validate the high efficiency of the proposed quantization
method.

6. Experimental results

The experiments include the tests of roughness measure,
quantization quality and quantization efficiency. In the test of
roughness measure, we demonstrate the ability of generic rough-
ness measure to represent color homogeneity. In the tests of
quantization quality and efficiency, through comparing with other
hybrid quantization methods, we demonstrate that GR quantiza-
tion framework can achieve a good balance between quantization

quality and computational complexity. All the testing images are
collected from Berkeley color image database.1

In the experiments, we use two criteria for the evaluation of
quantization quality. First, as the most commonly used evaluation
measure, Mean Squared Error (MSE) is used to evaluate quantiza-
tion precision. It is formally defined as

MSEðF; ~F Þ ¼ 1
H �W

∑
H

h ¼ 1
∑
W

w ¼ 1
‖Fðh;wÞ� ~F ðh;wÞ‖2 ð12Þ

where F and ~F are respectively the original image and the quantized
image in RGB color space, H �W denotes the image size. MSE
represents the average color distortion of an image after quantization.

The peak signal-to-noise ratio, often abbreviated PSNR, is
adopted as the second criterion to evaluate quantization quality.
PSNR is a popular measure to evaluate the reconstruction quality
of image compression codecs and thus is used to evaluate color
compression quality. PSNR is computed via MSE

PSNR¼ 20� log 10
Lffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

ð13Þ

Generally speaking, a higher PSNR (or a lower MSE) would
normally indicate that the color quantization is of higher quality. But
it should be noticed that these measures are just the approximation
of human perception for evaluating image reconstruction quality.
In some cases one reconstruction may appear to be closer to the
original than another, even though it has a lower PSNR (or a higher
MSE) [14,46]. This phenomenon was also found in our experiments.

6.1. Evaluation on roughness measure

To demonstrate the superiority of generic roughness measure,
we first test the ability of generic roughness measure to represent
color homogeneity. Fig. 5 and Table 1 show the color space
segmentation results based on histogram, histon [22], basic rough-
ness measure [24] and generic roughness measure (scale t¼0).
Utilizing approximation boundary rather than pixels distribution
to represent color homogeneity, both roughness measures can
tolerate the interference of imbalanced color distribution and
produce more precise segmentation of color space. See Fig. 5
(j) and (n), the roughness measures depict small homogeneous
regions well such as the regions of flowerpot edges and rootstalks.

However, limited by the qualitative description of color homo-
geneity (0 or 1), the basic roughness measure is still not precise
enough. The segmentation of sill regions is influenced by the flower
color and the sill is labeled over red color. Based on the smoothed
homogeneity function and the adaptive thresholding algorithm,
generic roughness measure forms the accurate representation of color
homogeneous regions. As shown in Fig. 5 and Table 1, compared with
other kinds of statistics, generic roughness measure produces delicate
initial color space segmentation, which guarantees the quality of final
quantization. Fig. 6 indicates the average distortion of color space
segmentation of 30 images randomly selected from the testing
database. Generic roughness measure owns the highest precision.

Besides the homogeneity representation, we expect to demon-
strate the robustness of generic roughness measure. Smoothed with
the linear scale-space kernel, the multi-scale color differences weaken
the trivial details and thus better reflect salient homogenous regions.
Fig. 7 and Table 2 show the quantization results of image ‘Old man’
under different scales. It is found that the smoothing process of small
scales is not sufficient to remove trivial homogeneity. See Fig. 7(b) and
(c), influenced by the trivial black color, the collar regions are
quantized into over dark color. On the other hand, the smoothing of
big scales may ruin distinct homogenous regions and result in

1 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds
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distorted color quantization. As shown in Fig. 7(d) and (e), some
regions of clothes and neck are blurred. Under the scale t¼0.8, the
smoothing process makes color homogeneity more prominent and
produces precise quantization results.

The multi-scale smoothing process was also performed on 30
testing color images, the average quantization quality under different
scales is illustrated in Fig. 8. Experimental results indicate the
smoothing under the scales in [0.6, 1] can enhance the quantization
quality of 63% testing images. As shown in Fig. 8, after the initial small
scales, quantization quality increases in the scale interval [0.6, 1].
When the scale exceeds 1, the smoothing process erodes region
homogeneity and gradually aggravates quantization distortion. More-
over, the smoothing effects are related to image contents. For the
images containing primary foreground objects in complex back-
ground, the smoothing process is effective to improve quantization
quality. In some cases, if the quantization with no smoothing is good
enough for human eyes, we can set scale t¼0 to further speed up the
quantization process.

6.2. Evaluation on color quantization

GR quantization framework aims to compress image color precisely
and fast. The two-stage framework reduces the computational com-
plexity of quantization but carries a risk of color distortion caused by
color space segmentation in the first stage. To evaluate the quantiza-
tion quality of the proposed method, we compare GR framework with
different kinds of quantization methods, which include the roughness-
based methods i.e. histogram, histon [22], basic roughness measure
[24], and two recent hybrid quantization approaches: HTFCM [42] and
improved K-means (IKM) [3].

Like our method, HTFCM is also a hybrid approach which uses
histogram thresholding and fuzzy C-means clustering (FCM) to com-
press image color. The differences are that histogram thresholding is
used to initialize the color cluster centers rather than form the initial
color space segmentation, and FCM is used to group pixels rather than
compressed colors as in GR framework. Based on the scheme of
clustering initialization and acceleration, IKM implements several fast
and exact variants of K-means for color quantization. It is concluded

Fig. 5. (a) Image ‘Flowers’, (b, c) the initial color space segmentation based on histogram, (d, e) color quantization after color merging, (f–i) the results based on histon, (j–m)
the results based on basic roughness measure, (n–q) the results based on generic roughness measure.

Table 1
Color space segmentation of image ‘Flowers’.

Statistics Initial color segmentation Quantization after color
merging

MSE PSNR Color
number

MSE PSNR Color
number

Histogram 482.222 21.298 171 693.22 19.722 30
Histon 586.538 20.448 132 660.22 19.934 33
Roughness 230.785 24.499 307 338.951 22.829 37
Generic roughness 68.005 29.805 836 224.13 24.626 32

Histogram Histon Basic roughness Generic roughness
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Fig. 6. Distortion of initial color space segmentation.
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that the best one of these variants is the WSM-WUmethod [3], which
uses the strategy of greedy orthogonal bi-partitioning [48] to initialize
the clustering centers and accelerates the clustering process with a

weighted sort-means algorithm. In the following tests, we adopt
WSM-WU as the representative of IKM methods.

Figs. 9, 10 and Table 3 show the color quantization results based on
different methods. Compared with histogram and histon, both meth-
ods based on roughness measure have better performances. However,
the basic roughness measure emphasizes the homogeneity of trivial
color regions, and thus leads to the inaccurate color space segmenta-
tion. See Fig. 9(d), the leaf regions are labeled greenish yellow. This
distortion results from the disturbance of the yellow color hidden in
background. Depending on the improved homogeneity representation,
generic roughness measure focuses on distinct homogenous regions
and leads to more precise quantization than the traditional roughness-
based methods.

The experiments indicate that the hybrid quantization methods
of HTFCM, IKM and GR framework generally perform better than
the other methods. As shown in Figs. 9 and 10, these methods can
produce the refined quantization results which represent image
details well. HTFCM merges color through grouping pixels by
distance-based clustering. But this strategy is sensitive to the sizes
of pixel clusters. Fixing the cluster number, the cluster centers will
shift to large clusters to minimize the sum of distances. This means
HTFCM tends to merge a small color region into a bigger one. See
Fig. 9(e), although HTFCM can represent the foreground in detail, it
quantizes the highlights on dragonfly to grayish green as the
background. The similar case is shown in Fig. 10(e). Referring to
the introduction of evaluation criteria, even though HTFCM
obtains the minimized MSE, the visual quality of color quantization
results cannot be guaranteed. Moreover, because HTFCM initializes
the cluster centers with histograms, if the intensity distribution on
color component is very imbalanced, it is difficult to locate the
reasonable color clusters. See some results in Table 3, HTFCM
initializes too few clusters to keep the original colors in quantiza-
tion. Compared with HTFCM, GR initializes color clusters with
homogeneity distribution rather than intensity distribution, and
clusters compressed colors rather than pixels for making palette.

Fig. 7. (a) Image ‘Old man’, (b–e) the quantization results under the scales t¼0, 0.4, 2 and 3, (f) the quantization result under the scale t¼0.8, (g–i) the smoothed color
differences, homogeneity matrix and homogeneous color regions of (f). (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Table 2
Quantization results of image ‘Old man’ under different scales.

Scale t Initial color number Merged color number MSE PSNR

0 324 32 132.029 26.924
0.4 379 32 146.22 26.481
0.8 382 32 126.427 27.112
1 379 32 133.017 26.892
2 374 32 145.536 26.501
3 369 32 160.154 26.085
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Fig. 8. Average quantization quality under different scales.
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Thus it can tolerate the disturbance of pixel scales in quantization
and produce more precise and stable results.

Using preclustering strategy to generate initial color clusters, the
method of IKM overcomes the drawback of clustering-based quantiza-
tion sensitive to the clustering initialization. Fig. 11 shows the average
color quantization quality of all testing images, IKM takes the highest
quantization precision. However, even adopting the weighted sort-

means algorithm to reduce the computational complexity of cluster-
ing, the color quantization based on IKM is still a time-cost task. The
objective of GR framework is to balance quantization quality and
computational complexity. As shown in Fig. 11, GR framework achieves
the eminent quantization quality close to IKM. Meanwhile, compared
with the other hybrid methods involving pixel-level clustering, the
computational time of GR framework is just linearly dependent on the
image size. The efficiency of GR framework will be further validated in
the following test.

6.3. Evaluation on quantization efficiency

For different color quantization strategies, the histogram-based
methods have low computational complexity but usually produce
poor results, while the clustering-based methods produce high
quality quantization but expend much computational time. Con-
sidering the advantages of both strategies, GR framework first
generates the precise color space segmentation based on rough-
ness thresholding, and then merge the initially compressed colors
using Weighted Rough K-means. GR framework can achieve a good
balance between computational efficiency and quantization qual-
ity. To demonstrate this, we compare the performance of GR
framework with the hybrid approaches HTFCM and IKM. All the

Fig. 9. (a) Image ‘Dragonfly’, (b–d) quantization based on histogram, histon and basic roughness measure, (e) quantization based on HTFCM, (f) quantization based on IKM,
(g) quantization result based on GR framework, (h) homogeneous color regions of (g). (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 10. (a) Image ‘Hummers’, (b–d) quantization based on histogram, histon and basic roughness measure, (e) quantization based on HTFCM, (f) quantization based on IKM,
(g) quantization result based on GR framework, (h) homogeneous color regions of (g). (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Table 3
Quantization results based on different methods.

Image Methods MSE PSNR Color number

Dragonfly Histogram 408.236 22.022 19
Histon 504.694 21.101 15
Roughness 538.57 20.818 13
HTFCM 327.893 22.973 7
Improved K-means 97.595 28.237 32
Generic roughness 169.766 25.832 32

Hummers Histogram 1842.733 15.476 11
Histon 911.416 18.534 18
Roughness 355.717 22.62 35
HTFCM 215.436 24.798 15
Improved K-means 116.203 27.479 32
Generic roughness 197.782 25.169 32
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quantization algorithms are implemented using Matlab 7 in Win-
dows system.

Testing all the images in database (set color number C¼32), we
present the average runtime and clustering iteration times of
quantization in Fig. 12 and Table 4. Obviously, GR framework has
the lowest time cost and iteration times. Compared with the
existing postclustering methods, GR framework greatly improves
the quantization efficiency. Because clustering the limited com-
pressed colors rather than pixels, the computational cost of GR
framework relies on the initial color space segmentation which
just needs to traverse image several times. In general, there are
about 60 000 pixels and 20 000–50 000 different colors in each
testing image, it is a heavy computational burden to directly
cluster these pixels/colors to obtain a precise quantization result.
On the other hand, there are just 100–400 different colors in a
segmented color space and it is an easy task to merge the
compressed colors into a palette. Fig. 12 also presents the variance
of runtime and iteration times of quantization. It can be found that
the computational costs of HTFCM and IKM have great variation
on different images while GR framework obtains the stable
performance on all testing images. This is because GR compresses
original color space to a small number of sparse RGB entries
through thresholding roughness. The initial color space segmenta-
tion makes the clustering converge to stable results fast .

To further validate the efficiency of GR framework, we test the
quantization methods against multiple palette sizes, i.e. quantized
color numbers. Five images are randomly selected to be quantized into
2k colors respectively, k¼{3, 4, 5, 6, 7, 8}. Fig. 13 and Table 5 present
the performances of IKM and GR framework. Although sorting cluster
centers to reduce the pairwise distance calculations, the computa-
tional cost of IKM still rises fast as palette size increases. The increased
cluster number requires more distance calculations and comparisons
thus slows the clustering convergence. For GR framework, its compu-
tational cost relies on the initial color space segmentation. Even the

augmented color number causes a minor increase of clustering
iteration in the color merging stage, GR framework can keep runtime
stable when palette size changes.

Besides the palette size, we also test the quantization efficiency
with image size. We enlarge the selected images multiple times
α2 �width � height, α¼ f1:2;1:4;1:6;1:8;2g. The quantization effi-
ciency of the multiple size images are presented in Fig. 14 and
Table 6. Because the computational complexity of pixel-level
quantization depends on the pixel number N (or the original color
number N′), the augmented pixels generally require more distance
calculations and iterations for converging clustering.
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Fig. 11. Average quantization quality based on different methods.
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Table 4
Running time and iteration times of different quantization methods.

Image HTFCM Improved K-means Generic roughness

Time (s) Iteration Time (s) Iteration Time (s) Iteration

Zebra 84.544 92 78.268 114 18.453 9
Bear 40.486 46 77.478 140 18.407 13
Birds 28.147 26 40.019 57 18.593 19
Bridge 70.439 52 186.943 112 19.219 28
Bull 21.159 27 17.675 61 18.438 18
Butterfly 46.037 36 80.739 59 18.578 12
Flowers 64.124 31 303.573 162 18.5 15
Horse 39.7 63 185.68 204 18.344 11
Basket 55.05 35 120.138 107 18.453 13
Lions 19.021 36 27.738 58 18.422 6
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Fig. 13. Running time of quantization methods with different color numbers.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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See Fig. 14 and Table 6, for IKM, the computational cost rises
fast as the image size increases. In some cases, when image size is
continuously enlarged, it will cost too much time to obtain a stable
quantization results. GR framework achieves superior performance
in this test, the computational cost increases very slow as the
image size increases. In the initial color space segmentation stage,
the enlarged image needs more calculations for generating rough-
ness indices but the runtime just increases linearly with the pixel
number. In the stage of merging color, because the augmented

pixel set has been compressed to hundreds of colors, the increased
image sizes cause little increment of time cost for color clustering.

To sum up, GR quantization framework achieves a good balance
between the quantization quality and computational complexity.
Abundant experimental results indicate that this framework per-
forms well on most testing images. It produces precise quantiza-
tion results as superior postclustering methods while keeps low
computational cost.

7. Conclusions

Although many postclustering quantization methods can achieve
high quality results, they always suffer from heavy computational cost.
To improve the efficiency of postclustering quantization, a two-stage
color quantization framework based on generic roughness measure
(GR framework) is investigated in this paper. The basic idea of this
novel framework is to synthesize the techniques of roughness-based
color space segmentation and clustering-based quantization. In the
first stage, through thresholding roughness of color components, the
original color space is compressed to a set of representative colors.
And in the second stage, the initially compressed colors are merged to
a palette using clustering method.

The key of GR framework is to guarantee the precision of the initial
color space segmentation. Therefore we propose generic roughness
measure to generate the delicate segmentation. The superiorities of GR
quantization framework are summarized as follows. First, depending
on the smoothed homogeneity mapping, generic roughness measure
can tolerate the disturbance of trivial regions and precisely represent
the spatial color homogeneity. Second, compressing the original image
color to sparse RGB entries, the initial color space segmentation makes
the quantization process more robust to various color distributions.
The last but most important advantage is that the computational cost
of GR framework relies on the initial color space segmentation. This
makes GR framework own the low computational complexity as
histogram-based methods. Extensive experiments on Berkeley color
image segmentation database demonstrate the high efficiency of the
proposed quantization framework. The extra testing results can be
further provided by the authors.
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