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Abstract. Rough set theory (RS-Theory) is a fundamental model of
granular computing (GrC) for uncertainty information processing, and
information entropy theory provides an effective approach for its un-
certainty representation and attribute reduction. Thus, this paper hier-
archically constructs three-way weighted entropies (i.e., the likelihood,
prior, and posterior weighted entropies) by adopting a GrC strategy from
the concept level to classification level, and it further explores three-way
attribute reduction (i.e., the likelihood, prior, and posterior attribute re-
duction) by resorting to a novel approach of Bayesian inference. From
two new perspectives of GrC and Bayesian inference, this study pro-
vides some new insights into the uncertainty measurement and attribute
reduction of information theory-based RS-Theory.

Keywords: Rough set theory, uncertainty, granular computing, three-
way decision, information theory, weighted entropy, Bayesian inference,
attribute reduction.

1 Introduction

Rough set theory (RS-Theory) [1] is a fundamental model of granular comput-
ing (GrC) for uncertainty information processing. Information theory [2] is an
important way to reflect information and measure uncertainty, and it was first
introduced into RS-Theory for uncertainty representation and reduction mea-
surement by Prof. Miao in 1997 [3]; a measurement called rough entropy was
further put forward by Prof. Beaubouef in 1998 [4]. In the development of more
than a decade, many systematic fruits [5-11] based on the information entropy,
conditional entropy, and mutual information, have been widely used, especially
for attribute reduction.

The Bayesian inference in machine learning [12] provides an effective approach
for practical data processing, i.e., introducing the prior information into the like-
lihood function to produce the posterior probability. Following this approach,
this paper mainly evolves the Bayesian probability formula in RS-Theory from a
new perspective of weighted entropies, and it also explores relevant Bayesian ex-
pressions at different levels. When the weighted entropies are constructed from
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the concept level to classification level, the GrC strategy is adopted, because
GrC [13,14] is an effective structural methodology for dealing with hierarchical
issues. Finally, the hierarchical weighted entropies are utilized to construct at-
tribute reduction. In particular, three-way decision theory, proposed by Prof. Yao
[15,16], plays a key role in decision making. Herein, from the three-way decision
viewpoint, relevant Bayesian items and systemic reduction are also considered
by using a longitudinal strategy, and we will concretely construct three-way
weighted entropies and three-way reducts based on the likelihood, prior, and
posterior items.

In summary, we mainly use two new perspectives of GrC and Bayesian in-
ference to preliminary explore uncertainty measuring and attribute reduction.
Thus, this study can provide some new insights into information theory-based
RS-Theory. Moreover, the constructed three-way pattern regarding likelihood,
prior, and posterior can partially enrich the three-way decision theory from a
new perspective. Next, Section 2 provides preliminaries, Section 3 and 4 study
the three-way weighted entropies at the concept and classification levels, respec-
tively, Section 5 further discusses three-way attribute reduction, Section 6 finally
provides conclusions.

2 Preliminaries

The decision table (D-Table) (U, C ∪ D) serves as a main framework. Herein,
X ∈ U/IND(D) = {Xj : j = 1, ..,m}, A ⊆ C, [x]A ∈ U/IND(A) = {[x]iA : i =
1, .., n}. B ⊆ A ⊆ C refers to the granulation relationship with a partial order

- A � B. If A � B, then ∀[x]B ∈ U/IND(B), ∃k ∈ N, s.t.,
k⋃

t=1
[x]tA = [x]B;

thus, representative granular merging
k⋃

t=1
[x]tA = [x]B can be directly utilized for

verifying granulation monotonicity [17]. Moreover, U/IND(B) = {U} if B = ∅,
and let ∀b ∈ B.

The conditional entropy and mutual information are

H(D/A) = −
n∑

i=1

p([x]iA)
m∑

j=1

p(Xj/[x]
i
A)log p(Xj/[x]

i
A)

and I(A;D) = H(D) −H(D/A), respectively. Both uncertainty measures have
granulation monotonicity, i.e., if A � B then H(D/A) ≤ H(D/B) and I(A;D) ≥
I(B;D), so they are used to construct two types of D-Table reduct, which are
equivalent to the classical D-Table reduct based on regions [1,6,11].

(1) B is a region-based reduct of C, if POSB(D) = POSC(D), POSB−{b}(D) ⊂
POSB(D).

(2) B is a conditional entropy-based reduct of C, ifH(D/B) = H(D/C),H(D/B−
{b}) > H(D/B).

(3) B is a mutual information-based reduct of C, if I(B;D) = I(C;D), I(B −
{b};D) < I(B;D).
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Moreover, monotonous information entropy H(A) = −
n∑

i=1

p([x]iA)log p([x]iA) is

used to equivalently define the information-system reduct [1,3,7].

(1) B is a knowledge-based reduct of C, if U/IND(B) = U/IND(C), U/IND(B−
{b}) �= U/IND(B).

(2) B is an entropy-based reduct of C, if H(B) = H(C), H(B − {b}) < H(B).

3 Three-Way Weighted Entropies of a Concept

By evolving the Bayesian probability formula, this section mainly proposes three-
way weighted entropies of a concept. For granule [x]A and concept X , we first
analyze the relevant causality mechanism of three-way probabilities, then discuss
three-way entropies, and finally construct three-way weighted entropies.

Suppose p(T ) = |T |
|U| (∀T ∈ 2U ), then (U, 2U , p) constitutes a probability space.

Thus, there are four types of probability to construct the Bayesian formula

p([x]A/X) =
p([x]A) · p(X/[x]A)

p(X)
. (1)

For given concept X , p(X) = |X|
|U| becomes a constant, so the surplus three-way

probabilities are worth analyzing.
From a causality viewpoint, concept X represents a result while divided gran-

ule [x]A means factors. Furthermore, from a Bayesian viewpoint,A can be viewed
as a granulation parameter within a subset range of C.
(1) p(X/[x]A) =

|X∩[x]A|
|[x]A| is the likelihood probability for granulation parameter

A to describe granular decision X .

(2) p([x]A/X) = |X∩[x]A|
|X| is the posterior probability to describe granulation

parameters on a premise of result X .

(3) p([x]A) =
|[x]A|
|U| is the prior probability to describe cause parameter A.

The three-way probabilities, which correspond to relative and absolute measures
[18], respectively, exhibit different probability semantics and decision actions. In
particular, likelihood p(X/[x]A) and posterior p([x]A/X) directly reflect causal-
ity from the cause-to-effect and effect-to-cause viewpoints, respectively, so their
relevant measures can thoroughly describe correlative relationships between the
decision concept and its condition structures. Clearly, p([x]A/X) is more per-
fect for reduction because reduction is a concrete effect-to-cause pattern, and its
calculation is also more optimal. Moreover, prior p([x]A) mainly measures cause
uncertainty by reflecting structural information of A.

Our original intention is to describe the causality system regarding A and X
and to further study attribute reduction by constructing benign measures based



710 X. Zhang and D. Miao

on the three-way probabilities. In view of entropy’s importance for measuring
uncertainty, we next exhibit three-way entropies.

Definition 1. For concept X ,

HX(A) = −
n∑

i=1

p([x]iA)log p([x]iA), (2)

H(A/X) = −
n∑

i=1

p([x]iA/X)log p([x]iA/X), (3)

H(X/A) = −
n∑

i=1

p(X/[x]iA)log p(X/[x]iA) (4)

are called prior, posterior, and likelihood entropies, respectively.
Definition 1 proposes three-way entropies of a concept. In fact, HX(A) and

H(A/X) naturally measure uncertainty of granulation A without limitations
and on promise X , respectively, because both p([x]A) and p([x]A/X) form a
probability distribution. Moreover,H(X/A) is also formally proposed to measure

the likelihood structure, though
n∑

i=1

p(X/[x]iA) �= 1. For X , HX(A) conducts

absolute pre-evaluation, while H(X/A) and H(A/X) make relative descriptions
from two different causality directions. Thus, the three-way entropies, especially
H(X/A) and H(A/X), can measure causality between granulation parameter
A and decision set X .

Proposition 1. If A � B, then HX(A) ≥ HX(B), H(B/X) ≥ H(A/X), but
neither H(X/A) ≥ H(X/B) nor H(X/A) ≤ H(X/B) necessarily holds.

Proof. The results can be proved by entropy properties, because p([x]B) =
k∑

t=1
p([x]tA) and p([x]B/X) =

k∑

t=1
p([x]tA/X) but p(X/[x]B) �=

k∑

t=1
p(X/[x]tA). �

Granulation monotonicity is an important feature for evaluating an entropy.
Based on Proposition 1, the prior/posterior and likelihood entropies have gran-
ulation monotonicity and non-monotonicity, respectively. In particular, the fol-
lowing Example 1 illustrates the non-monotonicity of the likelihood entropy.

Example 1. Given [x]1A, [x]
2
A and complementary X1, X2. Let |[x]1A| = 40 =

|[x]2A|, |X1| = 29, |X2| = 51; moreover, |[x]1A∩X1| = 1, |[x]2A∩X1| = 28, so |[x]1A∩
X2| = 39, |[x]2A ∩X2| = 12. For [x]1A ∪ [x]2A = [x]B regarding X1, p(X1/[x]

1
A) =

0.025, p(X1/[x]
2
A) = 0.7, p(X1/[x]B) = 0.3625, so −0.025log0.025− 0.7log0.7 =

0.4932 < 0.5307 = −0.3625log0.3625; regarding X2, p(X2/[x]
1
A) = 0.975,

p(X2/[x]
2
A) = 0.3, p(X2/[x]B) = 0.6375, so −0.975log0.975−0.3log0.3=0.5567 >

0.4141 = −0.6375log0.6375. If U/IND(A) = {[x]1A, [x]2A} and U/IND(B) =
{[x]B}, then A � B but H(X1/A) ≤ H(X1/B), H(X2/A) ≥ H(X2/B). �

For the three-way probabilities, p([x]A/X) and p(X/[x]A) reflect causality be-
tween A and X ; for the three-way entropies, only HX(A) and H(A/X) exhibit
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necessary monotonicity. Thus, p([x]A/X) and further H(A/X) hold important
significance for describing A structure based on X . In fact, posterior entropy
H(A/X) reflects the average information content of granulation U/IND(A) for
given concept X , and at the entropy level, only it has perfect value for measuring
uncertainty of A for X . This posterior entropy’s function underlies latter impor-
tance of the posterior weighed entropy and posterior attribute reduction.

Though the posterior entropy is valuable, however, there are no relationships
for the three-way entropies. Thus, better three-way measures with granulation
monotonicity are worth deeply mining to establish an essential connection. For
this purpose, we first creatively evolve the Bayesian probability formula to natu-
rally mine three-way weighted entropies, and we then explore their monotonicity
and relationship.

Theorem 1. −
n∑

i=1

p(X)p([x]iA/X)log p([x]iA/X)

= −
n∑

i=1

p(X/[x]iA)p([x]
i
A)log p([x]iA) −

n∑

i=1

p([x]iA)p(X/[x]iA)log p(X/[x]iA)

+ p(X)log p(X).

Proof. First, p([x]iA/X) =
p([x]iA)·p(X/[x]iA)

p(X) , ∀i ∈ {1, ..., n}. Thus,
−p([x]iA/X)log p([x]iA/X) = − p([x]iA)·p(X/[x]iA)

p(X) [log p([x]iA) + log p(X/[x]iA) −
log p(X)]. Hence, −p(X)p([x]iA/X)log p([x]iA/X) = −p(X/[x]iA)p([x]

i
A)

log p([x]iA) − p([x]iA)p(X/[x]iA)log p(X/[x]iA) + p([x]iA)p(X/[x]iA)log p(X). Fur-

thermore, the result is obtained by summation, where
n∑

i=1

p([x]iA)p(X/[x]iA)

log p(X) =
n∑

i=1

p([x]iA ∩ X)log p(X) = [
n∑

i=1

p([x]iA ∩ X)]log p(X) = p(X)

log p(X). �
Theorem 1 develops the Bayesian theorem in an entropy direction, and there is

actually a core form containing both an entropy and weights, i.e., a weighted en-
tropy. Thus, a weighted entropy plays an core role and can establish an equation.
This entropy evolution inherits the Bayesian probability formula and inspires our
following further works.

Definition 2. For probability distribution (ξ, pi) and weight wi ≥ 0, HW (ξ) =

−
n∑

i=1

wipilog pi is called the weighted entropy. In particular, the generalized

weighted entropy has not constraint condition
n∑

i=1

pi = 1.

The weighted entropy mainly introduces weights into the entropy, and weights
usually reflect importance degrees for information receivers. In particular, it
develops the entropy and degenerates into the latter by setting up wi = 1. Herein,

the generalized weighted entropy is mainly used in view of
n∑

i=1

p(X/[x]iA) �= 1.
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Definition 3. For concept X ,

HX
W (A) = −

n∑

i=1

p(X/[x]iA)p([x]
i
A)log p([x]iA), (5)

HW (A/X) = −
n∑

i=1

p(X)p([x]iA/X)log p([x]iA/X) = p(X)H(A/X), (6)

HW (X/A) = −
n∑

i=1

p([x]iA)p(X/[x]iA)log p(X/[x]iA) (7)

are called prior, posterior, and likelihood weighted entropies, respectively.
The three-wayweighted entropies originate from three-way entropies by adding

probability-based weight coefficients. In fact, HX
W (A) improves upon absolute

HX(A) by introducing relative p(X/[x]iA), while HW (A/X) and HW (X/A) im-
prove upon relative H(A/X) and H(X/A) by introducing absolute p(X) and
p([x]iA), respectively. Thus, H

X
W (A), HW (A/X), HW (X/A) inherit uncertainty

semantics by different probability weights, and they exhibit systematic complete-
ness and superior stability from the double-quantitative perspective [18], so they
can better describe the system regarding cause A and result X . Moreover, pos-
terior weighted entropy HW (A/X) has a simple and perfect structure, because
it can be directly decomposed into a product of posterior entropy H(A/X) and
constant p(X). Note that weighted entropy symbol HW (.) is distinguished from
information entropy symbol H(.).

Proposition 2. If A � B, then HX
W (A) ≥ HX

W (B), HW (A/X) ≥ HW (B/X),
HW (X/A) ≤ HW (X/B).
Proof. Herein, we only provide the proof for the likelihood weighted entropy by

utilizing granular merging
k⋃

t=1
[x]tA = [x]B. f(u) = −ulogu (u ∈ [0.1]) is a concave

function; thus, if
k∑

t=1
λt = 1, then −

k∑

t=1
λtptlog pt ≤ −[

k∑

t=1
λtpt]log[

k∑

t=1
λtpt].

−
k∑

t=1

p([x]tA)p(X/[x]tA)log p(X/[x]tA) = −
k∑

t=1

p([x]B)
|[x]tA|
|[x]B| p(X/[x]tA)log p(X/[x]tA)

= p([x]B)[−
k∑

t=1

|[x]tA|
|[x]B| p(X/[x]tA)log p(X/[x]tA)]

≤ −p([x]B)[

k∑

t=1

|[x]tA|
|[x]B| p(X/[x]tA)]log

k∑
t=1

|[x]tA ∩X|
|[x]B|

= −p([x]B)
|[x]B ∩X|

|[x]B| log
|[x]B ∩X|

|[x]B| = −p([x]B)p(X/[x]B)log p(X/[x]B). �

Based on Proposition 2, three weighted entropies exhibit perfect granula-
tion monotonicity and thus hold significance. In particular, HW (X/A) becomes
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monotonicity though H(X/A) is non-monotonicity, and this monotonicity diffi-
culty is proved by utilizing a concave feature of function −ulogu.

Theorem 2. HW (A/X) = HX
W (A) +HW (X/A) + p(X)log p(X)

= HX
W (A)−[−p(X)log p(X)−HW (X/A)], and −p(X)log p(X)−HW (X/A) ≥ 0.

Theorem 2 provides an important relationship for the three-way weighted en-
tropies (where −p(X)log p(X) is a constant), i.e., the posterior weighted entropy
becomes a linear translation of the sum of the prior and likelihood weighted
entropies. Thus, the Bayesian probability formula can deduce essential rela-
tionships regarding not three-way entropies but three-way weighted entropies.
Furthermore, −p(X)log p(X) −HW (X/A) can be chosen as a new measure to
simplify the fundamental equation by eliminating the translation distance.

Definition 4. H∗
W (X/A) = −p(X)log p(X)−HW (X/A).

Corollary 1. (1) If A � B, then H∗
W (X/A) ≥ H∗

W (X/B).
(2) HW (A/X) = HX

W (A)−H∗
W (X/A).

Herein, H∗
W (X/A) corresponds to HW (X/A) by a negative linear transforma-

tion, so it exhibits opposite granulation monotonicity. Furthermore, the posterior
weighted entropy becomes the difference between prior weighted entropyHX

W (A)
and H∗

W (X/A), and the latter corresponds to the likelihood weighted entropy.

4 Three-Way Weighted Entropies of a Classification

Three-way weighted entropies are proposed for a concept in Section 3, and they
will be further constructed for a classification in this section by a natural inte-
gration strategy of GrC. Moreover, they will be linked to the existing RS-Theory
system with the information entropy, conditional entropy and mutual informa-
tion. Next, classification U/IND(D) = {X1, .., Xm} with m concepts is given.

Definition 5. For classification U/IND(D),

HD
W (A) =

m∑

j=1

H
Xj

W (A), HW (A/D) =
m∑

j=1

HW (A/Xj), HW (D/A) =
m∑

j=1

HW (Xj/A)

are called prior, posterior, and likelihood weighted entropies, respectively. More-

over, let H∗
W (D/A) =

m∑

j=1

H∗
W (Xj/A).

For decision classification U/IND(D), the three-way weighted entropies are
corresponding sum of concepts’ weighted entropies regarding classification’s in-
ternal concepts, because we naturally adopt a GrC strategy from an internal
concept to its integrated classification. Thus, they inherit relevant causality
mechanisms and hold corresponding functions for measuring uncertainty; more-
over, they also inherit the essential monotonicity and mutual relationship.

Proposition 3. If A � B, then HD
W (A) ≥ HD

W (B), HW (A/D) ≥ HW (B/D),
HW (D/A) ≤ HW (D/B), H∗

W (D/A) ≥ H∗
W (D/B).

Theorem 3 (Weighted Entropies’ Bayesian Formula).

HW (A/D) = HD
W (A)− [H(D)−HW (D/A)] = HD

W (A) −H∗
W (D/A).
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Theorem 3 describes an important relationship of the three-way weighted en-
tropies by introducing H(D). Thus, the posterior weighted entropy is difference
between the prior weighted entropy and H∗

W (D/A), and the latter is a linear
transformation of the likelihood weighted entropy. In particular, Theorem 3 es-
sentially evolves the Bayesian probability formula, so it is called by Weighted
Entropies’ Bayesian Formula to highlight its important values.

Next, we summarize the above GrC works via Table 1. There are three GrC lev-
els which are located at the micro bottom,meso layer, andmacro top, respectively.

(1) At Level (1), the three-way probabilities describe granule [x]A and concept
X , and the Bayesian probability formula holds by using premise p(X).

(2) At Level (2), the three-way weighted entropies describe granulation A and
conceptX and exhibit granulation monotonicity. In particular,HW (A/X) =
HX

W (A)−H∗
W (X/A) acts as an evolutive Bayesian formula, whereH∗

W (X/A)
is a linear adjustment of HW (X/A) by using premise −p(X)log p(X).

(3) At Level (3), the three-way weighted entropies describe granulation A and
classification D and inherit granulation monotonicity. In particular,
HW (A/D) = HD

W (A)−H∗
W (D/A) acts as an evolutive Bayesian result, where

H∗
W (D/A) is a linear adjustment of HW (D/A) by using premise H(D).

Thus, our GrC works establish an integrated description for A and D by using
a bottom-top strategy, so they underlie the further discussion, especially for
attribute reduction. In fact, attribute reduction is mainly located at Level (3),
where H(D) is a constant from the causality perspective.

Table 1. GrC-Based Weighted Entropies and Relevant Bayesian Formulas

Level Objects Three-Way Measures Relevant Bayesian Formulas

(1) [x]A, X p([x]A), p([x]A/X), p(X/[x]A) p([x]A/X) = p([x]A)·p(X/[x]A)
p(X)

(2) A, X HX
W (A), HW (A/X), HW (X/A) (or H∗

W (X/A)) HW (A/X) = HX
W (A) −H∗

W (X/A)
(3) A, D HD

W (A), HW (A/D), HW (D/A) (or H∗
W (D/A)) HW (A/D) = HD

W (A) −H∗
W (D/A)

Finally, we explain the novel system of the three-way weighted entropies by the
previous system based on information theory, and we also analyze both systems’
relationships.

Theorem 4. HD
W (A) = H(A), HW (A/D) = H(A/D),

HW (D/A) = H(D/A), H∗
W (D/A) = I(A;D).

Proof. (1) HD
W (A) =

m∑

j=1

H
Xj

W (A) = −
m∑

j=1

[
n∑

i=1

p(Xj/[x]
i
A)p([x]

i
A)log p([x]iA)]

= −
m∑

j=1

[p(Xj/[x]
1
A)p([x]

1
A)log p([x]1A)− ...− p(Xj/[x]

n
A)p([x]

n
A)log p([x]nA)]

= −[
m∑

j=1

p(Xj/[x]
1
A)]p([x]

1
A)log p([x]1A)− ...− [

m∑

j=1

p(Xj/[x]
n
A)]p([x]

n
A)log p([x]nA)

= −p([x]1A)log p([x]1A)− ...− p([x]nA)log p([x]nA) = H(A).
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(2) HW (A/D) =
m∑

j=1

HW (A/Xj) =
m∑

j=1

p(Xj)H(A/Xj)

= −
m∑

j=1

p(Xj)
n∑

i=1

p([x]iA/Xj)log p([x]iA/Xj) = H(A/D).

(3) HW (D/A) = HW (X1/A) + ...+HW (Xm/A)
= [−p([x]1A)p(X1/[x]

1
A)log p(X1/[x]

1
A)−...−p([x]nA)p(X1/[x]

1
A)log p(X1/[x]

n
A)]+

...
+[−p([x]1A)p(Xm/[x]1A)log p(Xm/[x]1A)−...−p([x]nA)p(Xm/[x]1A)log p(Xm/[x]nA)]
= −p([x]1A)[p(X1/[x]

1
A)log p(X1/[x]

1
A) + ...+ p(Xm/[x]1A)log p(Xm/[x]1A)]− ...

− p([x]nA)[p(X1/[x]
1
A)log p(X1/[x]

n
A) + ...+ p(Xm/[x]nA)log p(Xm/[x]1A)]

= −
n∑

i=1

p([x]iA)
m∑

j=1

p(Xj/[x]
i
A)log p(Xj/[x]

i
A) = H(D/A).

Thus, H∗
W (D/A) = H(D)−HW (D/A) = H(D)−H(D/A) = I(A;D) �.

Theorem 5. HW (A/D) = HD
W (A)−H∗

W (D/A) is equivalent to
H(A/D) = H(A)− I(A;D).

Based on Theorem 4, three-way weighted entropies HD
W (A), HW (A/D),

HW (D/A) are equivalent to prior entropy H(A), conditional entropy H(A/D),
conditional entropy H(D/A), respectively; moreover, H∗

W (D/A) corresponds to
mutual information I(A;D). Furthermore, Theorem 5 reflects equivalence be-
tween HW (A/D) = HD

W (A) − H∗
W (D/A) and H(A/D) = H(A) − I(A;D),

which are from two different systems. Thus, the weighted entropy system (in-
cluding its Bayesian formula) has been explained/verified by the previous infor-
mation theory system. In contrast, the former can thoroughly explain the latter
as well. Therefore, both systems exhibit theoretical equivalence. However, the
weighted entropy approach conducts a GrC construction, and it also emphasizes
the causality semantics and application direction based on the Bayesian mech-
anism. Thus, the three-way weighted entropies hold at least two fundamental
values. First, they construct, explain, and deepen the existing information sys-
tem of RS-Theory by the GrC construction and Bayesian formula; moreover,
they underlie systemic attribute reduction by the essential uncertainty measure
and effective Bayesian inference.

5 Three-Way Attribute Reduction

The three-way weighted entropies (of a classification) and their monotonicity and
relationship have been provided in Section 4. This section mainly uses them to
systemically construct three-way attribute reduction, and the poster reduction
will be emphasized via the Bayesian inference and causality theory.

Definition 6. B is called likelihood, prior, and posterior reducts of C, if it
satisfies the following three conditions, respectively.

(1) H∗
W (D/B) = H∗

W (D/C), H∗
W (D/B − {b}) < H∗

W (D/B)
(or HW (D/B) = HW (D/C), HW (D/B − {b}) > HW (D/B)).

(2) HD
W (B) = HD

W (C), HD
W (B − {b}) < HD

W (B).
(3) HW (B/D) = HW (C/D), HW (B − {b}/D) < HW (B/D).
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Theorem 6.

(1) A likelihood reduct is equivalent to a D-Table reduct. Furthermore, a like-
lihood reduct based on H∗

W (D/A) or HW (D/A) is equivalent to a D-Table
reduct based on the mutual information or conditional entropy, respectively.

(2) A prior reduct is equivalent to an information-system reduct.
(3) A posterior reduct is different from both D-Table and information-system

reducts.

Proof. (1) For the D-Table reduct, the region-based method is equivalent to
the mutual information-based and conditional entropy-based ways [1,6,11]; fur-
thermore, I(A;D) and H(D/A) correspond to H∗

W (D/A) and HW (D/A), re-
spectively, so the likelihood reduct is equivalent to the two information-based
reducts and the classical region-based reduct. (2) For the information-system
reduct, the prior reduct is equivalent to the entropy-based reduct and further
knowledge-based reduct, because HD

W (A) = H(A). (3) The difference of the
posterior reduct is verified by the following D-Table example. �.

Example 2. In D-Table S = (U, C ∪ D) provided by Table 2,
U = {x1, ..., x12}, C = {a, b, c}, D = {d}, U/{d} = {X1, X2, X3},
X1 = {x1, ..., x4}, X2 = {x5, ..., x8}, X3 = {x9, ..., x12}. Thus, U/{a, b, c} =
U/{a, b} = {{x2, x3, x6, x11}, {x4, x8, x12}, {x1}, {x5}, {x7, x10}, {x9}},
U/{a} = U/{a, c} = {{x2, x3, x6, x7, x10, x11}, {x4, x8, x12}, {x1}, {x5}, {x9}},
U/{b} = {{x2, x3, x6, x11}, {x4, x8, x12}, {x1, x7, x10}, {x5, x9}},
U/{c} = {{x2, x3, x6, x7, x10, x11}, {x4, x8, x12}, {x1, x5, x9}},
U/{b, c} = {{x2, x3, x6, x11}, {x4, x8, x12}, {x1}, {x5, x9}, {x7, x10}}.

Table 2. D-Table in Example 2

U a b c d U a b c d U a b c d

x1 3 3 3 1 x5 4 4 3 2 x9 5 4 3 3
x2 1 1 1 1 x6 1 1 1 2 x10 1 3 1 3
x3 1 1 1 1 x7 1 3 1 2 x11 1 1 1 3
x4 2 2 2 1 x8 2 2 2 2 x12 2 2 2 3

First, there are only two D-Table reducts {a}, {c} and one information-system
reduct {a, b}. Herein, HW (C/D) = P (X1)H(C/X1) + P (X2)H(C/X2) + P (X3)
H(C/X3) =

4
12 [(−0.5log0.5−2×0.25log0.25)−4×0.25log0.25−4×0.25log0.25] =

1.8333 = HW ({b}/D), HW ({a}/D) = HW ({a, c}/D) = HW ({c}/D) = 4
12

(−0.5log0.5 − 2 × 0.25log0.25) × 3 = 1.500 < 1.8333. Thus, {b} becomes the
sole posterior reduct and is neither the (U, C ∪D) reduct nor (U, C) reduct; in con-
trast, neither {a}, {c} nor {a, b} is a posterior reduct. Note that the key granular
merging regarding {x1, x7, x10} is allowed not for the other reducts but for the
posterior reduct. �
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The three weighted entropies can measure uncertainty, and they are used to
naturally define the three-way reducts. In spite of measuring of all weighted en-
tropies, the three-way reducts exhibit different reduction essence. The likelihood
reduct and prior reduct, which are also related to the mutual information, con-
ditional entropy and information entropy, mainly correspond to the qualitative
reducts regarding D-Table and information-system, respectively. In contrast, the
posterior reduct completely corresponds to a quantitative reduct. Thus, the pos-
terior weighted entropy exhibit more essential metrizability, and the posterior
reduct exhibits novelty and transcendence, so both are worth emphasizing.

Next, based on the posterior weighted entropy, we analyze important signifi-
cance of the posterior reduct for D-Table reduct.

(1) The D-Table reduct usually uses likelihood information in the cause-to-effect
(or condition-to-decision) direction. According to the Bayesian inference,
the posterior weighted entropy adjusts the likelihood weighted entropy by
strengthening the prior knowledge, so the posterior reduct improves upon
the likelihood reduct by pursuing quantitative uncertainty rather than qual-
itative absoluteness. In fact, by considering the granulation distribution, the
posterior reduct achieves the highest posterior uncertainty and lowest risk
according to the granulation monotonicity and maximum entropy principle,
respectively, so it can avoid the over-fitting problem due to its measurability,
generality, and robustness.

(2) In D-Table (U, C ∪ D), granulation U/IND(A) and classification D corre-
spond to the condition cause and decision effect, respectively. D-Table re-
duction aims to choose appropriate granulation parameters A to preserve
specific decision information regarding D, i.e., it mainly seeks condition pa-
rameters A on a stable premise of D. Thus, from the causality viewpoint,
posterior weighted entropy HW (A/D) not only reflects the causality rela-
tionship between C and D but also more adheres to the operational pattern
of D-Table reduction, so the posterior reduct holds practical significance by
adopting the cause-to-effect (or decision-to-condition) strategy.

In summary, within a new framework of Bayesian inference, the posterior
weighted entropy bears important information of uncertainty distribution, and
it also positively improves upon the likelihood weighted entropy by considering
the prior information. Moreover, HW (A/D) (i.e., condition entropy H(A/D)) is
simpler than H∗

W (D/A) (i.e., mutual information I(A;D)) and HW (D/A) (i.e.,
condition entropyH(D/A)). Thus, the posterior reduct holds advantages regard-
ing uncertainty semantics, causality directness and calculation optimization.

6 Conclusions

Based on the GrC technology and Bayesian inference approach, we construct
three-way weighted entropies and three-way attribute reduction, and the rel-
evant results deepen information theory-based RS-Theory, especially the GrC
uncertainty measurement and attribute reduction. The three-way weighted en-
tropies and three-way attribute reduction actually correspond to the likelihood,
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prior, posterior decisions, so they also enrich the three-way decision theory from
a new viewpoint. In particular, hierarchies of three-way attribute reduction are
worth deeply exploring, and the posterior weighted entropy and posterior at-
tribute reduction need in-depth theoretical exploration and further practical
verification.
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