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From Principal Curves to Granular Principal Curves

Hongyun Zhang, Witold Pedrycz, Fellow, IEEE, Duoqgian Miao, and Zhihua Wei

Abstract—Principal curves arising as an essential construct
in dimensionality reduction and data analysis have recently
attracted much attention from theoretical as well as practical
perspective. In many real-world situations, however, the efficiency
of existing principal curves algorithms is often arguable, in
particular when dealing with massive data owing to the associated
high computational complexity. A certain drawback of these
constructs stems from the fact that in several applications
principal curves cannot fully capture some essential problem-
oriented facets of the data dealing with width, aspect ratio,
width change, etc. Information granulation is a powerful tool
supporting processing and interpreting massive data. In this
paper, invoking the underlying ideas of information granulation,
we propose a granular principal curves approach, regarded as
an extension of principal curves algorithms, to improve efficiency
and achieve a sound accuracy-efficiency tradeoff. First, large
amounts of numerical data are granulated into C intervals—
information granules developed with the use of fuzzy C-means
clustering and the two criteria of information granulation, which
significantly reduce the amount of data to be processed at the
later phase of the overall design. Granular principal curves are
then constructed by determining the upper and the lower bounds
of the interval data. Finally, we develop an objective function
using the criteria of information confidence and specificity to
evaluate the granular output formed by the principal curves.
We also optimize the granular principal curves by adjusting the
level of information granularity (the number of clusters), which
is realized with the aid of the particle swarm optimization. A
number of numeric studies completed for synthetic and real-
world datasets provide a useful quantifiable insight into the
effectiveness of the proposed algorithm.

Index Terms—Fuzzy C-means (FCM) clustering, granular
principal curves, interval data, multiple-criteria objective func-
tion, particle swarm optimization (PSO).
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I. INTRODUCTION

RINCIPAL curves—a nonlinear generalization of the first

principal component analysis [1]—have gained popularity
as an efficient tool of data analysis, understanding, and visu-
alizing data structures. The original version of the principal
curves method proposed by Hastie and Stuetzle (hereafter HS)
in 1989 [2] has undergone significant changes and resulted in
a variety of modifications. The developments are numerous;
they address a number of various issues, e.g., bias of the HS
principal curves algorithm [3], [16] and [17], convergence of
the HS algorithm [18], [19], parameter selection for principal
curves [20], to name just a few interesting pursuits [10],
[21]-[24]. Principal curves have been found to be an important
method to summarize information residing in experimental
data. Considerable work has been reported on applications
of principal curves to various problems such as, e.g., shape
detection [3], speech recognition [4], image skeletonization
[5], [6], feature extraction, bill recognition [7]-[9], [11], intel-
ligent transportation analysis [12], [13], high-dimensional data
partitioning [14], and regression analysis [15]. However, with
the rapid development of the Internet and information systems,
we often need to handle massive data, and here the efficiency
of existing principal curves algorithm (PC algorithm )becomes
lower when dealing with massive data owing to the associated
high computational complexity. Furthermore, principal curve
is a single numeric construct (curve) and as such, it cannot
fully capture the essence of the features hidden in data.
For instance, in image description, one would be interested
in capturing essential features of objects concerning width,
aspect ratio, width change, etc. Granular Computing (GrC)
has emerged as a new way to model ways of problem solv-
ing by concentrating on forming information granules (IGs)
and realizing processing at this higher, more abstract level
[25]-[41]. The theory, methodology, and algorithmic devel-
opments arising within the setting of GrC offer a variety of
ways of dealing with data processing (see, e.g., [42]). Through
information granulation, similar objects are gathered to form
IGs. In this way, vast amounts of numeric data are transformed
into far fewer IGs. Following this way, the computing time can
be significantly reduced. Moreover, information granulation
can hide (mask) some unnecessarily details, and improve ro-
bustness capabilities of the ensuing processing. Meanwhile, in
many situations, approximate (granular) results are of interest
when high efficiency and interpretability become required. The
proposed granular principal curves algorithm (referred to as
the GPC algorithm) forms an extension of the PC algorithm,
and helps improve efficiency and achieve a sound accuracy—
efficiency tradeoff. There is another useful motivating factor
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behind the concept of granular principal curves that is useful
from the perspective of applications. In principal curves, we
arrive at single (numeric) curve capturing the nature of data.
In contrast, in granular principal curves, we do not form a
single curve but build a granular construct, say a region, which
reflects the nature of the data. In situations where we track a
movement of a collection of closely linked objects (say, a flock
of robots, soldiers, etc.), it is more legitimate to portray this
phenomenon by a thick granular line rather than a single line.

In the design process, we first partition a large amount
of numeric data into C clusters (IG) by running the fuzzy
C-means (FCM) clustering algorithm, and characterize the
obtained granules as C granular (interval) entities. Granular
data obtained in this manner are expressed in the form of
intervals. Afterward, we construct the granular principal curves
by making use of the upper and the lower bounds of these
interval data. Finally, we design a multiple-criteria objective
function based on the criteria of confidence and specificity to
evaluate the granular output of principal curves, and optimize
the curves by adjusting the level of information granularity
(the number of clusters), which are realized by particle swarm
optimization (PSO).

The remainder of this paper is structured as follows.
Section II provides a brief overview of the concept of principal
curves. Next, the design process of granular principal curves
is elaborated on with the four main features being stressed,
namely 1) formation of the granular data; 2) construction
of granular principal curves; 3) design of multiple-criteria
objective function; and 4) choice of the optimal level of
information granularity. Experimental studies are covered to
evaluate and analyze the performance of the proposed al-
gorithm (see Section IV). Finally, Section V presents some
conclusions.

II. PRINCIPAL CURVES—SOME PRELIMINARIES

In this section, we review some generic concepts, main
ideas, and highlight some applications of principal curves.
More detailed description can be found in [2]-[24].

A. Concept

Hastie and Stuetzle generalized the self-consistent property
of principal components and introduced the notion of principal
curves in 1989. To highlight the properties of principal curves,
we recall some basic definitions and concepts of principal
curves.

Definition 2.1 [18]: A 1-D curve in R? is a continuous
function, where f : A —> R4, where A = [a, b] C R

The curve f can be considered as a vector of d-
dimensional functions of a single variable A € [a, b], f(}) =
(i), ..., fa(A)), where f(XA) = (fi(A), ..., fa(X)) are called
the coordinate functions. Here, A represents the arc-length
parameter along the curve in this definition.

Definition 2.2 [2]: For any X € R? the corresponding
projection index A ;(X) in the curve f(1) is defined as

Ap(X) =sup{a: |1 X — f)ll =inf | X — fOl} (D)
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Fig. 1.

Projecting points on a curve.

where f(A) = (fi(A), ..., fa(X)) denotes a smooth curve in R4
parameterized by A € R'. The projection index A /(X) of X is
the largest parameter value of A for which f(A) is closest to
X. Here, |.|| denotes the Euclidean norm in R¢. Accordingly,
the projection point of X on f is f(A (X)) (see Fig. 1).

Definition 2.3 [2]: Given curve f(A), A € R!, the arc-length
from A; to A, is given by

An n
1= /A LF @ =D i) = £OD] )
! i=1

where f'(X) is tangent to the curve at A which is sometimes
called the velocity vector at A and n is the number of data.

Definition 2.4 [2] (The HSPC): The smooth curve f(A) is
a principal curve if and only if:

1) f(1) does not intersect itself;
2) f(A) has finite length inside any bounded subset of R;
3) f(A) is self-consistent, that is

f) = EIX|A;(X) =AL YA€ R, X € R.  (3)

A principal curve is self-consistent meaning that each point
on the curve is the condition expectation of those points that
project to this point. Thus, passing through the middle of the
distribution and providing a good 1-D nonlinear description of
the data, the principal curve is a smooth self-consistent curve.
Here, a 1-D curve in a d-dimensional space is a vector f of d
functions indexed by a single variable A. The parameter A is
the arc length computed along the curve. Principal curves form
a nonlinear generalization of the principal component analysis.
The theoretical fundamentals behind these curves relate to
a low-dimensional nonlinear manifold embedded in a high-
dimensional space. Fig. 2 shows a first principal component
line and a principal curve. Compared with the corresponding
principal component, two evident advantages of a principal
curve are visible. First, a principal curve can retain more
information about the data. Second, it follows the data more
closely and captures the geometry of the data more accurately.

In the sequel, on the basis of the definition of the HSPC,
a variety of other definitions of principal curves have been
given in [16]-[18] and [21] and more recently in [10], [20],
[22], and [23], which differ essentially in how the center of
the distribution is determined.
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Fig. 2. Comparison between first principal component and principal curve.
(a) First principal component. (b) Principal curve.

B. Applications

A great number of applications of principal curves have
been reported in the literature. The first real-world application
of principal curves was a part of the Stanford Linear Collider
project [2]. Banfield and Raftery described an almost fully
automatic method for identifying ice floes and their outlines
in satellite images. The core procedure of the method uses a
closed principal curve to estimate the floe outlines. Further-
more, they extended existing clustering methods by allowing
groups of data points to be centered about principal curves
rather than points or lines [3]. Stanford and Raftery further
extended principal curve clustering and proposed an automatic
method for extracting curvilinear features of simulated and
real-world data [7]. Principal curves are applied to model the
short time spectrum of speech signals. First, high-dimensional
data points representing diphones are projected to a two-
dimensional subspace. Each diphone is then modeled by a
principal curve [4]. The method of principal curves is used to
describe and analyze the interaction among freeway traffic-
stream variables and their joint behaviors without utilizing
conventional assumptions made with regard to the functional
forms of interactions [12], [13]. The methods of principal
curves are often used to extract image skeletons and select
recognition features such as character, tubular objects, and
fingerprint [5], [6], [8], and [11].

III. GPC ALGORITHM

Assume that a set of numeric data points Xy =
{x1, ..., x5} C R% is given. In the GPC algorithm, we follow
the strategy outlined in the following.

1) Divide the data into C clusters by running the FCM
algorithm;

2) Form C interval (granular) data by running the principle
of justifiable granularity. This result comes in the form
of d-dimensional hyper-rectangles (boxes);

3) Select 247! x C vertices to form the upper and the lower
bounds of the dataset, where a d-dimensional interval
data are represented by a hyper-rectangle;

4) Extract upper principal curves f* following the upper
dataset by using PL principal curves proposed by Kégl.
The lower curves f~ are attained by the same method;

5) Check if f* and f~ satisfy the convergence condition.
If satisfied, output f* and f~, else adjust the level
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of information granularity (the value of C) and go to
step 1).
In the following sections, we elaborate on these steps in
more detail.

A. Formation of the Granular Data

Information granulation, introduced by Zadeh, offers a new
perspective at problem representation and problem solving
in computer science, logic, and philosophy [30]. Information
granulation is the process of forming meaningful pieces of
information, called IGs, that are regarded as entities that
embrace collections of individual elements (e.g., numerical
data) that exhibit some functional commonalities or closeness.
The principle of justifiable granularity, proposed by Pedrycz
[42]-[44], offers a way of constructing legitimate (justifiable)
IGs.

In many situations, when describing a problem, we tend to
shy away from numbers, and instead use aggregates (IGs) to
look at the problem. If we gather similar objects into IGs
according to the principle of justifiable granularity, then a
large amount of data will become transformed into a far fewer
granules. This way, we can reduce the computing time and
achieve a sound accuracy—efficiency tradeoff.

1) Construction of I1Gs: For numeric data, there are two
effective approaches to construct the IGs, namely information
granulation based on neighborhood relations [27], [28] and
clustering-based information granulation [25], [26]. Neigh-
borhood relations are often used to generate a family of
neighborhood granules from the dataset, which constitute a
covering of the dataset. The size of neighborhood granules
depends on a certain threshold §. Clustering algorithms divide
N numerical data into K granules, which constitute a partition
of the dataset. A partition consists of disjoint granules of the
dataset, and a covering consists of overlapping granules. In this
paper, we choose the method of clustering-based information
granulation; however, the use of the granulation method based
on neighborhood relations could be a viable alternative. Fuzzy
clustering, especially FCM [25], [26], as the extension of
C-means, is one of the commonly encountering algorithms
being used in the formation of IGs. Since the concepts and
algorithmic aspects of the FCM algorithm are well reported
in the literature, we only offer here a concise summary. Next,
we elaborate on the process of granulation of numeric data.
Original numerical data Xy = {x{, ..., xy} C R? are divided
into C clusters (I < C < N); we construct a partition matrix
U= lugl,i=12,...C;k = 1,2,..., N with C being the
number of clusters and N denoting the number of data. A set
of prototypes of the clusters is given as {vy, vy, ..., vc}. Every
cluster and its prototype, in particular, vi(i = 1,2,...,C),
represents an IG.

2) Description of IGs: Another issue arising when an-
alyzing and processing these granules is about their formal
description. In this paper, we utilize interval-valued data to
describe IGs represented by hyper-rectangles (boxes). IG usu-
ally contains more than a single object. We use the principle
of justifiable granularity [42]-[44] to form the upper boundary
and the low boundary of a granule (cluster) to capture the nu-
meric data embraced by the granule. The resulting information
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Fig. 3. Main idea of the granular data formation.

granular are described in the form of an interval (([x, X])). The
details of the method are outlined as follows.

Let the numeric center (representative) of the granule v;
be denoted by m;;. The granule v; is transformed into an
interval data X; = ([L»j,f,-j]),j = 1,...,d following the
principle of justifiable granularity. Following this principle, a
construction of interval IG is guided by two criteria, namely,
the coverage criterion and the specificity criterion. The cover-
age criterion is quantified by summing up the membership
grades of data falling within the bounds of Q (viz., the

interval [m;;, X;;]), namely, >~ uj. The specificity criterion is
XkEQ
articulated in terms of the length of the resulting interval. In

general, any continuous decreasing function f of the length
of the interval can serve as a sound indicator of the specificity
of the IG. Among possible design alternatives regarding the
choice of functions f, we consider it in the following form
f(my; —X;;]) = expmi—%il  where o is a positive parameter
supplying some flexibility when optimizing the interval Q. As
these two criteria are in conflict, we consider a maximization
of the composite multiplicative index, that is

E@xi) = ( Z uix) X exp(_“‘mi/—fu'l) @)

X €

E(x;) = () ug) x exp™ sl 5)

XkGQQ

where Q; = {x; € v,~|m,-j < xx < fz’_i} and Q) = {x; €
Ui|£,-j < xx < m;;}. We obtain the optimal upper bound X;; by
maximizing the value of E(X;;). In the same way, the optimal
lower bound x;; is constructed.

Fig. 3 illustrates a generic idea of the proposed method-
ology. First, a large collection of similar objects is arranged
together (by running FCM) to form a few IGs. Next, following
the principle of justifiable granularity, we form interval 1Gs
([x,x]) and construct hyperboxes (hyper-rectangles) to fully
describe the granules. A suitable level of granularity can
be determined. A more detailed discussion on the deter-
mination of the optimal level of granularity is provided in
Section III-D.

B. Construction of Granular Principal Curves

In this section, we first introduce the notion of the upper and
lower bounds of granular data and discuss how to construct
such granular entities. Then, granular principal curves are
extracted on the basis of the upper and lower bounds of these
data. We also elaborate in detail on the concepts behind the
construction of the granular principal curves.
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1) Generation of Upper and Lower Data: Once the N
numeric data have been granulated resulting in C interval
(granular) data represented by hyper-rectangles, we obtain
2¢ x C vertices with d being the dimensionality of the data
space. We divide these vertices into two subsets with a similar
number of elements in each part to describe the interval data.
These are referred to as the upper and lower data. For every
hyper-rectangle, if data distributions have both maximum and
minimum only in the direction of a certain coordinate axis,
upper data are composed of 297! vertices whose coordinate
values are higher in the dimension; otherwise, upper data are
composed of 297! vertices which are farther from the central
point of data distributions. The remaining vertices form the
lower data. For instance, for the sine wave exist simultaneously
maximum (convex point) and minimum (concave point) only
along the direction of y-axis, so we choose two vertices from
every rectangle as upper data, whose y-coordinate values are
higher [see Fig. 4(a)]. For a circle, upper data are composed of
2 x C vertices, which are more distant from the central point
of data distributions [see Fig. 4(b)]. The lower and upper data
are formed as follows. Let M = (my, ..., my) be the center
coordinate of N numeric data, and V; = (v;1, ..., vjp¢) be the
set of 2¢ vertices of the ith interval data. Suppose that x,; and
xj; are the data points whose coordinates are the maximum and
minimum observed along the ith coordinate. If the number of
xyi (or xj;) is greater than one, we choose the point whose
the Euclidean distance between x,; (or x;) and the center
point M is the shortest. 6,; is the included angle between
the line of Mx,; and the ith coordinate axis. Likewise, 6j;
is the included angle between the line of Mx; and the ith
coordinate axis. Let a; = 6,; +6;. If 6,; < 7/18, 6; < 7/18
and o; > 7/6, j = 1,...,d, j # i, then 297! vertices whose
coordinates are higher in the ith coordinate are selected as
the upper data and the remaining vertices become the lower
data; otherwise, for every interval data X;(i = 1,...,C), let
d(M, v;;) be the Euclidean distance between v;; and the center
point M(j =1, ..., 29). We sort the vertices in a descending
order with respect to the distance d(M, v;;) . The previous 27~
vertices are chosen as the upper data and the remaining 2¢~!
vertices form the lower data.

2) Extraction of Granular Principal Curve: We extract
the upper principal curves f* from the upper data and the
lower principal curves f~ from the lower data based on
the existing PC algorithms. Here, the PL principal curves
algorithm proposed by Kégl [18] is selected to extract f* and
f~. Then, we assess whether the granular principal curves (f*
and f7) meet the convergence criterion meaning that a local
maximum of the objective function has been achieved; if this
is the case, we produce f* and f~; otherwise, we adjust the
level of information granularity (viz., the number of clusters)
and proceed with the process as described in Section III-A.

To explain the process of granular principal curves ex-
traction, we generate a 2-D synthetic data affected by a
high level of noise (0 = 0.6) and composed of 1256 data
points that are distributed along a certain generating curve
[see Fig. 5(a)]. In this experiment, the data are granulated
by forming 45 interval data (C= 45, « = 1) according to
the method described in Section III-A. The interval data are
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Fig. 4. Formation of upper and lower data. (a) Upper and lower data obtained from sine wave data. (b) Upper and lower data obtained for circle.
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Fig. 5. Results obtained at various stages in granular principal curves
extraction when applied to noisy synthetic data. (a) Numerical data.
(b) Interval (Granular) data. (c) Upper and lower data. (d) Granular principal
curves.

represented by a collection of rectangles [see Fig. 5(b)]. The
upper and lower data are formed as described previously.
The upper data are composed of triangular points and the
lower data are composed of circular points [see Fig. 5(c)].
Finally, the granular principal curves are formed on the basis
of the upper and lower data by following the PL principal
curves algorithm [18] [see Fig. 5(d)]. The experimental results
produced at various development stages of the algorithm are
presented in Fig. 5.

Note that in the algorithm the granular output of the
principal curves has to be evaluated in terms of an objective
function. The algorithm terminates when objective function
achieves its local optimum which is accomplished by adjusting
the level of information granularity (the value of C that is the
number of clusters). The design of the objective function will
be discussed in detail in Section III-C.

C. Design of the Objective Function

As we are concerned with the granular outputs of the
principal curves, which have to be evaluated with regard
to the target, two criteria (performance indexes) are worth
considering. The first one looks at the quantification of the
concept of confidence—an extent to which the target values are
captured (represented by the curve). If the deviations between
the granular principal curves (f* and f~) and the generating
curve f¢ are lower than a given threshold ¢, then we gain a
high confidence about the granular output formed by the GPC
algorithm. Another criterion is focused on expressing a level
of specificity of the granular curves produced by the GPC
algorithm. This criterion is articulated in terms of the width
of the interval of the granular output.

Let us assume that for the purpose of the evaluation,
we consider some data F' coming in the form of the pairs
(Xp, f8(X), Xp = {x1,..., x5}, P=1,..., M. Here, M is the
number of testing sets randomly generated along the curve
S4() by the commonly used additive Gaussian noise. Let fy,
and fy  be the lower and upper principal curves, respectively,
being estimated for the testing set X p, respectively.

Furthermore, let D f5 be the deviation between fy, and the
generating curve f§. D, i denotes the deviation between fy,
and the generating curve f s.If D f5, and D f;, are less than a
given threshold ¢, then the granular output formed by the GPC
algorithm is deemed acceptable. D f5, is defined as follows:

%Zn: Axi, f2)
| 6)

n
LS A fx,)
i=1

where A(x;, f¢) = min|lx; — FEOI? and A(x, fy,) =
rn)tin lx; — f;P()»)Hz. The smaller the value of Df;P,
fx, and f% are. Df;P

the closer

can be defined by the same way.
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The confidence criterion is quantified by a certain index Q,
expressed as follows:

0 =card{(Xp, f4(1)) € F|Df)?p <eAN Df;P <e}/M. (7)

The specificity criterion can be expressed in terms of the
average distance (width) between bounds of fx, and f¥,
produced by the GPC algorithm for the inputs coming from
the dataset F. It is quantified by an index W expressed in the
form

Moo
W=y o [ minlf, 00— g 0ldam - ®)
Pl (fx,) !

where fy, and fy, are parametrized by their arc length.
In the design of the stopping condition, we consider several
design scenarios.

1) Use of the confidence criterion. This gives rise to a
single-criterion objective function V(C) = f;(Q). Here,
f1 is a continuous increasing function of Q;

2) Use of the two criteria, viz., confidence and speci-
ficity. The higher the value of confidence (Q) is, the
better granular outputs are, and the lower the value
of specificity (W) is, the better granular outputs are.
Therefore, these two criteria are very likely in conflict.
In this case, a two-criteria objective function considers a
maximization of the composite multiplicative index, that
is, V(C) = fi(Q) * f,(W). f1 is continuous increasing
function of Q, and f, is continuous nonincreasing
function of W. Among many possible design alternatives
regarding functions f; and f>, we consider the following
options: fi(Q) = Q and fL,(W) = e PW . Thus, the
objective function is defined as V(C) = Q % e #W.

On the one hand, the higher the value of C (the number
of clusters), the higher the value of V(C). On the other
hand, when C is increased beyond a certain threshold, the
increment of V(C) becomes very low. The stopping condition
brings these two aspects together. The algorithm terminates
when V(C) is higher than some predetermined threshold w;,
while the difference AV(C) = Vi (C) — V,_1(C) is lower than
some other threshold w,, Vi(C) is the value obtained at the
kth iteration.

The pseudocode supporting the calculations of the two-
criteria objective function is outlined as follows.

D. Determination of the Optimal Level of Information Gran-
ularity Based on PSO

Two types of search strategies can be used to determine the
optimal level of information granularity (number of clusters
C ): 1) enumeration and 2) heuristics-supported search. In the
first case, the optimal level of information granularity is found
by successively increasing the number of clusters and evalu-
ating the obtained results. If the optimal number of clusters
is Cop, then the enumeration requires Cop €valuations of the
resulting construct—granular principal curve. This method is
simple; however, the value of Coy could be very high (often
higher than 60), resulting in a substantial computing overhead.
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Algorithm 1 Objective function calculation algorithm (OFC algo-
rithm)

input: the massive dataset Xy = {x, ..
of cluster C.

Output: objective function value V(C)

1: Divide data Xy into C clusters by running the FCM
algorithm
2: Let (w1, ..., ig) be ith cluster center coordinate
3: For every cluster v; do
4. Compute the lower bound of the ith cluster x;; by
maximizing E(L'j)
5:  Compute the upper bound of the ith cluster X;; by
maximizing E(X;;)
Form granular data X; = ([L‘j’ xhi=1,..0)
end for
Compute the center coordinate M = (my, ..., my) of Xy
Let vertices set of interval data X; be V; = {v;1, ..., vior}
10: Let x,; be the data points whose coordinate is maximum
in the ith coordinate
11: Let x;; be the data points whose coordinate is minimum
in the ith coordinate
12: Compute the included angle 6,; between the line of Mx,;
and ith coordinate axis
13: Compute the included angle 6; between the line of Mx;
and ith coordinate axis
14: Let o; =0,,; +0);
15: if(o; > 7/6) A (6 < w/18) A (6 < 7/18), (j # i)
then
16:  Choose 297! vertices whose coordinate are higher in
the ith dimension as the upper data
17:  Choose remaining 297! vertices as the lower data
18: else
19:  for every interval data X; do

., Xy} and the number

b A

20: for every vertex v;; in V; do

21: Compute the Euclidean distance, D(M, v;;)) =
M — vl

22: end for

23: Sort the vertices by D(M, v;;) in descending order

24: Choose previous 29~! vertices as the upper data

25: Choose remaining 297! vertices as the lower data

26:  end for

27: end if

28: Determine f~ from the lower dataset using PL algorithm

29: Determine f* from the upper dataset using PL algorithm

30: Compute coverage criterion Q by (7) and specificity
criterion W by (8)

31: Compute V(C) = Q eV

Here, we adopt a heuristic search strategy to search the
optimal level of information granularity. Among many avail-
able alternatives, we choose PSO [45]. There are several
reasons behind this choice: 1) PSO, as a relatively new swarm
intelligence-based heuristic global optimization technique, is
easy to understand and implement. It requires a limited param-
eter tuning and exhibits robust global convergence; 2) in the
experiments, since m particles search for the optimal solution
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Fig. 6. Example of overall search process based on PSO.

at the same time, we find that the optimal solution can be
obtained after several iterations and the number of evaluation
of PSO is substantially lower than C,p. Furthermore, in our
case, the computing overhead of the algorithm is reasonable.
Let us briefly recall the PSO search process.

First, we initialize m particles corresponding with m dif-
ferent numbers of clusters and increments of cluster numbers
as initial positions s;(0) and initial velocity v;(0), where v;(0)
is a certain integer and not less than m. Next, each particle
proceeds through the search space at a given velocity v that
is dynamically modified on a basis of its own experience and
the best local performance reported so far (p). The velocity
is also affected by experience of other particles, thus resulting
in the best global value, global best (p,) [45]. Finally, if the
convergence condition has been satisfied in the rth generation,
then the position s;(7), namely p,, corresponds to the optimal
level of information granularity, that is, if V(s;(#)) > w; and
V(s;j(t)) — V(s;(t — 1)) < ws, then we report the value of s5;(¢).

Note that the position s; is an integer, meaning that the
computed velocity v; has to be rounded up in all generations.
There are also some limits imposed on the velocities, say vmax
and v, . Here, we set vpin=1, Vnax=Cmax, Where Cpax is the
maximal allowed number of clusters.

Let the number of particles (m) is equal to 5, and ¢ be
the number of generations. An example of the search process
is illustrated in Fig. 6. In this example, the total number of
evaluations of the fitness realized by the PSO is 35 (m x
t), while the direct enumeration results in 82 evaluations. In
essence, the PSO is superior to the enumeration method.

E. Computational Complexity of the Approach

As earlier, let N be the number of numeric data points, d be
the dimensionality of the data, C be the number of clusters, L;
be the iteration number of the FCM, and L, be the iteration
number of GPC. The GPC algorithm uses FCM to granulate
the numeric data. After the numeric data are granulated, the
number of data which needs be deal with by PC algorithms is
reduce to 2¢C. The computational complexity of the FCM
algorithm is O(NCL;) [25], and computational complexity
of the state-of-the-art PC algorithm is O(N?d>) [24]. Thus,
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Fig. 7. Comparison of running time of PC and GPC algorithms for different
data size N.

the overall computational complexity of the GPC algorithm
becomes O(NCL L)) + O((2¢C)*L,d>).

When we are concerned with the massive data, C, L, and
L, are very small relative to N, which can almost be ignored.
If the dimensionality of massive data is not very high, then we
have 2¢C <« N and CL,;L, <« N. We can draw a conclusion
that O(NCLL,) + O(Q2?C)*L,d®>) < O(N?d>). Therefore,
the computational complexity of the GPC algorithm can be
significantly decreased when dealing with large datasets. Fig. 7
shows the experimental results dealing with the running time
of the PC and GPC algorithms reported for different sizes.
Apparently, the GPC algorithm has lower computational com-
plexity when data size N is higher than a certain critical value.
Furthermore, with the growth of the data size, the positive
effect of the GPC algorithm becomes more visible.

IV. EXPERIMENTAL RESULTS AND THEIR ANALYSIS

In this section, we first present a series of experiments com-
pleted for several synthetic datasets to illustrate the proposed
algorithm, observe the effect of C and o on experimental
results, and identify the underlying relation among «, C, and
W. Meanwhile, the results of principal curves and granular
principal curves are compared. Then, the results produced by
a set of experiments, using the real-world images, are reported
to test the applicability of the proposed approach. Finally,
the performance of the proposed algorithm and the impact
of noise o and numeric data sizes N on the performance of
the algorithm are investigated, respectively.

A. Experimental Results—Synthetic Datasets

To compare the experimental results for the data before and
after granulation, we observe the effect of the parameters o
and C on the experimental results and identify the relationship
among «, C, and W. Here, the method is used for several
synthetic datasets. We generated datasets distributed along
some curves and affecting the data by additive Gaussian
noise. The noise has been independently imposed on different
dimensions of the corresponding generating curves.
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Fig. 8.  Granular principal curves produced for half-circle data. Fig. 9. Granular principal curves obtained for sine wave data.



756

0
2=2.0 C=65
6 6 14 .‘3?
:Zﬁt 'i
o
4 4 -
A
s ¥
2 2 _=
13
% 3 ¥
0 0 ‘¥ EXES
-4 -4 -2 0 2
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Fig. 11. Granular principal curves formed for 3-D helix-shaped data.

We constructed curves of various shapes, such as half-
circle, sine wave, s-shaped, 3-D helix-shaped, etc. We consider
several different scenarios: first, n = 2000 data points are
generated by means of an underlying half-circle of radius
r = 1, contaminated by noise of high amplitude (o= 0.2).In
the sequel, we consider a sine wave affected by significant
noise (o= 0.6) and composed of 1256 data points. Third, we
investigate an s-shaped pattern again contaminated by noise
of high amplitude (o= 0.8), where 2512 data points were
generated. Finally, we generate n = 5160 data points (o=
0.6) distributed along a 3-D helix curve. In all experiments,
we manually changed the values of the parameter o ranging
from 0.2 to 2.0, and varied the cluster number C from 20 to
70. For each particular number of clusters C and the value
of the parameter «, 100 random datasets were generated for
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the four differently shaped data. We run the GPC algorithm
on each dataset, and recorded the measurements (width) in
each experiment. Finally, the results were then averaged over
the experiments. The results of granular principal curves for
different values of « and C are displayed in Figs. 8-11. The
relationship among «, C, and the average distance (W) is
plotted in Fig. 12. Results of comparative analysis produced
by principal curves [18] and their granular counterparts are
presented in Fig. 13.

As shown in Figs. 8-12, the higher the number of clusters
C and the higher the value of «, the lower the average dis-
tance between the bounds of the produced granular (interval)
principal curves and the better the result of granular (interval)
principal curves. The reason is that the higher the number of
cluster C is, the more accurately the geometry of the data
becomes captured. On the other hand, the essential role of «
is to calibrate an impact of the specificity criterion on the
constructed granular data and higher values of « stress of
increasing importance of this criterion.

Note that the parameters ¢, B, w;, and w, used in the
stopping condition can affect the granular principal curves.
Different values of parameters ¢, 8, w;, and w, lead to different
levels of information granularity. By adjusting the values of
the parameters ¢, 8, w;, and w,, we can change the level
of information granularity and roughness of granular outputs
in any practical application. For the sake of simplicity, in
all experiments, the parameters ¢, B8, w;, and w, are set as
constants, namely, e= 0.186, = 1, w;= 0.8, and w,= 0.017,
respectively, These specific numeric values of these parameters
result in a sound design option.

B. Experimental Results Obtained for Real-World Images

To evaluate the applicability of the proposed approach,
the performance of the algorithm was tested on the two
suites of real images. The first one deals with images of
isolated handwritten characters captured by using a graphic’s
tablet. The second one is composed of the bilevel images
of objects which were transformed from original images by
bilevel thresholding. In this experiment, the GPL PC algorithm
proposed by Kégl [19] is adopted. Some results obtained for

757

* ok

£k L Lk %

3 + +
*’*4» ¥
CIIR
e
o
¥
2 s
i+ ¥

ke

¥4
-

.4 t'w‘ c_

sy

after granulation

hefore granulation

Fig. 13. Principal curves and granular principal curves constructed for four
varying shape data: a comparative view.

these two sets of images are shown in Figs. 14 and 15. The
experimental results demonstrate that the granular principal
curves exhibit some advantages when compared with the cor-
responding principal curves. For example, granular principal
curves are more closely positioned to the original image and
in this way help capture the shape features of the original
image more accurately. Furthermore, since the principal curve
is a single curve, it cannot fully reveal and retain a shape
information of different parts of the original image, such as
width, aspect ratio, and width change. In contrast, the granular
principal curves can.

C. Performance Analysis

We first compare the PC algorithm and GPC algorithm, that
is, the implementation results before and after granulation,
and evaluate in a quantitative manner the performance of
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Fig. 14. Principal curves and granular principal curves produced for hand-
written characters.

Fig. 15. Principal curves and granular principal curves obtained for a
collection of objects.

GPC algorithm by using different noise intensities o and
data size N. Then, we investigate the impact of noise o,
cluster size C and numeric data size N on the performance of
GPC algorithm, respectively. Finally, relevant evaluation and
conclusions are summarized.

1) Quantitative Comparison of Performance of PC and
GPC Algorithms: The PC algorithm [18] and GPC algorithm
are quantitatively compared based on the three performance
indexes. We consider deviation (D) of estimating curves and
generating curves, the average distance (W,), and running time
(T) as the three indexes. In the GPC algorithm, the average
distance is the distance between generating curves and the
upper principal curves f* (or the lower principal curves f7).
In the PC algorithm [18], the average distance is the distance
between generating curves and estimating curves. Concepts of
fitting deviation and average distance have been introduced
in detail in Section III-C. For the sake of simplicity, in all
experiments, the parameter « is set to 1. We vary noise
parameters and data sizes to evaluate the performance of GPC.
On the one hand, using the same data sizes (N = 5000)
and cluster numbers (C = 80), we change the deviation of
noise o by ranging it from 0.1 to 0.6. We investigate the
effect of the noise o on Dy and W, in order to compare
the robustness of PC and GPC. On the other hand, using
the same data noise level o= 0.4 and 15 different data sizes
ranging from N = 5000 to N = 75000, we compare the
efficiency of the PC algorithm and GPC algorithm in terms
of Dy and the running time (7'), and demonstrate an impact
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of data size N on Dy and T. Note that the parameters ¢,
B, w1, and w; need be set according to the different levels
of information granularity, and different ¢, 8, w;, and w, may
result in different values of Dy and T. Since we only consider
the impact of the data size N on D, and T, the four parameters
of the GPC algorithm are set in the experiments as the constant
values, say ¢= 0.186, =1, w;= 0.8, and w,= 0.017. Hundred
random datasets were generated for the four different datasets
and the resulting Dy and T values were averaged over these
experiments. The relationships between the performance of
the algorithm, noise o, and data size N are shown in Fig. 16.
Through observations from experiments, GPC turns out to be
more robust to alterations in the noise o. The reason is that
noise level can be obviously reduced during data granulation.
Furthermore, we find that the data size (data density is more
exact) mainly impact the running time (7'). On the contrary,
the data size (data density is more exact) has a slight effect
on Dy of the granular (interval) principal curves. Anyway, the
GPC method evidently outperforms the PC without granulation
in terms of the running time (7)) when dealing with large
datasets.

2) Impact of Noise, Cluster Size, and Data Size on the Per-
formance of the GPC Algorithm Performance: We investigate
the impact of C, N, and o on the objective function V(C) and
look carefully at the two aspects. On the one hand, we keep
noise o= 0.4 unchanged, observe the V(C) by altering C and
N. On the other hand, using the same data size N = 2000,
we observe the behavior of V(C) by altering the values of
C and o. In the first case, we consider 19 different numbers
of clusters C ranging from 10 to 100, and five different data
sizes ranging from N = 1000 to N = 10000. The second case
is the one when we consider 19 different numbers of clusters
C ranging from 10 to 100, and five different levels of noise
ranging from o= 0.1 to 0=0.6. For each particular values of C,
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Fig. 17. Relationship between V(C) and C reported for different data sizes
N and noise variance o.

N, and o, 100 random datasets were generated for the three
different datasets and the resulting values V(C) were averaged
over all experiments. The relationship between the objective
function V(C) and the numbers of clusters for different data
sizes and noise levels is plotted in Fig. 17.

The values of the objective function increase as the number
of clusters increases and the data size grows.The values are
reduced when the variance of the noise increases. However, it
is noticeable that the data size (data density to be more exact)
has a slight impact on the objective function. To the contrary,
the noise and cluster size can significantly change the values
of the objective function. This is not surprising as granular
principal curves are detected on the basis of granular data.
Furthermore, the impact of data size on formation of granular
data is much more limited than the one that associates with
the noise component.

V. CONCLUSION

Traditional PC algorithms tend to lose their efficiency when
dealing with large datasets. This paper extended the existing
concept of principal curves to granular principal curves built
on the basis of IGs constructed on the basis of large numeric
data. FCM clustering and the principle of justifiable granularity
formed a two-phase process supporting the formation of the
hyperboxes (hyper-rectangles) IGs. We showed that in this
way, the computation time could be substantially reduced.
We constructed the two-criteria objective function to evaluate
the granular output of the principal curves, and adjust the
level of information granularity (C) to optimize the granular
principal curves. The proposed approach helped achieve a
sound tradeoff between efficiency and accuracy.

A number of numeric studies were completed for synthetic
and real-world dataset to demonstrate the effectiveness of
the proposed approach. When encountering different noise
levels, the proposed method was more robust. Furthermore,
the GPC method outperformed the PC counterpart without data
granulation when being evaluated in terms of the running time
(7).

Given the nature of real-world problems, how to detect
granular principal surfaces or even granular principal mani-
folds of higher dimensions becomes an important issue for
future research. It is worth noting that the term granular refers
here to interval-valued data and subsequently interval-valued
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principal curves. An interesting avenue to investigate would
be to engage other formalisms of IGs such as fuzzy or rough
sets, which may lead to notions of fuzzy principal curves or
rough principal curves.
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