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Abstract. A great number of algorithms have been proposed for multi-
label learning, and these algorithms usually divide the labels with an
optimal threshold according to their relevances to an unseen instance.
However, it may easily cause misclassification to directly determine
whether an unseen instance has the label with relevance close to the
threshold. The label with relevance close to the threshold has a high
uncertainty. Three-way decisions theory is an efficient method to solve
the uncertainty problem. Therefore, based on three-way decisions theory,
a multi-label learning algorithm with label dependency is proposed in this
paper. Label dependency is an inherent property in multi-label data. The
labels with high uncertainty are further handled with a label dependency
model, which is represented by the logistic regression in this paper. The
experimental results show that this algorithm performs better.

Keywords: Multi-label learning · Label dependency · Three-way deci-
sions · Logistic regression

1 Introduction

Multi-label learning is a challenging problem in machine learning field, because
multi-label instances have several possible labels simultaneously and labels have
correlations with each other in multi-label data. Given a predefined label space
L, the task of multi-label learning algorithm is to predict a set of relevant class
labels Y for an unseen instance through analyzing training instances with known
label sets, where Y ⊂ L and |Y | ≥ 1 [1–3]. Multi-label objects exist widely in
various real-world domains. For example, in the image domain [4], a picture
may express multiple semantic classes simultaneously, such as sea, beach and
sky. In the text domain [5], a document possibly belongs to several topics, such
as society, sport and politics. In the biology domain [6], a gene could have a set
of functions, such as transcription and metabolism. In the video domain [7], a
movie may be labeled with several genres, such as horror, cartoon and family.

Multi-label classification (MLC) and multi-label ranking (MLR) are two
major tasks in multi-label learning [1]. MLC predicts binary values for an unseen
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instance instructing relevant or irrelevant to labels, while MLR yields an order of
labels according to their relevances to an unseen instance. The outputs of them,
especially MLR, greatly depend on the label relevance. There are several ways
to measure the label relevance, such as vote, possibility and membership degree.
Here, the possibility is used for investigation in this paper, and others have the
similar disciplines. Most of the multi-label algorithms firstly predict relevances
that an unseen instance has the labels, then find a threshold t to get a bipar-
tition of the labels into relevant or irrelevant. The instance more possibly has
the label with greater relevance. On the contrary, those with smaller relevance
are more likely to be not associated to the instance. Therefore, it is very certain
that the instance has the labels with very great relevance and does not have the
labels with very few relevance. However, it is hard to judge whether the instance
has the label with a relevance around the threshold, which is full of uncertainty,
usually resulting in misclassification.

Three-way decisions theory is an efficient method to solve the uncertainty
problem, which is proposed by Yao [8]. The method can improve the algorithm
performance, and simplify the complex problem. It divides the problem into
three regions, and different decisions are taken for different regions. Normally, the
problem in the uncertain region will be further handled to make the right judge-
ment. According to the relevance, the labels can be grouped into three regions in
multi-label learning. The region with great relevance is the positive region, the
region with few relevance is the negative region, and the region between them
is called the boundary region. The labels in the positive region are assigned to
the instance, while those in the negative region are not. We are not sure about
labels in the boundary region, needing a further learning.

In multi-label data, there usually exists dependency among labels. For exam-
ple, an action movie is more likely to be an adventure movie than be a romance
at the same time. Label dependency is a hot topic, and there are a great number
of algorithms about how to explore the label dependency in multi-label learning
[10–12]. Hence, the labels in boundary region can be further predicted with the
help of labels in the positive and the negative regions by using the label depen-
dency. We propose a multi-label learning algorithm with label dependency based
on three-way decisions theory to improve the algorithm performance. A logistic
regression model is constructed to represent the label dependency. We experi-
ment the proposed algorithm on multi-label data sets, and the results show that
the proposed algorithm can achieve a better performance.

The rest of this paper is organized as follows: Sect. 2 briefly reviews the
related work of multi-label learning. In Sect. 3, some basic concepts of three-way
decisions theory and multi-label learning are introduced. In Sect. 4, we learn a
model to revise the uncertain labels with label dependency. Section 5 displays
the experimental results. We conclude the paper in Sect. 6.

2 Related Work

In recent years, multi-label learning has attracted significant attentions from
various domains, and been a hot topic in machine learning field. A lot of
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multi-label learning algorithms have been proposed. These proposed multi-label
learning algorithms can be divided into two groups: problem transportation
method (PTM) and algorithm adaption method (AAM) [1]. PTM is independent
on algorithm, and transforms the multi-label data into numerous single-label
data, such as Binary Relevance (BR) [13], Pairwise Binary (PW) [14], and Label
Powerset (LP) [15]. AAM on the other hand extends some specific traditional
machine learning algorithms to handle the multi-label data directly, such as
decision tree [16], support vector machine [17], neural networks [18] and rough
sets [12].

Furthermore, based on rough sets, Yu [12] proposed a multi-label learning
with exploiting label correlation, called MLRS-LC. To exploit the label depen-
dency, Zhang [10] proposed a multi-label learning by exploiting label dependency,
which uses a Bayesian network structure to efficiently encode the conditional
dependencies of the labels as well as the feature set. Kang [11] correlated label
propagation with application to multi-label learning, which explicitly models
interactions between labels in an efficient manner. In a word, the label depen-
dency should be taken into consideration.

3 Preliminaries

3.1 Three-Way Decisions

Three-way decisions theory is a proper semantic explanation of probabilistic
rough sets and decision-theoretic rough sets [8,9]. The main idea is to divide the
whole into three regions, and different regions are treated with different ways.
Let Pr(X|[x]) denote the conditional probability that x belongs to X.

Pr(X|[x]) =
|[x] ∩ X|

|[x]| (1)

[x] is the equivalence class of x, and |·| stands for the cardinality. Then, the three
regions of three-way decisions can be represented by probabilistic rough sets [19]
as follow:

POS(X) = {x|Pr(X|[x]) ≥ α};
NEG(X) = {x|Pr(X|[x]) ≤ 1 − α};
BND(X) = {x|1 − α < Pr(X|[x]) < α}.

(2)

where POS(X) denotes the positive region of X, NEG(X) denotes the negative
region, and BND(X) is the boundary region. α is a threshold and α ∈ [0.5, 1].
When α = 0.5, the three-way decisions become the two-way decisions.

The three-way decisions theory is a generalized and efficient model for deci-
sions and information processing, not limited for rough sets. There widely exist
three-way phenomena in the real-world.

3.2 Multi-label Learning

Formally, let F ⊂ Rb represent the input feature space, and L = {l1, l2, ..., lq}
denote the label space with q possible labels. Given a multi-label training data
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T = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}, Xi is a b-dimensional input feature vector,
and Yi = {y1

i , y2
i , ..., yq

i } is the binary label vector of Xi, where yj
i equals to 1 if

Xi has label lj , and equals to -1, otherwise. The task of multi-label learning is to
derive a multi-label classification function h : F → {0, 1}q, through the training
data T . For an unseen instance X, the multi-label classification function can
predict its relevant label vector Y

′
= {y1′

, y2′
, ..., yq′}.

However, most of multi-label learning algorithms do not directly predict
whether the instance X has the label lj , but firstly give a relevance hj(X)
between X and lj , which is usually a possibility, then, divide the labels with
an optimal threshold t as follows:

yj′
=

{
1, hj(X) ≥ t

−1, hj(X) < t
(3)

The relevance hj(X) is a certainty degree that the label lj belongs to X. So it
is very certain that X belongs to the labels with relevances significantly greater
than the threshold t. It is almost impossible that the labels with relevances much
less than t are assigned to X, namely, these labels are very certain to not relate
to X. It is full of uncertainties that the labels with relevances around t. The
closer to t the relevance gets, the more uncertain the label is. Therefore, the
three-way decisions theory is used to solve the problem in multi-label learning.

4 The Proposed Algorithm

Label dependency is important information contained in multi-label data, and a
hot topic in multi-label learning. Therefore, it is a practicable way to correct the
labels with high uncertainties through label dependency which can be represent
by a dependency model of a label on the other q − 1 labels. Here, the logistic
regression is used to construct the dependency model of label lj on the others.

gj(X) =
1

1 + e−uj
(4)

where the equation is a sigmod function, and

uj = θj1 ∗ y1 + ...+ θjj−1 ∗ yj−1 + θjj+1 ∗ yj+1 + ...+ θjq ∗ yq + θjj (5)

θji(i�=j) is the weight of li to lj which informs the dependency between li to lj ,
and θjj is a constant for lj . Equation (5) can be rewritten as:

uj = θj ∗ yT
j (6)

In the equation, θj = {θj1, θj2, ..., θjq} is the weight vector, and yj =
{y1, ..., yj−1, 1, yj+1, ..., yq} is the input vector where the input for constant is
set to 1. Then,

gj(X) =
1

1 + e−θj∗yT
j

(7)

The weight vector θj is trained with the label information in training data set.
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Given a test instance X, and its label relevance h(X) predicted by a multi-
label learning algorithm, the label space L can be grouped into three regions for
X according to h(X), namely, the positive region POS(X) in which the labels
are assigned to X, the negative region NEG(X) in which the labels are not
related to X, and the boundary region BND(X) where the labels are uncertain
and need to be further predicted. The three regions can be defined as:

if hj(X) ≥ t + β, then lj ∈ POS(X);

if hj(X) ≤ t − β, then lj ∈ NEG(X);

if t − β < hj(X) < t + β, then lj ∈ BND(X).

(8)

where t is the optimal threshold in the original multi-label learning algorithm,
and β ∈ [0,min(t, 1 − t)] determines the width of the boundary region, i.e. the
uncertainty region. A three-value label vector Z = {z1, z2, ..., zq} can be gotten
for X as follows:

zj =

⎧⎪⎨
⎪⎩

1, lj ∈ POS(X)
0, lj ∈ BND(X)
−1, lj ∈ NEG(X)

(9)

The labels in POS(X) [NEG(X)] have very high certainty degrees belonging
[not belonging] to X, and do not need to be further processed and changed.
Suppose t ≥ (1 − t), then β ∈ [0, 1 − t]. Z is used as an input vector of Eq. (7)
to obtain a correction term ϕj for label lj ∈ BND(X)

ϕj =
1

1 + e−(θj∗ZT+θjj)
(10)

For lj ∈ BND(X), zj = 0, the constant θjj is added. In the input vector Z,
the values of the labels in BND(X) are 0, means they have no influence on ϕj ,
because of their high certainties. For lj ∈ BND(X), ϕj is added to the original
label relevance hj(X). Therefore the label relevance after correcting f j(X) is
computed as follows:

f j(X) =

{
(t + β) ∗ hj(X) + (1 − t − β) ∗ ϕj , if lj ∈ BND(X)
hj(X), otherwise

(11)

The formula considers the label relevance predicted from the features by
the original multi-label learning algorithm and the label relevance from label
dependency simultaneously. (1 − t − β) is the weight of the correction term, and
determines influence of the correction term. The boundary region becomes lager
with the increase of β, leading to the rising of number of uncertain labels and
decreasing of the reliability of the correction term. Therefore, it can be seen that
the weight of the correction term decreases as the β increases. When β = 0,
there is no uncertain label needing to be corrected, so the label relevance keeps
the same. When β = 1 − t, the certain labels is the least, so the weight of the
correction term equals to 0, and no change is on the label relevance.
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The label lj can be predicted whether be associated to X or not by using
label relevance f j(X) after correcting as:

yj′
=

{
1, f j(X) ≥ t

−1, f j(X) ≤ t
(12)

Algorithm 1. The multi-label learning algorithm with label dependency based
on three-way decisions theory
Input: Original label relevance h(X); Parameter of the width of boundary region β;

Optimal threshold t; Label data W = {(Y1), (Y2), ..., (Yn)};

Output: Predicted label vector Y
′

for lj ∈ L do
//Initialize variables;
zj ← 0;
ϕj ← 0;
f j(X) ← 0;

yj′ ← 0;
Compute the value zj with hj(X) according to equations (8) and (9);

end for
for lj ∈ L do

Construct the logistic regression model with W to get the weight vector θj ;
Count the correction term ϕj according to equation (10);
Calculate f j(X) according to equation (11);

Determine yj′
according to equation (12)

end for
Output the predicted label vector Y

′
= {y1′

, y2′
, ..., yq′};

5 Experimental Results

5.1 Data Sets

We experiment on three real-world multi-label data sets covering different
domains from the Mulan Libary [20]. The statistical information is summa-
rized in Table 1. As shown in Table 1, Medical [21] data set has 978 instances, of

Table 1. Multi-label data sets in the experiments

Name Instance Feature Label Cardinality

Medical 978 1449 45 1.245

Enron 1702 1001 53 3.378

CAL500 502 68 174 26.044
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which each instance is a radiology text report consisting of the medical history
and symptom and is associated with a subset of 45 ICD-9-CM labels. There
are 1702 instances in Enron [22] data set, and these instances are e-mails of
the Enron company and labeled with 53 possible tags. CAL500 [23] data set
contains 502 popular musical tracks, and 174 labels such as style, emotion and
instrument.

5.2 Evaluation Criteria

Five example based multi-label learning evaluation criteria are considered,
Hamming loss, Precision, Recall, F1-measure, Accuracy [1]. The larger the
latter four evaluation criteria are, the better the algorithm performs, while
Hamming loss in contrast. Given a testing multi-label data set D =
{(X1, Y1), (X2, Y2), ..., (Xm, Ym)}, the five evaluation criteria are defined as fol-
lows:

Hamming loss evaluates how many labels belonging to the instance is not
associated, or not belonging to the instance is associated. 〈π〉 equals to 1 if π
holds and 0 otherwise. Hamloss = 1

mq

∑m
i=1

∑q
j=1〈y

′
ij �= yij〉.

Precision evaluates how many labels actually belong to the instance in the

predicted label set. Precision = 1
m

∑m
i=1

|Yi∩Y
′
i |

|Y ′
i | .

Recall computes the number of labels that the are correctly predicted in the

ground-truth label set. Recall = 1
m

∑m
i=1

|Yi∩Y
′
i |

|Yi| .
F1-measure is the harmonic mean between precision and recall, common to

information retrieval. F1 = 1
m

∑m
i=1

|Yi∩Y
′
i |

|Yi|+|Y ′
i | .

Accuracy measures the average degree of similarity between the predicted
and the ground-truth label sets of all testing instances. Accuracy =
1
m

∑m
i=1

|Yi∩Y
′
i |

|Yi∪Y
′
i | .

5.3 Results and Discussion

The ten-fold cross-validations evaluation is used to evaluate algorithms in the
experiment. ML-KNN is a popular multi-label algorithm and chosen to produce
the original label relevance. As recommended in [24], the number of neighbors is
10, and the threshold t is set to be 0.5. The β arranges from 0 to 0.5 with a step
of 0.05. In the following tables, the symbol ′↓′ represents that the smaller the
evaluation criterion value is, the better the performance is, while the symbol ′↑′

in contrast. Furthermore, the best result is marked in boldface on each evaluation
criterion by considering the mean value.

When β is set to be 0, there are no labels changed on all data sets. There-
fore, the algorithm results with β equal to 0 are the same as the original results
achieved by the ML-KNN. Tables 2, 3 and 4 show that when β is 0.5, the algo-
rithm performance is the same as the original performance, too, the reason of
which has been discussed in Sect. 4. In more detail, the performance is improved
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Table 2. Experimental results (mean ± std. deviation) on the Medical data set.

β Hamming loss↓ Precision↑ Recall↑ F1↑ Accuracy↑
0 0.0155± 0.0070 0.6232± 0.2132 0.5888± 0.1727 0.2970± 0.0929 0.0163± 0.0049

0.05 0.0154± 0.0074 0.6428± 0.1966 0.6012± 0.1481 0.3048± 0.0823 0.0166± 0.0048

0.10 0.0154± 0.0076 0.6536± 0.2019 0.6064± 0.1633 0.3086± 0.0872 0.0167± 0.0052

0.15 0.0153±0.0081 0.6665±0.2049 0.6153±0.1807 0.3139±0.0930 0.0169±0.0056

0.20 0.0157± 0.0078 0.6624± 0.1811 0.6134± 0.1591 0.3125± 0.0813 0.0168± 0.0047

0.25 0.0157± 0.0085 0.6598± 0.1781 0.6082± 0.1870 0.3106± 0.0885 0.0166± 0.0057

0.30 0.0161± 0.0087 0.6412± 0.2011 0.5921± 0.2113 0.3021± 0.1011 0.0161± 0.0063

0.35 0.0174± 0.0083 0.5649± 0.2163 0.5210± 0.2476 0.2656± 0.1149 0.0142± 0.0071

0.40 0.0189± 0.0052 0.4665± 0.1622 0.4299± 0.1886 0.2190± 0.0851 0.0119± 0.0052

0.45 0.0201± 0.0060 0.3804± 0.2210 0.3503± 0.2039 0.1781± 0.1033 0.0099± 0.0060

0.50 0.0155± 0.0070 0.6232± 0.2132 0.5888± 0.1727 0.2970± 0.0929 0.0163± 0.0049

Table 3. Experimental results (mean ± std. deviation) on the Enron data set.

β Hamming loss↓ Precision↑ Recall↑ F1↑ Accuracy↑
0 0.0539± 0.0074 0.5644± 0.0915 0.3443± 0.0731 0.1997± 0.0354 0.0239± 0.0038

0.05 0.0540± 0.0067 0.5715± 0.1037 0.3549± 0.1116 0.2047± 0.0499 0.0243± 0.0054

0.10 0.0546± 0.0063 0.5746± 0.1025 0.3627± 0.1466 0.2083± 0.0638 0.0244±0.0083

0.15 0.0548± 0.0058 0.5685± 0.1056 0.3669±0.1825 0.2091±0.0774 0.0241± 0.0106

0.20 0.0553± 0.0069 0.5477± 0.1560 0.3411± 0.2450 0.1967± 0.1104 0.0232± 0.0136

0.25 0.0543± 0.0086 0.5631± 0.1078 0.3441± 0.1930 0.1998± 0.0850 0.0232± 0.0113

0.30 0.0539± 0.0080 0.5705± 0.0996 0.3426± 0.1699 0.2002± 0.0759 0.0230± 0.0096

0.35 0.0539± 0.0071 0.5765± 0.0865 0.3518± 0.1120 0.2046± 0.0485 0.0238± 0.0065

0.40 0.0536±0.0072 0.5780±0.0851 0.3442± 0.1106 0.2015± 0.0491 0.0236± 0.0055

0.45 0.0538± 0.0069 0.5549± 0.1034 0.3345± 0.0917 0.1952± 0.0430 0.0238± 0.0046

0.50 0.0539± 0.0074 0.5644± 0.0915 0.3443± 0.0731 0.1997± 0.0354 0.0239± 0.0038

to reach the best, then decreases gradually. That is because when β is too small,
not many labels are corrected, while the certain labels are not enough to pro-
duce a reliable correction term, if β is too large. Thus, it is a proper β that could
produce a balance between the number of the certain labels and the number of
the uncertain to obtain the best performance.

As shown in Table 2, the proposed algorithm obtains the best performance
on all evaluation criteria on Medical data set, when β is equal to 0.15. The
proposed algorithm improves the performance of Medical, especially on precision,
recall and F1. On the Enron data set, the proposed algorithm performs best on
hamming loss and precision when β is 0.4, while it achieves the best results on
recall and F1 when β is 0.15 and accuracy when β is 0.1. On the CAL500 data
set, the proposed algorithm performs best when β is 0.3 on all evaluation criteria
except for precision, which is the best when β is 0.05. All the best results of the
proposed algorithm are better than the original ones without correcting, and it
promotes the original performance.



248 F. Li et al.

Table 4. Experimental results (mean ± std. deviation) on the CAL500 data set.

β Hamming loss↓ Precision↑ Recall↑ F1↑ Accuracy↑
0 0.1399± 0.0201 0.5927± 0.0732 0.2247± 0.0370 0.1604± 0.0219 0.0394± 0.0038

0.05 0.1390± 0.0212 0.6119±0.0702 0.2117± 0.0456 0.1547± 0.0277 0.0369± 0.0068

0.10 0.1394± 0.0240 0.6077± 0.0849 0.2059± 0.0906 0.1511± 0.0562 0.0359± 0.0142

0.15 0.1400± 0.0215 0.5992± 0.0779 0.2078± 0.0894 0.1513± 0.0559 0.0364± 0.0149

0.20 0.1411± 0.0211 0.5844± 0.0844 0.2187± 0.0633 0.1561± 0.0384 0.0385± 0.0090

0.25 0.1409± 0.0202 0.5831± 0.0771 0.2292± 0.0544 0.1615± 0.0319 0.0404± 0.0076

0.30 0.1389±0.0211 0.5962± 0.0696 0.2362±0.0502 0.1666±0.0290 0.0416±0.0047

0.35 0.1394± 0.0210 0.5990± 0.0781 0.2253± 0.0469 0.1612± 0.0283 0.0397± 0.0051

0.40 0.1390± 0.0211 0.6077± 0.0901 0.2122± 0.0519 0.1549± 0.0322 0.0372± 0.0070

0.45 0.1392± 0.0181 0.6038± 0.0722 0.2162± 0.0278 0.1568± 0.0183 0.0380± 0.0045

0.50 0.1399± 0.0201 0.5927± 0.0723 0.2247± 0.0370 0.1604± 0.0219 0.0394± 0.0038

6 Conclusions

By using a logistic regression model of label dependency, this paper proposed
a multi-label learning algorithm based on three-way decisions theory to further
handle those labels with high uncertainty. The experimental results show that
it is helpful to correct the labels near the threshold through the proposed algo-
rithm. How to theoretically choose the best β is not researched, hence in the
next step, we will propose a theory analysis to choose an optimal width of the
boundary region. Furthermore, two variables instead of a single variable β are
taken into consideration to determine the width of boundary region, which is
more generalized and not restricted by the threshold.
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