
Knowledge-Based Systems 105 (2016) 147–159 

Contents lists available at ScienceDirect 

Knowle dge-Base d Systems 

journal homepage: www.elsevier.com/locate/knosys 

A study on information granularity in formal concept analysis based 

on concept-bases 

Xiangping Kang 

a , b , ∗, Duoqian Miao 

a , b 

a Department of Computer Science and Technology, Tongji University, Shanghai 201804, China 
b Key Laboratory of Embedded System and Service Computing (Tongji University), Ministry of Education, Shanghai 201804, China 

a r t i c l e i n f o 

Article history: 

Received 13 December 2015 

Revised 18 March 2016 

Accepted 7 May 2016 

Available online 9 May 2016 

Keywords: 

Concept lattice 

Granularity 

Concept-bases 

Concept similarity 

a b s t r a c t 

As one of mature theories, formal concept analysis (FCA) possesses remarkable mathematical properties, 

but it may generate massive concepts and complicated lattice structure when dealing with large-scale 

data. With a view to the fact that granular computing (GrC) can significantly lower the difficulty by se- 

lecting larger and appropriate granulations when processing large-scale data or solving complicated prob- 

lems, the paper introduces GrC into FCA, it not only helps to expand the extent and intent of classical 

concept, but also can effectively reduce the time complexity and space complexity of FCA in knowledge 

acquisition to some degree. In modeling, concept-base, as a kind of low-level knowledge, plays an im- 

portant role in the whole process of information granularity. Based on concept-base, attribute granules, 

object granules and relation granules in formal contexts are studied. Meanwhile, supremum and infimum 

operations are introduced in the precess of information granularity, whose biggest distinction from tra- 

ditional models is integrating the structural information of concept lattice. In addition, the paper also 

probes into reduction, core, and implication rules in granularity formal contexts. Theories and examples 

verify the reasonability and effectiveness of the conclusions drawn in the paper. In short, the paper not 

only can be viewed as an effective means for the expansion of FCA, but also is an attempt for the fusion 

study of the two theories. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

With the increasing popularization of internet technology, “rich

ata and scarce knowledge” has gradually become a more and

ore important problem. In the case, how to intelligently and au-

omatically extract potential knowledge from the large-scale data

as become one of research hotspots in the current data mining

eld. Essentially, data mining is a process from the data to infor-

ation to knowledge, similarly, from the perspective of concept

ognition, it can also be understood as the process from the data

o lower concepts to higher concepts. Concept cognition is an im-

ortant characteristic of human brain learning, which is a think-

ng pattern formed in our minds and mainly focuses on concepts

ormed through the abstraction and summarization of the common

ssential characteristics of things. In fact, as one of the most im-

ortant ways to understand the real world and its regularity, con-

ept cognition is an important foundation of people’s complicated
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hought, and it is also an effective means to express and deduce

nowledge. 

In philosophy, concept is the thinking unit of human under-

tanding of the objective world and its law, which is composed of

wo parts, namely intent and extent. In this sense, concepts are

ssentially the abstract, generalization and induction of the objec-

ive world, and the process of generating concepts is essentially

 process of optimization and evolution from the perceptual to

he rational, and from the phenomenon to the essence, and from

he scatter to the system. Meanwhile, in order to adapt to rapid

hanges in the subjective and objective world, concepts are not

nly the summary of the understanding of objective things, but

lso the starting point of the new knowledge, people can deduce

ew concepts from known ones. If “knowledge system” is com-

ared to a building, then concepts can be understood as core el-

ments of it. Therefore, developing new techniques and methods

ased on concept thinking will surely contribute to the rapid de-

elopment of data mining. 

If people can use methods in mathematical form to simulate

he formation process of concepts and discover the relationship

mong concepts at different levels, then it will has great signifi-

ance for data mining and knowledge discovery. Therefore, based

http://dx.doi.org/10.1016/j.knosys.2016.05.005
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on the philosophical understanding of concepts, German scholar

Wille proposed FCA [36] in 1982 from the Brikhoff’s lattice theory

[1] , its formal system can well describe the formation process of

concepts by mathematical methods, and can help to stimulate peo-

ple’s mathematical thinking for data analysis and knowledge pro-

cessing under the concept cognition. In FCA, concepts, concept lat-

tice, Galois connection, et al. play greatly important roles. Namely,

any concept can be characterized and described from perspectives

of intent and extent, which helps to deepen people’s accurate un-

derstanding and summary cognizance of actual concepts; Concept

lattice, as the core data structure of FCA, can intuitively reflect

the generalization and specialization relationships between con-

cepts through Hasse graph; Galois connection is the core theoret-

ical basis of concept lattice. In addition, the generating process of

concept lattice is actually a process of objects clustering. In recent

years, the research on concept lattice has made a series of impor-

tant results [15,17,22,23,26,33,43] . For current trends and directions

of concept lattice, please refer to reference [28] . 

In recent years, as a mature theory possessing solid mathemat-

ical properties, FCA has drawn more and more attention and been

widely applied in various fields such as machine learning, deci-

sion analysis, data mining. However, along with the development

of research, it is difficult to effectively solve complicated prob-

lems just through one single theory. Therefore, many scholars have

combined FCA with other theories such as fuzzy set [2,8,12,25,42] ,

rough set [3,9,11,14,21,31,34,35,37] , neural network [4] , probability

theory [7] , GrC [8,10,16,29,38] , et al., thus greatly expanding the

theoretical foundation and application scope of FCA. For example,

Burusco et al. brought fuzzy theory into FCA, which can accurately

express the uncertain relationship between attributes and objects,

thus breaking the binary limitations of classical FCA and helping

solve fuzzy and uncertain information in actual applications [2] ;

Dias et al. combined neural network and FCA and proposed the

FCANN [4] ; Jiang et al. combined probability theory and FCA, and

proposed a new data mining method SPICE [7] ; Kang et al. intro-

duced GrC into FCA, and provided a unified model for concept lat-

tice building and rule extraction on the basis of a fuzzy granularity

base [8] ; The reference [10] introduced FCA and GrC into ontol-

ogy learning, and presented a unified research model for ontology

building, ontology merging and ontology connection based on the

domain ontology base in different granulations; Kent discussed the

relationship between concept lattice and rough set theory, and pre-

sented rough concept analysis that can be viewed as a synthesis

of rough set and FCA [11] ; Tan et al. studied connections between

covering-based rough sets and FCA [31] ; Ventos and Soldano pre-

sented α Galois lattices based on equivalence classes [32] . 

FCA, as a data analysis tool, possesses characteristics such as

completeness and precision. For a classical concept, even though

an object possesses most of attributes of the intent, the object is

still not included in the extent of the concept. At the time, it is

difficult to manifest the object “possibly” included in concept. Such

precision is an advantage of FCA, but it also results in some limi-

tations in processing some specific knowledge. For example, in the

process of earthquake prediction, the earth may not always has all

characteristics of the earthquake, so experts can only judge that

the earthquake possibly happen. However, if all characteristics are

identical, then the earthquake may have come about. Since the

consequence may be serious, the possibility can not be overlooked.

In addition, in some large-scale or complicated data, as a matter of

fact, it still deserves attention that such precision of concept lat-

tice often results in a mass of concepts and makes the structure

of concept lattice extremely complicated. Aiming at above prob-

lems, to better understand and solve problems rather than get lost

in unnecessary details, and to better discover potentially valuable

knowledge from seemingly irrelevant data, the paper introduces
he idea of GrC into FCA, which can, via the unique advantage in

he modeling and analysis of large-scale complicated data, lower

he “resolution” of knowledge acquisition, and expand the “scale”

f knowledge measurement, thus can effectively simplify the com-

licated concept lattice structure and compact the huge concept

cale and prevent some useful information from being buried in

assive information. 

As a feasible and effective solution for data mining and knowl-

dge reasoning, GrC has become a hotspot research subject in the

rtificial intelligence field, and a great deal of articles were pub-

ished. American famous mathematician Zadeh [40] first presented

nd discussed fuzzy information granularity on the basis of the

uzzy set theory in 1979. In 1997, “granular computing” concept

as first formally presented. Some important theoretical findings

oncerning GrC are shown as follows: Aiming to solve the problem

f fuzzy intelligent control through natural language fuzzy reason-

ng and judgment, Zadeh presented the theory of computing with

ords [41] , and then Thiele proposed the semantic models for in-

estigating computing with words [30] , which facilitated the devel-

pment of the theory of computing with words; Pawlak proposed

he rough set theory used for uncertain knowledge modeling, and

ffered a modeling tool in the case that priori knowledge was in-

omplete or uncertain [24] ; Lin and Yao emphatically described

he significance of GrC, that roused people’s tremendous interest

18,39] ; Zhang et al. presented the GrC model based on quotient

pace often used in solving complicated problems [44] ; Leung and

i described the basic “granule” in an information system with

aximal consistent blocks [19] ; Hu studied mixed data-oriented

eighborhood relation granular computing model and its applica-

ion [6] ; Liang, Qian et al. conducted the systematic research on

arious uncertain measures, axiomatization of granulation mea-

urement, and rule acquisition in information systems, and stud-

ed problems such as incomplete multi-granulation rough set and

ranulation space structure [20,27] . 

GrC is a new theory effectively simulating human’s thinking

nd solving complicated problems in the intelligent information

rocessing field. It possesses the unique advantage in the model-

ng and analysis of large-scale complicated data. No matter from

he macro-perspective of cognitive philosophy or from the micro-

erspective of information processing, GrC characterized by infor-

ation granulation, relationships between granules, and granule-

ased reasoning essentially reflects human’s features in solving

omplicated problems. GrC changed some of our traditional com-

uting concepts in actual applications, making it more scientific,

easonable and operable to deal with problems. For example, when

roblems are too complicated or solving them requires high cost,

he method no longer focuses on some inessential detailed infor-

ation and takes mathematical exact solutions as the goal, but

eplaces exact solutions with the feasible satisfactory approximate

olutions on the basis of the actual needs so as to achieve the goals

f simplifying the problems and enhancing the problem-solving ef-

ciency. 

Normally, there are two types of knowledge acquisition meth-

ds based on the fusion theory of FCA and GrC. Namely, one type

s indirect, which needs data preprocessing, and further using tra-

itional methods to acquire knowledge; While another type is di-

ect [32] , which does not need data preprocessing, and can directly

eal with original formal contexts. In fact, the former is relatively

imple and easy to use, while the latter can completely preserve

he original information, which may be more objective than the

ormer. 

For instance, for the formal context shown in Table 1 (a), in-

irect methods need data preprocessing, namely, transforming it

nto a granularity context like Table 1 (b), and further using follow-

ng classical operators (see Definition 1 ) to acquire knowledge in
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Table 1 

Some simple formal contexts. 
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Table 2 

A typical formal context. 

a b c d e f g h 

1 × × × ×
2 × × × × × ×
3 × × × × ×
4 × × × ×
5 × × ×
6 × × × × ×
7 × × × ×
8 × × ×
9 × × × × ×
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ranularity contexts. 

 

′ = { m ∈ M | gIm, ∀ g ∈ A } 

 

′ = { g ∈ G | gIm, ∀ m ∈ B } 
irect methods directly deal with original formal contexts, such as

he method based on operators defined as follows, which are also

ur research focus at present. 

 

+ = { m ∈ M | ∀ g ∈ A, | m 

′ ∩ [ g] R | ≥ | [ g] R | · ω} 

 

+ = { g ∈ G | ∀ m ∈ B, | m 

′ ∩ [ g] R | ≥ | [ g] R | · ω} 
here R is an equivalence relation on G , and any [ x ] R = { y ∈
 | (x, y ) ∈ R } is an equivalence class. 

At present, the research on the fusion theory of FCA and GrC

s still at an early stage and correlative are rare. In the case, the

aper tries to bring GrC into FCA, and proposes an expansion

odel of FCA based on GrC. Namely, by selecting appropriate and

arger granulations not only can help to hide some specific de-

ails and lower the difficulty of problems when processing large-

cale data or solving complicated problems, but also can help us

o discover potentially valuable knowledge from seemingly irrel-

vant data. In short, the paper not only serves as an expansion of

lassical FCA, but also offers a new idea for the fusion study of FCA

nd GrC. 

This paper is organized as follows: Section 2 briefly recalls

ome basic notions of concept lattice; Section 3 defines concept-

ases, presents some concept similarity models, and constructs

ranularity concept-bases by selecting appropriate larger granu-

ations; Section 4 mainly discusses granularity formal contexts;

ection 5 presents granularity concept lattices; Section 6 mainly

robes into attribute reduction, core and implication rules in gran-

larity formal contexts on the basis of concept-bases; Conclusions

nd discussions of further work will close the paper in Section 7 . 

. Basic notions of concept lattice 

This section only offers a brief overview of concept lattice, for

ore detailed information, please refer to [5] . 

An order relation on the set L denoted as“�”, always satisfies

eflexivity, antisymmetry, transitivity. In this case, we say ( L , �) is

n ordered set. And further, we say s ∈ L is a lower bound of E ⊆
 with s �q for all q ∈ E ; An upper bound of E is defined dually. If

here exists a single largest element in the set of all lower bounds

f E , it is called the infimum of E and is denoted as ∧ E ; Dually, a

ingle least upper bound is called supremum and is denoted as ∨ E .

or any subset E ⊆ L , if there always exist ∧ E and ∨ E , then we say

 L , �) is a complete lattice. In addition, let x, y ∈ L , if x �y , we say

 x, y ] = { z ∈ L | x � z � y } is an ordered interval in ( L , �). 

Normally, the term “formal context” has always been described

s a triple, that is, K = (G, M, I) , where I ⊆ G × M is a binary re-

ation between the set G and the set M . In such case, any g ∈ G is

alled an object and any m ∈ M is called an attribute (also called a
haracteristic), and gIm or ( g, m ) ∈ I means the attribute or charac-

eristic m belongs to the object g . Table 2 is a typical formal con-

ext, as shown below. 

efinition 1. In K = (G, M, I) , let A ⊆ G, B ⊆ M , then we define 

 

′ = { m ∈ M | gIm, ∀ g ∈ A } 

 

′ = { g ∈ G | gIm, ∀ m ∈ B } 
f A 

′ = B and B ′ = A, then ( A, B ) is called a concept. The order re-

ationship “�” between concepts ( A 1 , B 1 ) and ( A 2 , B 2 ) is defined

s 

( A 1 , B 1 ) � ( A 2 , B 2 ) ⇔ A 1 ⊆ A 2 ⇔ B 1 ⊇ B 2 

n fact, the ordered set (B(K) , � ) is a complete lattice, where

(K) is the set of all concepts. In the case, there are following

imple facts 

(A 1 , B 1 ) ∧ (A 2 , B 2 ) = (A 1 ∩ A 2 , (B 1 ∪ B 2 ) 
′′ ) 

(A 1 , B 1 ) ∨ (A 2 , B 2 ) = ((A 1 ∪ A 2 ) 
′′ , B 1 ∩ B 2 ) 

In addition, for any g ∈ G and m ∈ M , we say γ g = (g ′′ , g ′ ) is

n object concept and μm = (m 

′ , m 

′′ ) is an attribute concept. The

et of all object concepts is denoted as γ ( G ), the set of all attribute

oncepts is denoted as μ( M ). 

On the basis of operators in Definition 1 , the concept lattice

hown in Fig. 2 can be derived from Table 2 , the brief process is

hown in Fig. 1 . In order to make it convenient for formal descrip-

ion, for any object concept ( g ′ ′ , g ′ ) and attribute concept ( m 

′ , m 

′ ′ )
n Fig. 2 , they are simplified as “g ” and “m ” separately. 

roposition 1. In K = (G, M, I) , let A, A 1 , A 2 ⊆ G, B, B 1 , B 2 ⊆ M,

hen 

(1) A 1 ⊆ A 2 ⇒ A 

′ 
2 ⊆ A 

′ 
1 (2) B 1 ⊆ B 2 ⇒ B 

′ 
2 ⊆ B 

′ 
1 

(3) A ⊆ A 

′′ ; B ⊆ B 

′′ (4) A 

′ = A 

′′′ ; B 

′ = B 

′′′ 

roposition 2. In K = (G, M, I) , let g ∈ G, m ∈ M, then 

(g, m ) ∈ I, if and only if γ g � μm 

For ease of understanding, in the paper, if the crossing of g ∈
 row and m ∈ M column is denoted as “�”, then we suppose ( g,

 ) �∈ I ; if the crossing of g ∈ G row and m ∈ M column is denoted

s “• ” or “ × ”, then we suppose ( g, m ) ∈ I . 

. Concept-bases and the granularity of concept-bases 

It is known to us that concept lattice is a kind of hierarchi-

al structure model of concepts, and object concepts and attribute

oncepts, as a kind of basic concepts, are mainly distributed at the

pper layer and bottom layer of concept lattice. Essentially, other

oncepts can be derived from object concepts by means of supre-

um operation “∨ ”, or derived from attribute concepts by means

f infimum operation “∧ ”, so they play important roles in concept

attice. Therefore, the paper takes the set of object concepts and



150 X. Kang, D. Miao / Knowledge-Based Systems 105 (2016) 147–159 

Fig. 1. A brief generation process of concept lattice. 

Fig. 2. A concept lattice derived from Table 2 . 
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the set of attributes concept as concept-bases, and proposes a so-

lution to information granularity in FCA based on concept-bases. 

Let ( L , �) be a concept lattice, E ⊆ L, x ∈ L . If there exists E 1 ⊆ E

satisfying x = ∨ E 1 , then we say “x ” can be derived from E based on

the operation “∨ ”. In this case, if all elements in L can be derived

from E , then E is called an object concept-base of ( L , �); Similarly,

if there exists E 2 ⊆ E satisfying x = ∧ E 2 , then we say “x ” can be

derived from E based on the operation “∧ 

′ ′ . In this case, if all el-

ements in L can be derived from E , then E is called an attribute

concept-base of ( L , �). 

Proposition 3. In K = (G, M, I) , let ( A, B ) be a concept, then 

∧ 

m ∈ B 
μm = (A, B ) = 

∨ 

g∈ A 
γ g 

It is known from the Proposition above that every concept ( A,

B ) can be derived from γ ( G ) based on “∨ ”, and meanwhile can be

derived from μ( M ) based on “∧ 

′ ′ . It is obvious that γ ( G ) and μ( M )

are the object concept-base and attribute concept-base of concept

lattice (B(K) , � ) respectively. 

Theorem 1. In (B(K) , � ) , μ( M ) is an attribute concept-base, and

γ ( G ) is an object concept-base. 
We know that the higher time complexity and space complexity

f concept lattice generating algorithm have always been the pri-

ary obstacle insurmountable in its applications. Especially, when

he data scale is larger, most algorithms are still far from be-

ng perfect in particular. For instance, when | M| = n, lattice nodes

mount to 2 n in the worst case. Even in ordinary situations (any

bject is assumed to have k attributes at most), the upper bound

f lattice node number can be as high as N = 2 + C 1 n + C 2 n + · · · + C k n .

herefore, the paper introduces GrC into FCA, GrC not only helps

xpand the extent and intent of classical concept, but also effec-

ively reduces the time complexity and space complexity of con-

ept lattice in knowledge acquisition to some degree. 

.1. Concept similarity models 

Among traditional concept similarity measurement models, the

ost common one is characteristic model. One type refers to those

eeting symmetry, for instance, 

im 1 (x, y ) = 

| B ∩ D | 
| B ∪ D | 

here B and D are intents in concepts x and y respectively. The

odel above is only on the basis of public characteristics between

 and D , and meets symmetry, that is, x and y are similar to each
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ther. It is known to us that intent and extent in any concept are

utually determined, which means that the concept can be de-

ermined either by intent or by extent. Therefore, for any con-

ept x = ( A 1 , B 1 ) and y = ( A 2 , B 2 ) , we can describe above similarity

odel as follows: 

im E (x, y ) = | A 1 ∩ A 2 | × 1 

| A 1 ∪ A 2 | 

im I (x, y ) = | B 1 ∩ B 2 | × 1 

| B 1 ∪ B 2 | 
For instance, for concepts x = (789 , de f ) , y = (379 , cde ) in

able 2 , the similarity sim E ( x, y ) is 

im E (x, y ) = |{ 7 , 8 , 9 } ∩ { 3 , 7 , 9 }| × 1 

|{ 7 , 8 , 9 } ∪ { 3 , 7 , 9 }| = 0 . 5 

he similarity sim I ( x, y ) is 

im I (x, y ) = |{ d, e, f } ∩ { c, d, e }| × 1 

|{ d, e, f } ∪ { c, d, e }| = 0 . 5 

Essentially, similarity models mentioned-above, no matter on

he basis of intents or extents, belong to the characteristic model.

nother type is characteristic models stressing asymmetry, for in-

tance: 

im 2 (x, y ) = 

| B ∩ D | 
| B ∩ D | + α × | B − D | + (1 − α) × | D − B | , 0 � α � 1

here B and D are intents in concepts x and y respectively. B − D

enotes characteristic set appearing in B but not in D ; D − B de-

otes characteristic set appearing in D but not in B . The model

omprehensively considers the common characteristics and differ-

nt characteristics between B and D , and assumes that common

haracteristics affect the similarity more significantly than differ-

nt characteristics. The parameters α and 1 − α can be viewed as

eights added to B − D and D − B separately, which help to ob-

ectively express the importance of different features and differ-

nt contributions of B − D and D − B relative to the overall similar-

ty measure. Essentially, α mainly reflects following facts, namely,

he contribution of different characteristics is smaller than that

f common characteristics in the similarity measure; the influ-

nces of different characteristic sets B − D and D − B on similar-

ty maybe not symmetrical, only when α = 0 . 5 , the corresponding

imilarity is symmetrical. For instance, a frequently cited example

s that people think the similarity of North Korea relative to China

s greater than that of China relative to North Korea. 

In the following part, the paper will focus on similarity models

imilar to sim 1 ( x, y ) because it is simple and unambiguous. 

In fact, to better understand and solve problems rather than

et lost in unnecessary details of problems in the process of solv-

ng problems, we usually hide some specific details so as to obtain

heir approximate solutions, and the problem can be solved from

he overall picture. In virtue of the idea above, the paper constructs

 kind of similarity models based on “∧ ” and “∨ ”, namely, estimat-

ng the similarity between concepts x and y through computing the

imilarity between x ∧ y and x ∨ y . Its biggest difference from tradi-

ional models is the incorporation of concept lattice’s structure in-

ormation. In fact, such model is constructed on the basis of the

ollowing reasonable inferences: 

• if [ x, y ] ⊆[ v, w ], then sim ( v, w ) ≤ sim ( x, y ); 

• for any concepts x, y ∈ [ v, w ], the smaller the interval [ v, w ] is,

the closer sim ( x, y ) and sim ( v, w ) are to each other; 

• It is assumed that v is the maximum concept smaller than both

concepts x and y , and w is the minimum concept bigger than

both concepts x and y . It is obvious that among various in-

tervals, [ v , w ] = [ x ∧ y, x ∨ y ] is the minimum interval including

both concepts x and y . Based on above inference, we can ap-

proximately estimate the similarity between concepts x and y
as the similarity between concepts v and w , namely sim ( x, y ) ≈
sim ( v, w ) ≈ sim ( x ∧ y, x ∨ y ). 

efinition 2. Based on above discussion and reasonable inferences,

e define similarity models like that: let x and y be concepts,

hen 

im LE (x, y ) = sim E (x ∧ y, x ∨ y ) 

im LI (x, y ) = sim I (x ∧ y, x ∨ y ) 

For instance, for concepts x = (789 , de f ) , y = (379 , cde ) in

able 2 , since x ∧ y = (79 , cde f ) and x ∨ y = (3789 , de ) , the simi-

arity sim LE ( x, y ) is 

im LE (x, y ) = |{ 7 , 9 } ∩ { 3 , 7 , 8 , 9 }| × 1 

|{ 7 , 9 } ∪ { 3 , 7 , 8 , 9 }| = 0 . 5 

he similarity sim LI ( x, y ) is 

im LI (x, y ) = |{ d, e } ∩ { c, d, e, f }| × 1 

|{ d, e } ∪ { c, d, e, f }| = 0 . 5 

heorem 2. In (B(K) , � ) , let x and y be concepts, then 

(1) 0 ≤ sim LE ( x, y ) ≤ 1 ; 

(2) if x = y, then sim LE (x, y ) = 1 ; 

(3) if x �v �y and x �w �y, then sim LE ( x, y ) ≤ sim LE ( v, w ) ; 

(4) if x �z �y, then sim LE ( x, y ) ≤ sim LE ( x, z ) . 

roof. The conclusions (1) and (2) can be obtained immediately. 

(3) Let x ∧ y = (A 1 , B 1 ) , x ∨ y = (A 2 , B 2 ) , v ∧ w = (C 1 , D 1 ) , v ∨ w =
(C 2 , D 2 ) . Then we can see that x ∧ y �v ∧ w �x ∨ y and x ∧ y �v ∨ w �x ∨ y

rom x �v �y and x �w �y , this implies A 1 ⊆ C 1 ⊆ A 2 and A 1 ⊆ C 2 
A 2 . In this case, we can obtain C 1 ∪ C 2 ⊆ A 1 ∪ A 2 and A 1 ∩ A 2 ⊆

 1 ∩ C 2 . Hence sim E ( x ∧ y, x ∨ y ) ≤ sim E ( v ∧ w, v ∨ w ), that is, sim LE ( x, y )

sim LE ( v, w ) holds. 

(4) Let x ∧ y = (A 1 , B 1 ) , x ∨ y = (A 2 , B 2 ) , x ∧ z = (C 1 , D 1 ) , x ∨ z =
(C 2 , D 2 ) . Then we can see that x ∧ y = x ∧ z � x ∨ y and

 ∧ y �x ∨ z �x ∨ y from x �z �y , this implies A 1 = C 1 ⊆ A 2 and A 1 

C 2 ⊆ A 2 . In this case, we can obtain C 1 ∪ C 2 ⊆ A 1 ∪ A 2 and

 1 ∩ A 2 = C 1 ∩ C 2 . Hence sim E ( x ∧ y, x ∨ y ) ≤ sim E ( x ∧ z, x ∨ z ), that is,

im LE ( x, y ) ≤ sim LE ( x, z ) holds. �

heorem 3. From above discussions, the following statements hold 

(1) if x ∧ y = v ∧ w and x ∨ y = v ∨ w, then sim LE (x, y ) =
sim LE (v , w ) ; 

(2) for any concepts x and y, sim LE ( x, y ) ≤ sim E ( x, y ) . 

roof. (1) The conclusion can be obtained immediately. 

(2) For any concepts x = (A 1 , B 1 ) and y = (A 2 , B 2 ) , let x ∧ y =
(C 1 , D 1 ) and x ∨ y = (C 2 , D 2 ) . Then we can see that C 1 ⊆ A 1 ⊆ C 2 
nd C 1 ⊆ A 2 ⊆ C 2 from x ∧ y �x �x ∨ y and x ∧ y �y �x ∨ y , this implies

 1 ∪ A 2 ⊆ C 1 ∪ C 2 and C 1 ∩ C 2 ⊆ A 1 ∩ A 2 . Hence sim E ( x ∧ y, x ∨ y ) ≤
im E ( x, y ), that is, sim LE ( x, y ) ≤ sim E ( x, y ) holds. �

Similarly, the similarity model sim LI also meets the properties

n above theorems as well. It is self-evident from above theorems

hat similarity models presented in the paper are feasible. 

In fact, sim LE combined with structure information of concept

attice, is a kind of rougher similarity models compared with sim E .

n other words, if the measuring result of sim E is precise, that of

im LE is approximate. Similarly, compared with sim I , sim LI is also

 kind of rougher similarity models. With a view to the fact that

asse graph can vividly and succinctly express the structure of

oncept lattice, we can directly and simply judge which concepts

ave the same similarities, and which concepts have different simi-

arities on the basis of sim LE or sim LI . For example, for any concepts

 i and a j in Fig. 3 , since the supremum is x , and infimum is y , we

an immediately judge that similarity among any two concepts in

 a , a , a , a , a } is equal to the similarity between concepts x and
1 2 3 4 5 
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Fig. 3. A concept lattice 

Table 3 

A fuzzy relation matrix of μ( M ) relative to sim E. 

μa μb μc μd μe μf μg μh 

μa 1 .0 0 0 

μb 0 .600 1 .0 0 0 

μc 0 .333 0 .429 1 .0 0 0 

μd 0 .286 0 .375 0 .833 1 .0 0 0 

μe 0 .286 0 .222 0 .375 0 .500 1 .0 0 0 

μf 0 .143 0 .111 0 .250 0 .375 0 .833 1 .0 0 0 

μg 0 .143 0 .429 0 .250 0 .222 0 .375 0 .429 1 .0 0 0 

μh 0 .167 0 .500 0 .125 0 .111 0 .250 0 .286 0 .800 1 .0 0 0 

Table 4 

A fuzzy relation matrix of μ( M ) relative to sim LE. 

μa μb μc μd μe μf μg μh 

μa 1 .0 0 0 

μb 0 .600 1 .0 0 0 

μc 0 .222 0 .333 1 .0 0 0 

μd 0 .222 0 .333 0 .833 1 .0 0 0 

μe 0 .222 0 .222 0 .333 0 .4 4 4 1 .0 0 0 

μf 0 .111 0 .111 0 .222 0 .333 0 .833 1 .0 0 0 

μg 0 .111 0 .333 0 .222 0 .222 0 .333 0 .333 1 .0 0 0 

μh 0 .111 0 .333 0 .111 0 .111 0 .222 0 .222 0 .800 1 .0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

A fuzzy equivalence relation matrix derived from Table 3 . 

μa μb μc μd μe μf μg μh 

μa 1 .0 0 0 

μb 0 .600 1 .0 0 0 

μc 0 .429 0 .429 1 .0 0 0 

μd 0 .429 0 .429 0 .833 1 .0 0 0 

μe 0 .429 0 .429 0 .500 0 .500 1 .0 0 0 

μf 0 .429 0 .429 0 .500 0 .500 0 .833 1 .0 0 0 

μg 0 .500 0 .500 0 .429 0 .429 0 .429 0 .429 1 .0 0 0 

μh 0 .500 0 .500 0 .429 0 .429 0 .429 0 .429 0 .800 1 .0 0 0 

Table 6 

A fuzzy equivalence relation matrix derived from Table 4 . 

μa μb μc μd μe μf μg μh 

μa 1 .0 0 0 

μb 0 .600 1 .0 0 0 

μc 0 .333 0 .333 1 .0 0 0 

μd 0 .333 0 .333 0 .833 1 .0 0 0 

μe 0 .333 0 .333 0 .4 4 4 0 .4 4 4 1 .0 0 0 

μf 0 .333 0 .333 0 .4 4 4 0 .4 4 4 0 .833 1 .0 0 0 

μg 0 .333 0 .333 0 .333 0 .333 0 .333 0 .333 1 .0 0 0 

μh 0 .333 0 .333 0 .333 0 .333 0 .333 0 .333 0 .800 1 .0 0 0 
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y . That is, for any concepts a i and a j , sim LE (a i , a j ) = sim LE (x, y ) and

sim LI (a i , a j ) = sim LI (x, y ) , where i, j = 1 , 2 , · · · , 5 . 

Based on the discussion above, the paper studies two kinds of

similarity models, with the first being similarity models based on

concept intent or extent, and the second similarity models based

on supremum and infimum. Both of them belong to symmetrical

characteristic models in essence. 

3.2. The granularity of concept-bases 

This section will introduce the transitive closure algorithm in

fuzzy clustering analysis, and emphatically make the in-depth

analysis of granularity of concept-bases. 

In fact, based on one of similarity models presented in the pa-

per, a fuzzy relation matrix can be obtained from the attribute

concept-base, such as: 

F M 

= 

(
˜ r i j 

)
| M |×| M | , ˜ r i j = sim (μm i , μm j ) 

where sim represents sim E or sim LE . For example, on the basis of

sim E , the corresponding fuzzy relation matrix of μ( M ) is shown

in Table 3 ; On the basis of sim LE , the corresponding fuzzy relation

matrix of μ( M ) is shown in Table 4 . Because of r i j = r ji , any r ji is

omitted for convenient in above tables. 

If F M 

satisfies ˜ r ii = 1 , ˜ r i j = ̃  r ji and ∨ k =1 ,... | M| ̃ r ik ∧ ̃  r k j � ̃  r i j , i, j ∈
{ 1 , 2 , . . . , | M|} , then we say F M 

is a fuzzy equivalence relation ma-

trix. We also know that fuzzy relation, especially fuzzy equivalence

relation, finds the important application in many fields, such as
uzzy control, approximate reasoning, fuzzy clustering, etc. How-

ver, since it is impossible to directly obtain the fuzzy equiva-

ence relation in actual applications, so we usually construct an-

ther fuzzy equivalence relation most similar to it in a sense and

he most commonly used approach is the fuzzy transitive closure

lgorithm. Since F M 

constructed in the paper is normally reflexive

nd symmetrical, but not transitive, we can generate fuzzy equiva-

ence relation matrix via the fuzzy transitive closure 

 

+ 
M 

= F 1 M 

∪ F 2 M 

∪ · · · ∪ F n −1 
M 

he initial time complexity of transitive closure algorithm is

 ( n 3 log n ). However, when data is large-scale, the algorithm per-

aps can not finish generating fuzzy equivalence relation matrix in

he limited time. Lee et al. [13] proposed an algorithm with O ( n 2 ).

n view of its low time complexity, we use it to compute the tran-

itive closure F + 
M 

. For example, by using the transitive closure al-

orithm, a fuzzy equivalence relation matrix shown in Table 5 can

e derived from Table 3 ; In the same way, we can obtain Table 6

rom Table 4 . 

And further, we can obtain the following σ−cut equivalence re-

ation matrix F + 
M 

(σ ) by introduce the parameter σ ∈ [0, 1]. 

 

+ 
M 

(σ ) = 

(
r i j 

)
| M |×| M | , where r i j = 

{
1 

˜ r i j � σ
0 

˜ r i j < σ

n fact, F + 
M 

(σ ) is an equivalence relation, and μ(M) /F + 
M 

(σ ) =
 P 1 , · · · P l } is a partition of μ( M ), where P i is an equivalence class.

bviously, the attribute concept-base can be granulated into sev-

ral equivalence classes. In this case, we define 

M 

(σ ) = 

1 

| M| 2 ×
l ∑ 

i =1 

| P i | 2 

hen we say ρM 

( σ ) is the granulation of F + 
M 

(σ ) . Obviously, the big-

er σ is, the smaller ρM 

( σ ) is, and vice versa. In fact, a bigger

ranulation can help hide some partial details, thus making it con-

enient for us to view and understand the whole problem com-

rehensively. Similarly, from the object concept-base γ ( G ), we can

btain F + 
G 

(σ ) on the basis of sim I or sim LI , which will not be de-

ailed here again. 
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Table 7 

Some relation granules. 

Table 8 

A granularity context derived from Table 2 . 

a b c d e f g h 

1 • • × × × ×
2 × × × × × ×
3 × × × × �

4 × × × ×
5 • × • • × ×
6 • × × × × ×
7 × × × ×
8 • × × ×
9 × × × × �
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. Granularity formal contexts 

On the basis of discussions in above section, an attribute gran-

le [ m ] with granulation ρM 

( σ ) is defined as: 

 m ] = { n ∈ M| (μm, μn ) ∈ F + M 

(σ ) } 
he set of all attribute granules is denoted as M σ ; Correspondingly,

n object granule [ g ] with granulation ρG ( σ ) is defined as: 

 g] = { h ∈ G | (γ g, γ h ) ∈ F + G (σ ) } 
he set of all object granules is denoted as G σ . And further, for any

 m ] ∈ M σ and [ g ] ∈ G σ , we say [ g ] × [ m ] is a relation granule with

ranulation ρM 

( σ ). 

For example, when σ = 0 . 6 , then the granularity result of M

elative to sim LE or sim E is 

 σ = { [ a ] , [ c] , [ e ] , [ g] } 
here [ a ] = { a, b} , [ c] = { c, d} , [ e ] = { e, f } , [ g] = { g, h } , the corre-

ponding granulation is ρM 

(σ ) = 0 . 25 ; Similarly, the granularity

esult of G relative to sim LI or sim I with σ = 0 . 6 is 

 σ = { [1] , [3] , [5] , [7] } 
here [1] = { 1 , 2 } , [3] = { 3 , 4 } , [5] = { 5 , 6 } , [7] = { 7 , 8 , 9 } , the cor-

esponding granulation is ρG (σ ) = 0 . 31 . 

efinition 3. In K = (G, M, I) , we say K σ = ( G σ , M σ , I σ ) is a granu-

arity formal context, where I σ ⊆ G σ × M σ . In the case, for any re-

ation granule [ g ] × [ m ], either ([ g ], [ m ]) ∈ I σ holds or ([ g ], [ m ]) �∈ I σ
olds. 

In above definition, the paper offers two different types of judg-

ng rules concerning whether the relation granule [ g ] × [ m ] sat-

sfies ([ g ], [ m ]) ∈ I σ , namely judging methods based on confi-

ence function φσ and based on supremum and infimum sepa-

ately. Their biggest difference is that the former is the judging

ethod based on binary relation I while the latter is incorporat-

ng the structure information of concept lattice. 

efinition 4. For any relation granule [ g ] × [ m ], the reliability of

[ g ], [ m ]) ∈ I σ is defined as 

σ ([ g] , [ m ]) = 

1 

| [ g] | × | [ m ] | × | π([ g ] , [ m ]) | 
where π ([ g ], [ m ]) is defined as 

([ g] , [ m ]) = { (h, n ) | γ h � μn, h ∈ [ g] , n ∈ [ m ] } 
Obviously, the bigger φσ ([ g ], [ m ]) is, the higher the reliability of

[ g ], [ m ]) ∈ I σ is, and vice versa. Therefore, we introduce parameter

∈ [0, 1], view it as the threshold value for judging whether ([ g ],

 m ]) ∈ I σ is reliable, and present the following criterion. 

riterion 1. In ( G, M, I ), for any relation granule [ g ] × [ m ], if

σ ([ g ], [ m ]) ≥ ϖ, then ([ g ], [ m ]) ∈ I σ ; if φσ ([ g ], [ m ]) < ϖ, then

[ g ], [ m ]) �∈ I σ . 

In Criterion 1 , based on following principles, users can adjust

he parameter ϖ so as to meet the actual needs. How to set ϖ rea-

onably, the paper gives following suggestions 

(1) when ϖ is bigger, it will be unfavorable for us to dis-

cover potentially information from seemingly irrelevant data.

For instance, for the relation granule [ g ] × [ m ] shown in

Table 7 (a), it is obvious that ([ g ], [ m ]) ∈ I σ is more reason-

able than ([ g ], [ m ]) �∈ I σ . However, if people sets 	 = 1 , then

the conclusion ([ g ], [ m ]) ∈ I σ will not be obtained. 

(2) when ϖ < 0.5, then corresponding results may not be

able to provide a scientific basis for further data modeling.

For instance, for the relation granule [ g ] × [ m ] shown in

Table 7 (b), it is obvious that ([ g ], [ m ]) �∈ I σ is more reason-

able than ([ g ], [ m ]) ∈ I σ . However, if people sets ϖ < 0.5,
then the conclusion ([ g ], [ m ]) �∈ I σ may not be obtained. ∧  
A granularity formal context can be derived from Table 2 on

he basis of Criterion 1 , which is shown in Table 8 with σ = 0 . 6

nd 	 = 0 . 5 . 

riterion 2. In ( G, M, I ), if ∧ γ ([ g]) � � ∨ μ([ m ]) , then ([ g ], [ m ]) �∈ I σ ;

f ∧ γ ([ g ]) �∨ μ([ m ]), then ([ g ], [ m ]) ∈ I σ . 

heorem 4. In ( G, M, I ), let [ g ] × [ m ] be relation granule, then 

(1) if ∧ γ ([ g]) � � ∨ μ([ m ]) , then φσ ([ g] , [ m ]) = 0 ; 

(2) if φσ ([ g ], [ m ]) > 0, then ∧ γ ([ g ]) �∨ μ([ m ]) . 

roof. (1) If ∧ γ ([ g]) � � ∨ μ([ m ]) , then we suppose φσ ([ g ], [ m ])

 0, namely, there exists ( g 1 , m 1 ) ∈ [ g ] × [ m ] with ( g 1 , m 1 ) ∈
 . This implies γ g 1 �μm 1 by Proposition 2 . And further together

ith ∧ γ ([ g ]) �γ g 1 and μm 1 �∨ μ([ m ]), ∧ γ ([ g ]) �∨ μ([ m ]) can be ob-

ained, which contradicts with ∧ γ ([ g]) � � ∨ μ([ m ]) . Hence the con-

lusion (1) holds. 

(2) If φσ ([ g ], [ m ]) > 0, there must exist ( g 1 , m 1 ) ∈ [ g ]

[ m ] with ( g 1 , m 1 ) ∈ I . In the case, γ g 1 �μm 1 can be ob-

ained by Proposition 2 . And further we can see ∧ γ ([ g ]) �∨ μ([ m ])

rom ∧ γ ([ g ]) �γ g 1 and μm 1 �∨ μ([ m ]). Hence the conclusion (2)

olds. �

In Theorem 4 , we can see Criterion 2 is essentially a special

ase of Criterion 1 , and the judging condition in Criterion 2 is

learly weaker than that in Criterion 1 , so the corresponding judg-

ng result is not reasonable enough. Therefore, Criterion 1 is rela-

ively better. In the case, the paper points out Criterion 3 further. 

riterion 3. In ( G, M, I ), when | [ g] | = 1 or | [ m ] | = 1 , whether

he granule [ g ] × [ m ] meets ([ g ], [ m ]) ∈ I σ can be judged by

riterion 2 ; when |[ g ]| ≥ 2 and |[ m ]| ≥ 2, then 

• for any g 1 , g 2 ∈ [ g ] and m 1 , m 2 ∈ [ m ], if 

g 1 � = g 2 , m 1 � = m 2 and γ g 1 ∧ γ g 2 � μm 1 ∨ μm 2 

then ([ g ], [ m ]) ∈ I σ ; 

• if there exist g 1 , g 2 ∈ [ g ] and m 1 , m 2 ∈ [ m ] satisfying 

g 1 � = g 2 , m 1 � = m 2 and γ g 1 ∧ γ g 2 � � μm 1 ∨ μm 2 

then ([ g ], [ m ]) �∈ I σ . 

For any g 1 , g 2 ∈ [ g ] and m 1 , m 2 ∈ [ m ], because of

 γ ([ g ]) �( γ g ∧ γ g ) �( μm ∨ μm ) �∨ μ([ m ]), it is obvious that the
1 2 1 2 
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Fig. 4. A concept lattice derived from Table 2 . 

Table 9 

A formal context derived from Table 2 . 

a b c d e f g h 

1 • • × × × ×
2 × × × × × ×
3 × × × × × • 
4 × × × × • • 
5 • × • • × ×
6 • × × × × ×
7 × × × ×
8 • × × ×
9 × × × × �

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S  

C

 

g  

M

 

 

T  

i  

t  

a  

c  

F  

f  

T  

t  

r  

p  

e

5

 

r  

s  

d  

d  

c  

t  
judging condition γ g 1 ∧ γ g 2 �μm 1 ∨ μm 2 in Criterion 3 is more

stronger than that of ∧ γ ([ g ]) �∨ μ([ m ]) in Criterion 2 . Therefore,

the judging result deduced from Criterion 3 is more reasonable. 

A granularity formal context can be derived from Table 2 on

the basis of Criterion 3 , which is equivalent to the formal context

shown in Table 9 with σ = 0 . 6 . 

For example, since γ 7 ∧ γ 8 �μc ∨ μd, γ 7 ∧ γ 9 �μc ∨ μd,

γ 8 ∧ γ 9 �μc ∨ μd by referring Fig. 4 , we can see that ([7], [ c ]) ∈ I σ .

In addition, ([7], [ g ]) �∈ I σ can be derived from γ 7 ∧ γ 8 � � μg ∨ μh,

γ 7 ∧ γ 9 �μg ∨ μh, γ 8 ∧ γ 9 �μg ∨ μh by referring Fig. 4 . 

Criterion 2 and Criterion 3 based on operations ∨ and ∧ can

particularly resort to Hasse graph to directly and simply judge

whether [ g ] × [ m ] meets ([ g ], [ m ]) ∈ I σ , whose biggest distinction

from traditional models is integrating the structural information of

concept lattice. Maybe Criterion 2 or Criterion 3 is not more rea-

sonable than other methods, but it provides a new way of thinking

for the related research. 

Kang et al. have introduced equivalence relations into M , and

studied the similar problem [8] . In this literature, for any attribute

granule [ m ] and object g , a judging criterion on whether ( g , [ m ]) ∈
J δ is essentially defined as 

if ∃ m 1 ∈ [ m ] satisfying ( g, m 1 ) ∈ I , then ( g , [ m ]) ∈ J δ . 

where ( G, M δ , J δ) is the granularity context to be solved for. The

criterion is equivalent to the following statement 
• In ( G, M, I ), for any relation granule g × [ m ], if φσ ( g , [ m ]) > 0,

then ( g , [ m ]) ∈ I σ ; if φσ (g, [ m ]) = 0 , then ( g , [ m ]) �∈ I σ . 

Essentially, above criterion is only a special case of Criterion 1 .

ince its judging condition is clearly weaker than that in

riterion 1 , it is obvious that Criterion 1 is more reasonable. 

In addition, the literature [5] provides another way for getting

ranularity context, that is, as a granularity context of ( G, M, I ), ( G,

, J ) needs to meet following conditions 

• I ⊆ J ; 

• for every object g ∈ G, g ′ in ( G, M, J ) is an intent of ( G, M, I ); 

• for every attribute m ∈ M, m 

′ in ( G, M, J ) is an extent of ( G, M,

I ). 

For instance, Table 1 (b) is just a granularity context of

able 1 (a). Advantages of above method are listed as follows: there

s close relationship between granularity contexts and original con-

exts, namely, intents in ( G, M, J ) must be intents in ( G, M, I ),

nd extents in ( G, M, J ) must be extents in ( G, M, I ); there is

lose relationship between granularity lattices and original lattices.

or instance, the relationship between the concept lattice derived

rom Table 1 (a) and its granularity concept lattice derived from

able 2 (b) are shown in Fig. 5 . Although there are many advan-

ages, constraint conditions in above method are too many to meet

eality applications. Comparatively, methods presented in the pa-

er may be not satisfy above conditions, but they are relatively

asier and more practical. 

. Granularity concept lattices 

With the strong algebraic structure, concept lattice can accu-

ately display the inheritance relationship among concept nodes,

o it is suitable to be used as fundamental data structure of rule

iscovery for discovering rule-based knowledge. However, when

ealing with the large-scale data, FCA may generate massive con-

epts and complicated lattice structure, and accordingly encounter

he tremendous limitations in actual applications. With a view to
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Fig. 5. A concept lattice and its granularity concept lattice. 
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Fig. 6. A granularity concept lattice with respect to Table 8 . 

Fig. 7. A granularity concept lattice with respect to Table 9 . 
he fact that GrC itself can simulate human’s intelligence, can sig-

ificantly lower the difficulty of problems by selecting appropri-

te granulations, thus providing a feasible, effective solution to

nowledge mining and knowledge reasoning. Therefore, the section

ainly probes into granularity concept lattices in formal contexts. 

In K σ = (G σ , M σ , I σ ) , let A σ ⊆ G σ , then 

 

′ 
σ = { [ m ] ∈ M σ | ([ g] , [ m ]) ∈ I σ , ∀ [ g] ∈ A σ } 
orrespondingly, let B σ ⊆ M σ , then 

 

′ 
σ = { [ g] ∈ G σ | ([ g] , [ m ]) ∈ I σ , ∀ [ m ] ∈ B σ } 

f A 

′ 
σ = B σ and B ′ σ = A σ , then ( A σ , B σ ) is called a granularity con-

ept. The order relation “�σ ” between granularity concepts ( A σ ,

 σ ) and ( C σ , D σ ) is defined as 

(A σ , B σ ) � σ (C σ , D σ ) ⇔ A σ ⊆ C σ ⇔ D σ ⊇ B σ

bviously, (B(K σ ) , � σ ) is a complete lattice, where B(K σ ) is the

et of all granularity concepts. 

In ( G σ , M σ , I σ ), for any [ g ] ∈ G σ , [ m ] ∈ M σ , we say ˜ γ [ g] =
([ g] ′′ , [ g] ′ ) is an object granularity concept, and ˜ μ[ m ] = ([ m ] ′ , [ m ] ′′ )
s an attribute granularity concept. It is obvious ˜ γ (G σ ) and 

˜ μ(M σ )

re concept-bases of (B(K σ ) , � σ ) , where the set of all object gran-

larity concepts is denoted as ˜ γ (G σ ) , the set of all attribute gran-

larity concepts is denoted as ˜ μ(M σ ) . 

efinition 5. Based on discussions above, the lattice (B(K σ ) , � σ )

s called a granularity concept lattice of (B(K) , � ) . 

For example, granularity concept lattices with respect to

able 8 and Table 9 , are shown in Fig. 6 and Fig. 7 separately.

n essence, the method based on Criterion 1 is an expansion of

he one in [8] . For further revealing the similarity and differences

etween them, the paper takes a practical example as application

ackground, which is shown as follows. 

The context shown in Table 10 is about websites and their sub-

ects. The set of objects G is composed of website 1, website 2, . . . ,

ebsite 12 denoting some websites, the set of attributes M is com-

osed of Financing, Economic, . . . , Education denoting subjects in

ebsites. If website i includes subject j , this is denoted as ( i, j ) ∈
 , which is shown in table by “ × ”. Fig. 8 is the classical concept

attice with respect to Table 10 , since it is too complicated and too

arge to show, we only show it partially. Table 11 and Table 12 are

ranularity contexts of Table 10 , which are results based on [8] and

riterion 1 defined in the paper separately. Corresponding granu-

arity concept lattices are shown in Figure 9 and Fig. 10 . 
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Table 10 

A formal context about websites and their subjects 

1 2 3 4 5 6 7 8 9 10 11 12 

Financing × × × × × × ×
Economic × × × × ×
Stock certification × × × × ×
Foundation × × × × ×
History × × × × × × × × × ×
Record × × × × × × × × × ×
Literature × × × ×
Culture × × × ×
Education × × × ×

Fig. 8. A classical concept lattice with respect to Table 10 . 

Table 11 

A granularity context derived from Table 10 . 

1 2 3 4 5 6 7 8 9 10 11 12 

Financing × × × × × × ×
Economic × • × × × × • 
Stock certification × × × • × × • 
Foundation × × × × × • • 
History × × × • • × × × × × × ×
Record × × × × × × × × × • × • 
Literature × • • × × ×
Culture • × • × × ×
Education • • × × × ×

Table 12 

A granularity context derived from Table 10 . 

1 2 3 4 5 6 7 8 9 10 11 12 

Financing × × × × × × �

Economic × • × × × ×
Stock certification × × × • × ×
Foundation × × × × × • 
History × × × • • × × × × × × ×
Record × × × × × × × × × • × • 
Literature � × × ×
Culture � × × ×
Education � × × ×
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Fig. 9. A granularity concept lattice with respect to Table 11 . 

Fig. 10. A granularity concept lattice with respect to Table 12 . 
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In Table 10 , when σ = 0 . 6 and 	 = 0 . 6 , then all attributes

an be classified into {Financing, Economic, Stock certificate, Foun-

ation}, {History, Record} and {Literature, Culture, Education} by

riterion 1 ; Meanwhile, all objects can be classified into {web-

ite1, . . . , websit e6}, {websit e7, . . . , websit e9} and {website10, . . . ,

ebsite12}. In addition, based on the method in [8] , all attributes

an also be classified into same granules. 

From the actual example above, we can see that there are some

imilarities and some slight differences relative to [8] . Similari-

ies: they all help to compress the scale of structure of concept lat-

ice and reduce the number of concepts by hiding some specific

etails. For instance, Fig. 9 or Fig. 10 has relatively simpler struc-

ure and smaller nodes than Fig. 8 ; they all help to expand the

xtent and intent of classical concept. For instance, as approximate

oncepts of classical concepts, any granularity concept in Fig. 9 and

ig. 10 contain more objects and attributes than the one in Fig. 8 ;

hey all introduce equivalence relations and parameters into FCA.

ifferences: by comparing with [8] , the paper introduces equiva-

ence relations into both G and M rather than only M , so it is more

onducive to thorough expanding classical FCA from the respective

f GrC; the judging condition in [8] is clearly weaker than that in

riterion 1 . For instance, for any subject and website, if the website

ncludes the subject in Table 12 , then there is the same result in

able 11 . Since Criterion 1 possesses stronger condition, it is more

easonable relatively to some certain extent. 

In addition, Criterion 2 and Criterion 3 based on operations ∨
nd ∧ can particularly resort to Hasse graph to directly and sim-

ly judge whether [ g ] × [ m ] meets ([ g ], [ m ]) ∈ I σ , whose biggest

istinction from traditional models is integrating the structural in-
 {  
ormation of concept lattice. Maybe they are not more reasonable

han other methods, but it provides a new way of thinking for the

elated research. 

. The knowledge acquisition in granularity formal contexts 

This section, by means of concept-bases ˜ γ (G σ ) and 

˜ μ(M σ ) ,

ainly probes into attribute reduction, core and implication rules

n K σ = (G σ , M σ , I σ ) . 

In K = (G, M, I) , let C ⊆ B ⊆ M , if C is the minimal subset sat-

sfies B ′ = C ′ , then we say C is a reduction of B ; Let m ∈ B ⊆ M , if

 

′ � = (B − m ) ′ , then we say m is indispensable, the set of all indis-

ensable attributes in B is called the core of B , which is denoted as

ore ( B ); let B, C ⊆ M , if B ′ ⊆C ′ , then we say B → C is an implication

ule. 

heorem 5. Let [ m ] ∈ B σ ⊆ M σ , then [ m ] ∈ core ( B σ ), if 

{ [ s ] | ̃  γ [ s ] � σ ˜ μ[ a ] , ∀ [ a ] ∈ B σ } � = { [ g] | ̃  γ [ g] � σ ˜ μ[ b] , 

∀ [ b] ∈ (B σ − [ m ]) } 
roof. From Proposition 2 we can see that ([ g] , [ m ]) ∈ I σ ⇔˜ [ g] � σ ˜ μ[ m ] . And further, the condition mentioned in the the-

rem is equivalent to B ′ σ � = (B σ − [ m ]) ′ . Hence, [ m ] ∈ core ( B σ )

olds. �

heorem 6. Let C σ ⊆ B σ ⊆ M σ , then C σ is a reduction of B σ , if C σ is

he minimal subset of B σ satisfying the condition 

 [ h ] | ̃  γ [ h ] � σ ˜ μ[ m ] , ∀ [ m ] ∈ C σ } = { [ g] | ̃  γ [ g] � σ ˜ μ[ n ] , ∀ [ n ] ∈ B σ }



158 X. Kang, D. Miao / Knowledge-Based Systems 105 (2016) 147–159 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. For any [ g ] ∈ G σ , [ m ] ∈ M σ , ([ g] , [ m ]) ∈ I σ ⇔ ̃

 γ [ g] � σ ˜ μ[ m ]

can be deduced from Proposition 2 . And further, we can obtain

 

′ 
σ = B ′ σ . Hence, C σ is a reduction of B σ . �

Theorem 7. Let C σ , B σ ⊆ M σ , then B σ → C σ , if 

{ [ h ] | ̃  γ [ h ] � σ ˜ μ[ m ] , ∀ [ m ] ∈ B σ } ⊆ { [ g] | ̃  γ [ g] � σ ˜ μ[ n ] , ∀ [ n ] ∈ C σ }
Proof. By means of ([ g] , [ m ]) ∈ I σ ⇔ ̃

 γ [ g] � σ ˜ μ[ m ] deduced from

Proposition 2 , B ′ σ ⊆ C ′ σ can be obtained. Hence, B σ → C σ holds. �

7. Conclusions 

The paper tries to bring GrC into FCA, and proposes an expan-

sion model of FCA based on GrC, which helps to hide some specific

details and lower the difficulty of problems, and also helps to dis-

cover valuable knowledge from seemingly irrelevant data through

the expansion of intent and extent of the classical concept. In mod-

eling, the paper defines concept-bases, discusses the granularity

of concept-bases, and further studies granularity formal contexts

and granularity concept lattices. In fact, concept-bases, as a kind of

low-level knowledge, play important roles in the whole data mod-

eling. 

To better understand and solve problems rather than get lost

in unnecessary details of problems in the process of solving prob-

lems on the basis of GrC, we usually abstract and simplify prob-

lems so as to obtain their approximate solutions. In virtue of the

idea above, the paper constructs a kind of concept similarity mod-

els based on supremum and infimum, namely estimating the sim-

ilarity between concepts x and y through computing the similarity

between x ∧ y and x ∨ y . Its biggest difference from traditional mod-

els is the incorporation of concept lattice’s structure information.

Since Hasse graph can vividly and succinctly manifest the struc-

ture of concept lattice, we can directly and simply judge which

concepts have the same similarities, and which concepts have dif-

ferent similarities in the model through Hasse graph. In addition,

the paper also presents other concept similarity models, which are

essentially characteristic models. 

Concerning whether the relation granule [ g ] × [ m ] meets ([ g ],

[ m ]) ∈ I σ , the paper offers the judging methods based on reliability

function φσ and based on operators ∨ and ∧ . Their biggest differ-

ence is that the former is the judging method based on the binary

relation I while the latter incorporates the concept lattice’s struc-

ture information. As for the judging method based on operators ∨
and ∧ , in particular, we can resort to Hasse graph to directly and

simply judge whether [ g ] × [ m ] meets ([ g ], [ m ]) ∈ I σ . 

In the end, the paper proposes granularity concept lattice, and

also emphatically probes into attribute reduction, core, and im-

plication rules in granularity formal contexts, and offers solutions

based on concept-bases. In short, the introduction of GrC into FCA

study can yet be regarded as an effective means for the expansion

of FCA. Theories and examples verify the reasonability and effec-

tiveness of conclusions drawn in the paper. Although FCA is an ef-

fective tool for data analysis, it still has many limitations in dealing

with large-scale data and complicated knowledge discovery tasks.

The research in the paper is just a tentative move, and further re-

search remains to be carried out on the fusion theory of GrC and

FCA. 
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