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Attribute reduction is the key technique for knowledge acquisition in rough set theory.
However, it is still a challenging task to perform attribute reduction on massive data. Dur-
ing the process of attribute reduction on massive data, the key to improving the reduction
efficiency is the effective computation of equivalence classes and attribute significance.
Aiming at this problem, we propose several parallel attribute reduction algorithms in
this paper. Specifically, we design a novel structure of hkey;valuei pair to speed up the
computation of equivalence classes and attribute significance and parallelize the
traditional attribute reduction process based on MapReduce mechanism. The different
parallelization strategies of attribute reduction are also compared and analyzed from the
theoretic view. Abundant experimental results demonstrate the proposed parallel attribute
reduction algorithms can perform efficiently and scale well on massive data.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Because of the fast-growing data in scientific and industrial areas, traditional data mining algorithms are facing the chal-
lenges from both the perspectives of data storage and computational complexity. Under the strategy of serial computing on
single node, it is difficult to construct enough memory to fit in the massive data and explore an effective solution in the huge
search space [12,35]. As an important preprocessing technique for data mining, attribute reduction, also called feature selec-
tion, is helpful to reduce feature space and improve classification performance through removing redundant and irrelevant
attributes. However, due to the inefficient data structure and the high computational cost, most existing attribute reduction
algorithms cannot handle the massive data well. Thus it is desired to design an efficient attribute reduction strategy for mas-
sive data [9].

As an effective tool of attribute reduction, rough set theory [10,28,29] has been successfully developed to find a reduct
or multiple reducts. To achieve an efficient attribute reduction, different algorithms [4,14–16,21,23–25,28,30–
32,34,38,40,42,46,47,50,51,56] in rough set theory were proposed in the last decades. Xu et al. [42] designed a fast attribute
reduction algorithm, in which the universe partition U=A is calculated recursively to reduce the searching space. Hu et al.
[15] only computed the objects in U � POSAðDÞ for the neighborhood rough set model to improve the efficiency of the
attribute reduction process when the size of the selected attribute set A increases. Qian et al. [30] proposed positive
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approximation to characterize the granulation structure of a rough set using a granulation order for improving the time effi-
ciency of the positive region reduction algorithm. Using the technique of counting sort, Qian et al. [32] proposed a fast attri-
bute reduction algorithm based on positive region, discernibility matrix and information entropy. Li et al. [21] presented
quick attribute reduction algorithms for the assignment reduct, the distribution reduct, and the maximum distribution
reduct in the inconsistent decision table. Yang et al. [46] presented the reduct of test cost multigranulation decision system.
The best time complexity among these attribute reduction algorithms is max (OðjCjjUjÞ;OðjCj2jU=CjÞ) (j � j denotes the cardi-
nality of a set, jCj and jUj denote the number of conditional attributes and objects respectively). This indicates that if a data
set is high-dimensional or huge-volumed, the reduction algorithms above cannot perform well on it. Moreover, sampling
techniques can be applied to reduce the data size but sampling methods should satisfy some hypothesis and may lose valu-
able data samples. Therefore, researchers try to parallelize the traditional attribute reduction algorithms to improve their
efficiency on massive data.

Parallel computing may be a good solution to attribute reduction algorithm, in which many calculations are carried out
simultaneously in task and/or data parallel [2]. Task parallelism targets at running different tasks in parallel while data
parallelism aims to perform the same operation on multiple data sets. The strategies of both task parallelism and data
parallelism are utilized to parallelize the attribute reduction process. For small datasets, most existing parallel attribute
reduction algorithms [26,36,39] focus on task parallelism and decompose the whole computation task into several
subtasks which can be processed on different nodes. These parallel algorithms assume that data can be loaded into the
main memory of a single machine and the minimal reducts can be found in task parallel. Mohammad et al. [26] distrib-
uted the entire data into multiple nodes and applied migration to find out sufficiently good reducts in a large search space
through parallel computing. Combining parallel genetic algorithm with symbiotic evolution, Wang and Wu [39] also
proposed a new approach to attribute reduction for informations system with a large number of attributes. Susmaga
[36] decomposed a reduct generation task into a number of subtasks and performed the parallel computations in a
tree-like manner. For large datasets, parallel calculations of attribute reduction algorithms [6,18] emphasize data parallelism.
Deng et al. [6] decomposed the whole dataset into many sub-tables and proposed an approach for parallel reduction from
a series of decision subsystems. Liang et al. [18] considered the sub-tables within a large-scale dataset as small
granularities. The reducts of small granularities can be computed separately and finally be fused together to generate
the reduct of the whole data. However, these reducts are not guaranteed to be the same as those discovered from
the whole dataset since these subsystems (sub-tables) do not exchange the information for each other. Thus, all these
aforementioned algorithms cannot generate the precise reducts for massive datasets. Moreover, these algorithms
generally must encode the complex program to explicitly manage datasets, and consider the details of tolerating machine
failures and restarting individual tasks.

Recently, a simple parallel computation approach—MapReduce [5], has been received considerable attention, which is a
scalable parallel programming model for data-intensive and computation-intensive applications on machine clusters.
MapReduce model has the significant advantages as follows. It hides many system-level details from the user and automat-
ically parallelizes the computation across large-scale clusters of machines. It also handles machine failures and schedules
inter-machine communications to make efficient use of networks and disks. It has been demonstrated that MapReduce is
helpful to achieve an effective solution of complex computational task on massive data through coding with map/reduce
functions. Furthermore, the distributed file systems inherent in MapReduce [8,11] provides us a scalable mechanism for stor-
ing massive datasets. MapReduce has been successfully applied in data mining [1,12], machine learning [3,22,35,53] and web
indexing [55]. To the best of our knowledge, there are only a few works of using MapReduce programming model for attri-
bute reduction in rough set theory [33,45]. Therefore, it is required to thoroughly discuss and develop some parallel attribute
reduction algorithms using MapReduce for large data.

Our interest in this paper is to investigate the following issue: How to use MapReduce programming model to design an
efficient parallel algorithm for attribute reduction? We first propose the parallelism of traditional attribute reduction algo-
rithms. Then, we discuss the parallel and serial operations among the reduction algorithms and analyze three parallelization
strategies. By constructing the proper hkey;valuei pairs and implementing map/reduce functions, we realize the parallel
computation of equivalence classes and attribute significances. Finally, we design the parallel algorithms for acquiring the
core attributes and a reduct in both data and task parallel. All these parallel algorithms are implemented using MapReduce
on Hadoop [11]. Experimental results demonstrate that our proposed algorithms can efficiently deal with large-scale
datasets.

The rest of this paper is organized as follows. Section 2 reviews the preliminary concepts in rough set theory and
the MapReduce framework. In Section 3, the parallelism of the attribute reduction process is proposed and different
parallelization strategies are compared and further analyzed. Based on this, the parallel attribute reduction algorithms
in both forms of data parallel and task parallel are designed using MapReduce. Section 4 presents the experimental
results and validates the efficiency of the proposed parallel attribute reduction algorithms. Finally, the paper work
is concluded in Section 5.

2. Preliminaries

In this section, we will review the basic notions of the Pawlak rough set model in [25,28,29,32], and MapReduce program-
ming model in cloud computing [5].



J. Qian et al. / Information Sciences 279 (2014) 671–690 673
2.1. Pawlak rough set model

For classification tasks, we consider a decision table which is defined as: S ¼ ðU;At ¼ C [ D; fVaja 2 Atg; fIaja 2 AtgÞ, where
U ¼ fx1; x2; . . . ; xng is a finite non-empty set of objects, At is a finite nonempty set of attributes, C ¼ fc1; c2; . . . ; cmg is a set of
conditional attributes describing the objects, and D is a set of decision attributes that indicates the classes of objects. Va is a
nonempty set of values of a 2 At. Ia is an information function that maps an object x in U to exactly one value v in Va, that is,
IaðxÞ ¼ v . For simplicity, we assume D ¼ fdg in this paper, where d is a decision attribute which has k different decision
values, and Vd ¼ f1;2; . . . ; kg. A table with multiple decision attributes can be easily transformed into a table with a single
decision attribute by considering the Cartesian product of the original decision attributes.

Let A # U � U an equivalence relation on U. The equivalence relation A determines a partition of U, denoted by U=INDðAÞ,
or simply pA. The equivalence class of U=INDðAÞ containing object x is given by ½x�INDðAÞ ¼ fy 2 Ujðx; yÞ 2 INDðAÞg. For simplic-
ity, we write ½x�A instead of ½x�INDðAÞ if INDðAÞ is understood.

Consider a partition pD ¼ fD1;D2; . . . ;Dkg of the universe U with respect to the decision attribute D and another partition
pA ¼ fA1;A2; . . . ;Arg defined by a set of conditional attributes A. The equivalence classes induced by the partition are the
basic blocks to construct the Pawlak rough set approximations.

Definition 1. For a decision class Di 2 pD, the lower and upper approximations of Di with respect to a partition pA are
defined by Pawlak [28]:
aprAðDiÞ ¼ fx 2 Uj½x�A # Dig;
aprAðDiÞ ¼ fx 2 Uj½x�A \ Di – ;g:

ð1Þ
Definition 2. For a decision table S, a positive region and boundary region of a partition pD with respect to a partition pA are
defined as:
POSAðDÞ ¼
[

16i6k

aprAðDiÞ;

BNDAðDÞ ¼
[

16i6k

ðaprAðDiÞ � aprAðDiÞÞ:
ð2Þ
For the partition pD, we can calculate its lower and upper approximations in terms of k two-class problems. POSAðDÞ is the
positive region of decision and indicates the union of all the equivalence classes defined by pA, in which each equivalence
class induces a certain decision. BNDAðDÞ is the boundary region of decision and is formed by the union of all the equivalence
classes defined by pA which induce the partial decisions. When A equals C; POSCðDÞ denotes the positive region in a decision
table.
Definition 3. For a decision table S, all the objects in POSCðDÞ are called consistent objects. The objects in U � POSCðDÞ are
called inconsistent objects. If POSCðDÞ ¼ U, then the decision table is consistent; otherwise it is inconsistent.

In what follows, we present the measures of attribute significance for attribute reduction based on positive region and
information entropy.

Definition 4. For a decision table S, let A # C and c 2 C � A, then the significance of attribute c is defined by:
sig1ðc;A;DÞ ¼ cA[fcgðDÞ � cAðDÞ ð3Þ
where cA[fcgðDÞ ¼
jPOSA[fcgðDÞj

jUj .
Definition 5. For a decision table S, let pD ¼ fD1;D2; . . . ;Dkg, then information entropy of D is given by:
InfoðDÞ ¼ �
Xk

j¼1

pðDjÞlog2 pðDjÞ ð4Þ
where pðDjÞ ¼ nj

n ðj ¼ 1; . . . ; kÞ, n is the number of the objects in U, nj is the number of the objects in Dj.
Definition 6. For a decision table S, pA ¼ fA1;A2; . . . ;Arg, pD ¼ fD1;D2; . . . ;Dkg, then the entropy Info(A, D), conditional
entropy of A conditioned on D, is given by
InfoðA;DÞ ¼ �
Xr

i¼1

pðAiÞ
Xk

j¼1

pðDjjAiÞlog2 pðDjjAiÞ ð5Þ
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where pðAiÞ ¼ ni
n ; pðDjjAiÞ ¼

nj
i

ni
ði ¼ 1; . . . ; r; j ¼ 1; . . . ; kÞ, ni is the number of the objects in Ai;n

j
i is the number of the objects of

decision value j in Ai.
Definition 7. For a decision table S, let A # C and c 2 C � A, the significance of attribute c is defined as
sig2ðc;A;DÞ ¼ InfoðA;DÞ � InfoðA [ fcg;DÞ ð6Þ
Definition 8 [54]. For a decision table S, A ¼ fa1; a2; . . . ; alg# C be a subset of condition attributes. The information set with
respect to A for any object x 2 U can be denoted by the tuple
~xA ¼ hIa1 ðxÞ; Ia2 ðxÞ; . . . ; Ial
ðxÞi ð7Þ
For any c 2 C � A, the information set with respect to A [ fcg for any object x 2 U can be denoted by
~xA[fcg ¼ hIa1 ðxÞ; Ia2 ðxÞ; . . . ; Ial
ðxÞ; IcðxÞi ð8Þ
2.2. MapReduce programming model

MapReduce [5], proposed by Google, is a software framework for implementing the parallel algorithm. Unlike OpenMP
and MPI, MapReduce provides a strategy to distribute computation without burdening the programmer with details of dis-
tributing computing, e.g. check-pointing and execution monitoring. Furthermore, MapReduce implementations usually sup-
ply their own distributed file systems that provide a scalable mechanism for storing large amounts of data.

In MapReduce programming model, the user of the MapReduce library expresses the computation as two functions: map
and reduce. Conceptually, the map and reduce functions supplied by users have the following types:
map : hK1;V1i ! ½hK2;V2i�
reduce : hK2; ½V2�i ! ½hK3;V3i�
where all Ki and Vi ði ¼ 1; . . . ;3Þ are user-defined data types, and the convention [� � �] is used throughout this paper to denote
a list.

The MapReduce paradigm can be summarized as follows: (1) Data in the MapReduce framework can be represented as
hkey; valuei pairs. (2) Map phase takes pairs hK1;V1i as input and produces a set of intermediate hK2;V2i pairs. The MapRe-
duce library groups together all intermediate values V2 associated with the same K2 and passes them to the reduce phase. (3)
Reduce phase accepts an K2 and a set of values for that key, merges together these values to form a possibly smaller set of
values, and finally outputs hK3;V3i pairs.

Since MapReduce provides a robust and scalable framework and automatically splits the whole dataset into many data
splits in natural sequence, we mainly focus on designing the proper hkey;valuei pairs as well as implementing the map
and reduce functions for parallel attribute reduction algorithms.

3. Parallel attribute reduction algorithms using MapReduce

In this section, we first analyze the parallelism of classical attribute reduction algorithms using MapReduce. Then we
compare three different parallelism strategies of attribute reduction and present how the reduction computations can be
transformed into map and reduce operations. We also design a novel hkey;valuei pair to compute the equivalence classes
and attribute significance. Finally, the parallel attribute reduction algorithms in the forms of both data and tasks are con-
structed through implementing the map and reduce functions.

3.1. The parallelism of classical attribute reduction algorithms

Before analyzing the parallelism of attribute reduction algorithm, we first have to discuss the parallel computation of
equivalence classes.

Definition 9. For a decision table S, let Si ði ¼ 1;2; . . . ; LÞ denote a sub-decision table, if it satisfies (1) S ¼
S

16i6L Si; (2)
Si \ Sj ¼ ;, where i; j ¼ 1;2; . . . ; L and i – j, then Si is called a data split.

By Definition 9, Si corresponds to a data split in MapReduce framework. Thus, we can divide the whole dataset into many
data splits using MapReduce.

Theorem 1. For a decision table S, let A # C; pA ¼ fA1;A2; . . . ;Arg; Si (i = 1,2, . . . , L) be a data split of S, Si=A ¼ fAi;1;Ai;2; . . . ;Ai;rg,
then Ap ¼

S
16i6L Ai;p (p = 1,2, . . . , r).
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Proof. If any two objects with respect to A are the same, they can be merged into one equivalence class. Thus, the same
equivalence classes among different data splits can be combined as a larger equivalence class. Therefore, for
pA ¼ fA1;A2; . . . ;Arg and Si=A ¼ fAi;1;Ai;2; . . . ;Ai;rg, we have Ap ¼

S
16i6L Ai;p ðp ¼ 1;2; . . . ; rÞ. �

According to Theorem 1, the computation of equivalence classes can be performed on each data split independently and
the results obtained from parallel computing can be merged into the same equivalence classes as obtained in serial comput-
ing. Thus, we can implement the data parallelism of equivalence class computation using MapReduce. Zhang et al. [54] pro-
posed a parallel method for computing lower and upper approximations. For attribute reduction, we only compute the
attribute significance among different equivalence classes instead of considering the details of equivalence classes. Based
on the parallel computation of equivalence classes, we can further analyze the parallelism of classical attribute reduction
algorithms.

3.1.1. The parallelism of discernibility matrix algorithm
As we all know, Skowron and Rauszer [34] proposed a discernibility matrix for representing the set of attributes that

can discern object pairs based on the definition of positive region. Hu and Cercone [13] improved the discernibility
matrix that can preserve the boundary region partition. When a decision table S is consistent, two discernibility matrices
are the same. However, they are different when a decision table S is inconsistent. Misusing a reduct definition that is
only for a consistent table will cause a problem for an inconsistent table in the Pawlak rough set model [25]. Most clas-
sical attribute reduction algorithms based on the improved discernibility matrix [37,44,49,52] regarded the inconsistent
objects in U � POSCðDÞ as a special decision equivalence class. Here we denote the decision values of the objects in
U � POSCðDÞ as a new decision value. Thus, the decision equivalence classes of an inconsistent decision table of k deci-
sions can be re-formed as pD ¼ fD1;D2; . . . ;Dk;Dkþ1g, and the original inconsistent decision table are transformed into a
‘consistent’ decision table. The main idea of these attribute reduction algorithms is to find such an attribute discerning
the largest number of object pairs, i.e. the attribute most often occurring in the discernibility matrix. Ngugen and Ngu-
gen [27], Korzeń and Jaroszewicz [17] and Qian et al. [32] implemented efficient heuristics for computing the number of
object discerning pairs from the value distribution of attributes. But if the number of the objects exceeds 1 million, all
these algorithms cannot load the data into the main memory. Thus, they are infeasible to process the massive data. In
order to solve this problem, we present a technique below for counting the number of object discerning pairs in cloud
computing [33].

Consider a partition pD ¼ fD1;D2; . . . ;Dk;Dkþ1g and pA ¼ fA1;A2; . . . ;Arg. In Ap, there exists ni
p objects whose decision value

is i. Obviously, all the objects of decision value i in any equivalence class form Di. In other words, ni
1 þ � � � þ ni

r equals ni, the
number of the objects in Di. Similarly, we know that n1

1 þ � � � þ n1
r þ � � � þ nkþ1

1 þ � � � þ nkþ1
r equals n, the number of the objects

in U. A discernibility object pair is generated from any two objects in which have different decision value and conditional
combined values on A. That is, A can discern such a discernibility object pair.

Definition 10. For a decision table S, let A # C;pD ¼ fD1;D2; . . . ;Dkþ1g, the discernibility object pair set of A with respect to D
can be defined as DOPD

A :
DOPD
A ¼ fhx; yijx 2 Di; y 2 Dj;9a 2 A; IaðxÞ – IaðyÞg ð9Þ
where Di 2 pD;Dj 2 pD;1 6 i < j 6 kþ 1.
Theorem 2. Given a decision table S, pD ¼ fD1;D2; . . . ;Dkþ1g, for a 2 A;DOPD
A ¼

S
a2A DOPD

fag.
Proof. It is obviously proven according to Definition 10. �

According to Definition 10, we need to generate the set of discernibility object pairs DOPD
A . When a decision table S is mas-

sive, the space complexity of DOPD
A is Oðn2Þ. In order to handle large data in cloud computing, we below compute the number

of the object discerning pairs by the attribute discernibility.

Definition 11. For a decision table S, let A # At;pA ¼ fA1;A2; . . . ;Arg, then the attribute discernibility of A can be defined as
DISA, where
DISA ¼
X

16p<q6r

npnq ð10Þ
Proposition 1. For a decision table S, let A # C; pA ¼ fA1;A2; . . . ;Arg; pD ¼ fD1;D2; . . . ;Dkþ1g, then the attribute discernibility of
A with respect to D DISD

A ¼
P

16i<j6kþ1

P
16p<q6r ni

pnj
q.
Proof. It is obviously proven according to Definition 11. �
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However, since equivalence classes are distributed on different nodes in cloud computing, computing DISD
A is a complex

task according to the above formula. In [33], we propose an efficient method of computing the number of object discerning pairs.

Proposition 2. For a decision table S, let A # C and pA ¼ fA1;A2; . . . ;Arg; pD ¼ fD1;D2; . . . ;Dkþ1g; pA[D ¼ fA1
1;A

2
1; . . . ;Akþ1

1 ;A1
2;

A2
2; . . . ;Akþ1

2 ; . . . ;A1
r ;A

2
r ; . . . ;Akþ1

r g;nl1 and nl2 denote the number of the objects from any two different equivalence classes in pA[D,

then DISD
A ¼

P
16p<q6r npnq þ

P
16i<j6kþ1 ninj �

P
16l1<l26rðkþ1Þ nl1 nl2 .
Proof. Since DISA[D ¼
P

16l1<l26rðkþ1Þ nl1 nl2 ; DISA ¼
P

16p<q6r npnq and DISD ¼
P

16i<j6r ninj, while DISD
A ¼ DISA þ DISD � DISA[D,

thus DISD
A ¼

P
16p<q6r npnq þ

P
16i<j6kþ1 ninj �

P
16l1<l26rðkþ1Þ nl1 nl2 . �

Although DISD
A can be directly computed using MapReduce, it is required to compute the equivalence classes from A;D and

A [ D, thereby a large amount of hkey; valuei pairs are generated and affect the efficiency of the parallel algorithm. Thus we
can calculate the number of those indiscernibility object pairs that A cannot discern. An indiscernibility object pair with
respect to the conditional attributes A is generated from any two objects which have different decision values and the same
combinational values on A.

Definition 12. For a decision table S, let A # C;pD ¼ fD1;D2; . . . ;Dkþ1g, the indiscernibility object pair set of A with respect to
D can be defined as gDOPD

A :
gDOPD
A ¼ fhx; yijx 2 Di; y 2 Dj;8a 2 A; IaðxÞ ¼ IaðyÞg ð11Þ
where Di 2 pD;Dj 2 pD;1 6 i < j 6 kþ 1.

Theorem 3. Given a decision table S, pD ¼ fD1;D2; . . . ;Dkþ1g, for a 2 A; gDOPD
A ¼

T
a2A

gDOPD
fag .
Proof. It is obviously proven according to Definition 12. h
Lemma 1. For a decision table S, A # C;pA ¼ fA1;A2; . . . ;Arg;pD ¼ fD1;D2; . . . ;Dkþ1g, then the number of indiscernibility object

pair set of A with respect to D gDISD
A ¼

P
16p6r

P
16i<j6kþ1 ni

pnj
p.
Proof. According to Definition 12, it is easily proven. h

According to Definition 12 and Lemma 1, it is found that the indiscernibility object pairs are generated from the boundary
region with respect to the conditional attributes A. If A is ;, it means that all the objects in the universe are regarded as one

equivalence class, i.e. gDISD
; ¼

P
16i<j6kþ1 ninj. When gDISD

A does not equal gDISD
C , we should add an attribute into A to discern

those indiscernibility object pairs. Assume the added attribute is c, the remained indiscernibility object pairs are divided into
two parts: some pairs can be discerned by c and the others cannot.

Theorem 4. Given a decision table S, pD ¼ fD1;D2; . . . ;Dkþ1g, for c 2 C � A, then gDISD
A[fcg 6

gDISD
A .
Proof. Suppose U=A ¼ fA1;A2; . . . ;Arg, the equivalence classes induced from U=½A [ fcg� are finer than those of U=A. Any

equivalence class Apðp ¼ 1;2; . . . ; rÞ can be sub-divided as A1
p;A

2
p ; . . . ;Akþ1

p in terms of decision attribute D. The numbers of

these equivalence classes are denoted as n1
p;n

2
p; . . . ;nkþ1

p , respectively. Suppose attribute c has l different attribute values,

we can divide the equivalence class Ai
pði ¼ 1;2; . . . ; kþ 1Þ into l equivalence classes for candidate attribute set A [ fcg. Note

that some equivalence classes may be empty.
A1
p;1 [ A1

p;2 [ � � � [ A1
p;l ¼ A1

p

A2
p;1 [ A2

p;2 [ � � � [ A2
p;l ¼ A2

p

� � �
Akþ1

p;1 [ Akþ1
p;2 [ � � � [ Akþ1

p;l ¼ Akþ1
p

n1
p;1 þ n1

p;2 þ � � � þ n1
p;l ¼ n1

p

n2
p;1 þ n2

p;2 þ � � � þ n2
p;l ¼ n2

p

� � �
nkþ1

p;1 þ nkþ1
p;2 þ � � � þ nkþ1

p;l ¼ nkþ1
p
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For an equivalence class Ap, the number of the indiscernibility object pairs gDISD
A equals

P
16i<j6kþ1 ni

pnj
p. After adding attribute

c into A, the number of the indiscernibility object pairs gDISD
A[fcg is the sum of

P
16i<j6kþ1 ni

p;1nj
p;1;
P

16i<j6kþ1 ni
p;2nj

p;2; . . . ;P
16i<j6kþ1 ni

p;ln
j
p;l, namely

P
16i<j6kþ1

P
16h6l ni

p;hnj
p;h.

For any equivalence class Ap, suppose any two decision values i and j, we can have
ni
p;1nj

p;1 þ ni
p;2nj

p;2 þ � � � þ ni
p;ln

j
p;l 6 ni

p;1 þ ni
p;2 þ � � � þ ni

p;l

� �
nj

p;1 þ nj
p;2 þ � � � þ nj

p;l

� �
¼ ni

pnj
p:
Therefore, gDISD
A[fcg 6

gDISD
A holds. �

Corollary 1. Give a decision table S, pD ¼ fD1;D2; . . . ;Dkþ1g, for P # Q # C, then gDISD
Q 6

gDISD
P .
Proof. It is obviously proven according to Lemma 1 and Theorem 4. �

Theorem 4 and Corollary 1 indicate that the proposed measure for estimating the number of indiscernibility object pairs
is monotonic.

Theorem 5. Given a decision table S, pD ¼ fD1;D2; . . . ;Dkþ1g, for c 2 C � A; gDISD
A[fcg þ DISD

A[fcg ¼
P

16i<j6kþ1 ninj.
Proof. It is obviously proven according to Proposition 1 and Lemma 1. �

As discussed above, since
P

16i<j6kþ1 ninj ¼ 1
2 ½n2 �

P
16h6kþ1ðnhÞ2� can be computed in parallel, we can implement the par-

allelism of constructing the discernibility matrix through parallelizing the computation of equivalence classes as shown in
Fig. 1.

Remark 1. Skowron’s discernibility matrix and all the improved discernibility matrices consider the difference of an object
pair (x; y) from any two objects among two different decision equivalence classes of the positive region. They also consider
the discernibility object pairs from such two objects in which x and y come from the positive region and the boundary region
respectively. However, they do not consider the differences of an object pair (x; y) from the objects among the boundary
Fig. 1. The parallel and serial computing parts in cloud computing.
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region U � POSCðDÞ. Hu’s discernibility matrix only consider the difference of an object pair (x; y) in which x and y come from
different decision equivalence classes. Therefore, for Skowron’ discernibility matrix, we regard the objects in U � POSCðDÞ as
a special decision equivalence classes Dkþ1. According to Definition 10, we do not consider the difference of object pair (x; y)
in Dkþ1 as well, because these objects are inconsistent in the original decision table. Since the objects in U � POSCðDÞmay be
distributed into different nodes in cloud computing, we have to use MapReduce to transform the inconsistent decision tables
into the ‘consistent’ decision tables for Skowron’s discernibility matrix algorithm, otherwise we will obtain the reduct of Hu’s
discernibility matrix algorithm. In fact, our method can be applied to Hu’s discernibility matrix (omit step 2 in Algorithm 8)
since Definition 12 also holds the boundary region partition preservation. When the decision table S is inconsistent, gDISD

C – 0.
In this paper, we mainly discuss the parallelism of discernibility matrix algorithm for Skowron’s discernibility matrix.

Moreover, the monotonicity of attribute significance measures is required to guide the attribute reduction process. One
kind of monotonic measures which can be used to evaluate the discernibility is defined as follows.

Definition 13. For a decision table S, let A # C and c 2 C � A, then the significance of attribute c is defined by:
sig3ðc;A;DÞ ¼
gDISD

A �
gDISD

A[fcgP
16i<j6kþ1 ninj

ð12Þ
3.1.2. The parallelism of positive region and information entropy algorithm
In the Pawlak rough set model, the attribute reduction algorithms based on positive region proceed in the following way.

They start with an empty set or the core attributes, and iteratively add attributes one by one into a reduct to maximize the
positive regions until the number of objects in the positive region reaches. Referring to this process, some efficient attribute
reduction algorithms based on positive region were developed in [30,32,42]. These algorithms are effective for small datasets
by employing the relatively reasonable attribute measures or sorting algorithms. It is assumed that all the data can be loaded
into the main memory and can be deleted anytime. Unfortunately, they are infeasible for large data because discarding
unnecessary objects and restoring the relevant objects consume too much time and space in cloud computing. We therefore
always compute the number of the objects in the positive region from different candidate attribute set for the whole dataset
in each iteration. Since the computations of the equivalence classes are intensive in a positive region algorithm, we will con-
sider the strategy of computing the equivalence classes and the attribute significance in parallel. The serial computing part
consists of only summing the number of the positive region objects and choosing the best candidate attributes for next iter-
ation. As the size of the set of candidate attributes increases, it will generate more hkey;valuei pairs which result in the
longer time of the serial computing parts. In the Pawlak rough set model, since jBNDAðDÞj þ jPOSAðDÞj ¼ jUj, we turn to com-
pute the number of the objects in the boundary region instead of that in the positive region. Thus we propose a significance
measure of attribute c for the boundary region algorithm as follows:

Definition 14. For a decision table S, let A # C and c 2 C � A, then the significance of attribute c for boundary region
algorithm is defined by:
sig10 ðc;A;DÞ ¼
jBNDAðDÞj � jBNDA[fcgðDÞj

jUj ð13Þ
Besides the algorithms based on positive region, the attribute reduction algorithms based on conditional information
entropy are also developed in [19,20,24,30,32,38]. However, they are inappropriate to deal with large data as well. Thus,
it is required to parallelize the attribute reduction algorithm based on information entropy. The parallelism of information
entropy algorithms is similar to that of boundary region algorithm. The intensive computation of these algorithms is to gen-
erate a large number of equivalence classes and compute the information entropy for each candidate attribute subset accord-
ing to the boundary region. Therefore the attribute reduction algorithms based on information entropy is the key to compute
equivalence classes in parallel.

As mentioned above, the computations of the equivalence classes in parallel are of critical importance. We find that the
whole attribute reduction process can be divided into the parallel and serial computing parts. Fig. 1 shows the process of
attribute reduction and the regions surrounded by dash lines denote the parallel computing parts. The equivalence classes
and the attribute significance for each equivalence class can be computed in parallel. However, the total attribute signifi-
cance is calculated and the best candidate attribute subset is determined in serial.

3.2. The relationships among classical attribute reduction algorithms

Among classical attribute reduction algorithms, for any two objects x and y in a decision table, four cases in [32,43] are
identified as follows:

1. IAðxÞ ¼ IAðyÞ; IdðxÞ ¼ IdðyÞ;
2. IAðxÞ ¼ IAðyÞ; IdðxÞ– IdðyÞ;
3. IAðxÞ– IAðyÞ; IdðxÞ– IdðyÞ;
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4. IAðxÞ – IAðyÞ; IdðxÞ ¼ IdðyÞ.

Among the above four cases, since case 4 is implied in case 1 [43], here we only discuss the first three cases. For a decision
table, case 1 represents that it is consistent, while case 2 indicates that it is inconsistent. For attribute reduction algorithms,
case 1 is used to construct the positive region, case 2 can be used for computing the information gain, the number of the
objects in the boundary region and the indiscernibility object pairs, and case 3 is employed to generate a discernibility
matrix or the discernibility object pairs. In the Pawlak rough set model, since jBNDAðDÞj þ jPOSAðDÞj ¼ jUj, we can transform
case 1 into case 2 by computing the boundary region. Moreover, since gDISD

A þ DISD
A ¼

P
16i<j6kþ1 ninj , we can transform the

computations of the number of discernibility object pairs DISD
A (case 3) into the computations of the number of indiscernibil-

ity object pairs gDISD
A (case 2). Therefore, considering only case 2 is sufficient for classical attribute reduction algorithms. All

the reduct construction methods in terms of case 2 can be induced into attribute reduction algorithms based on boundary
region. The relationships among three classical algorithms are illustrated as shown in Fig. 2. In Fig. 2, np denotes the number
of the inconsistent objects while fnp represents the number of all consistent objects for each equivalence class. In [48], Yao
discussed different attribute measurements on the granularity of partitions. Based on this, we can construct different parallel
attribute reduction algorithms.

In what follows, we first discuss the parallelization strategies of attribute reduction, then design the parallel computation
of transforming original decision tables into the consistent decision tables and extracting core attributes, finally introduce
some details of how to implement parallel attribute reduction algorithms based on positive region (boundary region), dis-
cernibility matrix and information entropy using MapReduce.
3.3. Parallelization strategies for attribute reduction

We can categorize these parallel attribute reduction algorithms as task-parallelism and/or data-parallelism algorithms.
The differences of the parallelism strategies are shown in Fig. 3, where S denotes the whole dataset, Si ði ¼ 1;2; . . . ; LÞ is a
data split, Tj ðj ¼ 1;2; . . . ;MÞ is a task, ‘‘EC’’ denotes the parallel calculations of the different equivalence classes and the attri-
bute significance, and ‘‘AS’’ denotes the counting parts of the attribute significance for different candidate attribute subsets.

In Fig. 3(a), the algorithms based on task-parallelism perform the task independently but require to access the entire
dataset at once. These algorithms are only feasible for small datasets. Classical parallel methods for attribute reduction
belong to this category. In Fig. 3(b), parallel algorithms using MapReduce are based on data-parallelism, which partition a
massive dataset into multiple data splits and broadcast them to different nodes. Since attribute reduction methods need
Fig. 2. The relationships among classical attribute reduction algorithms.

Fig. 3. The main differences of three parallelization strategies.
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computing the equivalence classes for each data split in each iteration, we first divide the overall data into multiple splits
using MapReduce, then compute the equivalence classes from different candidate attributes in task parallel for each data
split as shown in Fig. 3(c).

For massive datasets, parallel attribute reduction algorithms must employ data parallelism strategy with MapReduce.
Here we compare two parallel attribute reduction algorithms in Fig. 3(b) and (c). Next we assess the performance of the pro-
totype based on the following assumptions:

� A parallel attribute reduction algorithm consists of both parallel and serial parts.
� The processing capability of each node on per data split is the same constant.
� The communication time is directly proportional to the amount of data transferred across the cluster nodes.

Considering the influence from the workload (S), the number of the tasks (M) and the number of the nodes (N), we eval-
uate the performance of parallel computing by the following equation:
TðS;M;NÞ ¼ TppðS;M;NÞ þ TspðS;M;NÞ þ TcðS;M;NÞ ð14Þ
where TðS;M;NÞ represents the execution time across multiple computing nodes. TppðS;M;NÞ is the execution time of the
processes that can be parallelised. TspðS;M;NÞ is the execution time of serial processes. TcðS;M;NÞ denotes the communica-
tion time between nodes.

For each task, TcðS;M;NÞ can be presented by the following equation:
TcðS;M;NÞ ¼ ðN � 1Þ � t � L
N
þ t0

� �
ð15Þ
In TcðS;M;NÞ; t is the communication time of transferring a data split between nodes, L is the number of data splits for S; L
N is

the number of data splits for each node when N computing nodes are running tasks concurrently, and t0 is the communica-
tion time required to establish a session between nodes which is independent of the workload S. All these parameters are
constants. We can find that two parallel attribute reduction algorithms in Fig. 3(b) and (c) may have the same parallel
and serial execution time but different communication time.

Suppose the size of a reduct is R. We denote the communication time in Fig. 3(b) and (c) as TD
c ðS;M;NÞ and TDT

c ðS;M;NÞ
respectively. For the attribute reduction in Fig. 3(b), we must execute R iterations. The first iteration computes M attribute
significances in serial, this means it must finish M tasks. The second iteration executes M � 1 tasks, and so on. For the attribute
reduction in Fig. 3(c), we execute R iterations as well. However, in the first iteration M attribute significances are computed in
parallel. In other words, M tasks are processed concurrently, and the communication time is ðN � 1Þ � M � t � L

N

� �
þ t0

� 	
.

The second iteration executes M � 1 tasks, and the communication time is ðN � 1Þ � ðM � 1Þ � t � L
N

� �
þ t0

� 	
. Correspondingly,

we can get the communication time of the R-th iteration, ðN � 1Þ � t � L
N

� �
þ t0

� 	
. Thus we can obtain the following equations:
TD
c ðS;M;NÞ ¼

X
16i6R

ðM � iþ 1Þ � ðN � 1Þ � t � L
N
þ t0

� �
 �
ð16Þ

TDT
c ðS;M;NÞ ¼ ðN � 1Þ �

X
16i6R

ðM � iþ 1Þ � t � L
N

� �
 �
þ R � t0

 !
ð17Þ
According to Eqs. (16) and (17), we can get the following equation.
TD
c ðS;M;NÞ ¼ TDT

c ðS;M;NÞ þ ðN � 1Þ �
X

16i6R

½ðM � iÞ � t0� ð18Þ
Since the parallel attribute reduction algorithms using only data parallelism need to consume more time for job scheduler
and data communications, we focus on the parallel attribute reduction algorithms with both data and task parallelism.

3.4. Parallel computation of the ‘consistent’ decision table for Skowron’s discernibility matrix

As discussed above, the classical attribute reduction algorithms based on discernibility matrix always considered the
‘consistent’ decision table. If the decision table is inconsistent, those algorithms regard the objects in U � POSCðDÞ as a special
equivalence class, Dkþ1, whose decision value is kþ 1. Therefore, we must transform an inconsistent decision table into a
‘consistent’ decision table to construct discernibility matrix. In this process, the most intensive calculation is to compute
the equivalence classes. It is well known that the computations of the equivalence classes are independent of each other.
Thus, the computations of different equivalence classes from a subset of attributes can be executed in parallel.

The massive data is stored in Distributed File System [11] in the form of a sequence file of hkey; valuei pairs, which rep-
resent the objects in the input dataset. In each pair, the key denotes an object and the value is null. The MapReduce frame-
work partitions the whole dataset into many data splits, and globally broadcasts them to all mappers. For each map task,
map function receives a candidate subset of attributes as a global parameter, computes the equivalence classes for each
object from a data split, and writes them into local files on the corresponding node. These files consist of two parts:
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hkey0;value0i, where key0 is the combinational value of an equivalence class, and value0 is the decision value of the corre-
sponding equivalence class. We here design a Parallel Algorithm for the Computation of a ‘Consistent’ Decision Table (PAC-
CDT) using MapReduce. The pseudocodes of Algorithm PACCDT which consist of Algorithm PACCDT-Map and Algorithm
PACCDT-Reduce, are shown in Algorithms 1 and 2 respectively.

Algorithm 1. PACCDT-Map(key, value)

Input: Conditional attributes, C; a data split, Si

Output: hkey0;value0i, where key0 is an equivalence class and value0 is a decision value
1: for each object x in Si do
2: key0  ~xC; //~xC is an equivalence class induced from C
3: value0  IdðxÞ; //IdðxÞ is a decision value
4: EmitIntermediate hkey0;value0i;
5: end for
Algorithm 2. PACCDT-Reduce(key, V)

Input: The same equivalence class, key; the list of the decision values, V
Output: hkey0;value0i, where key0 is an equivalence class and value0 is a decision value
1: num the number of the different values in V;
2: if num == 1 then
3: value0  the decision value in V;
4: else
5: value0  k + 1;
6: end if
7: for each v 2 V do
8: Emit hkey0;value0i
9: end for

By Algorithm 1, we compute the equivalence classes induced from the whole conditional attributes for each data split and
store them into the local files. The MapReduce framework copies the same equivalence classes from different Mapper nodes
to the corresponding Reducer nodes and sorts these equivalence classes. By Algorithm 2, we can check the consistency of
decision values among the same equivalence classes. If all objects have the same decision value, we output all objects, other-
wise we denote the decision value of all objects by kþ 1 and output them. That is, all the objects with the decision value
kþ 1 form the boundary region in the original decision table, which can be regarded as a special equivalence class. Such
a decision table is a ‘consistent’ decision table which preserves the indiscernibility object pairs in the original decision table.

To handle the inconsistency, a parallel algorithm PACCDT for acquiring the ‘consistent’ decision table (S0) is proposed
using MapReduce. This parallel algorithm is designed based on the MapReduce driver, which executes in the form of map
and reduce functions. Algorithm PACCDT is illustrated in Algorithm 3.

Algorithm 3. Algorithm PACCDT

Input: A decision table, S; the whole conditional attributes, C
Output: A ‘consistent’ decision table, S0

1: Set the number of the reduce tasks;
2: Initiate a MapReduce job, compute the equivalence classes by executing Algorithm 1 and acquire the consistent

decision table by Algorithm 2.

By Algorithm 3, we can acquire a ‘consistent’ decision table. Note that if we set few reduce tasks, we will obtain large
consistent datasets. However, the time cost in Reduce phase will be very high. Therefore, we recommend setting the number
of the reduce tasks as the number of the cluster nodes in this MapReduce job configuration. Under this strategy, a large data-
set will be divided into multiple consistent decision sub-tables.

In the next subsections, we implement a parallel algorithm of computing the core attributes, and parallelize three clas-
sical attribute reduction algorithms using MapReduce.

3.5. Parallel algorithm of computing the core attributes

Many researchers try to improve the efficiency of attribute reduction algorithms through studying the core attributes
[32,44]. The core attributes are helpful to reduce search space and the size of discernibility matrix. Thus the fast algorithm
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for extracting the core attributes is desirable. To the best of our knowledge, the time complexity of the fastest algorithm in
computing core attributes is OðjCjjUjÞ, which is infeasible for massive data. It is found that the computation of equivalence
classes is intensive in computing the core attributes. Therefore, we design a Parallel Algorithm of Computing the Core Attri-
butes. Algorithm PACCA includes Algorithm PACCA-Map and Algorithm PACCA-Reduce. The pseudocodes of the algo-
rithms are shown in Algorithms 4 and 5 respectively.

Algorithm 4. PACCA-Map(key, value)

Input: Conditional attributes, C; any candidate attribute, c 2 C; a data split, Si

Output: hkey0;value0i, where key0 is an equivalence class with attribute c and value0 is a decision value
1: for each object x in Si do
2: for each attribute c 2 C do
3: key0  cþ~xC�fcg;
4: //Here, c is flag, which means the equivalence class ~xC�fcg.

5: value0  IdðxÞ;
6: EmitIntermediate hkey0;value0i;
7: end for
8: end for
Algorithm 5. PACCA-Reduce(key,V)

Input: An equivalence class with attribute c, key; the list of the decision values, V
Output: hkey0;value0i, where key0 is a candidate attribute c and value0 is the attribute significance of the corresponding

attribute, c AttriSig
1: c AttriSig  0;
2: for each j 2 V do

3: nj
p  the frequency of decision value equal j in ½C � fcg�pð1 6 j 6 kÞ;

4: end for

5: c AttriSig  
P

16j6k nj
p;

6: if all the decision values are different then
7: key0  c; // c is flag from the equivalence class key
8: value0  c AttriSig;
9: Emit hkey0;value0i;
10: end if

By Algorithm 4, we can compute the different equivalence classes induced from different candidate attribute sets. By
Algorithm 5, we can compute the single attribute significance in the equivalence classes ½C � fcg�p in parallel for boundary
region algorithm. For information entropy and discernibility matrix algorithm, the computations of c AttriSig in Algorithm 5

(line 5) are modified as ‘‘5: c AttriSig  � np

n

Pk
j¼1

nj
p

np
log2

nj
p

np
’’ and ‘‘5: c AttriSig  

P
16j1<j26kþ1 nj1

p nj2
p ’’ respectively.

Algorithm PACCA requires a MapReduce job as well. The attribute significance values of different candidate attribute sub-
sets are read from the output files. And then the significance values of the candidate attributes are summed up. Algorithm
PACCA is summarized in Algorithm 6.

Algorithm 6. PACCA

Input: A decision table, S; the whole conditional attributes, C
Output: Core attributes, Core(C)
1: Core(C)  ;, AttriSigValue[]  0;
2: Initate a MapReduce job, compute equivalence classes induced from candidate attribute set C � fcig (where

i ¼ 1;2; . . . ;m) by executing Algorithm 4, and calculate each attribute significance by Algorithm 5;
3: Read the attribute significance from the HDFS, add up c AttrSig into the corresponding element in array

AttriSigValue[];
4: for i ¼ 1 to m do
5: if AttriSigValue[i] – jU � POSCðDÞj then
6: Core(C) = Core(C) [fcig;
7: end if
8: end for
9: return Core(C);



By Algorithm 6, we can acquire the core attributes for positive region (boundary region) algorithm. For the core attributes

in information entropy and discernibility matrix algorithm, the computations of judging attribute c in Algorithm 6 (line 5)
are modified as ‘‘5: ifAttriSigValue½i�– InfoðDjCÞ’’ and ‘‘5: ifAttriSigValue½i�– gDISD

C ’’ respectively.

J. Qian et al. / Information Sciences 279 (2014) 671–690 683
3.6. Parallel algorithms for attribute reduction using MapReduce

As discussed above, three classical algorithms compute the equivalence classes of different candidate attribute sets and
the corresponding attribute significance iteratively. Thus we can design a general Parallel Algorithm for Attribute Reduction
(PAAR). The pseudocode of Algorithm PAAR includes Algorithm PAAR-Map for computing the equivalence classes and
Algorithm PAAR-Reduce for computing the attribute significance. Algorithm PAAR-Map is shown in Algorithm 7 and Algo-
rithm PAAR-Reduce is the same as Algorithm 5.

Algorithm 7. PAAR-Map(key, value)

Input: Selected attributes, A; any candidate attribute, c ðc 2 C � AÞ; a data split, Si

Output: hkey0;value0i, where key0 is an equivalence class with attribute c and value0 is a decision value
1: for each object x in Si do
2: for each attribute c 2 C � A do
3: key0  cþ~xA[fcg;
4: //Here, c is flag which means the equivalence class~xA[fcg

5: value0  IdðxÞ;
6: EmitIntermediate hkey0;value0i;
7: end for
8: end for

By Algorithm 7, we can compute the equivalence classes of different candidate attribute subsets in data and task parallel
on each data split.

For boundary region algorithm, when computing sig10 ðc;A;DÞ for c 2 C � A, we only calculate the number of boundary
region objects, jBNDA[fcgðDÞj, in reduce phase. For information entropy and discernibility matrix algorithm, when computing
sig2ðc;A;DÞ and sig3ðc;A;DÞ for c 2 C � A, it is found that the values of InfoðA;DÞ and gDISD

A keep constant in iteration, thus we
calculate only the information entropy InfoðA [ fcg;DÞ and the number of indiscernibility object pairs gDISD

A[fcg in reduce
phase respectively.

Parallel attribute reduction algorithms based on boundary region (positive region), discernibility matrix and informa-
tion entropy require MapReduce job to read the attribute significance values of different candidate attribute subsets
from the output files in reduce phase. These parallel algorithms sum up the values of candidate attributes, and deter-
mine which attributes to be added into a reduct. In this way, we renew the candidate attributes which are used for
the next iteration. This procedure must be executed serially in each iteration. Algorithm PAAR can be summarized as
follows.

Algorithm 8. A general parallel algorithm for attribute reduction using MapReduce

Input: A decision table, S
Output: A reduct, Red
1: Red ;, Core(C)  ;;
2: Compute a consistent decision table by executing Algorithm 3;
3: Compute the core attributes, Core(C), by Algorithm 6;
4: Red Core(C);
5: while CC4ðRed;DÞ– CC4ðC;DÞ do
6: //Here CC4ð�; �Þ is the classification capability
7: Initate a MapReduce job and execute Algorithms 7 and 5;
8: for each attribute c 2 C � Red do
9: Compute sig4ðc;Red;DÞð4 ¼ f1;10;2;3gÞ;
10: end for
11: sig4ðc0;Red;DÞ  best(sig4ðc;Red;DÞ) (if the attribute like that is not only one, select one attribute arbitrarily);
12: Red Red [ fc0g;
13: end while
14: Red.
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By Algorithm 8, we can acquire a ‘consistent’ decision table, core attributes and one reduct. For positive region and infor-
mation entropy algorithm, we omit step 2. Since there has no core attributes in some decision tables, we can omit step 3 to
improve the reduction performance. We denote the general Parallel Algorithms for Attribute Reduction based on Positive
Region, Boundary Region, Discernibility Matrix and Information Entropy in data and task parallel as PAAR-PR, PAAR-BR,
PAAR-DM and PAAR-IE, respectively. We only acquire one reduct by a parallel attribute reduction algorithm. In general,
these reducts are not all the same since the attribute significance measurements are different. In other words, the inequality
sig1ðci;Red;DÞP sig1ðcj;Red;DÞ for positive region algorithm does not hold that sig2ðci;Red;DÞP sig2ðcj;Red;DÞ and
sig3ðci;Red;DÞP sig3ðcj;Red;DÞ for the other two algorithms. This will lead to different selected candidate attributes and gen-
erate different reducts (see the reducts in Table 2).
Theorem 6. The reducts obtained by the parallel attribute reduction algorithms are the same as those obtained by the
corresponding serial methods.
Proof. As indicated in [4], there are four basic steps in a typical attribute reduction method—subset generation, subset eval-
uation, stopping criterion and result validation. The only difference between the parallel algorithms and the corresponding
serial methods is the subset evaluation procedure (see Fig. 1). The subset evaluation process mainly includes the computa-
tions of the equivalence classes and the attribute significance.

For a decision table S;A # C;pA ¼ fA1;A2; . . . ;Arg for the serial methods. For the parallel algorithms, suppose
Si ði ¼ 1;2; . . . ; LÞ be a data split of S; Si=A ¼ fAi;1;Ai;2; . . . ;Ai;rg. sig4ðc;A;DÞ and sigDT

4 ðc;A;DÞ denote the attribute significances
of attribute c in the serial methods and in the corresponding parallel algorithms respectively.

(1) According to Theorem 1, S ¼
S

16i6L Si;Ap ¼
S

16i6L Ai;p ðp ¼ 1;2; . . . ; rÞ. This means that the equivalence classes in the
serial methods are the same as those in the corresponding parallel algorithms.

(2) According to Definitions 4, 7, 13 and 14, sig4ðc;A;DÞ ¼ sigDT
4 ðc;A;DÞð4 ¼ f1;1

0;2;3gÞ because the equivalence classes
are the same for the serial methods and the corresponding parallel algorithms.
Therefore, the reducts obtained by the parallel algorithms are the same as those obtained by the corresponding serial
methods. �

4. Experimental evaluation

This section presents the experimental results of a parallel algorithm for computing the consistent decision table and core
attributes, as well as our parallel attribute reduction algorithms in data and task parallel. We primarily focus on the perfor-
mances such as speedup, scaleup and sizeup [41] of the parallel algorithms for attribute reduction. We do not consider the
relative accuracy of these algorithms since the parallel algorithms produce the same results as those in serial, and different
attribute reduction algorithms will generate different reducts in general (see Ref. [32] and Table 2).

4.1. Experiment setup

We run parallel algorithms on a cluster of 17 nodes. For distributed experiments, one is set as a master node and the rest
are configured as slave nodes. Each node has 2 GB of main memory and uses Intel Pentium Processor No. E5300 with Dual-
Core(2 cores in all, each has a clock frequency of 2.6 GHz), and connects via an Ethernet (100 Mbit/s). For each node, we
install Cygwin 2.697(a Linux-like environment in Windows), Hadoop 0.20.2 [11] and Java 1.6.20. We make the following
changes to the default Hadoop configuration: we run two map and one reduce tasks in parallel on each node, and set the
replication factor to 1.

We conduct an extensive series of experiments on two commonly used machine learning data sets, i.e. Mushroom and
Gisette from the UCI Machine Learning repository [7] and four synthetic large data (DS3-6). We discretize Mushroom and
Gisette, and duplicate Mushroom 5000 times and Gisette 17 times to generate two large datasets DS1 and DS2 for the
validity and correctness of our parallel algorithms. Each dataset has only one decision attribute. The attribute values of each
Table 1
Description of the datasets.

No. Datasets Objects Attributes Classes Consistency

1 DS1 40,620,000 22 2 Yes
2 DS2 102,000 5000 2 Yes
3 DS3 20,000,000 30 10 No
4 DS4 40,000,000 50 10 Yes
5 DS5 100,000 10,000 10 Yes
6 DS6 1000,000 2000 10 Yes



J. Qian et al. / Information Sciences 279 (2014) 671–690 685
synthetic dataset are random integers from 1 to 10. When the size of the conditional attribute set is large, the dataset is con-
sistent in general. Thus, we artificially generate the inconsistent objects and add these objects into DS3. Table 1 summarizes
the characteristics of each dataset.

4.2. The running time on different datasets

For large data, we partition it into many data splits in data parallel using MapReduce, and deal with each data split in task
parallel. Fig. 4 shows the running time of some important selected attributes in each iteration for six datasets on 16 nodes.
Note that the first value in each subgraph denotes the running time of computing the positive regions, boundary regions and
information entropy on the original dataset and of computing the ‘consistent’ dataset for discernibility matrix algorithm.

From Fig. 4, one can check that the three boundary region algorithms exhibit a similar pattern of increase in the running
time especially for DS2, DS5 and DS6 with high dimensions, whereas the positive region algorithm consumes more time. In
Fig. 4(g), the total running time of PAAR-PR is 4–8 times as much as that of PAAR-BR, PAAR-DM and PAAR-IE on DS2, DS5 and
DS6, because PAAR-PR needs to compute a large number of positive region objects when the number of selected attributes
increases. In general, PAAR-DM consumes more time than PAAR-IE and PAAR-BR for the same length of the reduct on DS2,
DS4 and DS6, since PAAR-DM uses BigInteger package in JAVA program language for the series of operations on large integer.
Different reducts for four attribute reduction algorithms are listed in Table 2.

4.3. The performance evaluations on different datasets

In the following, we examine the speedup, scaleup and sizeup characteristics of our parallel algorithms in data and task
parallel.

4.3.1. Speedup
In order to measure the speedup, we keep the dataset constant but increase the number of computers in the system. The

perfect parallel algorithm demonstrates a linear speedup: a system with m times the number of computers yields a speedup
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Fig. 4. The comparisons of four algorithms for six datasets on 16 nodes.



Table 2
Different reducts of the datasets.

No. PAAR-BR (PAAR-PR) PAAR-DM PAAR-IE

1 {5,20,8,12,3} {5,20,22,21} {5,20,22,21}
2 {1,2,2530,3601, 222,3} {1804,2280, 3192,1484,347,1} {395,905,4991,2210,156,1}
3 {1,2,3,28,7,4} {3,25,17,6,9} {25,18,29,3,6}
4 {1,2,3,14,15,43,42,4} {21,46,42,4,7,26,11,1} {30,6,1,9,5,20,3,2}
5 {1,2,3,3130,9178,7282,1775,10} {3335,1925,361,6778, 1241,8923,17} {3335,4939,2073,9396,9058,7929,2}
6 {1,2, 3,1562,1678,1643,1134,1927,1679,8,4} {1817,1656,1334,1377,1966,1157,1322,1364,1194,805,3} {1689,1145,1467,1345,

672,1256,1896,357, 968,1846,1}
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of m. However, linear speedup is difficult to achieve because of the serial computing, the communication costs, the faults and
the overheads in job scheduling, monitoring and control. We evaluate the speedup on datasets with different nodes. The
number of nodes varied from 1 to 16. Fig. 5 shows the speedup of parallel computations of the consistent decision table
and the relative speedup of a parallel algorithm for the core attributes for DS1-6. From Fig. 5(a), the speedup is lower than
what we expected, since the algorithm only generates many hkey;valuei pairs in the map phase and the reduce function
plays little role for parallel computing, namely the proportion of the parallel computing time to the serial computing time
is lower. From Fig. 5(b), the relative speedup of computing the core attributes in parallel is much better for DS1, DS3 and DS4.

Fig. 6 shows the speedup of four parallel attribute reduction algorithms for DS1-6. From Fig. 6, PAAR-PR, PAAR-BR, PAAR-
DM and PAAR-IE can process large-scale datasets efficiently. However, one can check that the speedup is lower on DS2, DS5
and DS6 with high dimensions. The reason is that the serial computing time is overwhelming in the total time. We improve
computing the total attribute significance for each candidate attribute in data parallel rather than in serial. Thus, the total
running time is reduced greatly. Fig. 7 only illustrates the ratio and the speedup of two algorithms PAAR-DM and PAAR-
DM-D (in data parallel once more) for computing the total attribute significance.
4.3.2. Scaleup
Scaleup is defined as the ability of a m-times larger cluster to perform a m-times larger job in the same run-time as the

original system. To demonstrate how well the three parallel algorithms handle larger datasets when more slave nodes are
available, we have conducted the scaleup experiments where we make the size of the datasets grow in proportion to the
number of slave nodes in the cluster nodes. For the dataset DS3, 20,000,000 objects are calculated on 4 node and
40,000,000 and 80,000,000 objects (2 and 4 times DS3) are handled on 8 and 16 nodes respectively. Fig. 8 shows the scaleup
performance results of the datasets. The higher the scaleup value, the better the performance is. In Fig. 8, the values of sca-
leup are all higher than 0.6, which indicate our proposed algorithms scale well.
4.3.3. Sizeup
Sizeup mainly measures how much longer it takes on a given system, when the dataset size is m-times larger than the

original data set. For the measure of sizeup, we fix the number of nodes to 4, 8 and 16 respectively, and increase the size of
dataset from 1 to 4 GB. Fig. 9 only shows the sizeup performance results of dataset DS4 on 4, 8 and 16 nodes. The higher
value of the sizeup indicates the longer time the system takes when the size of a dataset increases. Therefore our proposed
algorithms have a good sizeup performance.
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4.4. Discussion

Yang et al. [45] first computed the reduct redi from sub-decision table Si (data split), then judged whether new attributes
AttrSet should be added in [redi, and finally acquired the reduct Red by deleting redundant attributes using MapReduce.
Since the sub-decision tables did not exchange information, this Red may be approximate. Moreover, the set of the candi-
date reducts may be large which lead to a serious problem in deleting redundant attributes. Qian et al. [33] proposed the
approach to attribute reduction based on discernibility matrix by computing the number of discernibility object pairs. In this
paper, we further discuss and implement the parallelism of three classical attribute reduction algorithms. Our parallel algo-
rithms first decomposed a large decision table S into many data splits in data parallel using MapReduce, then computed the
equivalence classes on each data split in task parallel, thereby acquired the consistent decision table, the core attributes and
a reduct. Since all equivalence classes are shuffled and sorted, the reducts by our parallel algorithms PAAR-PR, PAAR-BR,
PAAR-DM and PAAR-IE are exact.
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Results on six datasets relevant to data parallelism and task parallelism are shown in Figs. 4 and 6 respectively. The prin-
cipal details in these experimental observations are illustrated as follows.

� The more the number of hkey;valuei pairs, the longer the running time.
As illustrated in Fig. 4, the running time of algorithm PAAR-PR is longer than that of PAAR-BR since PAAR-PR generates
more hkey; valuei pairs as the size of the candidate attribute set increases.
� The larger the number of hkey;valuei pairs, the more the times of data parallel.

Using task parallel, parallel attribute reduction algorithms generate more hkey;valuei pairs for some datasets with high
dimensions, which result in the lower speedup. The reason is that the serial computing time dominates in the total time.
In fact, all the hkey;valuei pairs forms a large dataset as well. We should compute the attribute significance in data par-
allel once more instead of in serial computing. This strategy can effectively improve the speedup as indicated in Fig. 7.

5. Conclusions

Classical attribute reduction algorithms cannot deal with large data. To solve the problem, we analyzed the parallelism of
classical attribute reduction algorithms and illustrated parallel/serial computing parts. By designing the proper hkey;valuei
pairs, we implemented the map and reduce functions for the equivalence classes and attribute significance, thereby pro-
posed the parallel attribute reduction algorithms for large data using MapReduce. Experimental results showed that the pro-
posed parallel algorithms can deal with massive data in cloud computing.

Furthermore, the parallelization of other attribute reduction algorithms combined with genetic algorithm and ant colony
optimization, as well as the extended rough set models will be further studied.
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