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a b s t r a c t

Attribute reduction is a fundamental research theme in rough sets and granular comput-

ing (GrC). Its scientific construction originally depends on the region-change law. At present,

only region-change non-monotonicity/monotonicity is mined in the quantitative/qualitative

model. The in-depth region-change truth and its GrC mechanism have significance, es-

pecially for follow-up attribute reduction. This paper commences probing region-change

essence, mainly from a novel uncertainty/certainty viewpoint. Concretely, we make compar-

ative region-change analyses based on GrC, by resorting to the qualitative Pawlak-Model and

quantitative DTRS-Model (the decision-theoretic rough set model). (1) Knowledge-coarsening

is investigated to describe attribute deletion. (2) Granule-merging and its region-distribution

are studied to probe region-change functions. (3) Region-change is analyzed in Pawlak-Model

to mine qualitative region-change certainty and its relevant properties. (4) Region-change

is analyzed in DTRS-Model to mine quantitative region-change uncertainty and its relevant

properties. (5) Comparative region-change analyses are summarized, and further experiment

verification is provided. Knowledge-coarsening and granule-merging establish GrC mecha-

nisms for extensive region-change analyses. Quantitative/qualitative region-change uncer-

tainty/certainty and relevant principles are discovered via DTRS-Model/Pawlak-Model. By

virtue of the GrC technology and comparative strategy, this study reveals region-change un-

certainty/certainty to deepen region-change non-monotonicity/monotonicity; furthermore, it

underlies attribute reduction, especially with regard to quantitative models.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Rough set theory (RS-Theory) [32] is a fundamental uncertainty analysis theory that is designed to process uncertain, im-

precise, and incomplete data information. Its basis is the rough set model (RS-Model). The initial RS-Model, Pawlak-Model [31],

originates from qualitative definitions for regions and thus acts as only a qualitative model. Because it lacks quantitative mech-

anisms, Pawlak-Model cannot effectively tackle extensive quantitative problems that concern fault-tolerance or robustness. Un-

certainty measure-based quantitative models, which are partly unified by subsethood measures [54], exhibit improvements and
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applications. As a classical uncertainty measure, the probability was introduced into RS-Theory to construct the probabilistic rough

set (PRS) [1,28,45,51,52,59,73]. At present, PRS relies on measurability, generality, and flexibility to generate mainstream models

of multiple types. With regard to the probability and threshold, the decision-theoretic rough set (DTRS) uses a pair of thresholds

[57], the variable precision rough set uses a single threshold [75], the game-theoretic rough set determines the threshold via

game theory [1], the Bayesian rough set compares the prior and posterior probabilities [42], and the parameterized rough set

uses two thresholds to describe rough membership [6]. Note that the probability in PRS is only a type of relative measure with a

statistical concentration. In contrast, an absolute measure that involves vivid intuition also exists, such as the grade. Accordingly,

the grade measure is utilized to construct the graded rough set, which is a type of quantitative model that has absoluteness

[24,55]. Furthermore, the relative and absolute measures systematically construct double-quantitative models to manifest diver-

sity and completeness [16,65–67].

DTRS, a fundamental quantitative model, is appropriately introduced for relevant use. DTRS adopts the conditional probability

and Bayesian risk decision to establish threshold-quantitative semantics and three-way decisions [57]. As a result, DTRS improves

on some basic RS-Models and provides a quantitative exploration platform. For relevant studies, three-way decision superiority

was analyzed in [52], model development and threshold calculation were studied in [5,16–19,37,38,43,70], attribute reduction

was discussed in [10,14,29,58,68,69,71], and model applications on clustering and regression were researched in [12,20,25,60].

In particular, three-way decisions have been promoted to the three-way decision theory with extensive research [5,7,13,18–

20,26,61,63,74].

Attribute reduction serves as an essential subject in RS-Theory. It utilizes optimization and generalization to exhibit effec-

tive applications in knowledge discovery and data mining [11,27,29,30,35,44–47,58,66]. In the classical pattern, attribute re-

duction is accompanied by the RS-Model and, thus, depends on the region-change (Rg-Change) law that is mined in the RS-

Model. In the qualitative Pawlak-Model, the classification-positive region (Cl-POS) change has monotonicity. This benign feature,

which essentially originates from general Rg-Change monotonicity, naturally causes the Cl-POS preservation criterion to con-

struct Pawlak-Reduction [31,32]. In the quantitative model, Cl-POS change exhibits non-monotonicity, which has been verified

[10,29,30,45,46,58,66]. This new phenomenon, which in fact comes from Rg-Change non-monotonicity, is not sufficient to inspire

a reasonable reduction criterion. Therefore, quantitative reduction transcends qualitative Pawlak-Reduction, and some reduction

anomalies emerge [30,46,58]. At present, the quantitative reduction construction becomes not only a focus but also a difficulty.

As far as quantitative DTRS-Reduction is concerned, basic reducts with regard to the Cl-POS preservation, Cl-POS measure, mini-

mum cost, region distribution, and structure hierarchy are constructed in [71], [14], [10], [29], and [68,69], respectively; moreover,

general reducts are established via multiple measures [58].

The Rg-Change law in the RS-Model underlies the attribute reduction, especially in the usual regional approach. Rg-Change

non-monotonicity/monotonicity is currently acquired in the quantitative/qualitative model. For the quantitative models, quan-

titative expansion brings some complexity that transcends the qualitative model. In particular, Rg-Change non-monotonicity

brings some reduction confusions and hampers further quantitative reduction. What is the Rg-Change truth hidden behind the

non-monotonicity phenomenon? What is the relevant formation mechanism? Both of these questions become important for

the quantitative models’ applications, especially for quantitative reduction development. However, there are rarely in-depth

reports on the quantitative Rg-Change essence, especially from an uncertainty viewpoint. Based on an extensive survey, we

have discovered that Rg-Change uncertainty acts as the objective truth and broad context for Rg-Change non-monotonicity.

Thereby, Rg-Change uncertainty analyses become a novel and valuable approach, and relevant uncertainty mechanisms un-

derlie quantitative reduction. Note that uncertainty is an essential feature and a critical subject in intelligent information pro-

cessing. In RS-Theory, some uncertainty aspects were explored in [1,4,8,21,36,39,40,53,64], and the relevant uncertainty was

specifically measured by information entropy [28,29,44,45]. In contrast, for the qualitative model, we discover that Rg-Change

certainty becomes general to underlie Rg-Change monotonicity; thus, relevant Rg-Change certainty analyses are required as

well.

For uncertainty/certainty analyses, Granular computing (GrC) [23,62] is one of the most effective technologies, and GrC-based

uncertainty/certainty analyses have become a challenging focus. In fact, GrC is a powerful structural methodology for effectively

processing hierarchical information. It highlights trialistic characteristics with regard to multiple granules, levels, and perspec-

tives. GrC exhibits extensive research [13,15,33,34,47,49,50], which is especially based on information granulation. In particular,

GrC is addressed concretely in RS-Theory [9,17,21,22,37,38,41,48,56,66]. Note that attribute reduction closely adheres to GrC.

Attribute reduction mainly depends on knowledge granulation, which is a type of hierarchical transformation of knowledge

structures, and knowledge granulation leads to structural coarsening, granular merging, and further regional change. Therefore,

knowledge granulation becomes the root cause of presentative uncertainty/certainty, and the relevant uncertainty/certainty

mainly depends on information transformation among different knowledge-granular hierarchies. In short, attribute reduction

depends on knowledge granulation to closely follow GrC, while the GrC approach can thoroughly analyze attribute reduction,

especially its Rg-Change uncertainty/certainty.

Against the above background, this paper begins to probe the Rg-Change essence in attribute reduction, mainly by adopting

a novel uncertainty/certainty viewpoint. To reveal the relevant mechanisms and rules, qualitative Pawlak-Model and quantita-

tive DTRS-Model are concretely utilized to generate comparative Rg-Change (certainty and uncertainty) analyses based on GrC.

Five gradual parts are produced, as follows: (1) Knowledge-coarsening is studied to describe attribute deletion. (2) Granule-

merging and its region-distribution are studied to probe Rg-Change functions. (3) Rg-Change is analyzed in the Pawlak-Model

to mine qualitative Rg-Change certainty and its relevant properties. (4) Rg-Change is analyzed in the DTRS-Model to mine quan-

titative Rg-Change uncertainty and its relevant properties. (5) Comparative Rg-Change analyses are summarized, and further
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experiment verification is provided. By virtue of the GrC technology and comparative strategy, this study makes systematic Rg-

Change analyses to perform uncertainty/certainty mining. As a result, it has three fundamental contributions.

(1) Knowledge-coarsening and granule-merging establish GrC mechanisms for Rg-Change analyses. Relevant results apply in

general to extensive RS-Models.

(2) Quantitative/qualitative Rg-Change uncertainty/certainty and its relevant principles are mined to reveal the

quantitative/qualitative Rg-Change essence. They deepen and explain quantitative/qualitative Rg-Change non-

monotonicity/monotonicity.

(3) For quantitative models, the Rg-Change law and corresponding in-depth mechanism can largely eliminate current Rg-

Change confusions. They further underlie the rational construction of quantitative attribute reduction.

The remainder of this paper is organized as follows. Section 2 reviews the Pawlak-Model and DTRS-Model. Section 3 studies

knowledge coarsening. Section 4 explores granule-merging and its region-distribution, Rg-Change functions. Section 5 produces

Rg-Change certainty analyses in the qualitative Pawlak-Model. Section 6 produces Rg-Change uncertainty analyses in the quan-

titative DTRS-Model. Section 7 provides comparative Rg-Change analyses and further experiment verification. Finally, Section 8

concludes this paper.

In this paper, the terms qualitative and quantitative adhere more to the Pawlak-Model and DTRS-Model, respectively, and the

term region usually refers to the set. Herein, the abbreviations are introduced for simplification. The alphabet-based replace-

ment includes the following: Decision → Dc, Knowledge → Kn, Granule → Gr, and Region → Rg. Thus, following phrases become

clear, i.e., Dc-Table, Kn-Coarsening, Kn-Preservation, Kn-Non-Preservation, Gr-Preservation, Gr-Merging, Rg-Preservation, Rg-Change,

Rg-Changed/Rg-Unchanged Granule/Type, Rg-Distribution, Rg-Belonging, Rg-Certainty, and Rg-Uncertainty. POS, NEG, and BND de-

note the set’s positive, negative, and boundary regions, respectively, while Cl-POS denotes the classification’s positive region.

Moreover, R0+ labels the real number set with 0, and iff means “if and only if”.

2. Pawlak-Model and DTRS-Model

As a preliminary, this section reviews Pawlak-Model and DTRS-Model by Refs. [31,32] and [52,57], respectively. In essence,

both RS-Models exhibit qualitative and quantitative features, respectively, and their major semantic differences are presented

in [73].

2.1. Pawlak-Model

RS-Theory focuses on data represented in an information table:

(U, AT, {Va : a ∈ AT}, {Ia : a ∈ AT}),
where U is the universe with finite objects, AT is the finite attribute set, Va is the value domain for a ∈ AT, and Ia: U → Va is an

information function. Each object x takes a value Ia(x) on attribute a. A decision table (Dc-Table) is a special type of information

table with AT = C ∪ D and C ∩ D �= ∅, where C and D are the condition and decision attribute sets, respectively. In this paper,

Dc-Table acts as a main framework and is simply denoted as (U, C ∪ D); moreover, suppose A ⊆ C, C′ ⊆ C, c ∈ C, 2C = {A : A ⊆ C}.

IND(A) = {(x, y) ∈ U × U : ∀a ∈ A, Ia(x) = Ia(y)}
serves as an equivalence relation to cause equivalence class [x]A. The classified structure U/IND(A) = {[x]A : x ∈ U} radically

means knowledge, and the knowledge R is also directly called/used without confusions. The basic granule [x]A is called the

knowledge granule, and |U/IND(A)| denotes the knowledge-granular cardinality. If A2 ⊆ A1 ⊆ C, then IND(A1) ⊆ IND(A2); thus,

knowledge A1 deduces knowledge A2 (or knowledge A2 depends on knowledge A1), which is denoted as U/IND(A1) �⇒ U/IND(A2)

or the simpler A1 �⇒ A2. Note that the knowledge deducibility/dependency serves as an essential property that underlies rough

reasoning.

Set X ⊆ U is also called a concept, its complementarity uses style ¬X. It produces the following set-positive, set-negative, and

set-boundary regions (POS, NEG, and BND):⎧⎨
⎩

POSA(X ) = {x : [x]A ⊆ X},
NEGA(X ) = {x : [x]A ⊆ ¬X},
BNDA(X ) = {x : [x]A ∩ X,¬X �= ∅}.

(1)

POS/NEG and BND contain knowledge-based certainty and uncertainty for a concept, respectively. Moreover, the three-way

regions exhibit a sort of qualitative description, and they determine Pawlak-Model and its qualitative feature. In other words,

Pawlak-Model is essentially a qualitative model.

D can also motivate equivalence relation IND(D) and classification U/IND(D), where X ∈ U/IND(D) refers to the decision class.

By combining all decision classes’ POS, the classification-positive region (Cl-POS) of D on A is defined as follows:

POSA(D) =
⋃

X∈U/IND(D)

POSA(X ). (2)
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γA(D) = |POSA(D)|
|U| (3)

further constructs the dependency degree to evaluate the classification quality.

If A1 �⇒ A2, then

POSA2
(X ) ⊆ POSA1

(X ), NEGA2
(X ) ⊆ NEGA1

(X ), BNDA2
(X ) ⊇ BNDA1

(X ); (4)

POSA2
(D) ⊆ POSA1

(D); (5)

γA2
(D) ≤ γA1

(D). (6)

These results reflect change monotonicity for the three-way regions, Cl-POS, and dependency measure. According to the inte-

gration definition (Formula (2)), Cl-POS change monotonicity originates from POS change monotonicity. Furthermore, Cl-POS

preservation becomes a natural reduction criterion to define Pawlak-Reduct. Concretely, B⊆C is Pawlak-Reduct of C if it satisfies

conditions (1) (2) or (1) (3):

(1) POSB(D) = POSC(D);

(2) POSB′ (D) �= POSC(D), ∀B′ ⊂ B.

(3) POSB−{b}(D) �= POSB(D), ∀b ∈ B.

Pawlak-Reduct with regard to regional monotonicity could be generalized, and generalized reducts are discussed via mono-

tonicity target preservation [66].

2.2. DTRS-Model

DTRS-Model comes from the two-category problem [52,57], where only two states and three actions exist. States X and ¬X

indicate that an element is in X and not in X, respectively, while actions aP, aB, and aN decide that an object is in sets POS(X),

BND(X), and NEG(X), respectively. When an object belongs to X, let λPP, λBP, and λNP denote the costs of taking actions aP, aB, and

aN, respectively; in contrast, λPN, λBN, and λNN denote the costs of taking the same three actions in the contrary condition. Thus,

the loss functions are expressed as a 2 × 3 matrix:

aP aB aN

X λPP λBP λNP

¬X λPN λBN λNN

According to the Bayesian decision procedure, thresholds α and β gain cost-based calculation formulas:⎧⎪⎨
⎪⎩

α = λPN − λBN

(λPN − λBN) + (λBP − λPP)
,

β = λBN − λNN

(λBN − λNN) + (λNP − λBP)
,

where 0 ≤ β < α ≤ 1. Three-way decisions (with regard to acceptance, rejection, and deferment) are established as follows:⎧⎨
⎩

If Pr(X|[x]A) ≥ α, then decide [x]A ⊆ POS(X );
If Pr(X|[x]A) ≤ β, then decide [x]A ⊆ NEG(X );
If Pr(X|[x]A) ∈ (β,α), then decide [x]A ⊆ BND(X ),

where Pr(X|[x]A) = |X∩[x]A|
|[x]A| denotes the conditional probability for X. Note that the three-way decisions are promoted to the

three-way decision theory [5,7,13,18,26,61,63,74]. Furthermore, three-way regions (i.e., POS, NEG, and BND) are acquired as

follows:⎧⎪⎨
⎪⎩

POS
α,β
A

(X ) = {x : Pr(X|[x]A) ≥ α},
NEG

α,β
A

(X ) = {x : Pr(X|[x]A) ≤ β},
BND

α,β
A

(X ) = {x : Pr(X|[x]A) ∈ (β,α)}.
(7)

These regions exhibit a sort of quantitative description on the probability and threshold, and they determine DTRS-Model and

its qualitative feature. In other words, the DTRS-Model becomes a quantitative model.

Probability
|X∩[x]A|
|[x]A| serves as a core measure in RS-Theory [66]. It corresponds to several different terms, such as the rough

membership [6], misclassification degree [75], and precision [67]. Generally, it is promoted to the inclusion degree to implement
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uncertainty measuring and approximation reasoning [36,63]. Herein, the probability could be utilized to provide a measure style

for Pawlak-Model, i.e.,⎧⎨
⎩

POSA(X ) = {x : Pr(X|[x]A) = 1},
NEGA(X ) = {x : Pr(X|[x]A) = 0},
BNDA(X ) = {x : Pr(X|[x]A) ∈ (0, 1)}.

(8)

By comparing Formulas (7) and (8), DTRS-Model utilizes the probability measure to quantitatively expand the qualitative Pawlak-

Model, which is only a special case with regard to (α,β) = (1, 0).

The above two-category DTRS model underlies multi-category generalization [72]. Next, Cl-POS is focused on in the multi-

category case. At present, DTRS Cl-POS’ construction exhibits two main approaches. One approach utilizes multiple two-category

regions to make the composite construction [14,58], while the other resorts to performing an optimal decision in a high-

dimensional space [10,71]. In view of regional hierarchical structures, the former is utilized in this paper’s research. Thus, Cl-POS

and the dependency degree, respectively, exhibit the following forms:

POS
α,β
A

(D) =
⋃

X∈U/IND(D)

POS
α,β
A

(X ), (9)

γ α,β
A

(D) = |POS
α,β
A

(D)|
|U| . (10)

3. Knowledge-coarsening

RS-Theory originates from knowledge, while knowledge underlies granulation uncertainty and attribute reduction. Knowl-

edge research, which concerns granular hierarchical structures, contributes to a thorough exploration for RS-Theory uncertainty

essence. Thus, this section utilizes GrC to explore knowledge-coarsening, which accompanies attribute reduction. The relevant

definition, types, and properties establish a macro GrC basis for extensive Rg-Change analyses.

3.1. Knowledge-coarsening’s definition and types

This section focuses on knowledge-coarsening’s basic definition and two types.

Lemma 3.1.1 (Kn-Monotonicity). Deleting C′ in C implies IND(C − C′) ⊇ IND(C), i.e., C �⇒ C − C′.
∀[x]C ∈ U/IND(C), ∃[x]C−C′ ∈ U/IND(C − C′), s.t., [x]C−C′ ⊇ [x]C . (11)

|U/IND(C − C′)| ≤ |U/IND(C)|. (12)

Attribute deletion, which is a basic process in attribute reduction, causes hierarchical transformation between knowledge

structures. It has essential knowledge monotonicity (Kn-Monotonicity). In fact, C �⇒ C − C′ reflects a natural conclusion: knowl-

edge never becomes finer for attribute deletion. Herein, two concrete granular results are explained as follows.

(1) Formula (11) uses granules to describe hierarchical structures between old and new knowledge. Concretely, each granule

that regards old knowledge is necessarily included in a type of granule that regards new knowledge. This result implies

the existence of a mapping (between knowledge structures), which will emerge in Proposition 3.1.5.

(2) Formula (12) exhibits the cardinality feature of knowledge-granules. Concretely, the knowledge-granular number never

increases for attribute deletion.

With regard to attribute deletion, knowledge – a type of granular structure – is generally coarsened. This type of knowl-

edge granulating acts as an essential source of external expressional uncertainty, including Rg-Change uncertainty, which is

introduced later. Thus, Kn-Monotonicity is proposed to specifically describe the structural transformation process of attribute

deletion.

Definition 3.1.2 (Kn-Coarsening). The granulating process in which old knowledge structure U/IND(C) is generally coarsened to

new knowledge structure U/IND(C − C′) is called knowledge-coarsening (Kn-Coarsening). This process is concretely denoted as

follows:

C
−C′�⇒ C − C′ (orC

−�⇒ C − C′ orC �⇒ C − C′), (13)

where C
−c�⇒ C − {c} is directly used when C′ = {c}. Acquired knowledge U/IND(C − C′) is called coarsening knowledge with regard

to C; furthermore, the coarsening knowledge set with regard to C becomes:

CKSC = {U/IND(C − C′) : C′ ⊆ C}, (14)

where U/IND(C − C) = U/IND(∅) = {U}, U/IND(C − ∅) = U/IND(C). (15)
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C

According to Kn-Monotonicity, Kn-Coarsening is formally defined from C. More generally, generalized Kn-Coarsening A1
−�⇒

A2 also exists in C. In essence, Kn-Coarsening refers to a type of knowledge granulating between knowledge hierarchies. Con-

cretely, Kn-Coarsening corresponds to a coarsening transformation between two types of knowledge structures, where the

term coarsening is in the generalized sense. Kn-Coarsening describes attribute deletion and provides its GrC essence. Thus, Kn-

Coarsening plays an important role in attribute reduction and becomes a basic descriptive tool in later discussion.

As the opposite of Kn-Coarsening, knowledge-refining (Kn-Refining) can similarly be produced to describe attribute addition.

Herein, both Kn-Coarsening and Kn-Refining concern horizontal attribute change with regard to a parallel structure. In fact,

the terms coarsening and refining were previously concerned. In Refs. [2,3], the approximation maintenance for attribute value

coarsening and refining are discussed; there, the coarsening and refining mainly involve longitudinal attribute change with

regard to a hierarchical structure. In contrast, both Kn-Coarsening and Kn-Refining more closely adhere to attribute reduction.

Definition 3.1.3. For Kn-Coarsening C
−C′�⇒ C − C′,

(1) it is knowledge preservation (Kn-Preservation) if U/IND(C − C′) = U/IND(C);

(2) it is knowledge non-preservation (Kn-Non-Preservation) if U/IND(C − C′) �= U/IND(C).

According to knowledge-structural relationships, Kn-Coarsening naturally exhibits two types, i.e., Kn-Preservation and Kn-

Non-Preservation. Kn-Non-Preservation means strict knowledge coarsening in view of Kn-Monotonicity and, thus, becomes a

main body. Both types could cause different granular results, as follows.

Corollary 3.1.4. For Kn-Coarsening C
−C′�⇒ C − C′,

(1) it is Kn-Preservation,

iff ∀[x]C ∈ U/IND(C), ∃[x]C−C′ ∈ U/IND(C − C′), s.t., [x]C−C′ = [x]C, and iff |U/IND(C − C′)| = |U/IND(C)|;
(2) it is Kn-Non-Preservation,

iff ∃[x]C ∈ U/IND(C), ∃[x]C−C′ ∈ U/IND(C − C′), s.t., [x]C−C′ ⊃ [x]C, and iff |U/IND(C − C′)| < |U/IND(C)|.
Based on Kn-Monotonicity, two knowledge-granular relationships are acquired for both Kn-Coarsening types. As a result,

both types could be effectively identified by knowledge-granular cardinality-change. These different granular results will further

cause distinctive regional manifestations (Section 4.1). In mathematics, they correspond to the following basic mappings.

Proposition 3.1.5. In Kn-Coarsening C
−C′�⇒ C − C′, define mapping

g : U/IND(C) −→ U/IND(C − C′), g([x]C ) = [x]C−C′ ⊇ [x]C, ∀[x]C ∈ U/IND(C). (16)

Then, g is a surjective mapping. ∀[x]C−C′ ∈ U/IND(C − C′), inverseimage set g−1({[x]C−C′ }) contains either an old granule [x]C−C′ or

multiple old granules in [x]C−C′ .

(1) g is a one-to-one mapping, iff ∀[x]C−C′ ∈ U/IND(C − C′) such that g−1({[x]C−C′ }) = {[x]C},
and iff C

−C′�⇒ C − C′ is Kn-Preservation.

(2) g is a non-injective mapping, iff ∃[x]C−C′ ∈ U/IND(C − C′) such that g−1({[x]C−C′ }) ⊃ {[x]C},
and iff C

−C′�⇒ C − C′ is Kn-Non-Preservation.

Surjective mapping g is the latent mapping, which is implied by Kn-Monotonicity (Formula (11)). Herein, the mapping g’s

determination and surjection utilize the association [x]C−C′ ⊇ [x]C . In contrast, g−1 describes the inverseimage set and is not

necessarily a mapping; g and g−1 describe knowledge hierarchies in two different directions. According to Proposition 3.1.5, Kn-

Coarsening corresponds to a surjective mapping between knowledge-granular structures; furthermore, this mapping evolves

into a one-to-one/non-injective mapping for Kn-Preservation/Kn-Non-Preservation.

3.2. Knowledge-coarsening’s properties

This section investigates knowledge-coarsening’s properties, which arise mainly via the coarsening knowledge set.

For C′⊆C, all types of Kn-Coarsening C
−C′�⇒ C − C′ contain the same initial knowledge C but different coarsening knowledge

− C′. Accordingly, the coarsening knowledge set CKSC carries all of the available knowledge, which can be realized by Kn-

Coarsening from C. In other words, CKSC reflects all of the attribute deletion actions from C. Therefore, CKSC’s description and

measurement can thoroughly describe Kn-Coarsening or attribute deletion. Next, CKSC’s structure and measure produce some

basic mathematical results, which adhere to Kn-Coarsening.

Theorem 3.2.1 (CKSC Complete Lattice). Knowledge deduction relation �⇒ is a partial order on CKSC. Furthermore, (CKSC, �⇒)

constitutes a complete lattice, where U/IND(C) and U/IND(∅) serve as the least and greatest elements, respectively.

CKSC becomes a complete lattice with regard to the deduction relation �⇒. This complete lattice of coarsening knowledge,

which originates from hierarchical knowledge structures, especially describes a fundamental mathematical structure of Dc-Table

Kn-Coarsening. As a result, it reflects the attribute reduction’s mechanism and underlies rough reasoning.
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Corollary 3.2.2. ∀U/IND(C − C′) ∈ CKSC, U/IND(C) �⇒ U/IND(C − C′).

U/IND(C), the least element of the complete lattice (CKSC, �⇒), can deduce any coarsening knowledge. This property accords

with Kn-Monotonicity and further reflects Kn-Preservation’s extremum. As a result, Kn-Preservation holds fundamental signif-

icance for attribute reduction. In fact, Kn-Preservation maintains the initial structures of knowledge C to act as a basic state for

deducibility/dependency. Furthermore, it becomes the most reliable action in attribute reduction; thus, the corresponding reduct

is worthwhile to develop, especially in a complex quantitative environment. As is noted in [68,69], Kn-Preservation Reduct of Dc-

able (U, C ∪ D) becomes the strongest hierarchical Dc-Table reduct, while is equivalent to the classical reduct of the information

table (U, C).

Theorem 3.2.3 (Complete Lattice Homomorphism). Define mapping

f : 2C −→ CKSC, f (C′) = U/IND(C − C′), ∀C′ ∈ 2C . (17)

Then, f is surjective to preserve the orders between two complete lattices: (2C, ⊆) and (CKSC, �⇒). In other words, both complete lattices

utilize f to exhibit a complete lattice homomorphism.

Proof. Clearly, both (2C, ⊆) and (CKSC, �⇒) are complete lattices, and f is a surjective mapping according to its construction.

Let C′
1 ⊆ C′

2 ⊆ C, then C − C′
1,C − C′

2 ∈ CKSC and C − C′
1 �⇒ C − C′

2. Hence, f preserves the relevant orders to establish a complete

lattice homomorphism. �

In mathematics, a homomorphism can effectively describe the fundamental structure between systematic hierarchies. Herein,

f implements a complete lattice homomorphism from the classical set lattice (2C, ⊆) to the coarsening knowledge lattice (CKSC,

�⇒). This algebraic result deeply describes the structural relationship between the deleted condition attribute and final coarsen-

ing knowledge. As a result, the ⊆ fundamentality is utilized to manifest the �⇒ scientificity. For the least and greatest elements,

∅ and U correspond to U/IND(C) and U/IND(∅), respectively; furthermore, the inverseimage set

f −1({U/IND(C)}) = {C′ : C′ ⊆ C, f (C′) = U/IND(C)}
reflects the redundant attribute subsets with regard to Kn-Preservation. Note that the above complete lattice homomorphism

cannot usually be promoted to a complete lattice isomorphism because f is not always an injective mapping.

Definition 3.2.4. Mapping m : CKSC −→ [r1, r2] ⊂ R0+ is called a general measure on the coarsening knowledge set, if it has the

order-preservation feature, i.e.,

U/IND(C − C′
1) �⇒ U/IND(C − C′

2), then m(U/IND(C − C′
1)) ≤ m(U/IND(C − C′

2)). (18)

In mathematics, a measure is a mapping from the observed objects to R0+ and has some basic structures. For a measure

on CKSC, order-preservation becomes necessary because CKSC and R0+ have the partial orders �⇒ and ≤, respectively. Accord-

ing to the order-preservation requirement, the general measure is proposed to satisfy natural monotonicity, where the order-

preservation adopts a general direction. Herein, [r1, r2] represents the limited range of measured values on CKSC, and ([r1, r2], ≤)

also becomes a complete lattice even though (R0+
, ≤) is not.

Proposition 3.2.5. General measure m on CKSC is an order-preservation mapping from complete lattices (CKSC, �⇒) to ([r1, r2], ≤).

Moreover, r1 = m(U/IND(C)), r2 = m(U/IND(∅)). Thus, measure m’s boundedness is also expressed by:

m(U/IND(C)) ≤ m(U/IND(C − C′)) ≤ m(U/IND(∅)), ∀U/IND(C − C′) ∈ CKSC . (19)

The general measure establishes an order-preservation mapping between both complete lattices, which cannot usually

evolve into a complete lattice homomorphism/isomorphism. Herein, the general measure m has boundedness with regard to

[m(U/IND(C)), m(U/IND(∅))], i.e., m(U/IND(C)) and m(U/IND(∅)) determine the measure’s infimum and supremum, respectively.

The general measure depends on order-preservation to consider the algebraic structures of two complete lattices; thus, it

becomes scientific. It has two fundamental features with regard to boundedness and monotonicity. Furthermore, it can produce

a composite description by combining the previous mapping f, which is another order-preservation mapping.

Corollary 3.2.6. The composite mapping of f and m becomes:

m ◦ f : 2C −→ [r1, r2] ⊂ R0+
, (m ◦ f )(C′) = m( f (C′)) = m(U/IND(C − C′)), ∀C′ ∈ 2C . (20)

m ◦ f constructs an order-preservation mapping from complete lattices (2C, ⊆) to ([r1, r2], ≤). Thus, m◦f has the monotonicity and

boundedness, i.e.,

(1) (m ◦ f )(C′
1) ≤ (m ◦ f )(C′

2), if C′
1 ⊆ C′

2 ⊆ C;

(2) (m ◦ f)(C′) ∈ [m(U/IND(C)), m(U/IND(∅))], ∀C′ ⊆ C.

Finally, the section that regards Kn-Coarsening is summarized. Kn-Coarsening describes attribute deletion by uncovering its

GrC essence and, thus, underlies attribute reduction. For Kn-Coarsening, this section provides relevant knowledge granulating

mechanisms. Note that Kn-Coarsening and its properties depend on only Dc-Table’s formal structure, with its main condition

attribute set C. Hence, they exhibit fundamentality and generalization for all concrete RS-Models.
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4. Granule-merging and its region-distribution

For attribute deletion, its essential GrC origin – Kn-Coarsening – is described at the macro knowledge level (Section 3). Fur-

thermore, its relevant GrC mechanism is worthwhile to explore at the micro granule level. This section begins studying internal

granule-merging in Kn-Coarsening, mainly from a regional perspective. Concretely, this section discusses granule-merging and

its region-distribution to deeply mine Rg-Change functions. The relevant results reveal the micro GrC mechanism for extensive

Rg-Change analyses.

Rg-Change naturally forms in terms of RS-Model’s three-way regions and closely adheres to GrC in attribute reduction. In this

paper, Rg-Change is usually in the general/strict sense at the knowledge/granule level; moreover, the term Rg-Changed refers to

strictness.

4.1. Granule-merging

This section focuses on granule-merging in Kn-Coarsening.

Theorem 4.1.1. If Kn-Coarsening has strict Rg-Change, then it is necessarily Kn-Non-Preservation.

Kn-Coarsening has two types. Kn-Preservation means invariableness not only for knowledge granules but also for model

regions. In contrast, Kn-Non-Preservation implies strict knowledge coarsening and the necessary granule merging, and the lat-

ter causes possible Rg-Change between knowledge hierarchies. Therefore, at the knowledge level, only Kn-Non-Preservation is

responsible for Rg-Change.

Kn-Coarsening usually consists of some groups of general granular merging. However, only strict granular merging plays

a mechanism function for Rg-Change. Hence, it becomes the internal inducement of strict Rg-Change. In other words, at the

granule level, strict granular merging is responsible for Rg-Change. Next, granule-merging (in the strict sense) and its regional

function are studied with regard to the underlying Rg-Change analyses.

Theorem 4.1.2 (Merging Principle). Kn-Coarsening C
−C′�⇒ C − C′ is Kn-Non-Preservation, iff

∃[x]1
C, . . . , [x]m

C ∈ U/IND(C) (m ≥ 2), ∃[x]1
C−C′ ∈ U/IND(C − C′),

s.t., [x]1
C ∪ · · · ∪ [x]m

C = [x]1
C−C′ ,

i.e., g([x]1
C ) = · · · = g([x]m

C ) = [x]1
C−C′ or g−1({[x]1

C−C′ }) = {[x]1
C, . . . , [x]m

C }. (21)

For Kn-Coarsening, the surjective mapping g between knowledge-granular sets describes the micro dynamic change

(Proposition 3.1.5). Furthermore, for Kn-Non-Preservation, the Merging Principle conducts an in-depth GrC description. It reflects

the objective existence of the granular merging action, which accords with the non-injective mapping g. In fact, granule merging

implements a hierarchical structure transformation from old knowledge-granules to new ones, and this micro mechanism action

underlies macro Kn-Non-Preservation. Herein, granule merging is formally proposed to describe Kn-Non-Preservation’s internal

process.

Definition 4.1.3 (Gr-Merging). Granule-merging (Gr-Merging) refers to the granular combination process in Kn-Non-

Preservation/Kn-Coarsening. Concretely, the action that m (m ≥ 2) old granules [x]1
C
, . . . , [x]m

C
are merged into one new granule

[x]1
C−C′ is as follows:

Gr-Merging [x]1
C ∪ · · · ∪ [x]m

C

=−→ [x]1
C−C′ . (22)

For Gr-Merging [x]1
C

∪ · · · ∪ [x]m
C

=−→ [x]1
C−C′ , its granular superscript denotes the granular serial number; thus, m ≥ 2 im-

plies Gr-Merging’s strictness. According to the Merging Principle, Gr-Merging becomes an essential characteristic of Kn-Non-

Preservation. Because the unchanged granule has no effect on variability, Gr-Merging actually acts as the micro essential mech-

anism of Kn-Coarsening, especially from the GrC viewpoint. Thus, Kn-Coarsening’s study mainly relies on Gr-Merging’s analysis,

and only a representative group [x]1
C

∪ · · · ∪ [x]m
C

=−→ [x]1
C−C′ is sufficient.

Definition 4.1.4 (Gr-Preservation). Granule-preservation (Gr-Preservation) refers to the granular unchanged process in Kn-

Coarsening. Concretely, the action that one old granule [x]1
C is transformed into one new granule [x]1

C−C′ is as follows:

Gr-Preservation [x]1
C

=−→ [x]1
C−C′ . (23)

Gr-Preservation describes the granular unchanged transformation in Kn-Coarsening and, thus, becomes Gr-Merging’s oppo-

site. Gr-Preservation and Gr-Merging involve invariance and a combination of partial granules, respectively. They fully describe

Kn-Coarsening.

Proposition 4.1.5. Kn-Coarsening is accompanied by two and only two types of granular transformation, i.e., Gr-Merging and Gr-

Preservation.

(1) Kn-Non-Preservation necessarily concerns Gr-Merging but also possibly concerns Gr-Preservation.

(2) Kn-Preservation necessarily consists of Gr-Preservation but never involves Gr-Merging.
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Fig. 1. Rg-Change’s GrC hierarchy figure and cause probe route.
Herein, Gr-Merging and Gr-Preservation describe Kn-Coarsening and its two types by focusing on the granular mechanism.

The concrete result is marked in Fig. 1 and actually reflects the relationships between the knowledge and granules. Thus, Kn-

Coarsening usually consists of some groups of Gr-Preservation and Gr-Merging. Furthermore, Kn-Preservation demands purity

of the Gr-Preservation group, while the Gr-Merging group exhibits a type of infectivity to cause Kn-Non-Preservation.

From a regional viewpoint, Gr-Merging underlies Rg-Change, especially when compared to Gr-Preservation. Next, we inspect

Gr-Merging’ position for Rg-Change analyses.

Theorem 4.1.6 (Rg-Change Principle). In Kn-Non-Preservation/Kn-Coarsening, Rg-Change is determined by Gr-Merging (rather than

by Gr-Preservation).

Proof. This result is proved in macro and micro ways. (1) For both Kn-Coarsening types, only Kn-Non-Preservation has the Rg-

Change possibility (Theorem 4.1.1). In fact, Gr-Merging acts as the main characteristic of Kn-Non-Preservation (Theorem 4.1.2).

Thus, only it fully determines potential Rg-Change because Gr-Preservation has no influence on granules and further regions.

(2) From the granular perspective, the granular micro action on regions radically determines macro Rg-Change because regions

consist of granules. In fact, Kn-Coarsening includes two types of granular actions (Proposition 4.1.5), i.e., Gr-Preservation and

Gr-Merging. The unchanged granules have no effects on Rg-Change, while all changed granules are necessarily concerned by

Gr-Merging. Thus, Rg-Change is determined by only Gr-Merging. �

The Rg-Change Principle becomes fundamental for Rg-Change analyses. Its proof also provides some good explanations, such

as Kn-Non-Preservation’s necessity for strict Rg-Change and the changed granules’ correspondence for Gr-Merging. For macro Rg-

Change, Gr-Merging becomes the decisive factor from the granular transformation perspective. In fact, Gr-Merging also exhibits

necessity for strict Rg-Change, and all of the Rg-Changed granules necessarily become changed granules in Gr-Merging. Thus,

Rg-Change analyses rely on Gr-Merging analyses with regard to regional actions. In other words, mining Gr-Merging’ regional

function becomes a critical action that has decisive significance.

Strict Rg-Change at the macro region level completely corresponds to Rg-Changed granules at the micro granule level. In other

words, Rg-Changed granule existence holds both sufficiency and necessity for strict Rg-Change. Thereby, Rg-Changed granules

become a fundamental factor for Rg-Change analyses, especially from the granular mechanism. Next, Rg-Change granules are

introduced for Gr-Merging to mine its regional function.

Definition 4.1.7 (Rg-Changed/Rg-Unchanged Granule). Rg-Changed Granule refers to the old granule that has strict Rg-Change,

i.e., the old granule that belongs to two different regional types in Kn-Coarsening. The opposite of Rg-Changed Granule becomes

Rg-Unchanged Granule.

Proposition 4.1.8.

(1) Gr-Merging and Kn-Non-Preservation possibly concern Rg-Changed and Rg-Unchanged Granules.

(2) Gr-Preservation and Kn-Preservation involve only Rg-Unchanged Granule but no Rg-Changed Granule.

Rg-Changed and Rg-Unchanged Granules are formally defined. They can effectively construct Gr-Merging/Gr-Preservation

and Kn-Non-Preservation/Kn-Preservation. The relevant results are also reflected in Fig. 1. Herein, the Rg-Change Principle is

utilized to mine Rg-Change’s exact cause, i.e., the Rg-Changed Granule. Furthermore, exacting and analyzing Gr-Merging’s Rg-

Changed Granule could accurately provide Gr-Merging’s regional function and further Kn-Coarsening’s Rg-Change. However, this

core process requires a concrete basis for Gr-Merging’s regional description, which becomes the next focus.
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4.2. Granule-merging region-distribution

By introducing three-way regions, this section establishes Gr-Merging’s region-distribution to mine Gr-Merging’s core func-

tion for Rg-Change. The obtained analysis algorithm and technology roadmap exhibit mechanism-based significance for Rg-

Change analyses.

According to Section 4.1, Rg-Change analyses must analyze Gr-Merging’s regional function based on Rg-Changed Granule.

Thus, our primary task is to make an effective regional description for Gr-Merging. For this purpose, extensive POS, NEG, and

BND are generally introduced regardless of RS-Model. Note that Gr-Merging is an action process and thus concerns two basic

parts: some old granules and a new granule. Accordingly, the old and new granules’ regional distributions radically determine

and completely describe Gr-Merging’s effect for Rg-Change. In other words, the two parts can construct a fundamental notion to

extract Gr-Merging’s regional function.

Definition 4.2.1 (Gr-Merging Rg-Distribution). Gr-Merging Rg-Distribution refers to the composite two-dimensional description

of Old Granules Rg-Distribution and New Granule Rg-Belonging in Gr-Merging. Herein, the integrated description is constructed by

the Cartesian product. Moreover, Rg-Distribution/Rg-Belonging denotes region-distribution/region-belonging, and Rg-Distribution

applies to Old Granules and Gr-Merging.

Example 1. In Gr-Merging [x]1
C

∪ · · · ∪ [x]m
C

=−→ [x]1
C−C′ , if old [x]1

C
, . . . , [x]m

C
are in POS and NEG while new [x]1

C−C′ belongs to BND,

then Gr-Merging Rg-Distribution refers to ({POS, NEG}, {BND}). For simplicity, a vivid form “POS + NEG −→ BND” and relevant

tabular style could be adopted equivalently.

Gr-Merging is a dynamic action; thus, its regional description concerns two regional descriptions for the process beginning

and ending. Continuing this thought, Gr-Merging Rg-Distribution utilizes the Cartesian product to combine the two basic re-

gional factors, i.e., Old Granules Rg-Distribution and New Granule Rg-Belonging. Accordingly, Gr-Merging Rg-Distribution fully

describes different region cases of the original and final granules, and Example 1 provides an explanation.

Definition 4.2.2 (Rg-Changed/Rg-Unchanged Type).

(1) If Gr-Merging concerns Rg-Changed Granule and thus holds the strict Rg-Changed function, then the relevant Gr-Merging

Rg-Distribution is called Rg-Changed Type.

(2) If Gr-Merging concerns only Rg-Unchanged Granule and thus never holds the strict Rg-Changed function, then the relevant

Gr-Merging Rg-Distribution is called Rg-Unchanged Type.

In Gr-Merging, all of the changed granules provide necessity for strict Rg-Change, while Rg-Changed Granule provides suf-

ficiency and necessity. By virtue of Rg-Changed Granule, Gr-Merging Rg-Distributions reflect different Rg-Changed functions to

produce two complementary qualitative types. Only Rg-Changed Type implies strict Rg-Change and thus provides relevant suf-

ficiency and necessity. Both types and their relationships with Rg-Changed/Rg-Unchanged Granule are marked at the bottom of

Fig. 1. Clearly, Rg-Changed Granule becomes a feature for discriminating the two types, and Rg-Changed Granule corresponds to

Rg-Changed Type. Except for Rg-Unchanged Type, Rg-Changed Type can also involve Rg-Unchanged Granule.

Thus far, we can construct Rg-Change’s GrC hierarchy figure, i.e., Fig. 1. There are four evolutionary hierarchies.

(1) The 1st hierarchy refers to Kn-Coarsening, which consists of Kn-Non-Preservation and Kn-Preservation.

(2) The 2nd hierarchy refers to granular transformation, which consists of Gr-Merging and Gr-Preservation.

(3) The 3rd hierarchy refers to the old granule, which consists of Rg-Changed and Rg-Unchanged Granules.

(4) The 4th hierarchy refers to Gr-Merging Rg-Distribution, which consists of Rg-Changed and Rg-Unchanged Types.

The 1st hierarchy and the latter three are located at the macro knowledge and micro-granule levels, respectively. The four hier-

archies and their structural relationships are detailedly shown in Fig. 1.

Moreover, Fig. 1 marks the cause probe route via arrow labels. Kn-Non-Preservation and Gr-Merging reflect only necessity

for strict Rg-Change. Furthermore, Rg-Changed Type and its corresponding Rg-Changed Granule provide relevant sufficiency and

necessity. The former qualitatively carries Gr-Merging Rg-Distribution information, while the latter concretely gives Rg-Change

feedback. In later discussions, Rg-Changed Type is emphatically focused on, while Rg-Changed Granule is mainly extracted to

acquire specific Rg-Changed functions.

Theorem 4.2.3.

(1) Kn-Non-Preservation/Kn-Coarsening has strict Rg-Change, iff its Gr-Merging has Rg-Changed Type Rg-Distribution.

(2) Kn-Non-Preservation/Kn-Coarsening preserves regions, iff its Gr-Merging has only Rg-Unchanged Type Rg-Distribution.

Proof. Kn-Coarsening consists of Gr-Preservation and Gr-Merging, and Gr-Merging has two Rg-Distribution types. However, Gr-

Preservation and Rg-Unchanged Type never have Rg-Changed functions, so strict Rg-Change relies on only Rg-Changed Type. In

fact, Rg-Changed Type necessarily changes regions, while Rg-Unchanged Type never changes regions. �

Theorem 4.2.3 reflects relationships between Rg-Change/Rg-Preservation (region-preservation) and Rg-Changed/Rg-

Unchanged Type. Concretely, strict Rg-Change and Rg-Preservation require Rg-Changed Type’s existence and Rg-Unchanged

Type’s universality, respectively. Rg-Changed Type again reflects sufficiency and necessity for strict Rg-Change, thus radically
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Fig. 2. Rg-Change analyses’ technology roadmap based on Gr-Merging Rg-Distribution.
determining Rg-Change. Furthermore, regional analyses of all Rg-Changed Types can exactly exhibit Rg-Change results; thereby,

extracting and analyzing Rg-Changed Granule in Gr-Merging become a basic step.

According to Theorem 4.2.3, we focus on Rg-Preservation, a natural reduction criterion that is weaker than Kn-Preservation

[69]. Rg-Preservation requires whole purity of Rg-Unchanged Type, while Rg-Changed Type exhibits internal infectivity to cause

strict Rg-Change. Therefore, pure Rg-Unchanged Type underlies Rg-Preservation’s rule and reduct. This result sharply contrasts

with that of Kn-Preservation (Proposition 4.1.5), where pure Gr-Preservation is basically required.

Based on the above studies, extracting Rg-Changed Granule can sufficiently exhibit Gr-Merging’s regional influence for

Rg-Change, and Gr-Merging Rg-Distribution establishes a basis. The Rg-Change analyses feasibility based on Gr-Merging Rg-

Distribution is presented as follows.

Proposition 4.2.4. According to Gr-Merging Rg-Distribution, Gr-Merging’s Rg-Changed Granule can be extracted to effectively analyze

Kn-Coarsening’s Rg-Change.

Example 2. Suppose [x]1
C ∪ ... ∪ [x]m

C

=−→ [x]1
C−C′ has Gr-Merging Rg-Distribution “POS + NEG −→ BND”. Then, all old granules

initially belong to POS or NEG but finally belong to BND, so they become Rg-Changed Granules to be successfully extracted.

Herein, these granules [x]1
C

. . . , [x]m
C

produce two classes.

(1) For the 1st class, all old granules enter new BND from old POS, so their effect for Rg-Change is to lessen POS while enlarge

BND.

(2) For the 2nd class, all old granules enter new BND from old NEG, so their effect for Rg-Change is to lessen NEG while enlarge

BND.

On the whole, Gr-Merging has the Rg-Change function to enlarge BND and to lessen POS/NEG.

Extracting Rg-Changed Granule and further analyzing Gr-Merging’s regional function can gain Rg-Change in Kn-Coarsening.

Example 2 provides a detailed illustration via a specific type of Gr-Merging Rg-Distribution. In fact, all of the types can be sim-

ilarly analyzed, and by integrating all of the regional functions, Rg-Change is finally achieved. Thus, an algorithm process and a

technology roadmap are naturally established for Rg-Change analyses.

To acquire Rg-Change, Algorithm 1 provides the evolutionary process via Gr-Merging Rg-Distribution. Step 1 provides the

analyses basis: Gr-Merging Rg-Distribution. Step 2 extracts Rg-Changed Granule in Gr-Merging. Finally, Steps 3 and 4 analyze Rg-

Change at the Gr-Merging and Kn-Coarsening levels, respectively. In particular, Step 4 reflects a comprehensive analysis process

because Kn-Coarsening usually includes multiple groups of Gr-Merging.

Algorithm 1 Rg-Change analyses based on Gr-Merging Rg-Distribution.

Input: Dc-Table (C, D), Kn-Coarsening C
−C′�⇒ C − C′, RS-Model;

Output: Rg-Change in Kn-Coarsening;

1: Establish Gr-Merging Rg-Distribution with regard to RS-Model;

2: Based on Gr-Merging Rg-Distribution, extract Rg-Changed Granule in Gr-Merging;

3: Based on Rg-Changed Granule, analyze Gr-Merging’s function for Rg-Change;

4: Based on Gr-Merging’s regional function, analyze Rg-Change by synthesizing all Gr-Merging;

5: return Rg-Change.

The relevant technology roadmap is provided in Fig. 2. Thereby, Proposition 4.2.4, Algorithm 1, and Fig. 2 constitute the whole

Rg-Change analysis system with regard to Gr-Merging Rg-Distribution. The former one and the latter two provide theoretical

feasibility and practical operability, respectively. The relevant operation steps correspond to the four structural hierarchies (from

the bottom to top) in Fig. 1 and, thus, exhibit tightness. They will be illustrated by Example 5 (Section 6.1).

Aiming at Rg-Change, two opposite clues emerge, and they are explained by comparing Figs. 1 and 2.
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Table 1

Complete Gr-Merging Rg-Distribution for extensive RS-Models.

Old Granules Rg-Distribution New Granule Rg-Belonging

(1) POS

(2) NEG (1) POS

(3) BND

(4) POS, BND (2) NEG

(5) NEG, BND

(6) POS, NEG (3) BND

(7) POS, NEG, BND

T

(1) In the theoretical analysis, we gradually construct the GrC hierarchy and deeply mine the internal hierarchical cause for Rg-

Change. As is shown by the arrow labels in Fig. 1, the necessity for strict Rg-Change is searched from the macro knowledge

to micro granule levels, and a diminishing route is achieved, i.e.,

Kn-Coarsening/Kn-Non-Preservation−→Gr-Merging−→Rg-Changed Granule ←→ Rg-Changed Type.

Finally, Rg-Changed Type and Rg-Changed Granule acquire sufficiency and necessity for strict Rg-Change.

(2) In a practical deduction, we successfully gain an effective technology process (Algorithm 1 and Fig. 2). For the concrete RS-

Model, its Gr-Merging Rg-Distribution must first be established; then, further studies with regard to Rg-Changed Granule

and Gr-Merging’s Rg-Changed function accord with feature identification with regard to the Rg-Changed/Rg-Unchanged

Type. In fact, these processes are located at the micro granule level. Furthermore, Rg-Change can be summarized at the

macro knowledge level. Thus, Rg-Change analyses follow an evolutionary technology line:

Rg-Changed Type ←→ Rg-Changed Granule−→Gr-Merging−→Kn-Non-Preservation/Kn-Coarsening,

which becomes the opposite of the above theoretical route.

Based on the above algorithm and technology, Gr-Merging Rg-Distribution’s construction and identification become the sub-

sequent starting point for Rg-Change analyses. The next section first provides the broadest Gr-Merging Rg-Distribution regardless

of the RS-Model.

4.3. Granule-merging region-distribution completeness

Aiming at the Gr-Merging Rg-Distribution, this section explores the largest completeness with regard to the general RS-Model,

where extensive three-way regions are still utilized.

Theorem 4.3.1 (Gr-Merging Rg-Distribution Completeness). In theory, there are at most 21 types of Gr-Merging Rg-Distribution.

They are provided in Table 1 by fully combining the seven cases of Old Granules Rg-Distribution and the three cases of New Granule

Rg-Belonging.

Proof. With regard to POS, NEG, and BND, Old Granules Rg-Distribution and New Granule Rg-Belonging have seven and three

cases, respectively. In terms of their full combination, Gr-Merging Rg-Distribution has at most 21 types in Table 1. �

Proposition 4.3.2. The 21 Rg-Distributional types accord with the complete many-to-many mathematical correspondence,

which is from the seven-element set of Old Granules Rg-Distribution to the three-element set of New Granule Rg-Belonging.

Example 3. For Gr-Merging [x]1
C

∪ · · · ∪ [x]m
C

=−→ [x]1
C−C′ , if old granules [x]1

C
, . . . , [x]m

C
come from POS and NEG, then new granule

[x]1
C−C′ possibly belongs to POS, NEG, and BND. Thus, three distributional types emerge, i.e.,

(1) “POS + NEG −→ POS”, (2) “POS + NEG −→ NEG”, and (3) “POS + NEG −→ BND”.

In contrast, if new granule [x]1
C−C′ belongs to POS, then old granules [x]1

C , . . . , [x]m
C

possibly have seven combined distributions

with regard to POS, NEG, and BND. Thus, seven types emerge, i.e.,

(1) “POS −→ POS”, (2) “NEG −→ POS”, (3) “BND −→ POS”,

(4) “POS + BND −→ POS”, (5) “NEG + BND −→ POS”, (6) “POS + NEG −→ POS”,

and (7) “POS + NEG + BND −→ POS”.

For Gr-Merging Rg-Distribution, the 21 types in Table 1 actually provide the largest completeness, which applies to all RS-

Models. In mathematics, all of the 21 types are related to a many-to-many correspondence (rather than a mapping) between two

Rg-Distribution sets. The mathematical correspondence and distributional completeness are partly illustrated by Example 3.

The complete Gr-Merging Rg-Distribution holds theoretical significance for extensive RS-Models. However, some distribu-

tional types possibly never exist in reality, especially for the concrete RS-Model. In other words, we must practically inspect

the distributional purity, which means real existence with regard to Kn-Coarsening or practical realizability with regard to Dc-

able. Furthermore, exact Gr-Merging Rg-Distribution can be finally established to underlie Rg-Change analyses, especially for a

specific RS-Model. According to Pawlak-Model and DTRS-Model, Sections 5 and 6 will first identify Gr-Merging Rg-Distribution

exactness, respectively, before in-depth Rg-Change analyses.
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Table 2

Gr-Merging Rg-Distribution and Rg-Change analyses in Pawlak-Model.

Type Old Granules Rg-Distribution New Granule Rg-Belonging Rg-Changed Granule Source Rg-Changed Function Rg-Changed Type

(1) POS POS – – No

(2) NEG NEG – – No

(3) BND BND – – No

(4) POS, BND BND POS �POS, ⊕BND Yes

(5) NEG, BND BND NEG �NEG, ⊕BND Yes

(6) POS, NEG BND POS, NEG �POS, �NEG, ⊕BND Yes

(7) POS, NEG, BND BND POS, NEG �POS, �NEG, ⊕BND Yes
Proposition 4.3.3. For Gr-Merging Rg-Distribution, only three types become Rg-Unchanged Type, i.e.,

“ POS −→ POS ”, “NEG −→ NEG ”, and “BND −→ BND”.

In contrast, all the surplus 18 types become Rg-Changed Type.

Note that Rg-Changed/Rg-Unchanged Type underlies Kn-Coarsening Rg-Change (Theorem 4.2.3). Thus, all of the 21 types are

concretely divided into Rg-Changed and Rg-Unchanged Types. Furthermore, the core Rg-Changed Type can be identified and

analyzed for the specific RS-Model, and the relevant studies will be conducted for Pawlak-Model and DTRS-Model (Sections 5

and 6).

Finally, this section that regards Gr-Merging is summarized by illustrating Gr-Merging’s important significance to Rg-Change.

Within the Kn-Coarsening framework, this section gradually investigates Gr-Merging, Gr-Merging Rg-Distribution, and Gr-

Merging Rg-Distribution completeness. All of the mined results, including the Rg-Change’s GrC hierarchy (Fig. 1), Rg-Change

analysis method (Algorithm 1 and Fig. 2), and Rg-Distribution establishment technology (Table 1), establish an extensive GrC ba-

sis for Rg-Change analyses. In short, we thoroughly provide the GrC mechanism for Rg-Change analyses. Note that these studies

mainly originate from GrC and never depend on RS-Model and, thus, they hold general significance. Next, the relevant GrC results

will be utilized to implement concrete Rg-Change analyses for the qualitative Pawlak-Model and quantitative DTRS-Model.

5. Region-change certainty analyses in the qualitative Pawlak-Model

Thus far, Kn-Coarsening and Gr-Merging provide in-depth GrC mechanisms for Rg-Change analyses. Aiming at the qualita-

tive Pawlak-Model, this section constructs Gr-Merging Rg-Distribution to conduct Rg-Change analyses, where the background

Pawlak-Model is usually omitted and becomes an implicit condition. Concretely, we mainly mine Rg-Change Certainty and its

relevant properties. The qualitative Rg-Change certainty analyses will establish a comparative basis for the later quantitative

Rg-Change uncertainty analyses.

5.1. Qualitative granule-merging region-distribution

As a basis for Rg-Change certainty analyses, this section presents Gr-Merging Rg-Distribution.

Theorem 5.1.1. There are seven and only seven types of Gr-Merging Rg-Distribution, i.e., Types (1–7) in Table 2.

Proof. For Gr-Merging [x]1
C ∪ · · · ∪ [x]m

C

=−→ [x]1
C−C′ , New Granule Rg-Belonging needs inspecting for the seven conditions of Old

Granules Rg-Distribution. Let i ∈ {1, . . . , m}.

(1) For three cases of Old Granules Rg-Distribution, “POS”, “NEG”, and “BND” mean that [x]i
C

comes from old POS, NEG, and

BND, respectively. Hence, [x]1
C−C′ necessarily belongs to new POS, NEG, and BND, respectively. Thus,

“POS −→ POS”, “BND −→ BND”, and “BND −→ BND”

exist and become Types (1), (2), and (3), respectively.

(2) Only four cases are surplus, i.e.,

“POS + BND”, “NEG + BND”, “POS + NEG”, and “POS + NEG + BND”.

For each case, new granule [x]1
C−C′ satisfies the following condition:

[x]1
C−C′ ∩ X �= ∅ and [x]1

C−C′ ∩ (¬X ) �= ∅, i.e., [x]1
C−C′ ⊆ BNDC−C′ (X ).

Hence, New Granule Rg-Belonging corresponds to only BND. Thus,

“POS + BND −→ BND”, “NEG + BND −→ BND”, “POS + NEG −→ BND”, and “POS + NEG + BND −→ BND”

exist and become Types (4), (5), (6), and (7), respectively. �

Proposition 5.1.2 (Rg-Distribution Mapping). The seven Rg-Distributional types accord with a specific mathematical mapping,

which is from the seven-element set of Old Granules Rg-Distribution to the three-element set of New Granule Rg-Belonging.

Gr-Merging Rg-Distribution is provided exactly in Theorem 5.1.1 and Table 2. The relevant proof utilizes the knowledge-

granular certainty/uncertainty feature (or the Pawlak-Regional qualitative property). As a result, the seven types are related to a
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concrete mapping (rather than a correspondence) between two Rg-Distribution sets. For the 21 complete types (Theorem 4.3.1),

we verify the purity of seven types and the impossibility of 14 types. Moreover, the relevant Rg-Distribution mapping with seven

types becomes a sub-correspondence of the complete Rg-Distribution correspondence with 21 types (Proposition 4.3.2).

Corollary 5.1.3. The seven types have exactness, which includes both completeness and purity. They constitute a type of partition from

the viewpoint of being non-overlapping. Thus, arbitrary Gr-Merging corresponds to one and only one type.

The seven exact types are provided in detail in Table 2. As an example, Type (4) “POS + BND −→ BND” represents that old

granules from POS and BND are merged into a new granule in BND. Based on Corollary 5.1.3, only one type is provided exactly

for a Gr-Merging action. Next, the seven types are appropriately summarized.

Proposition 5.1.4.

(1) Let � denote that all of Gr-Merging’s old granules come from neither POS nor NEG. Then, Gr-Merging Rg-Distribution “� −→
BND” holds and represents the surplus types of “POS −→ POS” and “NEG −→ NEG”. From another viewpoint, � becomes BND’s

inverseimage with regard to Rg-Distribution Mapping.

(2) Let � denote all of the subparts of POS + NEG, including POS, NEG, POS + NEG, and nothing. Then, Gr-Merging Rg-Distribution

“BND + � −→ BND” holds and represents the surplus types of “POS −→ POS”, “NEG −→ NEG”, and “POS + NEG −→ BND”. In

other words, New Granule Rg-Belonging is necessarily BND as long as Old Granules Rg-Distribution is related to BND.

For the seven types, two inductive methods are given above and explained below. (1) From the inverseimage perspective, the

seven types can be concluded to only three classes, i.e., “POS −→ POS”, “NEG −→ NEG”, and surplus “� −→ BND”. According to the

absorption function of BND’s old granule, they can also be summarized by only four classes, i.e., “POS −→ POS”, “NEG −→ NEG”,

“POS + NEG −→ BND”, and surplus “BND + � −→ BND”. (2) For three-way regions, only BND corresponds to uncertainty. Thus,

“� −→ BND” and “BND + � −→ BND” summarize several types that involve BND. They can be analyzed from the perspective of

uncertainty. For “� −→ BND”, the new granule necessarily belongs to BND as long as the Old Granules Rg-Distribution never

involves pure POS or NEG. For “BND + � −→ BND”, the new granule necessarily belongs to BND as long as an old granule exists

in old BND. Both distributional classes extensively transcend “BND −→ BND” and, thus, manifest uncertainty reinforcement,

which essentially originates from Kn-Coarsening/Kn-Non-Preservation. Furthermore, they also partially underlie later Rg-Change

properties, especially Gr-Merging One-Way Convergence (Proposition 5.2.2).

Next, we introduce the Rg-Change analysis process from Proposition 4.2.4, Algorithm 1, and Fig. 2 (Section 4.2). Gr-Merging

Rg-Distribution is first provided in Theorem 5.1.1 and Table 2. At the micro Gr-Merging level, the Rg-Changed Granule must

then be extracted to further analyze Gr-Merging’s Rg-Changed function. At the macro Kn-Coarsening level, Rg-Change is finally

analyzed by systematically inspecting all of the Gr-Merging.

Along the above strategy, Table 2 also endows each type with Rg-Changed Granule Source, Rg-Changed Function, and Rg-

Changed Type Identification. There, the symbol “–” means that the result is nothing for the considered item; the symbols � and

⊕ express the lessening and enlargement functions for their object regions, respectively; and the type identification symbols

Yes and No correspond to Rg-Changed and Rg-Unchanged Types, respectively. As an example, Type (6) “POS + NEG −→ BND” is

explained. There, the Rg-Changed Granule comes from POS and BND, and this type of key granule leads to the Gr-Merging’s

Rg-Changed function, which is to lessen POS and NEG while is to enlarge BND; thus, Type (6) becomes the Rg-Changed Type. In

fact, Table 2 provides the complete information that is required by the Rg-Change analysis process; there, the Rg-Changed Types

and their Rg-Changed Functions become especially important. Table 2 and its Rg-Changed Types will be utilized to mine the

properties at both the Gr-Merging and Kn-Coarsening levels (Section 5.2).

Proposition 5.1.5. The seven distributional types produce four classes according to their reginal roles.

(1) The 1st class includes Types (1–3), where Gr-Merging never changes any region.

(2) The 2rd class includes Type (4), where Gr-Merging lessens POS and enlarges BND.

(3) The 3rd class includes Type (5), where Gr-Merging lessens NEG and enlarges BND.

(4) The 4th class includes Types (6) and (7), where Gr-Merging lessens POS and BND while enlarges BND.

The first class and the latter three correspond to the Rg-Unchanged and Rg-Changed Types, respectively.

Herein, Gr-Merging Rg-Distributions are summarized into four classes. Thus, the concrete Rg-Change functions of Gr-Merging

are acquired to underlie the next Rg-Change analyses.

5.2. Qualitative region-change certainty and its relevant properties

Based on Gr-Merging Rg-Distribution, especially the complete Table 2, this section begins Rg-Change analyses. Concretely,

Rg-Change Certainty and its relevant properties are mined from the Gr-Merging to Kn-Coarsening levels.

Theorem 5.2.1 (Gr-Merging Rg-Certainty). Gr-Merging holds certainty for the Pawlak-Regions, i.e., Old Granules Rg-Distribution

completely determines New Granule Rg-Belonging in Gr-Merging.

Proof. This result is easily concluded by the seven distributional types (Table 2). �
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Gr-Merging Rg-Certainty accords with Rg-Distribution Mapping from Old Granules Rg-Distribution to New Granule Rg-

Belonging (Proposition 5.1.2). Thus, New Granule Rg-Belonging becomes clear if Old Granules Rg-Distribution is clear. In other

words, the Gr-Merging action holds certainty from the Pawlak-Region perspective.

Theorem 5.2.2 (Gr-Merging One-Way Convergence). In Gr-Merging, all of the new granules gather together in new BND as much as

possible. In other words, all of the old granules converge to new BND to the greatest extent.

Proof. This result is proven by summarizing the seven distributional types (Table 2). For Types (1) and (2), the new granule

never has a convergence possibility with regard to new BND; in fact, the new granule necessarily belongs to new POS or NEG.

For surplus Types (3–7), i.e., “� −→ BND” (Proposition 5.1.4), new granules necessarily belong to new BND regardless of the Old

Granules Rg-Distribution. The new granular aggregation with regard to BND implies the one-way convergence of old granules.

Moreover, the old granule convergence can utilize Rg-Changed and Rg-Unchanged Types (Table 2). Rg-Unchanged Types (i.e.,

Types (1–3)) never have an Rg-Changed Granule, while all of the Rg-Changed Granules of the Rg-Changed Types (i.e., Types

(4–7)) converge to new BND. In other words, if possible, all of the old granules converge to new BND. �

One-Way Convergence comes from the synthesis of all Rg-Distribution types; thus, it becomes a granular statistical law

with regard to the Pawlak-Region. In fact, this BND-directional conclusion highly accords with the inductive result “� −→
BND” (Proposition 5.1.4). Thus, One-Way Convergence acts as a concrete embodiment of uncertainty enhancement. In essence, it

originates from Kn-Coarsening/Kn-Non-Preservation.

Gr-Merging Rg-Certainty and One-Way Convergence serve as two fundamental granular properties at the micro Gr-Merging

level. The former underlies the latter. Based on these granular mechanisms, the corresponding regional manifestations can fur-

ther be mined at the macro Kn-Coarsening level.

Theorem 5.2.3 (Rg-Change Certainty). Rg-Change holds certainty in Kn-Coarsening, i.e., all three-way regions have their own stable

change directions with regard to regional enlargement or lessening.

Proof. Rg-Preservation and Rg-Unchanged Type have regional invariance, which is a sort of regional change certainty. In contrast,

strict Rg-Change is determined by Rg-Changed Type (Theorem 4.2.3). Thus, only Rg-Changed Types (i.e., Types (4–7)) need ana-

lyzing. According to Table 2, each Rg-Changed Type reflects the specific Rg-Changed direction with regard to BND enlargement

or POS/NEG lessening. Furthermore, by integrating all Rg-Changed functions (Table 2 or Proposition 5.1.5), three-way regions

exhibit definite change directions: POS and NEG are generally lessened while BND is generally enlarged. �

Rg-Change Certainty is summarized by Gr-Merging Rg-Distribution (Table 2), mainly its Rg-Changed Types. From the granular

mechanism, Rg-Change Certainty can also be caused by Gr-Merging Rg-Certainty. In fact, Rg-Change Certainty mainly focuses on

the monotonic direction of regional enlargement or lessening, thus underlying the next monotonic change.

Theorem 5.2.4 (Rg-Change Monotonicity). Rg-Change holds monotonicity in Kn-Coarsening. Concretely, BND is not lessened, while

POS/NEG is not enlarged.

Proof. This conclusion naturally holds based on Theorem 5.2.3’s proof. �

Rg-Change Monotonicity, which is a fundamental feature for qualitative Pawlak-Model, arises directly from Rg-Change Cer-

tainty (or its inductive proof). Moreover, it is caused by One-Way Convergence from the granular mechanism.

Both Rg-Change Certainty and Monotonicity reflect the Rg-Change law. In fact, monotonicity describes a type of certainty

with regard to the change direction; hence, Rg-Change Monotonicity becomes a concrete embodiment of Rg-Change Certainty.

In contrast, certainty refers to a type of monotonicity stability; hence, Rg-Change Certainty can be explained by Rg-Change

Monotonicity. Furthermore, a combination of both fully describes the Rg-Change essence.

Theorem 5.2.5 (Qualitative Rg-Change Essence). Qualitative Rg-Change has the essence of certain monotonicity, i.e., three-way

Pawlak-Regions have a certain monotonic change in Kn-Coarsening.

At the Kn-Coarsening level, Rg-Change Certainty underlies Rg-Change Monotonicity, while the latter manifests Rg-Change

Certainty. Thus, Theorem 5.2.5 uncovers the qualitative Rg-Change essence: certain monotonicity. Furthermore, both fundamen-

tal properties, especially Rg-Change Monotonicity, naturally deduce the next Cl-POS Change Monotonicity.

Corollary 5.2.6 (Cl-POS Change Monotonicity). Cl-POS change holds monotonicity in Kn-Coarsening. Concretely, Cl-POS is not

enlarged.

Proof. In fact, Cl-POS is POS’s combination of multiple concepts (Formula (2)). Thus, this result comes from POS Change Mono-

tonicity (Theorem 5.2.4) with regard to each concept. �

Thus far, two and three properties are mined at the Gr-Merging and Kn-Coarsening levels, respectively. Before commenting

on their logical relationships and basic roots, the relevant figure, Fig. 3, is provided.

Kn-Coarsening and Gr-Merging act as two fundamental GrC notions. They are located at the macro knowledge and micro

granule levels, respectively. Furthermore, Gr-Merging concerns two main parts, i.e., its Rg-Distribution and its properties.
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Fig. 3. Qualitative Rg-Change certainty’s relevant properties and their relationships.
(1) According to the Rg-Change Principle (Theorem 4.1.6), Gr-Merging becomes the sole action cause at the granule level

to alter the granular regional belonging. Hence, the internal regional features of Gr-Merging determine the external Rg-

Change of Kn-Coarsening. Thus, Gr-Merging Rg-Distribution (Theorem 5.1.1), especially Rg-Changed Type, establishes a

solid foundation for Rg-Change. Table 2 and its Rg-Changed Function (with Rg-Changed Granule) are utilized for relevant

Rg-Change analyses and certainty mining.

(2) Based on Gr-Merging Rg-Distribution (Table 2), two granular statistical properties are concluded at the micro Gr-Merging

level, i.e., Gr-Merging Rg-Certainty and One-Way Convergence. The former underlies the latter.

(3) Three regional integral properties are further manifested at the macro Kn-Coarsening level, i.e., Rg-Change Certainty, Rg-

Change Monotonicity, and Cl-POS Change Monotonicity. The three exhibit a decisive relationship from the former to the

latter.

The above three items exhibit Gr-Merging Rg-Distribution, Gr-Merging’s regional properties, Kn-Coarsening’s regional properties,

and their internal relationships. All of these results are hierarchically described in Fig. 3, where the internal relationships are

horizontally exhibited.

Herein, hierarchical relationships are analyzed from the causality perspective.

(1) According to the purity and completeness detection (Theorem 5.1.1), the qualitative mechanism (with POS/NEG certainty

and BND uncertainty) provides Gr-Merging Rg-Distribution exactness; thus, it becomes a basic mechanism root. In con-

trast, Kn-Coarsening acts as the essential action cause.

(2) Gr-Merging Rg-Distribution directly underlies Gr-Merging Rg-Certainty and One-Way Convergence, which are two statis-

tical properties at the micro Gr-Merging level.

(3) Gr-Merging Rg-Certainty and Rg-Change Certainty become the regional certainty at the micro granule and macro knowl-

edge levels, respectively; both hold an inference relationship. One-Way Convergence and Rg-Change Monotonicity become

regional embodiments of uncertainty enhancement at the two relevant levels, respectively; both have a mechanism ex-

planation relationship.

The above three items provide a causality development line, i.e.,

Qualitative Mechanism−→Gr-Merging Rg-Distribution−→
Gr-Merging’s regional properties−→Kn-Coarsening’s regional properties.

All of these results are vertically exhibited (from the bottom to the top) in Fig. 3.

Finally, we summarize this section with regard to qualitative Rg-Change certainty analyses. First, Gr-Merging Rg-Distribution

is established via the qualitative mechanism; then, some fundamental regional properties are mined at both the micro Gr-

Merging and macro Kn-Coarsening levels. In fact, we mainly depend on the micro Gr-Merging level to make systematic Rg-

Change analyses; furthermore, the relevant results provide systematic Rg-Change mechanisms at the macro Kn-Coarsening level.

As a result, we clearly interpret the well-known phenomena of attribute reduction, which include Rg-Change Monotonicity and

Cl-POS Change Monotonicity, and in addition, we thoroughly reveal a steady background, i.e., Rg-Change Certainty. Note that

certain monotonicity becomes the essence of the qualitative Rg-Change.

6. Region-change uncertainty analyses in the quantitative DTRS-Model

Aiming at the quantitative DTRS-Model, this section establishes Gr-Merging Rg-Distribution to make Rg-Change analyses,

where the background DTRS-Model is usually omitted to become a latent restriction. Concretely, we mainly probe the hidden

Rg-Change uncertainty and relevant properties. Herein, the quantitative Rg-Change uncertainty analyses refers, in contrast, to

the qualitative Rg-Change certainty analyses (Section 5).
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Table 3

Gr-Merging Rg-Distribution and Rg-Change analyses in DTRS-Model.

Type/Class Old Granules Rg-Distribution New Granule Rg-Belonging Rg-Changed Granule Source Rg-Changed Function Rg-Changed Type

(1) POS POS – – No

(2) NEG NEG – – No

(3) BND BND – – No

(4) POS, BND POS or BND

(4a) POS, BND POS BND �BND, ⊕POS Yes

(4b) POS, BND BND POS �POS, ⊕BND Yes

(5) NEG, BND NEG or BND

(5a) NEG, BND NEG BND �BND, ⊕NEG Yes

(5b) NEG, BND BND NEG �NEG, ⊕BND Yes

(6) POS, NEG POS or NEG or BND

(6a) POS, NEG POS NEG �NEG, ⊕POS Yes

(6b) POS, NEG NEG POS �POS, ⊕NEG Yes

(6c) POS, NEG BND POS, NEG �POS, �NEG, ⊕BND Yes

(7) POS, NEG, BND POS or NEG or BND

(7a) POS, NEG, BND POS NEG, BND �NEG, �BND, ⊕POS Yes

(7b) POS, NEG, BND NEG POS, BND �POS, �BND, ⊕NEG Yes

(7c) POS, NEG, BND BND POS, NEG �POS, �NEG, ⊕BND Yes

Table 4

Dc-Table of Example 4.

U a b d

x1 1 1 1

x2 0 1 1

x3 0 1 2

x4 0 0 1

x5 0 0 1

x6 0 0 1

x7 0 2 0
6.1. Quantitative granule-merging region-distribution

As a basis for Rg-Change uncertainty analyses, this section reveals Gr-Merging Rg-Distribution, mainly by taking two ap-

proaches with regard to completeness and purity.

Lemma 6.1.1. In Gr-Merging [x]1
C ∪ · · · ∪ [x]m

C

=−→ [x]1
C−C′ ,

Pr([x]1
C−C′ ) ∈ [ min

i∈{1,...,m} Pr(X|[x]i
C), max

i∈{1,...,m}
Pr(X|[x]i

C)]. (24)

Gr-Merging’s old granules have a limited probability distribution. Under the merging action, the new granule naturally has

a probability boundedness with regard to the minimum and maximum. Thus, a type of Gr-Merging probabilistic mechanism is

concretely mined by Lemma 6.1.1.

Theorem 6.1.2. There are at most 13 types of Gr-Merging Rg-Distribution, i.e., Types (1), (2), (3), (4a), (4b), (5a), (5b), (6a), (6b), (6c),

(7a), (7b), and (7c) in Table 3.

Theorem 6.1.2 embodies Gr-Merging Rg-Distribution Completeness. Its proof is in Appendix A and mainly utilizes the Gr-

Merging probability boundedness (Lemma 6.1.1). Theorem 6.1.2 acquires a more accurate completeness (with only 13 types),

which narrows down the largest completeness (with 21 types) in Theorem 4.3.1. Can the 13 types be further narrowed down? In

other words, are there some types that never exist in practice? Clearly, both questions concern considerable purity, i.e., the real

possibility in theory or concrete realizability in reality.

Corollary 6.1.3. Types (1–3) are pure, i.e., they can emerge in practice.

Corollary 6.1.3 is deduced by the proof of Theorem 6.1.2 (Appendix A) and verifies Type (1–3)’s purity. Then, the purity of the

surplus ten types must be identified. Next, the purity conclusion for all 13 types is given first, and its correctness is illustrated by

the relevant Dc-Table construction.

Theorem 6.1.4. The 13 types are all pure.
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Table 5

Gr-Merging Rg-Distribution and Kn-Coarsening Rg-Change of Examples 4 and 5.

Case Threshold Distribution {x1} ∪ {x2, x3} =−→ {x1, x2, x3} Type Rg-Changed Granule Rg-Change

(1) β < α < 0.5 < 2/3 POS + POS −→ POS (1) – –

(2) β < 0.5 < α < 2/3 POS + BND −→ POS (4a) {x2, x3} BND�, POS⊕
(3) β < 0.5 < 2/3 < α POS + BND −→ BND (4b) {x1} POS�, BND⊕
(4) 0.5 < β < α < 2/3 POS + NEG −→ POS (6a) {x2, x3} NEG�, POS⊕
(5) 0.5 < 2/3 < β < α POS + NEG −→ NEG (6b) {x1} POS�, NEG⊕
(6) 0.5 < β < 2/3 < α POS + NEG −→ BND (6c) {x1}, {x2, x3} POS�, NEG�, BND⊕
Example 4. A three-category Dc-Table (U, C ∪ D) is provided in Table 4. Herein, U = {x1, . . . , x7}, C = {a, b}, D = {d}, and X =
{x1, x2, x4, x5, x6}.⎧⎨

⎩
U/IND({a, b}) = {{x1}, {x2, x3}, {x4, x5, x6}, {x7}},
U/IND({b}) = {{x1, x2, x3}, {x4, x5, x6}, {x7}},
U/IND({d}) = {{x1, x2, x4, x5, x6}, {x3}, {x7}}.

In Kn-Coarsening {a, b} −a�⇒ {b}, {a, b} and {b} become the old and new knowledge, respectively.

|U/IND({b})| = 3 < 4 = |U/IND({a, b})|,
so knowledge is strictly coarsened and Kn-Coarsening becomes Kn-Non-Preservation. Furthermore, there are three groups of

granular transformation, i.e.,⎧⎪⎨
⎪⎩

Gr-Merging {x1} ∪ {x2, x3} =−→ {x1, x2, x3},
Gr-Preservation {x4, x5, x6} =−→ {x4, x5, x6},
Gr-Preservation {x7} =−→ {x7}.

For the sole Gr-Merging {x1} ∪ {x2, x3} =−→ {x1, x2, x3},
Pr(X|{x1}) = 1, Pr(X|{x2, x3}) = 0.5, Pr(X|{x1, x2, x3}) = 2/3.

Thus, thresholds α and β exhibit only six distributional cases with regard to probability constants 0.5, 2/3, and 1. According to

each case, its Gr-Merging Rg-Distribution and its type label are identified in Table 5. For Types (1), (4a), (4b), (6a), (6b), and (6c),

each type concretely emerges in specific Kn-Coarsening. Hence, the purity of the six types is verified.

Example 4 proves the purity of six types. This construction strategy is based on Dc-Table and can be generalized for purity

verification. In practice, we similarly prove the purity of the additional seven types. Thus, Theorem 6.1.4 holds to provide the

Gr-Merging Rg-Distribution Purity.

Theorem 6.1.5. There are 13 and only 13 types of Gr-Merging Rg-Distribution, which are presented in Table 3.

Gr-Merging Rg-Distribution Completeness and Purity are provided by Theorems 6.1.2 and 6.1.4, respectively. Furthermore, Gr-

Merging Rg-Distribution Exactness is naturally reached in Theorem 6.1.5. Thus, Table 3, which contains 13 types, exhibits exact

Gr-Merging Rg-Distribution. As an example, Type (7b) “POS + NEG + BND −→ NEG” means that old granules from POS, NEG, and

BND are merged into a new granule in NEG. The 13 types produce seven classes, i.e., Classes (1–7) in Table 3. For example, three

types, (7a), (7b), and (7c), constitute Class (7). In contrast, Classes (1), (2), and (3) include one type, and Classes (4) and (5) include

two types, while Classes (6) and (7) include three types.

Proposition 6.1.6 (Rg-Distribution Correspondence). The 13 distributional types accord with a specific mathematical correspon-

dence, which is from the seven-element set of Old Granules Rg-Distribution to the three-element set of New Granule Rg-Belonging.

For the entire set of 21 types (Theorem 4.3.1), we confirm both the impossibility of 8 types and the purity of 13 types. In

mathematics, the 13 exact types construct a concrete correspondence (rather than a mapping) between two Rg-Distribution

sets. Moreover, the correspondence becomes a subpart of the complete Rg-Distribution correspondence (Proposition 4.3.2).

For Rg-Change analyses, Gr-Merging Rg-Distribution can produce some basic preparations by considering the technology

algorithm/roadmap process (Section 4.2). As a result, Table 3 also endows the 13 types with Rg-Changed Granule Source, Rg-

Changed Function, and Rg-Changed Type Identification. Therefore, Table 3 contains complete information for the Rg-Change

analyses, where the Rg-Changed Types and their Rg-Changed Functions become especially important. Next, in Section 6.2, Table 3

and its Rg-Changed Types will be utilized to mine extensive properties at both the Gr-Merging and Kn-Coarsening levels.

Except for Gr-Merging Rg-Distribution, Example 4 also illustrates Kn-Coarsening and Gr-Merging. In the subsequent example,

the Rg-Change analysis road (Algorithm 1 and Fig. 2) is illustrated by Rg-Changed Granule, Rg-Changed Function, and Rg-Change.

Example 5. Herein, Table 4 is used again. Sole Gr-Merging {x1} ∪ {x2, x3} =−→ {x1, x2, x3} completely determines Rg-Change in

Kn-Coarsening {a, b} −a�⇒ {b}. As a result, Gr-Merging could be promoted to completely describe Rg-Change. In fact, Rg-Changed
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Granule consistently exists at the Gr-Merging and Kn-Coarsening levels. By virtue of Gr-Merging Rg-Distribution, Rg-Changed

Granule is extracted to achieve Rg-Change in {a, b} −a�⇒ {b}. Relevant results are appended to the last two columns of Table 5.

As an example, Case (2) is explained by using the processes of Algorithm 1 and Fig. 2.

(1) When β < 0.5 < α < 2/3,

{x1} ⊆ POS
α,β
{a,b}(X ) and {x2, x3} ⊆ BND

α,β
{a,b}(X ).

Under Gr-Merging’s action,

{x1, x2, x3} ⊆ POS
α,β
{b} (X ).

Hence, {x1} ∪ {x2, x3} =−→ {x1, x2, x3} corresponds to Type (4a) “POS + BND −→ POS”.

(2) {x2, x3} from old BND becomes unique Rg-Changed Granule in Gr-Merging. In fact, it is adjusted into new POS from old

BND.

(3) Gr-Merging mainly functions by old granule {x2, x3} from the regional perspective. Thus, it has the individual influence on

lessening BND and enlarging POS.

(4) The Rg-Changed function of Gr-Merging directly leads to the following Kn-Coarsening Rg-Change (which is denoted as

BND� and POS⊕), i.e., BND is lessened, POS is enlarged, while NEG is preserved. Herein, the consistent regional facts are

also provided, i.e., old POS, NEG, and BND are {x1, x4, x5, x6}, {x7}, and {x2, x3}, respectively, while new POS, NEG, and BND

become {x1, x2, x3, x4, x5, x6}, {x7}, and ∅, respectively.

Other cases can be similarly analyzed, and all Rg-Change results concern only monotonicity. Non-monotonicity will be exhibited

in Section 6.2, e.g., Example 7.

6.2. Quantitative region-change uncertainty and its relevant properties

Based on Gr-Merging Rg-Distribution, especially Table 3, this section makes Rg-Change analyses. Concretely, Rg-Change Un-

certainty and its relevant properties are mined from the Gr-Merging to Kn-Coarsening levels. Herein, the quantitative mining

comparatively refers to the qualitative mining (Section 5.2).

Theorem 6.2.1 (Gr-Merging Rg-Uncertainty). Gr-Merging holds uncertainty for DTRS-Regions, i.e., Old Granules Rg-Distribution can-

not completely determine New Granule Rg-Belonging in Gr-Merging.

Proof. This result is concluded by the 13 distributional types (Table 3). For example, if Old Granules Rg-Distribution is

“POS + BND”, then New Granule Rg-Belonging has two possible results with regard to POS and BND, i.e., Types (4a) and (4b)

are concerned. �

Gr-Merging Rg-Uncertainty accords with Rg-Distribution Correspondence from Old Granules Rg-Distribution to New Granule

Rg-Belonging (Proposition 6.1.6). Although Old Granules Rg-Distribution is initially clear, the new granule has regional belonging

selectivity to some extent. As an example, Class (7) is explained by its Types, (7a), (7b), and (7c). There, old granules come

from POS, NEG, and BND; however, the regional distribution information cannot determine the new granular belonging region,

and all of the new three-way regions have the selected possibility; therefore, the Gr-Merging action holds uncertainty from the

DTRS-Region perspective. Clearly, Gr-Merging Rg-Uncertainty radically refers to a type of selection possibility of New Granule

Rg-Belonging, and this possibility feature is independent of Old Granules Rg-Distribution.

Corollary 6.2.2. Gr-Merging Rg-Uncertainty mainly depends on Rg-Changed Type.

According to Table 3, Gr-Merging Rg-Uncertainty completely focuses on Classes (4–7). These classes are thereby called un-

certainty classes, and they correspond to Rg-Changed Type. As a result, Corollary 6.2.2 holds, and for uncertainty analyses, Rg-

Changed Type plays a core role, while Rg-Unchanged Type has no effect.

Theorem 6.2.3 (Gr-Merging Multi-Way Convergence). In Gr-Merging, all of the new granules gather together in their possible be-

longing region. In other words, all of the old granules converge to their relevant new region, which can involve multiple regions with

regard to POS, NEG, and BND.

Proof. Herein, the Classes (1–7) of Table 3 are utilized. For Classes (1–3) with the Rg-Unchanged Type, the new granule belongs

to its certain region because it has no selectivity. For Classes (4–7) with the Rg-Changed Type, the new granule can belong to at

least two regions because of its selectivity possibility. Hence, both the new and old granules’ convergence can exhibit a multi-way

feature with regard to POS, NEG, and BND. �

Corollary 6.2.4. In Gr-Merging, Multi-Way Convergence is mainly presented by the Rg-Changed Type.

Based on the proof of Theorem 6.2.3, Multi-Way Convergence mainly comes from Rg-Unchanged Type. For example, for un-

certainty Class (6) “POS + NEG −→ POS or NEG or BND”, the new granule can belong to POS or NEG or BND, i.e., Rg-Changed

Types (6a), (6b), and (6c) can be involved. In contrast, Gr-Merging with Rg-Unchanged Type exhibits one-way convergence with

regard to the sole region that is involved.
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Fig. 4. Rg-Change and Drifting’s schematic diagram.
Gr-Merging Rg-Uncertainty and Multi-Way Convergence become two fundamental granular properties at the micro Gr-

Merging level. The former underlies the latter. Furthermore, the corresponding regional manifestations can be caught at the

macro Kn-Coarsening level.

Theorem 6.2.5 (Rg-Change Uncertainty). Rg-Change holds uncertainty in Kn-Coarsening, i.e., all of the three-way regions have their

own unstable change directions with regard to the regional increase and decrease.

Proof. Because Rg-Unchanged Type never has Rg-Changed functions, only Rg-Changed Type must be considered for Rg-Change

analyses (Theorem 4.2.3). According to Table 3, each Rg-Changed Type corresponds to multiple Rg-Changed directions with re-

gard to regional increases and decreases. Furthermore, by integrating all of the Rg-Changed functions, three-way regions exhibit

indefinite change directions, i.e., POS, NEG, and BND can be increased or decreased. Hence, three-way regions can hold both the

increased and decreased parts. �

Rg-Change Uncertainty is summarized by Gr-Merging Rg-Distribution (Table 3), mainly the Rg-Changed Type. From the gran-

ular mechanism, Rg-Change Uncertainty is caused by Gr-Merging Rg-Uncertainty. In contrast, which Rg-Change feature is caused

by Multi-Way Convergence? In view of Rg-Change Uncertainty, Rg-Change Non-Monotonicity will become a natural and ob-

jective conclusion. Thus, for the Rg-Change description, monotonicity no longer becomes suitable, but non-monotonicity ap-

pears to be too ambiguous. A more accurate notion is worthwhile to propose. Note that Rg-Change Uncertainty has shifted the

Rg-Change focus from the monotonic enlargement/lessening to the non-monotonic increase/decrease. Thus, drifting with an

increase/decrease is introduced to exactly exhibit Rg-Change and finely describe Rg-Change Uncertainty.

Definition 6.2.6 (Rg-Change and Drifting). Let two regions Rold, Rnew⊆U have the same type region with regard to POS, NEG, and

BND. Both constitute Rg-Change Rold −→ Rnew. Thus, drifting is defined to vividly describe Rg-Change Rold −→ Rnew, as follows:

(1) Rold drifts to Rnew in Rg-Change Rold −→ Rnew;

(2) the type region exhibits drifting in Rg-Change Rold −→ Rnew;

(3) Rg-Change Rold −→ Rnew maintains drifting.

Rg-Change and Drifting are described in Definition 6.2.6. Rg-Change Rold −→ Rnew summarizes all Kn-Coarsening Rg-Change,

i.e., it has three types with regard to POS, NEG, and BND. In mathematics, Rg-Change corresponds to the usual set transformation;

thus, Drifting becomes a general dynamic characteristic with regard to the sets. Herein, three basic parts of Rg-Change must be

emphasized, i.e.,⎧⎨
⎩

(I) increased part Rnew − Rold,

(II) decreased part Rold − Rnew,

(III) unchanged part Rnew ∩ Rold.

Rg-Change and Drifting are schematically exhibited in Fig. 4. There, sub-figure (a) exhibits the usual case with non-empty parts

(I–III), while sub-figures (b), (c), and (d) describe the special case that has the empty parts (I), (II), and (III), respectively; moreover,

sub-figure (a) has inclusiveness to generalize the cases (b), (c), and (d). In general, Rg-Change and Drifting concern the regional

scale change because |Rnew| = |Rold| usually does not hold.

Proposition 6.2.7 (Monotonicity/Non-Monotonicity).

(1) Rg-Change Rold −→ Rnew exhibits a monotonic decrease (i.e., the type region is lessened), iff Rnew − Rold = ∅ (i.e., part (I) is

empty). The relevant Rg-Change and Drifting correspond to sub-figure (b).

(2) Rg-Change Rold −→ Rnew exhibits a monotonic increase (i.e., the type region is enlarged), iff Rold − Rnew = ∅ (i.e., part (II) is

empty). The relevant Rg-Change and Drifting correspond to sub-figure (c).
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Fig. 5. Rg-Change and Drifting of Example 6.
(3) Rg-Change Rold −→ Rnew is not monotonic (i.e., the type region is neither lessened nor enlarged), iff both Rnew − Rold �= ∅, and

Rold − Rnew �= ∅ (i.e., neither part (I) nor part (II) is empty). The relevant Rg-Change and Drifting correspond to sub-figures (a)

and (d), where the surplus part (III) is non-empty and empty, respectively.

Herein, the drifting includes both the usual monotonicity and the new non-monotonicity. Both of the features could be ef-

fectively identified by the increased and decreased parts, i.e., parts (I) and (II). In Fig. 4, monotonic and non-monotonic drifting

are exhibited by sub-figures (b), (c) and (a), (d), respectively. Thus, drifting transcends monotonicity and non-monotonicity to

become a generalized notion; it can both vividly describe Rg-Change and accurately manifest Rg-Change uncertainty.

Example 6. Under the action of Kn-Coarsening,

(1) let old POS, BND, and NEG originally consist of “four triangles”, “three circles”, and “five squares”, respectively;

(2) let new POS, BND, and NEG finally consist of “two triangles, one circle, two squares”, “one triangle, one circle, one square”,

and “one triangle, one circle, two squares”, respectively.

The old and new three-way regions are provided in sub-figures (a) and (b) of Fig. 5, respectively. They are also exhibited by the

columns and rows of only sub-figure (b). Both of the sub-figures can be used to vividly observe the relevant Rg-Change and

Drifting. Herein, the three-way region drifting exhibits non-monotonicity, which is a usual case (reflected by sub-figure (a) in

Fig. 4).

From the granular mechanism, the above Drifting could also be explained by internal component blocks. For example, NEG

Drifting concerns removing three squares (1–3) and adding one triangle (4), one circle (3). In fact, both synthetic moves and sys-

tematic reorganization of granular blocks realize macro regional Drifting (or Rg-Change Drifting). Herein, Drifting is accompanied

by a regional scale change because the internal block number has changed.

Theorem 6.2.8 (Rg-Change Drifting). In Kn-Coarsening, Rg-Change holds Drifting, i.e., three-way regions exhibit Drifting in

Rg-Change.

Proof. According to the proof of Theorem 6.2.5, each Rg-Changed Type has the following Rg-Changed functions: increasing

one region and decreasing one region or two regions. By summarizing all of the Rg-Change functions, POS, NEG, and BND can

possess their own increased and decreased parts. Hence, they exhibit Drifting in Kn-Coarsening, i.e., Rg-Change holds Drifting in

Kn-Coarsening. �

Herein, we basically comment on Rg-Change Uncertainty, Rg-Change Drifting, and their relationships.

(1) Rg-Change Uncertainty is an in-depth statistical result of Gr-Merging Rg-Distribution; additionally, it is a macro com-

bination conclusion of granular regional selection-possibility. In other words, for Rg-Change Uncertainty, Gr-Merging

Rg-Distribution (especially Rg-Changed Type) acts as its inductive basis, while Gr-Merging Rg-Uncertainty serves as its

granular formation mechanism.

(2) Rg-Change Drifting objectively reflects the regional drifting characteristic of Kn-Coarsening. From the granular mecha-

nism, it is caused by Multi-Way Convergence. In fact, Multi-Way Convergence serves as a granular statistical property at

the micro Gr-Merging level; furthermore, Rg-Change Drifting correspondingly becomes a regional comprehensive mani-

festation at the macro Kn-Coarsening level.

(3) Both Rg-Change Uncertainty and Rg-Change Drifting reflect the Rg-Change law. In fact, Drifting describes a type of un-

certainty with regard to the change direction. Thus, Rg-Change Drifting becomes a concrete embodiment of Rg-Change

Uncertainty. In contrast, the uncertainty refers to a type of drifting possibility. Thus, Rg-Change Uncertainty could be ex-

plained by Rg-Change Drifting. Furthermore, a combination of both exactly describes the essence of Rg-Change.
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Fig. 6. Quantitative Rg-Change uncertainty’s relevant properties and their relationships.
Theorem 6.2.9 (Quantitative Rg-Change Essence). Quantitative Rg-Change has the essence of uncertain drifting, i.e., three-way

DTRS-Regions have a drifting possibility in Kn-Coarsening.

At the Kn-Coarsening level, Rg-Change Uncertainty underlies Rg-Change Drifting, while Rg-Change Drifting manifests Rg-

Change Uncertainty. Furthermore, the two fundamental properties, especially Rg-Change Drifting, could naturally infer two basic

conclusions.

Corollary 6.2.10 (Rg-Change Non-Monotonicity). In Kn-Coarsening, Rg-Change exhibits non-monotonicity.

Corollary 6.2.11 (Cl-POS Change Non-Monotonicity). In Kn-Coarsening, Cl-POS Change exhibits non-monotonicity.

For Rg-Change, Drifting includes not only monotonicity but also non-monotonicity (Proposition 6.2.7). Thus, Rg-Change Drift-

ing naturally deduces Rg-Change Non-Monotonicity. Furthermore, Cl-POS Change Non-Monotonicity holds as well because of

Cl-POS’s definition based on POS (Formula (9)). Generally, Cl-POS Change Non-Monotonicity usually holds, as long as Cl-POS is

constructed by three-way regions; except for non-monotonicity, Cl-POS change also concerns drifting and uncertainty. On the

whole, these properties are located at the Kn-Coarsening level, including Rg-Change Non-Monotonicity, Cl-POS Change Non-

Monotonicity, and their roots: Rg-Change Uncertainty, Rg-Change Drifting. All of the properties concern not only transcendental

non-monotonicity but also confused uncertainty.

Thus far, two and four properties are mined at the Gr-Merging and Kn-Coarsening levels, respectively. Before analyzing their

logical relationships and basic roots, Fig. 6, which is relevant, is first provided.

Kn-Coarsening and Gr-Merging are two fundamental GrC notions that are at the macro knowledge and micro granule levels,

respectively. Gr-Merging further involves its Rg-Distribution and its properties.

(1) Internal Gr-Merging regional features determine external Kn-Coarsening Rg-Change. Thus, Gr-Merging Rg-Distribution,

especially Rg-Changed Type, establishes a solid foundation for Rg-Change. Furthermore, Table 3 is utilized for relevant

Rg-Change analyses and uncertainty mining.

(2) Based on Gr-Merging Rg-Distribution, two granular statistical properties are summarized at the micro Gr-Merging level,

i.e., Gr-Merging Rg-Uncertainty and Multi-Way Convergence. The former underlies the latter.

(3) Four regional integral properties are manifested at the macro Kn-Coarsening level, i.e., Rg-Change Uncertainty, Rg-Change

Drifting, Rg-Change Non-Monotonicity, and Cl-POS Change Non-Monotonicity. These four exhibit a decisive relationship

from the former to the latter.

The above three items exhibit Gr-Merging Rg-Distribution, Gr-Merging’s regional properties, Kn-Coarsening’s regional properties,

and their internal relationships. All of these results are hierarchically reflected in Fig. 6, where the internal relationships are

horizontally exhibited.

Next, the hierarchical relationships are analyzed from the perspective of causality.

(1) According to the completeness verification and purity construction, the quantitative mechanism (with the probability

measure) provides Gr-Merging Rg-Distribution Exactness; thus, it becomes a basic mechanism root. Meanwhile, Kn-

Coarsening acts as the essential action cause.

(2) Gr-Merging Rg-Distribution (mainly Rg-Changed Type) directly underlies Gr-Merging Rg-Uncertainty and Multi-Way Con-

vergence, two statistical properties that are at the micro Gr-Merging level.

(3) Gr-Merging Rg-Uncertainty and Rg-Change Uncertainty become regional uncertainty at the micro granule and macro

knowledge levels, respectively; both have an inference relationship. Multi-Way Convergence and Rg-Change Drifting be-
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Table 6

Dc-Table of Example 7.

U a b d

x1 0 1 1

x2 0 1 1

x3 0 1 1

x4 1 1 1

x5 1 1 0

x6 1 1 0

x7 2 2 1

x8 2 2 1

x9 2 2 1

x10 3 2 1

x11 3 2 1

x12 3 2 0
come regional embodiments of quantitative uncertainty at the two relevant levels, respectively; both have a mechanism

explanation relationship.

The above three items provide a causality development line, i.e.,

Quantitative Mechanism−→Gr-Merging Rg-Distribution−→
Gr-Merging’s regional properties−→Kn-Coarsening’s regional properties.

All of these results are vertically exhibited (from the bottom to the top) in Fig. 6. In particular, Rg-Change Drifting plays an im-

portant role in Rg-Change analyses. By virtue of Multi-Way Convergence, Rg-Change Drifting represents Rg-Change Uncertainty,

while it guides Rg-Change Non-Monotonicity and Cl-POS Change Non-Monotonicity.

Finally, we summarize Sections 6.1 and 5.2 with regard to quantitative Rg-Change uncertainty analyses. First, Gr-Merging Rg-

Distribution is established via the quantitative mechanism; then, some fundamental regional properties are mined at both the

Gr-Merging and Kn-Coarsening levels. Micro Gr-Merging is dependent on making systematic Rg-Change analyses, and then,

the relevant results naturally cause Rg-Change properties in macro Kn-Coarsening. In summary, we not only clearly inter-

pret the transcendental phenomena of attribute reduction, which are Rg-Change Non-Monotonicity and Cl-POS Change Non-

Monotonicity, but also thoroughly uncover the extensive basis, which is Rg-Change Uncertainty and Rg-Change Drifting. In

particular, uncertain drifting becomes the truth that is hidden behind non-monotonicity and finally reflects the essence of

quantitative Rg-Change.

6.3. An example of quantitative region-change analyses

In this section, a Dc-Table example [69] is utilized to make quantitative Rg-Change analyses.

Example 7. The concrete Dc-Table (U, C ∪ D) is provided in Table 6. Herein,

U = {x1, x2, . . . , x12}, C = {a, b}, D = {d};
U/IND(D) = {X,¬X}, X = {x1, x2, x3, x4, x7, x8, x9, x10, x11}.

By calculation, we can obtain:

U/IND({a, b}) = U/IND({a}) = {Y1,Y2,Y3,Y4}, U/IND({b}) = {Z1, Z2};
Y1 = {x1, x2, x3}, Y2 = {x4, x5, x6}, Y3 = {x7, x8, x9}, Y4 = {x10, x11, x12},
Z1 = {x1, . . . , x6}, Z2 = {x7 . . . , x12}.

As a result, Kn-Coarsening {a, b} −a�⇒ {b} becomes Kn-Non-Preservation and involves two groups of granular transformation:

Gr-Merging Y1 ∪ Y2
=−→ Z1 and Gr-Merging Y3 ∪ Y4

=−→ Z2.{
Pr(X|Y1) = 1, Pr(X|Y2) = 1

3
, Pr(X|Z1) = 2

3
,

Pr(X|Y3) = 1, Pr(X|Y4) = 2
3
, Pr(X|Z2) = 5

6
;

according to these probabilities, thresholds α and β are set in range:

0 < β <
1

3
<

2

3
< α <

5

6
< 1.

For macro Rg-Change, old three-way regions are initially:

POS
α,β
{a,b}(X ) = Y1 ∪ Y3, BND

α,β
{a,b}(X ) = Y2 ∪ Y4, NEG

α,β
{a,b}(X ) = ∅. (25)

By Kn-Coarsening {a, b} −a�⇒ {b}, new three-way regions finally become:

POS
α,β
{b} (X ) = Z2 = Y3 ∪ Y4, BND

α,β
{b} (X ) = Z1 = Y1 ∪ Y2, NEG

α,β
{b} (X ) = ∅. (26)
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Fig. 7. Rg-Change Drifting and Non-Monotonicity of Example 7.
Thus, both POS and NEG exhibit usual Drifting (rather than monotonicity) in Kn-Coarsening {a, b} −a�⇒ {b}; in contrast, BND has

no change because it is always empty. Relevant Rg-Change Drifting and Non-Monotonicity are exhibited in Fig. 7.

For micro Gr-Merging, Y1 ∪ Y2
=−→ Z1 and Y3 ∪ Y4

=−→ Z2 correspond to Type (4b) “POS + BND −→ BND” and Type (4a) “POS +
BND −→ POS”, respectively. By inspecting Rg-Changed Granule, Y1 changes from old POS to new BND, while Y4 changes from

old BND to new POS. POS and BND have both the increased and decreased parts to achieve Drifting and Non-Monotonicity.

Accordingly, the above macro Rg-Change emerges, and the relevant GrC mechanism is clarified.

POS
α,β
{a,b}(¬X ) = ∅ = POS

α,β
{b} (¬X ), so old and new Cl-POS become:

POS
α,β
{a,b}(D) = POS

α,β
{a,b}(X ), POS

α,β
{b} (D) = POS

α,β
{b} (X ). (27)

Cl-POS change has the same result as that of POS change, i.e., Cl-POS also exhibits Drifting but Non-Monotonicity from Y1 ∪ Y3 to

Y3 ∪ Y4.

In this example, both Rg-Change and Cl-POS change naturally exhibit monotonicity for Pawlak-Model. In contrast, all change

of POS, BND, and Cl-POS exhibit non-monotonic drifting for DTRS-Model. For Rg-Change, the exactness and vividness of Drifting

are illustrated by this example, where monotonicity no longer holds while non-monotonicity becomes too ambiguous.

For Drifting, the region scale usually exhibits variation. However, this example concerns only the same region scale in Kn-

Coarsening. This special result mainly comes from the same scale of two Rg-Changed Granules (which implement exchange), i.e.,

|Y1| = |Y4|. According to Formula (10),

γ α,β
{a,b}(D) = 0.5 = γ α,β

{b} (D).

In other words, the dependency degree γ α,β
{a,b}(D) never changes in Kn-Coarsening. However, Cl-POS and regions have had the

essential transformation with regard to non-monotonic Drifting. These facts trigger our in-depth thinking, as follows:

(1) Regional migration (i.e., regional Drifting with the same scale) never occurs in the Pawlak-Model. This special phenomenon

transcends the usual rules based on the qualitative mechanism. Hence, it depends on the quantitative mechanism to

become a specific characteristic for the quantitative model.

(2) Within the non-monotonic Drifting framework, the attribute dependency degree cannot adequately measure Rg-Change.

How to describe and measure regional Drifting becomes a new and valuable problem.

7. Comparative region-change analyses and further experiment verification

Thus far, Kn-Coarsening and Gr-Merging provide GrC mechanisms for Rg-Change (Sections 3 and 4). On this basis, relevant

Rg-Change certainty and uncertainty analyses are completed in Pawlak-Model and DTRS-Model (Sections 5 and 6), respectively,

where the comparative strategy is adopted. As a result, the qualitative and quantitative principles/properties that are acquired

above exhibit a sharp contrast, and the latter become more complex and in-depth. This section first summarizes the comparative

Rg-Change analyses and then provides further experiment verification.

7.1. Comparative region-change analyses

This section summarizes the comparative Rg-Change analyses. To highlight the quantitative studies and results, quantitative

Rg-Change analyses are chosen as a descriptive subject, while qualitative Rg-Change analyses act as a comparative basis. Note

that both have some common GrC mechanisms with regard to Kn-Coarsening and Gr-Merging.

Gr-Merging Rg-Distribution establishes the basis for Rg-Change analyses; thus, it is focused on first. Herein, the relevant pro-

cesses of qualitative and quantitative mining are compared. In Section 5.1, Gr-Merging Rg-Distribution is directly established
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for Pawlak-Model. Because Pawlak-Model is a qualitative model that has a simple qualitative mechanism, Rg-Distributional

completeness and purity are easily identified via POS/NEG certainty and BND uncertainty. In contrast, DTRS-Model becomes

a quantitative model with expansion and transcendence to hold a complex quantitative mechanism. In particular, Gr-Merging’s

probability boundedness (Lemma 6.1.1) becomes a specific quantitative property with regard to the probability measure to es-

tablish Rg-Distributional completeness. For purity inspection, the probability-based technology becomes essential but difficult;

thus, a simple but effective approach of Dc-Table construction is chosen. In Section 6.1, exact Gr-Merging Rg-Distribution is finally

established for DTRS-Model.

After the above mining, qualitative and quantitative Gr-Merging Rg-Distributions are presented exactly in Tables 2 and 3,

respectively. On this basis, the Gr-Merging Rg-Distribution types are compared, as follows:

(1) Pawlak-Model and DTRS-Model have 7 and 13 types, respectively. The latter expands the former, and the additional 6

quantitative types exhibit transcendence. In fact, the common 7 types have a similar function for Rg-Change. In contrast,

the transcendental 6 types mainly cause specific uncertainty and manifestations for Rg-Change; hence, they become the

main GrC roots for quantitative Rg-Change uncertainty analyses.

(2) 7 qualitative types and 13 quantitative types constitute a mathematical mapping and correspondence, respectively. The

former mapping is included in the latter correspondence, and both become subparts of the complete Rg-Distribution cor-

respondence. In fact, they basically provide mathematical mechanisms for the relevant certainty and uncertainty analyses,

respectively.

Now, concrete Rg-Change analyses are focused on. Qualitative and quantitative parts, which are fixed in Sections 5.2 and 5.2,

respectively, are mainly presented by Figs. 3 and 6, respectively. For both figures, their contrast can effectively clarify the compar-

ative region-change analyses. In fact, they exhibit a substantial amount of structural similarity, except for the latter Rg-Change

Drifting. Thus, qualitative and quantitative Rg-Change analyses have almost the same property points and deduction relation-

ships. In general, uncertainty, non-monotonicity, and multi-way in the quantitative properties replace certainty, monotonicity, and

one-way in the qualitative properties, respectively. Moreover, Rg-Change Drifting is added to vividly describe the quantitative

Rg-Change with complexity.

Next, we show some detailed contrast for the several property points from the micro Gr-Merging to macro Kn-Coarsening

levels.

Gr-Merging Rg-Uncertainty in DTRS-Model contrasts with Gr-Merging Rg-Certainty in Pawlak-Model, thus manifesting quan-

titative transcendence. By comparing Tables 2 and 3, Types (1–3) exhibit Gr-Merging Rg-Certainty in both cases, while the un-

certainty classes (4–7) in Table 3 become the micro source for quantitative Gr-Merging Rg-Uncertainty.

With regard to Gr-Merging, Multi-Way Convergence in DTRS-Model contrasts with One-Way Convergence in Pawlak-Model,

thus also reflecting quantitative transcendence. In fact, Multi-Way Convergence is a granular statistical property with regard to

DTRS-Region. As a result, knowledge granules gather as quickly as possible not only in new BND but also in new POS or NEG.

This transcendental phenomenon can be explained by a quantitative mechanism. Herein, both convergence types are mainly

explained from the viewpoint of uncertainty.

(1) For qualitative Pawlak-Regions, only BND corresponds to uncertainty. Kn-Coarsening/Kn-Non-Preservation leads to uncer-

tainty enhancement. As a result, knowledge granules necessarily exhibit convergence with regard to only BND. Further-

more, Rg-Change Monotonicity naturally emerges at the macro Kn-Coarsening level.

(2) For quantitative DTRS-Regions, POS, NEG, and BND are all related to uncertainty in view of quantitative expansion. Al-

though Gr-Merging still implies strict Kn-Coarsening (i.e., Kn-Non-Preservation), the corresponding uncertainty enhance-

ment cannot already ensure sole convergence with regard to only BND. In fact, directional convergence with regard to

POS/NEG emerges as well. Therefore, Gr-Merging utilizes the quantitative uncertainty mechanism to exhibit new multi-

way convergence with regard to three-way DTRS-Regions. Furthermore, Rg-Change in macro Kn-Coarsening transcends

the basic monotonicity framework.

Gr-Merging thoroughly gains Rg-Uncertainty/Rg-Certainty and Convergence. These micro properties depend on granular

mechanisms to naturally cause macro manifestations in Kn-Coarsening. Thus, Rg-Change properties require only direct con-

trasts at the Kn-Coarsening level. Rg-Change Uncertainty, Rg-Change Non-Monotonicity, and Cl-POS Change Non-Monotonicity

in DTRS-Model sharply contrast with Rg-Change Certainty, Rg-Change Monotonicity, and Cl-POS Change Monotonicity in Pawlak-

Model, respectively. The former three, which never exist in the qualitative model, also manifest quantitative inherence and tran-

scendence. In particular, Rg-Change Drifting is produced as a novel notion for the quantitative environment with complexity, and

it is emphatically analyzed for quantitative Rg-Change. Rg-Change Drifting holds within the Rg-Change Uncertainty framework,

and uncertain drifting becomes the quantitative Rg-Change essence (Theorem 6.2.9); furthermore, Rg-Change Non-Monotonicity

and Cl-POS Change Non-Monotonicity become two natural results. In contrast, Rg-Change Monotonicity holds within the Rg-

Change Certainty framework, and certain monotonicity becomes the qualitative Rg-Change essence (Theorem 5.2.5); further-

more, Rg-Change Monotonicity and Cl-POS Change Monotonicity become two clear properties.

7.2. Further experiment verification

To verify the comparative Rg-Change analyses, this section performs some further experiment studies. Concretely, five

databases from the UCI Machine Learning Repository [76] are adopted, where part cores and reducts were previously acquired
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Table 7

Description of five UCI databases.

ID Databases |U| |C| |U/IND(D)|

(1) Voting 435 16 2

(2) SPECT Heart 267 22 2

(3) Tic-Tac-Toe 958 9 2

(4) Monks-3 432 6 2

(5) Balance 625 4 3
[69]. Relevant Dc-Table (U, C ∪ D) information is summarized in Table 7, where both two-category and multi-category cases are

concerned.

Knowledge-based regions become a radical basis for Rg-Change analyses. This regional emphasis inspires the following ex-

perimental design.

(1) First, Kn-Coarsening is mainly determined by coarsening knowledge, a subset of C. Preliminary knowledge selectively

arises from some important notions, such as the core. Subsequent knowledge is internally determined by extracting a

hierarchical chain. This monotonicity strategy fully manifests Kn-Coarsening; thus, relevant deducibility/dependency can

well motivate general Rg-Change. Moreover, knowledge requires amending by the relevant region feedback, to gain effec-

tiveness.

(2) Based on the above theoretical research, Gr-Merging provides a granular mechanism for Rg-Change in Kn-Coarsening. In

the practical database, Gr-Merging usually has massive groups. Thus, we neglect the relevant mechanism and function of

micro Gr-Merging and directly concern macro regions and their properties in Kn-Coarsening.

(3) Regions are directly computed. Only POS, NEG, and Cl-POS are concerned in both Pawlak-Model and DTRS-Model, where

surplus BND becomes clear based on complementarity. Simple regional symbols are used in contrast, and decision concept

X usually corresponds to the first element. For the two-category DTRS-Model, the symmetrical threshold β = 1 − α leads

to the simplified calculation of Cl-POS with regard to X, i.e.,

Cl-POS
α,β = POSα,β (X ) ∪ POSα,β (¬X ) = POSα,β (X ) ∪ NEGα,β (X ),

which is similar to that in two-category Pawlak-Model. Thus, we mainly adopt the symmetrical and representative thresh-

old (α,β) = (0.8, 0.2), which is sufficiently effective.

(4) The regions are accurately calculated. However, they cannot be completely presented because the object numbers are

large. In fact, our purpose is only to verify Rg-Change. Thus, the whole region results become complex and unnecessary; in

contrast, portion-based typicality becomes effective and sufficient. Based on concrete experimental results, representative

elements will be selectively extracted. They not only represent the whole regions but also include Rg-Changed granules.

Thus, they are finally utilized to perform the effective verification for Rg-Change analyses.

Based on the above preparations, regional experiment results are provided in detail in Table 8. The processes and results in

Table 8 are explained, as follows. There are eight columns in total. The 1st column shows the illustrated cases, which are linked

to the selected knowledge and portion-based regions. Database ∗ has multiple Cases (∗.1) (∗.2)..., and Case (∗.1) corresponds to

the initial knowledge C and the regions. The 2nd reflects the knowledge with the usual deducibility/dependency hierarchy. The

3rd, 4th, 5th columns provide qualitative POS, NEG, and Cl-POS, respectively. The latter column is the union of the former two

for two-category Databases (1–4). In contrast, the 6rd, 7th, 8th columns, respectively, provide quantitative POS, NEG, and Cl-POS

with the threshold (0.8, 0.2). Additionally, the latter column is the union of the former two for Databases (1–4). Next, the choices

of knowledge, concepts, and objects are explained in each database, respectively.

(1) Database (1) produces five cases. Preliminary knowledge c1c2c3c9c11c13c16 and its internal knowledge c1c2c3c9c13c16 cor-

respond to cores C57513 and C57481, respectively [69]; the surplus c1c2c3c13c16 and c1c2c3c16 gradually become coarser. X

reflects the republican class. Representative elements refer to the first ten objects, which have the mixed republican and

democrat results.

(2) Database (2) produces five cases. In [69], the binary code represents knowledge and C2945871 becomes a core.

In fact, C2945871 is related to binary code 1011001111001101001111 and, thus, represents preliminary knowledge

c1c3c4c7 . . . c10c13c14c16c19...c22. Furthermore, C2945856, C62272, and C61504 mean the surplus hierarchical knowledge.

For example, C61504 corresponds to 22-bit code 0000001111000001000000 to represent knowledge c7 . . . c10c16. Herein,

the 187/80 test/train objects are arranged first/second, and X refers to OVERALL DIAGNOSIS with 1. Representative ele-

ments choose the first 20 objects, which are in X.

(3) Database (3) provides six cases. In fact, eight arbitrary conditional attributes constitute several types of reducts [69].

Thus, preliminary knowledge is used to choose seven attribute-based c1 . . . c7, and the attribute number of the surplus

knowledge is gradually decreased to three. Herein, X reflects the positive class. Representative elements choose the final

four objects, x954 ... x958, which are in negative class ¬X.

(4) Database (4) provides four cases. Preliminary knowledge is c2c4c5, which is a core and reduct [69]. According to the 432

test elements, X reflects the class with the value 1. Representative elements choose the first ten objects, which have mixed

class attributes.
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Table 8

Reginal experiment results of five UCI databases.

Case Knowledge POS NEG Cl-POS POS0.8, 0.2 NEG0.8, 0.2 Cl-POS0.8, 0.2

(1.1) C x1x2x8x9 . . . x3. . .x7x10 . . . x1. . .x10 . . . x1x2x8x9 . . . x3. . .x7x10 . . . x1. . .x10 . . .

(1.2) c1c2c3c9c11c13c16 x1x2 . . . x3x4x5x7x10 . . . x1. . .x5x7x10 . . . x1x2x8x9 . . . x3x4x5x7x10 . . . x1. . .x5x7. . .x10 . . .

(1.3) c1c2c3c9c13c16 x2 . . . x3x7x10 . . . x2x3x7x10 . . . x1x2x8x9 . . . x3x4x6x7x10 . . . x1. . .x4x6. . .x10 . . .

(1.4) c1c2c3c13c16 . . . x3x7x10 . . . x3x7x10 . . . x1x2x8x9 . . . x3. . .x7x10 . . . x1. . .x10 . . .

(1.5) c1c2c3c16 . . . x3x10 . . . x3x10 . . . x1x2x7x8x9 . . . x3. . .x6x10 . . . x1. . .x10 . . .

(2.1) C x1. . .x20 . . . . . . x1. . .x20 . . . x1. . .x20 . . . . . . x1. . .x20 . . .

(2.2) C2945871 x1. . .x11x13x14x15x17x19x20 . . . . . . x1. . .x11x13x14x15x17x19x20 . . . x1. . .x15x17x19x20 . . . . . . x1. . .x15x17x19x20 . . .

(2.3) C2945856 x1. . .x11x13x15x17x20 . . . . . . x1. . .x11x13x15x17x20 . . . x1. . .x11x13x14x15x17x20 . . . . . . x1. . .x11x13x14x15x17x20 . . .

(2.4) C62272 x1x2x4. . .x7x9x10x11 . . . x1x2x4. . .x7x9x10x11 x1x2x4. . .x11x13. . .x17x20 . . . . . . x1x2x4. . .x11x13. . .x17x20 . . .

x13x15x17x20 . . . x13x15x17x20 . . .

(2.5) C61504 x1x4x6x10x15x17x20 . . . ∅ x1x4x6x10x15x17x20 . . . x1x2x4. . .x18x20 . . . ∅ x1x2x4. . .x18x20 . . .

(3.1) C . . . . . .x954. . .x958 . . .x954. . .x958 . . . . . .x954. . .x958 . . .x954. . .x958

(3.2) c1. . .c7 . . . . . .x954x955x956x958 . . .x954x955x956x958 . . . . . .x954x955x956x958 . . .x954x955x956x958

(3.3) c1. . .c6 . . . . . .x954x956 . . .x954x956 . . . . . .x954x956 . . .x954x956

(3.4) c1. . .c5 . . . . . . . . . . . .x955x958 . . .x954x956 . . .x954x955x956x958

(3.5) c1. . .c4 . . . . . . . . . . . . . . .x954 . . .x954

(3.6) c1. . .c3 . . . . . . . . . . . .x958 . . . . . .x958

(4.1) C x1. . .x6x9x10 . . . x7x8 . . . x1. . .x10 . . . x1. . .x6x9x10 . . . x7x8 . . . x1. . .x10 . . .

(4.2) c2c4c5 x1. . .x6x9x10 . . . x7x8 . . . x1. . .x10 . . . x1. . .x6x9x10 . . . x7x8 . . . x1. . .x10 . . .

(4.3) c4c5 x5x6 . . . x7x8 . . . x5. . .x8 . . . x5x6 . . . x7x8 . . . x5. . .x8 . . .

(4.4) c5 ∅ x7x8 . . . x7x8 . . . ∅ x7x8 . . . x7x8 . . .

(5.1) C x26x51x52x56 . . . x1. . .x25x27. . .x50x53x54x55 . . . x1. . .x56 . . . x26x51x52x56 . . . x1. . .x25x27. . .x50x53x54x55 . . . x1. . .x56 . . .

(5.2) c2c3c4 x26x51x52x56 . . . x5x8x9x10x12x13x14 x8x9x10x12. . .x15 x1x26x27x28x31x36x51. . .x56 . . . x4x5x7. . .x10x12. . .x25 x1x5x8x9x10x12. . .x15

x15x17. . .x25x35x39x40x43x44 x17. . .x20x22. . .x26x39x40 x34x35x38x39x40 x17. . .x28x31x35x36x38x39x40

x45x47x48x49x50 . . . x43x44x45x48. . .x52x56 . . . x42. . .x45x47. . .x50 . . . x43x44x45x47. . .x56 . . .

(5.3) c2c3 ∅ x21. . .x25 . . . ∅ x51. . .x55 . . . x6. . .x25x41. . .x50 . . . x11. . .x25x46. . .x55 . . .
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(5) In Database (5), C has four attributes, so only knowledge c2c3c4 and c2c3 are concerned. X selects the class with result L.

Representative elements refer to the first 56 ones, whose main class label is R. Note that there are three classes so Cl-POS

becomes union of three kinds of POS (rather than union of POS and BND).

Now, Table 8 is utilized to make comparative Rg-Change analyses. First, qualitative Rg-Change is simple for Pawlak-Model. For

the databases, POS, NEG, and Cl-POS, all exhibit clear monotonic change for the given Kn-Coarsening. Thus, all of the qualitative

Rg-Change properties are verified in practice, including Rg-Change Certainty/Monotonicity and Cl-POS Change Monotonicity

(Theorems 5.2.3, 5.2.4, Corollary 5.2.6, or Fig. 3). In contrast, quantitative Rg-Change becomes complex for DTRS-Model. For an

effective illustration, partial Kn-Coarsening and objects are selected in each database, and non-monotonic drifting (with both

increasing and decreasing parts) becomes a focus of concern.

(1) In Kn-Coarsening C
−�⇒ c1c2c3c16 from Cases (1.1) and (1.5),

x7 ∈ POS0.8,0.2
new − POS0.8,0.2

old
.

In generalized Kn-Coarsening c1c2c3c9c11c13c16
−�⇒ c1c2c3c9c13c16 from Cases (1.2) and (1.3),

x6 ∈ NEG0.8,0.2
new − NEG0.8,0.2

old
, x6 ∈ Cl-POS

0.8,0.2
new − Cl-POS

0.8,0.2
old ;

x5 ∈ NEG0.8,0.2
old

− NEG0.8,0.2
new , x5 ∈ Cl-POS

0.8,0.2
old − Cl-POS

0.8,0.2
new .

Herein, quantitative POS is never lessened, while quantitative NEG and Cl-POS change exhibit drifting, uncertainty, and

non-monotonicity.

(2) In generalized Kn-Coarsening C2945856
−�⇒ C62272 from Cases (2.3) and (2.4),

x16 ∈ POS0.8,0.2
new − POS0.8,0.2

old
, x3 ∈ POS0.8,0.2

old
− POS0.8,0.2

new .

Thus, the quantitative POS change exhibits drifting, uncertainty, and non-monotonicity, as does quantitative Cl-POS

change, because Cl-POS is equal to POS with regard to the 20 representative elements.

(3) In generalized Kn-Coarsening c1c2c3c4
−�⇒ c1c2c3 from Cases (3.5) and (3.6),

x958 ∈ Cl-POS
0.8,0.2
new − Cl-POS

0.8,0.2
old , x954 ∈ Cl-POS

0.8,0.2
old − Cl-POS

0.8,0.2
new .

Thus, quantitative Cl-POS change exhibits drifting, uncertainty, and non-monotonicity.

(4) With regard to the knowledge and object selected in Database (4), quantitative Rg-Change exhibits only monotonicity,

which is similar to that of qualitative Rg-Change.

(5) In Kn-Coarsening C
−�⇒ c2c3 from Cases (5.1) and (5.3),

x53, x54, x55 ∈ POS0.8,0.2
new − POS0.8,0.2

old
, x26, x56 ∈ POS0.8,0.2

old
− POS0.8,0.2

new .

In generalized Kn-Coarsening c2c3c4
−�⇒ c2c4 from Cases (5.2) and (5.3),

x6, x11, x41, x46 ∈ NEG0.8,0.2
new − NEG0.8,0.2

old
; x4, x5, x34, x35, x38, x39, x40 ∈ NEG0.8,0.2

old
− NEG0.8,0.2

new ;
x11, x16, x46 ∈ Cl-POS

0.8,0.2
new − Cl-POS

0.8,0.2
old ; x1, x5, x8, x9, x10 ∈ Cl-POS

0.8,0.2
old − Cl-POS

0.8,0.2
new .

Thus, all of quantitative POS, NEG, and Cl-POS change exhibit drifting, uncertainty, and non-monotonicity.

Based on the five analysis items above, all of the quantitative Rg-Change properties gain effective verification, including Rg-

Change Unertainty/Drifting/Non-Monotonicity and Cl-POS Change Non-Monotonicity (Theorems 6.2.5, 6.2.8, Corollaries 6.2.10,

6.2.11, or Fig. 6).

Thus far, the comparative Rg-Change analyses are effectively verified via the above database experiments. Herein, we mainly

adopt the two-category/three-category database, hierarchical knowledge with fewer attributes, and the symmetrical threshold

(0.8, 0.2). More generally, effective verification could also utilize the multi-category database, chaotic knowledge with more

attributes, and unsymmetrical threshold.

8. Conclusions

The Rg-Change law is fundamental for attribute reduction. However, it only rests on non-monotonicity/monotonicity in the

quantitative/qualitative model. In other words, it lacks an in-depth exploration for the Rg-Change essence, mechanism, and

property. From the uncertainty/certainty viewpoint, this paper utilizes DTRS-Model and Pawlak-Model to perform comparative

Rg-Change analyses based on GrC. As a result, quantitative/qualitative Rg-Change uncertainty/certainty is mined and analyzed

to underlie attribute reduction.

(1) Kn-Coarsening and Gr-Merging, two GrC levels, are first investigated. The GrC hierarchy (Fig. 1) and technological algo-

rithm/roadmap (Algorithm 1 and Fig. 2) deeply underlie Rg-Change analyses. As a result, Gr-Merging Rg-Distribution and

Rg-Changed Type become especially important. For Rg-Change analyses, these studies clarify GrC mechanisms and hold

fundamental significance for extensive RS-Models.
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(2) Aimed at DTRS-Model and Pawlak-Model, we establish Gr-Merging Rg-Distribution and inspect Rg-Changed Type to make

comparative Rg-Change analyses. Quantitative/qualitative Rg-Change Uncertainty/Certainty and relevant properties are

fully acquired. Herein, we adopt both a research direction from the micro Gr-Merging mechanism to macro Kn-Coarsening

manifestation and a comparative research strategy between quantitative Rg-Change uncertainty analyses and qualitative

Rg-Change certainty analyses. As a result, Rg-Change laws and relevant uncertainty/certainty mechanisms are uncovered

for both basic RS-Models.

Next, the main DTRS Rg-Change analyses are especially summarized. First, Gr-Merging’s Rg-Uncertainty and Multi-Way Con-

vergence are mined at the micro granule level; then, Rg-Change’s Uncertainty and Drifting are naturally gained at the macro

knowledge level; furthermore, the latter two deduce Rg-Change Non-Monotonicity and Cl-POS Change Non-Monotonicity. Thus,

Rg-Change holds uncertainty, drifting, and non-monotonicity, while Cl-POS Change exhibits non-monotonicity. In particular, we

discover Rg-Change Uncertainty and Rg-Change Drifting and provide their mechanisms and rules. Both fundamental features are

utilized to mine the quantitative Rg-Change essence: uncertain drifting, which deepens and underlies non-monotonicity. In other

words, essential uncertain drifting becomes the truth that is hidden behind the non-monotonicity phenomenon, and the former

radically provides the cause and explanation for the latter. Note that all of the obtained properties exhibit quantitative tran-

scendence because they never emerge in qualitative Pawlak-Model. In fact, these transcendental characteristics originate from

probability-based quantitative expansion and embody generality for probabilistic/quantitative RS-Models. Thereby, the relevant

technologies of Rg-Change uncertainty analyses are worthwhile to generalize for quantitative RS-Models (such as PRS-Models).

Moreover, two points are retained to be treated in a more in-depth fashion.

(1) The probabilistic/quantitative mechanism determines Gr-Merging Rg-Distribution, e.g., Gr-Merging’s probability bound-

edness (Formula (24)) establishes Rg-Distributional Completeness. Thus, the probabilistic/quantitative mechanism is

worthwhile to explore thoroughly. In particular, it is expected to probe Rg-Distributional Purity, whose proof in this paper

adopts only a construction approach.

(2) The exact Gr-Merging Rg-Distribution (Table 3) underlies Rg-Change analyses. There, Rg-Changed Type is worthwhile to

utilize to mine in-depth Rg-Change properties. For example, Types (4a), (6a), (7a) and (5a), (6b), (7b) have an increasing

function for POS and NEG, respectively; moreover, Type (6c) can construct disjoint drifting.

In summary, the relevant possibility, distribution, mechanism, explanation, and rule are provided exactly for both quanti-

tative Rg-Change Uncertainty/Drifting and qualitative Rg-Change Certainty/Monotonicity. Therefore, this paper provides some

new insights into quantitative expansion and transcendence. The acquired results could largely eliminate current reduction

confusions about Rg-Change; thus, they underlie rational construction for further attribute reduction, especially with regard

to quantitative models. In fact, they also inspire a new attribute reduction challenge. Within an objective framework of Rg-

Change Uncertainty/Drifting, how to scientifically define quantitative reducts becomes a considerable problem. In our opinion,

Rg-Preservation is natural for qualitative Rg-Change Monotonicity, while it appears to be more necessary in the quantitative ex-

pansion with not only Rg-Change Non-Monotonicity but also Rg-Change Uncertainty/Drifting. In other words, Rg-Preservation is

still a rational choice for quantitative reduction construction. Following this simple idea, Rg-Preservation was previously utilized

to construct DTRS-Reduction [68,69]. More generally, quantitative attribute reduction is worthwhile to develop for extensive

probabilistic/quantitative RS-Models.
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Appendix A. Proof of Theorem 6.1.2

Proof. For Gr-Merging Rg-Distribution, the largest completeness with 21 types is provided in Theorem 4.3.1. In contrast, this

theorem aims to establish more accurate completeness. In other words, we need to verify the nonexistence of some types. Old

Granules Rg-Distribution has seven cases. By comparing Tables 1 and 3, all types with regard to “POS + NEG” and “POS + NEG +
BND” have the common existence. Thus, only surplus five cases of Old Granules Rg-Distribution need considering, and they are:

“POS”, “NEG”, “BND”, “POS + BND”, and “NEG + BND”.

In fact, we only need to identify their eight impossible types for New Granule Rg-Belonging (or Gr-Merging Rg-Distribution).

Give Gr-Merging [x]1
C

∪ · · · ∪ [x]m
C

=−→ [x]1
C−C′ , and let{

min
i∈{1,...,m} Pr(X|[x]i

C) = min,

max
i∈{1,...,m}

Pr(X|[x]i
C) = max.

(A.1)
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Then, according to Lemma 6.1.1,

min ≤ Pr([x]1
C−C′ ) ≤ max. (A.2)

(1) For Old Granules Rg-Distribution case “POS”, [x]i
C

comes from POS so Pr([x]i
C
) ≥ α. According to Formula (A.2),

Pr([x]1
C−C′ ) ≥ min ≥ α,

so [x]1
C−C′ belongs to POS. Thus, “POS −→ BND” and “POS −→ NEG” never emerge, while “POS −→ POS” necessarily exists

and becomes Type (1) (Table 3).

(2) For case “NEG”, [x]i
C

comes from NEG so Pr([x]i
C
) ≤ β . According to Formula (A.2),

Pr([x]1
C−C′ ) ≤ max ≤ β,

so [x]1
C−C′ belongs to NEG. Thus, “NEG −→ POS” and “NEG −→ BND” never emerge, while “NEG −→ NEG” necessarily exists

and becomes Type (2).

(3) For case “BND”, [x]i
C

comes from BND so Pr([x]i
C
) ∈ (β,α). According to Formula (A.2),

β < min ≤ Pr([x]1
C−C′ ) ≤ max < α,

so [x]1
C−C′ belongs to BND. Thus, “BND −→ POS” and “BND −→ NEG” never emerge, while “BND −→ BND” necessarily

exists and becomes Type (3).

(4) For case “POS + BND”, [x]i
C

comes from POS or BND so Pr([x]i
C
) ≥ α or Pr([x]i

C
) ∈ (β,α). Then, min ∈ (β , α) and max ≥ α,

i.e., β < min < α ≤ max. According to Formula (A.2),

Pr([x]1
C−C′ ) ∈ [min, max], Pr([x]1

C−C′ ) � β,

so Pr([x]1
C−C′ ) ≥ α or Pr([x]1

C−C′ ) ∈ (β,α).

Accordingly, “POS + BND −→ NEG” never emerges; meanwhile, there are at most two possible types, i.e., Type (4a) “POS +
BND −→ POS” and Type (4b) “POS + BND −→ BND”.

(5) For case “NEG + BND”, [x]i
C

comes from NEG or BND so Pr([x]i
C
) ≤ β or Pr([x]i

C
) ∈ (β,α). Then, min ≤ β and max ∈ (β , α),

i.e., min ≤ β < max < α. According to Formula (A.2),

Pr([x]1
C−C′ ) ∈ [min, max], Pr([x]1

C−C′ ) � α,

so Pr([x]1
C−C′ ) ≤ β or Pr([x]1

C−C′ ) ∈ (β,α).

Accordingly, “BND + NEG −→ POS” never emerges; meanwhile, there are at most two possible types, i.e., Type (5a) “BND +
NEG −→ NEG” and Type (5b) “BND + NEG −→ BND”. �
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