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Abstract. We review concepts and principles of Modus Ponens and
Modus Tollens in the areas of rough set theory and probabilistic infer-
ence. Based on the upper and the lower approximation of a set as well
as the existing probabilistic results, we establish a generalized version
of rough Modus Ponens and rough Modus Tollens with a new fact dif-
ferent from the premise (or the conclusion) of “if ...then ...” rule, and
address the problem of computing the conditional probability of the con-
clusion given the new fact (or of the premise given the new fact) from
the probability of the new fact and the certainty factor of the rule. The
solutions come down to the corresponding interval for the conditional
probabilities, which are more appropriate than the exact values in the
environment full of uncertainty due to errors and inconsistency existed in
measurement, judgement, management, etc., plus illustration analysis.

Keywords: Rough modus ponens * Rough modus tollens + The lower
approximation - Conditional probability -+ Rough sets

1 Introduction

At the center of human intelligence and reasoning lies common sense, gained
from experience of life or common knowledge. Knowledge is often acquired from
data such as observations and measurements in the form of numbers, words, or
images, usually represented in an organized manner with a level of granularity,
and pervaded by imprecision or vagueness. However, data, collected for use, are
generally disorganized and contain useless details. Therefore, how to obtain the
available knowledge or information from data is a central point in data analysis
whose goal is finding patterns or regularity hidden in the data. The utilization of
statistics was only realizable in the early period of data analysis, then followed
by fuzzy sets, rough sets, neural networks, genetic algorithms, cluster analysis
and other analysis tools.

Typically encoded as the rule of “if ...then ...”, hidden patterns or regu-
larity in data can enable us to make decisions, do prediction and management

© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 166-176, 2016.
DOI: 10.1007/978-3-319-47160-0_15



Generalized Rough Modus Ponens and Rough Modus Tollens 167

activities, or other reasoning activities in everyday life, and the highly influential
comes down to Modus Ponens inference rule (Modus Ponens, for short), as the
basis of classical deductive reasoning and an universal rule of inference valid in
any logical system. Modus Ponens has the form that, given that a formula or a
new fact ¢ is true and the rule “if ¢ then v” is also true, then the formula or the
conclusion 1 would also be true. To estimate the truth value of 1 relates closely
to the formalization of the conditional “if ...then ...”, and in turn, to formalize
“if ...then ...” has led to the keen competition between material implication
and conditional probability. For the material implication of Modus Ponens, the
representative work is Compositional Rule of Inference as an approximate exten-
sion of Modus Ponens [17], proposed by Zadeh based on fuzzy sets, where fuzzy
relations derived from fuzzy implication operators are employed to compute the
truth value of the conclusion v and the new fact is allowed to different from the
premise of the rule. However, considering lack of the ability to treat the excep-
tions or counterfactuals for material implication and its inherent paradoxes, for
example, the false of the premise does infer the true of material implication only
if the conclusion is true, the probabilistic interpretation of “if ...then ...” is
more plausible in the reasoning process [5,13].

In addition, due to the uncertainty in the represented data or the knowledge,
inconsistency in information systems, and the limited number of available knowl-
edge obtained for use, directly characterizing the truth values of formulas is not
feasible because of many difficulties in the construction of the truth function
and can often be influenced by subjective factors such as assumption interven-
tion. The idea of replacing truth values with probabilities was first proposed by
Lukasiewicz, who advocates multivalued logic as probability logic and assigns
each of indefinite proposition ¢(z) the ratio 7(¢(x)) of the number of all values
of the variable x satisfying ¢(x) to the number of all possible values of x as the
truth value of ¢(z). And later, Pawlak, the founder of rough sets with the aim
of finding the dependencies or cause-effect relations in data, pursued this idea
and introduced Rough Modus Ponens, a generalized version of Modus Ponens
in the context of rough set theory where the new fact is of the same form as the
premise of the rule [10]. Fuzzy-Rough version of Modus Ponens [4] presented the
characterization of the conclusion through gradual decision rules extracted from
decision table based on fuzzy rough set theory, plus the fuzzy-rough version for
modus tollens (i.e., given that a formula —) is true and the rule “if ¢ then ¢”
is also true, then the formula —¢ would also be true), without using any fuzzy
logical connectives. Although this approach is successful in the treatment of the
difference between the new fact and the premise, it still involves the selection of
fuzzy membership function influenced by subjective factors. Probabilistic coun-
terpart of Modus Ponens yields the best possible bounds for the probability of
the conclution ¢ and even for the update of the bounds on new-found uncertain
evidence as well as the bounds for modus tollens [12,15].

Reasoning based on rough set theory obeys data collected and the inferences
stem from the data. Empowered by these motivations and analysis, the central
goal of this paper is to investigate the generalized version of Rough Modus
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Ponens permitting the new fact different from the premise, and try to allow
the solution to make the plausible responds to the new evidence even when
the evidence is contradictory or irrelevant to the premise of the rule, as well as
the study for Rough Modus Tollens. Section 2 exhibits some definitions about
rough set theory as well as some results on probable Modus Ponens and Modus
Tollens. In Sect. 3 the generalized rough Modus Ponens and rough Modus Tollens
are developed through the consideration for the relations between the new fact
and the premise based on the concept of lower approximation of the set, together
with some illustration studies depicted. The detailed comments on the present
approach are explored in Sect. 4, along with a brief sketch of further research.

2 Basic Concepts on Rough Modus Ponens and Rough
Modus Tollens

Subject to measurability requirements, one is led to consider upper and lower
approximations defined over any set as follows:

Definition 1 ([8]). Given an information system S = (U, A) with U a non-
empty finite set called the Universe and A a nonempty finite set called the set of
Attributes, and let X C U, B C A. The upper approzimation B(X) and the lower
approzimation B(X) of any set X in terms of attributes B can be defined respec-
tively by B(X) = U {reU:[zlpNX#0}, B(X)= U{zreU:[z]p C X},

z€U
where [x]p (i.e., the set of {y € U : y I(B) x}) denotes the equivalence class
of x with respect to the indiscernibility relation I(B)(i.e., {(z,y) € U?|a(z) =
a(y) for every a € B}, a(x) denotes the value of attribute a for element x),
which means the object y and x are indiscernible in terms of attributes in B.

Definition 2 ([9,11]). Given a decision table S = (U, C, D) with the attributes
A of the system classified into disjoint sets of condition attributes C and deci-
sion attributes D, and let ¢ — 1 be a decision rule with ¢ and v as logical
formulas representing conditions and decisions, respectively. Define the certainty
factor u(@, ) of the rule as a number, namely, u(p,v) = w(Y|p) = Tr(mw)

()
%W, where ||@|| denote the set of all objects satisfying ¢ in S, card(-)

denotes the cardinality or the number of elements in a given set, and w(-) repre-
sents the corresponding probability (the purpose of using this notation as proba-
bility is only to accord with the ones in the rough set literature), w(¢p) = %‘gf}g)

and card(||¢||) # 0.

The rough modus ponens [10] may be formed from

if ¢ — 1 is true with probability m(v|@)
and ¢ is true with probability (o)
then 1 is true at least with probability 7 (¢))
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where 7(¢) = w(=¢ A1) + 7(¢) - w(1p|¢). This formula can be taken as a gener-
alization (e.g., for m(¢ — 1) # 0) of Lukasiewicz’ axiom 3 (i.e., if (¢ — ) = 1,
then () = 7(~6 A ) + 7(6).

From a probabilized point of view, as to modus ponens, one has the best
possible bounds [12,15] for m(¢), namely, 7(¢)w(¥|¢) < 7(¢) < 7(d)w(Y|p) +
1 —m(¢) with 0 < 7(¢) < 1 and 0 < 7(¢¥|¢p) < 1; as to modus tollens,
given = and the rule ¢ — v to infer =¢, the solution with the best possible
bounds is (see the theorem on p. 751 of [12]: ‘¢’ and ‘@)’ for ‘H’ and ‘E’; — for
over-bars; ‘m(v|¢)and ‘w(—1)’ for ‘a’ and ‘b’)

if 0<m(—),m(¥|) <1, then

max { IEm@I8)-x(Cw0) a(wle)inio) 1}

) = Cr m(=¢) <

if 0<w(—) <1,w(¥|p)=0, then 1 —m(—) < 7(=¢) <
if 0<mw(—)<1l,w(¥|p)=1, then n(—¢) < ( ¢)< .

Moreover, concerning the update of the probability for ) on new-found possibly
uncertain evidence, the solution has been obtained as follows [15]:

Let time —t be, for a person, just before time t probabilistically speaking.
Assume that this person is not certain of —¢ at t, that is, m(¢) > 0 and
mi(P) # m—_i(¢). Then this person does update his probability for v subject to
the bounds m (d)m_(Y|d) and 7 (d)m_i(]|P) + 1 — m (), if and only if, the
rigidity-condition for 1 on @, i.e., m(Y|p) = w_+(Y|@), is satisfied.

Analogous to the update of the probability for ¢, updating ¢ on new-found
possibly uncertain evidence —1) has been solved to yield [15].

Let time —t be, for a person, just before time t probabilistically speak-
ing. Assume that mi(—)) # m_4(—). Then this person does update his prob-
ability for —¢ on the evidence —, if and only if, the rigidity-condition
me(V]d) = m_(Y|P) is satisfied. If this condition is satisfied, there is

Z.f 0< Wt(ﬁ¢)aﬁt(¢|¢) < 17 then

max 17%’1(1@3;\72)&@’ Wt(w|?t+($f<z(ﬁ;¢)l} <m(9) < 1
if 0<m(=¢) <Lm(Y|g) =0, then 1 —m (=) <m(=¢) <1
if 0<m(-w) <Lml) =1, then m(~w) < m(-¢) < 1.

3 Generalized Versions of Rough Modus Ponens and
Rough Modus Tollens

In this section we continue Pawlak’s work [3,10,11] and it is convenient to begin
with the case where ¢° takes a different form of ¢ but the same rule “if ¢ then
1" as the case of Modus Ponens, associating this rule with a conditional proba-
bility 7(¢|¢) = ﬂ(ﬂ%;ﬁ) and likewise the formulas ¢ and ¢ with their respective
unconditional probabilities 7(¢) and 7(¢)).
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Consider that, in practice, the new observation is rarely identical to the sam-
ple data but to some extent is of particular relevance to the observed sample (i.e.,
they describe different states of the same attributes or different attributes of dif-
ferent attributes). Here we denote the new fact or observation by ¢° and mainly
deal with the case when ¢° is not the same as the sample ¢. The above Rough
Modus Ponens may be regarded as the special case of the proposed generalized
version:

if ¢ — 1 is true with probability 7 (v|¢)
and ¢° is true with probability — 7(¢°)
then 79 is true with probability — ?m(¢) 77 (¢|¢°)

where the notation (1) means the probability of ¢ when the new fact ¢° is
observed, which is identical to the meaning of the conditional probability of v
given ¢°. The subscript ¢ is used only to distinguish the probability of ¥ when
the new fact ¢° is observed from the prior probability of ¢ as well as the posterior
probability of ¢ when the evidence ¢ is observed.

Lemma 1. Let 0 < n(¢|¢) < 1 and 0 < w(¢°) < 1. Then the probability of ¥
with ¢° known satisfies

m(¢°)m(Y|¢) < me(¥) < w(@)m([d) + 1 — (7).

The relation between the new fact ¢° and the occurrence of v is connected
closely to the relation of the new fact ¢© and the premise ¢. Our solution lies in
the detailed description of the relation between ¢® and ¢, more specifically, the
lower approximation of ¢° and the lower approximation of ¢.

Lemma 2. For ¢° C ¢, the probability 7(1|¢°) satisfies

m(Y[g)n(¢) _ w(oAY PN
(ll(): ( O)SWWWﬂ— 7( <>)
m(¢°) m(¢°) m(¢°)
Proof. This result follows immediately from the fact that the frequency of the
occurrence of one event is usually greater and equal to the frequency of the
simultaneous occurrence of this event together with other events. Let ||¢°||

and ||¢|| represent the sets of all objects satisfying respectively ¢° and ¢ in S,
there exist card(||¢®|]) > card(||¢||) and card(]|¢® A||) > card(||¢ A ¢||), plus

m(0° n) = L 7 (o A 0) = SRR and w(¢° A y) < 7(g%). D

Theorem 1. If ¢° C ¢, the probability of 1 given ¢° can be solved by

7 (1]6)m(6)
ax{ (¢°)

<

,WWﬂﬂw@}SWWWﬂSWWﬂﬂ¢@+1—WWﬁ-

Ezample 1. From  Tablel (see [10]), we have the rule “if
¢ = (Headache, yes) and (Muscle — pain,no) and (Temperature, high), then
¢ = (Flu,yes)” with the probability 7(1|¢) = 3 and 7(¢) = %, and a new fact
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Table 1. Characterization of flu

Patient | Headache | Muscle-pain | Temperature | Flu
pl no yes high yes
p2 yes no high yes
p3 yes yes very high yes
p4 no yes normal no
jo55) yes no high no
p6 no yes very high yes
¢° = (Headache, yes) with m(¢°) = 1. Because ¢° = {(Headache,yes)} C ¢,

the probability of v = (Flu,yes) given ¢° = (Headache,yes) lies within the
interval [37 4] by Theorem 1 (if possible, based on rough set theory from the
table one has m(¥[¢°) = 2).

When ¢° CU — ¢ but ¢° N ¢ # 0, m(1)|¢°) depends on whether or not the ele-
ment of ¢ — ¢° N ¢ is the description of the same attribute with the different
states from the one of ¢ — ¢° N ¢.

Theorem 2. If the elements of $°—¢°N¢ and ¢—¢°N¢ depict different states of
the same attribute, then the probability w(1)|¢°) can be determined by the interval
() (1), w(@°)m (1) + 1 — m(6°)], more specifically, for 0 < w(]¢) < 1,
w(1|¢°) can be located inside or outside this interval, which corresponds to the
degrees of beliefs for the attribute in the language of ¢° — ¢° N ¢ and ¢ — ¢° N .
By contrast, if the elements of ¢° — ¢° N ¢ and ¢ — gbo N¢ depict different states
of different attributes, then the probability of V¥ given ¥°, namely, mw(p|¢°) is

generally situated in [7(¢°)m(|¢), w(¢°)m (@) + 1 — m(¢°)].

Ezample 2. From Table 1, one have the rule “if ¢ = (Headache,no) then ¢ =
(Flu,yes)” with m(¢|¢) = 2 as well as a new fact ¢° = (Headache,no) and
(Temperature, normal) with 7(¢°) = % . Additionally we have known that the
probability of ‘if Temperature is normal then Flu is yes’ is 0 and the probability
of ‘if Temperature is very high then Flu is yes’ is 1. According to Theorem 2,
one can determine that the value 7([¢°) is outside [, 12] and specifically in
[0, §]. (From Table 1 one has m(¢|¢°) = 0 € [0, §], which means that the obtained
result acts in accordance with our common sense.)

When ¢°N¢ = 0, similarly 7(1|¢°) is associated with the fact whether ¢ depicts
the same attributes as ¢ does or as the elements of ¢ do. In more details, if they
do, then the range of m(1|¢°) closely relates to the degrees of beliefs for these
attributes of ¢° and ¢, specified in the following result.

Theorem 3. Let ¢°N¢ = 0. If the elements of ¢° and ¢ describe different states
of the same attribute, then for w(1|¢) = 1, w(1|¢°) might smaller than or equal
to 1 and the specific value will be inside or outside [w($p°)7(Y|P), 1] with a trend of
moving from right to left on the horizontal axis according to the degrees of beliefs



172 N. Yao et al.

for the attribute; for 0 < w(|p) < 1, w(|¢°) might be 0 or 1 and the specific
value also might be inside or outside the interval [w(¢®)m(|@), m(¢*)m(Y|@) +
1 — w(¢°)] according to the degrees. If they depict different states of different

attributes, 7(Y|¢°) generally lies in [w(¢°)w(Y|@), m(¢°)w(Y|d) + 1 — w(¢°)].

Ezample 8. From Table 1, one can get the rule “if ¢ = (Headache,no) and
(Muscle — pain,yes) and (Temperature, high), then 1» = (Flu,yes)” with the
probability 7(1|¢) = 1 and 7(¢) = £, and the new fact ¢° = (Temperature,
very high) with 7(¢°) = %. By Theorem 3, 7(1|¢°) falls into [%, 1] and from the
table one might get 7(¢[¢°) =1 € [3,1].

Obviously notice that the case of m(9|¢) = 1 is the special case of the above

result. Clearly in this case there is w(¢°) < m(¢0) < 1. In particular, let C(4))

denote the set of all conditions of 1 in the data table about the domain of

interest, and C.(¢) denote the lower approximation of C(i) defined by [11]

cw= U el= V¢l When¢® € Culy), we
o€C (), m(p|p°)=1 o €C (), m(b|p°)=1

have 7(1|¢°) = 1 and furthermore, if ¢° ¢ C. (1)) , we need to study the relation

between ¢° and ¢. If ¢° C ¢, then max {r(¢°), :((;i))} < 7 (y|¢°) = ﬂ;ﬁ;{:;p) <1,
otherwise the probability of ¢ given ¢° will be from the inside or the outside of
the interval [7(¢°),1].

Analogous to the discussion of the rough modus ponens, consider the Rough

Modus Tollens, formed from [3,11]

if ¢ — 4 is true with probability 7 (¢|v)
and 1 is true with probability — 7(¢)
then ¢ is true with probability  m(¢)

where 7(¢) = w(¢ A ) + w(Y)7(P|)).

From the conditional probability point of view, there is

if 0<m(@lg),m(¥) <1,  then 0 < m(¢) <min {5, T}
if m(¥|¢) =0,0<7(y) <1, then 0 <m(¢) <1—m(s)
if m(l¢)=1,0 <m(y) <1, then 0 <7(¢) < m(y)

To put it in another way, one has

m(P)m(¢ly) < () < w()m (oY) + 1 —w(¢) with w(¢l) > 0.

The following attention in the remaining part of this section will be given to the
case when the fact ¥° is not always the same as the conclusion ¢ of the rule
¢ — 1 but can be regarded as the characterization of ¢ with different beliefs
such as ‘if it rained then it was cold’” and ‘it is very cold’, defined by

if ¢ — 1 is true with probability 7 (¢[))

and ¥ is true with probability — m(¢°)
then 7¢ is true with probability 7w () 7 m(d[°)
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It is worth mentioning that, 1° takes the different form from the one of ¢, 7 (¢°)
denotes the prior probability of 1°® which is different from the probability of ¥,
(o)1) represents the conditional probability of ¢ given ¢° and is identical
to the posterior probability m;(¢) of ¢ when the new fact ¢ is observed. The
subscript ¢t means the derived conclusions is inferred under the condition that a
new fact ¥° occurs.

Theorem 4. The estimation for the probability of ¢ given ¥° can be formed in

[ (%) (6], m () m(@l9) + 1 — m (1°)] N (0, min { =2l Teled )]
N [w(@l)m(¥°]6), 1]

Proof. Given the fact 1° and the rule ¢ — 1, the calculation of m:(¢) follows
from the intersection of

m () m(0Y) < mi(¢) < m(P°)m(dle) +1 — m(¥°)

and 0 < m(¢) < mln{} :t(wl;g’ = i) } where mw(¢|y) and m(¢|¢) can be

estimated by the definition of certainty factor of the rule, that is, w(¢|y) =

% and 7(|p) = %, here we postulate that the sizes of data

tables or information systems in the domain of interest do not change. In addi-
tion, as for 7rt(<b|w<>) we shall get 7(¢|¢)m (W}W ) < 7rt(¢|¢<>) < 1, which follows
and TLEITOAVT) o m(@MD) ity n(gly) > 0. By

=@ < wRE) (@) = m(e)
means of the results of m;(4]1)°) and m¢(¢), the estimation can be obtained. O

from

Ezample 4. From Table 1, given the new fact of ¥ = (Flu,no) and the rule “if
¢ = (Headache, yes) and (Muscle — pain,no) and (Temperature, hzgh) then
¢ = (Flu,yes)” with the probability 7r(1b|¢) =1, one has $ <m(¢) < 5, which

follows from m,(1°) = cardliFuno)l) (¢|w) 1 and the intersection of

card(U)
(15, 4] and (0, 2] and [, 1] according to Theorem 4. If possible, the probability

(0,
m(@|Y°) = % in the hght of rough set theory.

Ezample 5. Given the new fact ¥° = (Nationality, Swede) and the rule “if ¢ =
(Height, medium) and (Hair dark), then 1 = (Nationality, German)” with
the probability m(1|¢) = % = 0.67 (from the characterization of nationalities in
[11]), then it can happen that 0.08 < m:(¢) < 0. 63 Wthh follows from 7 (1)) =

CMd(”(Naiffda(lg)y Swede)l) 305 = 0.45, m(¢l)) = = = 0. 18 and the intersection

of [0.08,0.63]((0,0.67] ﬂ[0.06, 1] (if possible, m (¢|y°) = 4= = 0.11).

Ezample 6. If we have known that a new fact ¢° = (Fly, yes) and the rule “if
o= (Bird yes) and (Gregarious,yes), then ¢p = (Fly,no)” with the probability
m(1|¢) = 2 (from the characterization of birds in [6]), the probability of ¢ =
(Bird, yes) and (Gregamous yes) under the cond1t1on of (Fly,yes) can be solved
by Wt(W) = goa m(l) = %T m(Y°lg) =1— =2 a nd [157 T5] N, 3;] m[452a 1],
thereby 2 < m(¢[y°) < 12 (if possible, 7rt(¢|¢°) = 2).
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Due to space limitation, the descriptions of decision tables in Examples 5 and
6 have been omitted, and case analysis of other data tables can be taken as
exercises on top of the illustrations displayed in this paper. Also it is noted that,
based on rough set theory, if the data table or information system is available to

“if ¢ then ¢” and ¢°, then m(gp|t)®) = %‘W with 7(¢[1) > 0. Moreover,

if me (@) # 0 and w(¢|Y) # 0, it means this information system is inconsistent.

4 Conclusion

In this paper, we started with the relationship or dependency between the new
fact and the premise (or if clause) of the rules crystallized by human wisdom,
and then presented the solutions for every different relations in the cases of
rough Modus Ponens generalized by new-found possibly evidence related to the
premise, finally turning to the case of rough Modus Tollens.

In light of the difficulty of gaining the exact value of m(¢|y°) or 7(1|¢°), we
got the interval for the possible values on the basis of the available data source,
which is relatively believable compared with the subjective judgement of the
fuzzy membership functions except that the reasoner is one of the experts or
authorities in the domain of interest, but the expert might make false decisions
or inconsistent opinions. Of course the hypothesis ensuring the validity of being
believable is that the data source gathered is sound and representative so as to
preserve the accuracy of the probability estimated in the process of reasoning.
As can be seen from the results of examples in Sect. 3, sometimes we can obtain
the exact value of the probability m:(4|1)°) or m(1|¢®) through computing the
corresponding certainty factors, but this is not always the case, for instance, the
probability of ¢® = (Height, short) and (Hair, dark) as well as the conditional
probability 7(1|¢°) from data table in [11] where there is no simultaneous occur-
rence for(Height, short) and (Hair,dark). The root cause of this problem lies
in the incompleteness of the data source, which is an inevitable factor even in a
big data environment.

Another comment in need is that by comparison with the assessment of the
rough probability [7] or the measurement of the observability for the new fact in
the event involved in the premise, the direct comparing between the elements of
the new fact and the premise is clearer and sharper, although the rough proba-
bility has the advantage of the uncertainty measure for an event. Besides, non-
monotonic reasoning is of the center tasks of uncertainty reasoning and human
reasoning has been proved to be nonmonotonic [5]. Hence the proposed solution
in this paper can be viewed as an initial alternative of solving the nonmonotonic
reasoning based on Modus Ponens and Modus Tollens inference patterns from
the viewpoint of rough set theory. The causal effects [2] among the data collected
(or the events considered) perform a crucial role in human thinking. The direct
or indirect causal relationships among the data or events closely affect the treat-
ment of the contrary facts or the irrelevant facts in human reasoning. Moreover,
probabilistic rough set models such as variable precision rough set model and
Bayesian rough set model [14,18], together with game-theoretic rough sets, have
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showed great strength in analyzing uncertainties [1,16]. Further research will be
put on the relations of causal effects, the approximate characterization of sets
[19] and probabilistic rough set approach.
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