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As one of core problems in rough set theory, normally, classification analysis requires that “all” rather 

than “most”elements in one class are similar to each other. Nevertheless, the situation is just opposite to 

that in many actual applications. This means users actually just require “most” rather than “all”elements 

in a class are similar to each other. In the case, to further enhance the robustness and generalization 

ability of rough set based on tolerance relation, this paper, with concept lattice as theoretical founda- 

tion, presents a variable precision rough set model based on the granularity of tolerance relation, in 

which users can flexibly adjust parameters so as to meet the actual needs. The so-called relation granu- 

larity means that the tolerance relation can be decomposed into several strongly connected sub-relations 

and several weakly connected sub-relations. In essence, classes defined by people usually correspond to 

strongly connected sub-relations, but classes defined in the paper always correspond to weakly connected 

sub-relations. In the paper, an algebraic structure can be inferred from an information system, which can 

organize all hidden covers or partitions in the form of lattice structure. In addition, solutions to the prob- 

lems are studied, such as reduction, core and dependency. In short, the paper offers a new idea for the 

expansion of classical rough set models from the perspective of concept lattice. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

It is known that concept has been taken as the unit or cell

f human cognition in people’s thinking activities, since concept

ontains the most essential information of some kind of things, it

lays an important role in human’s cognitive process. In essence,

s one major method for human to know the real world and its

aws, concept thinking can be served as the foundation for peo-

le to form various complicated ideas and also effective means to

xpress knowledge. In 1982, German mathematician Wille profes-

or brought forth formal concept analysis (FCA), or concept lattice

heory [46] , which can be considered as an application branch of

attice theory. As one kind of method to mathematically abstract

nd formalize concepts from the objective world, FCA greatly stim-

lates people’s enthusiasm to solve problems under the concept

hinking. In FCA, the basic viewpoint of concept essentially devel-

ped from the understanding of concept in philosophy, that is, one

oncept is mathematically described from aspects of extent and in-

ent, in which extent refers to the set of objects covered by con-
∗ Corresponding author. Tel.: +86 0351 6563220. 
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ept, and intent refers to the set of common characteristics of ob-

ects covered by concept. Concept lattice, as the core data structure

f FCA, is an effective tool for data analysis and rule extraction, and

an vividly and concisely manifest the generalization-specialization

elationship among concepts by means of Hasse graph. In recent

ears, concept lattice has developed into a powerful data analysis

ethod [14,16,21,25,32,37,48,52] , and found wide applications in

any fields like data mining analysis, information retrieval, knowl-

dge discovery, ontology engineering, etc. 

In practice, information collected from actual systems often

ontains noise, namely, information is not always accurate or com-

lete. Along with the rapid development of science and technol-

gy, the uncertainty of information is more and more remarkable.

herefore, it is always inevitable for people to process the uncer-

ainty and incomplete information in various applications. In the

ase, how to distill useful knowledge from the massive, inaccurate,

uzzy or incomplete information has become an extremely urgent

ask. Although, people can use pure mathematical assumptions to

liminate or avoid this uncertainty, but the effect is often not ideal.

onversely, if methods can appropriate to deal with these infor-

ation, it is often helpful to solve many complex practical prob-

ems. Over the years, researchers have been trying to find effec-

ive ways to deal with the incomplete and uncertainty information

http://dx.doi.org/10.1016/j.knosys.2016.03.030
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.03.030&domain=pdf
mailto:tongji_kangxp@sina.com
mailto:miaoduoqian@163.com
http://dx.doi.org/10.1016/j.knosys.2016.03.030


104 X. Kang, D. Miao / Knowledge-Based Systems 102 (2016) 103–115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

r  

o  

s  

t  

t  

c  

m  

r  

fi  

t  

c  

c  

s  

[  

s  

p  

o  

[  

r  

s  

f  

a

 

e  

l  

u  

n  

v  

e  

d  

p  

s  

I  

l  

t  

s  

u  

p  

l  

r  

t  

i  

i  

r  

a  

T  

e  

s  

i  

t  

t  

n  

i  

f  

f  

b  

s  

j  

e  

n  

G  

i  

t  

c  

s  
scientifically. As classic methods to deal with uncertain informa-

tion, evidence theory, fuzzy theory, probability statistics, etc. have

been used in many practical fields. However, these methods need

some additional information or prior knowledge, such as fuzzy

membership function, belief function, statistical distribution func-

tion, etc. which can not be easily obtained. 

In 1982, Polish scholar Pawlak brought forth rough set the-

ory [31] , as a kind of important reasoning technology in artificial

intelligence, which can effectively analysis and process the fuzzy

and uncertain information without any prior knowledge except for

data sets. Its main idea is to, with the classification ability being

kept unchanged, deduce decision or classification rules of prob-

lems through knowledge reduction. Meanwhile, it can use the ob-

served and measured knowledge to approximately describe impre-

cise or uncertain concepts. Due to its effectiveness and usability

in the process of dealing with uncertain problems, rough set has

already drawn much attention of scholars [9,11,12,33] , and lots of

research results have been widely applied to various fields, such

as medical diagnosis, decision analysis, image processing, machine

learning, and so on. In addition, with the deepening research and

widening scope, the data forms and organization structures are in-

creasingly diversified, so it becomes more and more difficult for

people to effectively solve the complicated practical problems just

through any single theory. Therefore, combining rough set with

other artificial intelligence technology has become a hot research

topic of international scholars, such as probability statistics, fuzzy

set, evidence theory, neural network, concept lattice [35,39,44,47] ,

and so on. So far, the whole theoretical system of rough set has

already been gradually maturing and increasingly perfect, which

greatly enriched and expanded the theoretical foundation and the

application scope of rough set. 

Rough set and concept lattice, as two mathematical branches

generated in the same era, there are some significant differences

from the perspective of their research methodology, but the same

research background and objective indicate that they must have

something in common. In fact, the two theories share many sim-

ilarities [17] , such as any one-valued formal context, as a kind

of data set, is just a special case of information systems essen-

tially, therefore, their mutual reference and integration not only

enhance their own analytic abilities, but also can help to under-

stand one theory from the perspective of another. Meanwhile, by

means of mixing their respective advantages, the fusion theory

may help to establish a more general and universal data analysis

framework. Therefore, it is extremely significant to combine two

theories in terms of their advantages. Recently, many remarkable

research achievements of the fusion theory have been made. Oost-

huizen informally described the connection between rough set and

concept lattice [30] . In the study of logical models, Duntsch and

Gediga defined modal-style operators on the basis of binary re-

lations, and constructed the attribute-oriented concept lattice ac-

cording to the upper approximate operator [5,8] . Deogun and Sa-

quer mainly discussed the monotone concept lattice, which is a

direct expansion of classical concept lattice [4,36] . By introducing

the idea of upper and lower approximations in rough set, Yao ex-

pended the definition of concept lattice, studied the rough set ap-

proximation of formal concept, built object-oriented and attribute-

oriented concept lattices, and proved that attribute-oriented con-

cept lattice and object-oriented concept lattice are isomorphic [49–

51] . Zhang et al. introduced variable threshold concept lattices [53] .

Belohlavek et al. provided the uniform structure of different vari-

able threshold concept lattices [1] ; Fan et al. studied fuzzy in-

ferences based on fuzzy concept lattices [6] . Through comparing

the relationship between fuzzy concept lattice and rough set, Lai

et al. pointed out that each complete fuzzy concept lattice could

be expressed as the concept lattice in the sense of rough set un-

der certain conditions [18] . Lots of scholars introduced the idea
f reduction in rough set into concept lattice, and discussed the

eduction theory in concept lattice [2,20,24,27–29,45] . Kang et al.

nce suggested a rough set model based on concept lattice, which

olved the problem of algebraic structure in the discrete informa-

ion system, namely inducing a lattice structure from an informa-

ion system, with each node in the lattice being called a rough

oncept, meanwhile, they also presented solutions to some com-

on problems in rough set based on concept intents, such as core,

eduction and function dependence [15] . For more flexible and ef-

cient learning concept, from the cognitive computing perspec-

ive, Li et al. investigated concept learning by means of granular

omputing and set approximations [22] , in addition, they have fo-

used on issues of approximate concept lattice, approximate deci-

ion rule and knowledge reduction in incomplete decision contexts

23] . Shao and Leung revealed some relationships of reduction re-

ults in rough set and concept lattice [38] . Tan systematically ex-

lored connections between rough set and concept lattice in terms

f approximation operators, structures and knowledge reduction

43] . Li et al. [26] made a comparison between multigranulation

ough sets and concept lattices via rule acquisition, and obtained

ome interesting results. For more research findings concerning the

usion theory of rough set and concept lattice, please see the liter-

ture [51] . 

It is known to us that Pawlak’s classical rough set model is

stablished on the basis of equivalence relation (equivalence re-

ation needs to meet reflexivity, transitivity and symmetry), and

sed to process complete information systems containing nomi-

al attributes (domain of attribute is composed of several discrete

alues, and different values are independent of each other). How-

ver, when the domain of attribute is a real number set, or the

ifferences among different values are caused by test errors, or the

roblems to be solved are highly complicated, or the scale of data

et is too big, it is meaningless to analyze some minor differences.

n the case, classical Pawlak’s rough set model obviously has some

imitations. In practical applications, users may not only require

hat objects with identical attribute values should be put into the

ame class, but also assume that objects with similar attribute val-

es should also be classified the same. To further enhance the data

rocessing capability of rough set, many scholars expand equiva-

ence relations to tolerance relations (sometimes called similarity

elation) only meeting reflexivity and symmetry. Tolerance rela-

ion is substantially different from binary relation of other types

n terms of symmetry. Namely, symmetry is the basic character-

stic of tolerance relation. In view of the universality of tolerance

elation, great research findings have been made on the theory and

pplication of rough set based on tolerance relation in recent years.

o enhance the data processing capability of rough set, Slowinski

t al. studied the properties and applications of rough set based on

imilarity relation, and pointed out that rough set based on sim-

larity relation can be used for ignoring minor differences of at-

ribute values [41,42] ; Skowron et al. presented rough set based on

olerance relation, which was conducive to enhancing the robust-

ess of system decisions and also the efficiency of decision mak-

ng [40] ; Leung and Li [19] studied the granules in incomplete in-

ormation system, namely, with maximal tolerance classes as in-

ormation granules, overcame the flaws of knowledge expression

ased on similarity class. Hu et al. proposed neighborhood rough

et models in information systems with mixed features, where ob-

ects with numerical attributes were granulated with fuzzy tol-

rance relations obtain by Euclidean distance, while objects with

ominal features were granulated with equivalence relations [13] .

uan and Wang applied maximal tolerance classes to set-valued

nformation system, and discussed problems of attribute reduc-

ion and decision rule acquisition [10] . Based on maximal tolerance

lasses, Qian et al. studied the approximation reduction in incon-

istent incomplete decision tables [34] . Dai defined fuzzy tolerance
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Fig. 1. A tolerance relation graph. 
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elations in incomplete numerical data, established the fuzzy tol-

rance rough set, and discussed the problem of attribute reduction

3] . 

Constructing and discovering new classification models has be-

ame an effective mean for expanding rough set, there have been

ots of related research results in recent years. Among various

inds of models, the most common one is defined as: let R be a

olerance relation on U , then 

“E is a class, if and only if E is a maximal set satisfying E × E ⊆
R .”

In another way, above type of classes essentially can be under-

tood from the perspective of relation granularity. Namely, the tol-

rance relation R can be granulated into several sub-relations de-

ned as follows: 

efinition 1. Let H × N ⊆ R , if � H 1 × N 1 with H 1 × N 1 ⊆ R and

 × N ⊂ H 1 × N 1 , then H × N is called a sub-relation of R . For

ny sub-relation H × N , if H = N, then H × N is called a strongly

onnected sub-relation; if H � = N , then H × N is called a weakly

onnected sub-relation. 

Apparently, the definition mentioned-above shows R can be

ranulated into several strongly connected sub-relations and

eakly connected sub-relations. For instance, Fig. 1 is a tolerance

elation graph, in which the sub-relations 1245 × 1245 and 2345

2345 are strongly connected, the sub-relation 245 × 12345 is

eakly connected (here, { p 1 , p 2 , . . . , p n } is simply as p 1 p 2 . . . p n ).

urthermore, from above definition, there exists following conclu-

ion 

• E is a class, if and only if E × E is a strongly connected sub-

relation. 

If problems are too complicated or solving them requires high

ost or data sets have some noise, people may no longer focus on

ome detailed information and take exact solutions as the goal,

ut replace exact solutions with the feasible approximate solutions,

his will surely help to simplify problems and enhance efficiency. 

As one of central problems of rough set, classification problems

sually require that “all” rather than “most” elements in a class

re similar to each other. Obviously, when people explores approx-

mate solutions rather than accurate ones in some problems, the
ondition for generating classical classes is too restrictive to some

xtent, this may result in too small classical classes, which per-

aps seriously affect the generalization ability of classification al-

orithms of rough set. In the case, users possibly just require that

most” rather than “all” elements in a class are similar to each 

ther. Therefore, to further enhance the robustness and generaliza-

ion ability of rough set based on tolerance relation, the classical

lass mentioned-above is further extended to the θ-class defined

n the paper. That is, a θ-class C needs to meet the following con-

ition. 

• there exists maximal subset L ⊆ C satisfying 

L × C ⊆ R and | C | × θ � | L | 
where R is a tolerance relation on U , 0 ≤ θ ≤ 1. In the case, we

say L is the class core of C . 

Above definition just lists the condition that θ-class must to

eet, and it is only the summary description of θ-class. For how

o construct θ-classes, the paper will give a detailed description in

he following chapters. 

In above definition, the description of θ-classes not requires

hat “all” elements in one class are similar to each other. It just

equires that “most” elements in a class are similar to each other,

amely, it only requires L × C ⊆ R rather than C × C ⊆ R . Obvi-

usly, there is following fact 

• for any classical class E , there always exists a θ-class C with

E ⊆ C . 

In Fig. 1 , the classical classes {1, 2, 4, 5} and {2, 3, 4, 5}

re shown in Fig. 2 (a), and the θ-class with θ = 0 . 6 is shown in

ig. 2 (b). 

In fact, classical classes defined by people essentially cor-

espond to strongly connected sub-relations, but θ-classes con-

tructed in the paper always correspond to weakly connected sub-

elations. Based on the points discussed above, an algebraic struc-

ure can be further inferred from an information system, which can

rganize all hidden covers or partitions in the form of lattice struc-

ure. Furthermore, solutions to the problems are studied, such as

eduction, core and dependency. In short, the method presented in

he paper offers another way for expanding rough set, meanwhile,

t also helps to reasonably analyze and interpret rough set from

he perspective of concept lattice. 

The following chapters are arranged as follows: Section 2 gives

 brief introduction on concept lattice and rough set; Section 3 in-

roduces parameters, studies the granularity of tolerance relations,

xpands classical classes to θ-classes, and derives an one-valued

ormal context from an information system; Section 4 builds an

lgebraic structure from an information system based on concept

attice; Section 5 mainly discusses methods to deal with common

roblems from the perspective of concept lattice, such as attribute

eduction, core and dependency; Section 6 is a brief conclusion

nd outlook. 

. Concept lattice and rough set 

This section briefly introduces concept lattice and rough set,

bout more detailed information, please refer to [7,31] . 

A formal context is a triple ( G, M, I ), where G is a finite

onempty set of objects, M is a finite nonempty set of attributes, I

s a binary relation between G and M , namely I ⊆ G × M . 

efinition 2. In K = (G, M, I) , the map P(G ) → P(M) is defined

s: let A ∈ P(G ) , then 

 

′ = { m ∈ M | (g, m ) ∈ I, ∀ g ∈ A } 
he map P(M) → P(G ) is defined as: let B ∈ P(M) , then 

 

′ = { g ∈ G | (g, m ) ∈ I, ∀ m ∈ B } 
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a b

Fig. 2. Classical classes and θ-class derived from Fig. 1 with θ = 0 . 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

A typical information system. 

a b c d 

1 yes u 1 v 1 yes 

2 yes u 2 v 2 yes 

3 yes u 3 v 3 no 

4 yes u 4 v 4 no 

5 no u 5 v 5 no 

6 no u 6 v 6 no 

7 no u 7 v 7 yes 

8 no u 8 v 8 yes 

a  

t  

f  

s  

e  

r  

T  

c  

e

 

n  

n  

m  

s

 

∈

s

 

i  

t  

i

3

 

o  

v  
where P(G ) and P(M) be power sets of G and M respectively. 

In above definition, if A 

′ = B and B ′ = A, then we say ( A, B ) is a

formal concept. The order relationship “�” between concepts ( A 1 ,

B 1 ) and ( A 2 , B 2 ) is described as 

( A 1 , B 1 ) � ( A 2 , B 2 ) ⇔ A 1 ⊆ A 2 ⇔ B 1 ⊇ B 2 

In essence, (B(K) , � ) is a complete lattice, where B(K) is the

set of all concepts in K . Meanwhile, there exist following conclu-

sions as follows 

Proposition 1. Let ( G, M, I ) be a formal context, A, A 1 , A 2 ⊆ G, B, B 1 ,

B 2 ⊆ M, then 

(1) A 1 ⊆ A 2 ⇒ A 

′ 
2 ⊆ A 

′ 
1 (2) B 1 ⊆ B 2 ⇒ B 

′ 
2 ⊆ B 

′ 
1 

(3) A ⊆ A 

′′ ; B ⊆ B 

′′ (4) A 

′ = A 

′′′ ; B 

′ = B 

′′′ 

Proposition 2. Let K = (G, M, I) be a formal context, B ⊆ M, then 

B 

′′ = ∩ { T ∈ U | B ⊆ T } 
where U is the set of intents of all concepts in K. 

Normally, an information system is formalized as a quadruple

( U, AT, V, f ), where U called universe is a finite nonempty set of ob-

jects, AT is a finite nonempty set of attributes, V = 

⋃ 

m ∈ AT V m 

with

V m 

called the domain of attribute m, f : U × AT → V is a function,

that is, f ( x, m ) ∈ V m 

for any x ∈ U , m ∈ AT . In the following, ( U, AT,

V, f ) is simplified as ( U, AT ). 

In an information system ( U, AT ), there always exists a binary

relation R B for any B ⊆ AT . In this case, let m ∈ B , if R B � = R B −m 

,

then we say m is indispensable in B , and core ( B ) consisted of all

indispensable attributes in B is called the core of B ; let B, D ⊆ AT,

B ⊆ D , if B is a minimum-subset satisfying R B = R D , then we say B

is a reduction of D ; let B, C ⊆ AT , if R B ⊆ R C , then we say B → C is

a dependency. 

3. One-valued formal contexts derived from information 

systems 

It is known to us that Pawlak’s classical rough set is established

on the basis of equivalence relation and used to process only nom-

inal attributes. However, some common data sets always contain

numeric attributes (the domain of attribute is a real number set or
 subset of the real number set) in actual applications. In the case,

he classical rough set obviously has some limitations. Specially,

or any numeric attribute, it is rare that different objects pos-

ess completely identical attribute values. And further, too small

quivalence classes formed through equivalence relation would se-

iously affect the generalization ability of classification algorithms.

o address above problem, many scholars take information systems

ontaining numeric attributes as research background, and expand

quivalence relations to tolerance relations. 

Table 1 is a typical information system, where a and d are

ominal attributes, b and c are numeric attributes. In fact, for any

umeric attribute m , there are great research findings have been

ade to obtain the tolerance relation I m 

on V m 

. For example, a

imple method is described as 

Let | V m 

| = n, for any v i , v j ∈ V m 

, if sim ( v i , v j ) ≥ δm 

, then ( v i , v j )

 I m 

, where 

im ( v i , v j ) = 1 − | v i − v j | 
max { v 1 , v 2 , . . . , v n } , 0 � δm 

� 1 

Since the solution procedure for generating tolerance relations

s not the focus of the paper, we will not elaborate on how the

olerance relation I m 

on V m 

is obtained, that is, I m 

is directly given

n the paper. 

.1. Concept scales and concept scaling 

Normally, the classical concept lattice is always used to study

ne-valued formal contexts, but information systems are many-

alued formal contexts essentially. Therefore, to study information
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Table 2 

Tolerance scales S b and S c relative to b and c separately. 

u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 

u 1 × × × v 1 × × × × ×
u 2 × × × v 2 × × × ×
u 3 × × × × × v 3 × × × × ×
u 4 × × × × × × v 4 × × × × × ×
u 5 × × × × v 5 × × × × × × × ×
u 6 × × × v 6 × × × × × × ×
u 7 × × v 7 × × × ×
u 8 × × v 8 × × ×

Table 3 

The equivalence scale S a rela- 

tive to a . 

no yes 

no ×
yes ×
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Table 4 

A concept scale of an attribute without any 

prior knowledge. 

low high very high 

low ×
high ×
very high ×

Table 5 

A concept scale of an attribute with some 

prior knowledge. 

low high very high 

low ×
high ×
very high × ×

t

S

K

K  

w  

c

 

c  

w  

v  

d

 

p  

l  

r  

i  

t  

t  

s  

t  

“
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T  
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r  
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t  
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o

ystems with operators in Definition 2 , we should transform in-

ormation systems into one-valued formal contexts. Recently, there

ave been many ways of transforming an information system into

n one-valued context, such as concept scaling technology and

ogic scaling technology. In the paper, we select the former. 

The basic idea of concept scaling is to transform an information

ystem into an one-valued formal context via concept scales. Each

ttribute corresponds to one concept scale, and different attributes

ay correspond to different concept scales. The so-called concept

cale of an attribute can be viewed as the interpretation or detailed

escription of the domain of attribute. That is, for any attribute m ,

he corresponding concept scale essentially embodies the relation-

hip among different values in V m 

. Concept scaling can be simply

nderstood as the strategy for transforming an information system

nto an one-valued formal context on the basis of these concept

cales. The definition of concept scales and the selection of concept

caling strategies directly determine the one-valued formal context

ransformed. In fact, in the whole process of transformation, con-

ept scales only play the intermediary role, rather the final deriva-

ive context. 

efinition 3. In S = (U, AT ) , we say S m 

= ( G m 

, M m 

, I m 

) is a concept

cale of m ∈ AT , if V m 

⊆ G m 

. 

The definition above only requires V m 

⊆ G m 

, without any more

estrictions on G m 

and M m 

. In order to meet some actual situa-

ions, other reasonable restrictions should be considered as well to

onstruct S m 

. 

In Definition 3 , if G m 

= M m 

= V m 

, then S m 

is called a relation-

oncept scale. Let S m 

be a relation-concept scale, if I m 

is an equiv-

lence relation on V m 

, then we say S m 

is an equivalence scale; if

 m 

is a tolerance relation on V m 

, then S m 

is called a tolerance scale.

or instance, for the numeric attributes b and c in Table 1 , the cor-

esponding tolerance scales S b and S c are shown in Table 2 ; for

he nominal attribute a (or d ), the corresponding equivalence scale

 a (or S d ) is shown in Table 3 . In above tables, if the crossing of v ∈
 m 

row and w ∈ V m 

column is denoted as “ × ”, then it means ( v,

 ) ∈ I m 

. 

In fact, there are many different ways of concept scaling, this

eans that we can flexibly carry out concept scaling according to

haracteristics of information systems and the corresponding do-

ain knowledge. In the paper, a relatively simple method for con-

ept scaling (called for short as plain scaling) is adopted, which is

ormalized as follows. 

In S = (U, AT ) , let S m 

= (V m 

, V m 

, I m 

) be the relation-concept

cale of attribute m , then for any ( x, y ) ∈ U × U and m ∈ AT , by
he transformation rule 

((x, y ) , m ) ∈ J ⇔ (w, v ) ∈ I m 

, f (x, m ) = w, f (y, m ) = v 

 can be converted to an one-valued formal context 

 S = (U × U, AT , J) 

 S is called the derivative context of S . In the paper, from the

hole transformation process shown in Fig. 3 , we can see that the

oncept scales and concept scaling play significant roles. 

In the above transformation, for any values v, w ∈ V m 

, the con-

ept scale can filter out there own information, but care about

hether they meet ( v, w ) ∈ I m 

. Namely, S m 

is essentially an one-

alued formal context, which only remains the relationship among

ifferent values of V m 

in the form of one-valued formal context. 

It is worth to mention that concept scale is not only a sim-

le transformation tool, may also contribute to solve actual prob-

ems more scientifically and rationally. It is known that classical

ough set always does not require additional prior knowledge dur-

ng the procedure of data analysis and processing, this is an advan-

age, but is also its shortcoming, that is, when dealing with data

hat requires additional information or knowledge, classical rough

et will be helpless. For instance, in classical rough set, for an at-

ribute “blood pressure”, the corresponding attribute values “low”,

high” and “very high” are normally independent of one another by 

efault, namely, there is no relationship between above attribute

alues. In the case, the corresponding concept scale is shown in

able 4 . However, there may exist relationship between “high” and

very high” in many applications, namely, if one patient’s blood

ressure is “very high”, then it must be “high”. In the case, the cor-

esponding concept scale is shown in Table 5 . Obviously, by means

f concept scales, we can introduce some prior knowledge to the

nal derivative context, rather than the simple transformation, and

hen the actual problems can be solved more reasonably based on

oncept lattice. The related content mentioned-above will be one

f the focus of our next research. 
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Fig. 3. The process of one-valued contexts derived from an information system. 

Fig. 4. The undirected graph derived from Table 2 (b). 
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3.2. Granularity of tolerance relations and variable precision concept 

scales 

In fact, we can view the tolerance scale S m 

= (V m 

, V m 

, I m 

) as

a relation graph, where V m 

denotes the set of all vertexes, and

I m 

is the set of all undirected edges. For instance, S c shown in

Table 2 (b) can be interpreted as the undirected graph shown in

Fig. 4 . Clearly, in the worst case, if | V m 

| = n, then | I m 

| = n × (n −
1) / 2 . It is obvious that a bigger n indicates massive edges, and then

eventually resulted in a huge and complicated graph. This not only

brings about higher time and space complexity for further com-

puting and solving problems, but also does not help to further un-

derstanding the schematic configuration of graph on macroscopic
Fig. 5. Some sub-graphs d
iew. In the case, to better understand and solve problems rather

han get lost in unnecessary details, the paper presents a new

ethod based on the granularity of V m 

, in which the granularity

f I m 

plays an important role. 

When processing large scope and complicated information, peo-

le, due to their limited cognitive capability, usually divide the

omplicated information into several simple blocks in terms of its

haracteristics and performance so as to better analyze and solve

ctual problems. Each block is always considered as a granule (or

 class). In fact, the granularity mechanism is also one major fea-

ure of human thinking. As one core problems of rough set, the

nformation granularity always serves as the foundation of knowl-

dge acquisition, so discovering and constructing new granular-

ty models is an effective mean for xpanding rough set theory.

or instance, the complicated tolerance relation graph shown in

ig. 4 can be granulated into several relatively simple sub-graphs

hown in Fig. 5 , and any sub-graph can be viewed as a class. For

ny sub-graph, we can see there always exists a undirected edge

etween any two vertexes. 

Normally, classification analysis requires that “all” rather than

most” elements in one class are similar to each other. Neverthe-

ess, in many actual applications, users possibly just require that

most” rather than “all” elements in one class are similar to each

ther. Therefore, to further enhance the robustness and general-

zation ability of rough set, this paper, with concept lattice as the

heoretical foundation, discusses the classification problem in V m 

y means of the granularity of I m 

, and further expands classical

lasses into θ-classes. It is worth mentioning that the θ-classes

eferred here means the classes in V m 

rather than the ones in U .

ereinafter, by referring to Definition 1 , the tolerance relation I m 

an be further decomposed into several strongly connected sub-

elations and several weakly connected sub-relations. In essence,

lassical classes defined by people usually correspond to strongly

onnected sub-relations, but classes defined in the paper always

orrespond to weakly connected sub-relations. 
erived from Fig. 4 . 
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Fig. 6. B (S b ) and B (S c ) derived from Table 2 . 
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Let �( I m 

) be the set of all sub-relations in I m 

, then the follow-

ng conclusion can be inferred easily 

heorem 1. Let S m 

= (V m 

, V m 

, I m 

) be a tolerance scale, H, N ⊆ V m 

,

hen 

(H, N) ∈ B(S m 

) ⇔ H × N ∈ �( I m 

) 

roof. The conclusion can be deduced from Definition 1 and

efinition 2 immediately. �

Apparently, the theorem above shows that �( I m 

) can obtained

y calculating B(S m 

) . Taking scales in Table 2 as examples, by

eans of operators in Definition 2 , corresponding concept lattice

tructures can be calculated easily, which are shown in Fig. 6 (for

onvenience, any v i or u i is simplified as “ i ”). 

efinition 4. In S m 

= ( V m 

, V m 

, I m 

) , let 0 ≤ α ≤ 1, for any H × N ∈
( I m 

), the connected-degree between H and N is defined as 

α(H × N) = 

| H ∩ N| 
| H ∩ N| + α × | (H − N) ∪ (N − H) | 

In above definition, H − N denotes the set of elements appear-

ng in H but not in N ; N − H denotes the set of elements appearing

n N but not in H . In fact, (H − N) ∪ (N − H) is the different part

etween H and N , and H ∩ N is the common part between H and

 . In addition, the parameter α, to a given degree, reflects that the

nfluence of the common part on the connected-degree is bigger

han the different part. Obviously, the bigger common part is, the

onnected-degree is; on the contrary, the smaller common part is,

he lower connected-degree is. 

efinition 5. In S m 

= ( V m 

, V m 

, I m 

) , let 0 ≤ θ ≤ 1, if O = H ∪ N is

he maximum-subset satisfying 

H ∪ N ∈ �( I m 

) and φα( H × N ) ≥ θ
then we say O is a θ-class. In the case, we say H ∩ N is the class

ore of O . 

In above definition, when S m 

= (V m 

, V m 

, I m 

) is viewed as a tol-

rance relation graph, then the θ-class O can be essentially inter-

reted as the sub-graph ( H, N, H × N ) in S m 

. In the case, φα( H ×
 ) can be understood as quantitative measurement for the scale

f undirected edges in the sub-graph O essentially. Since it is of
o practical significance to view O with low connected-degree as

 class, we mainly discusses θ-classes with high connected-degree.

specially, if α = 1 and θ = 1 , then a θ-class is essentially a classi-

al class. And further, we can obtain the conclusion that the classi-

al class is only a special case of the θ-class, which also indirectly

erifies the reasonability of the classification method based on the

elation granularity. 

For instance, in Fig. 7 , there are following sub-relations 

1245 × 1245 , 2345 × 2345 , 245 × 12345 , 

368 × 368 , 678 × 678 , 68 × 3678 

From above sub-relations we know 

 1 , 2 , 4 , 5 } , { 2 , 3 , 4 , 5 } , { 3 , 6 , 8 } , { 6 , 7 , 8 } 
re classical classes. By simple calculation, we can see

hat φα(1245 × 1245) = φα(2345 × 2345) = φα(368 × 368) =
α(678 × 678) = 1 , φα(245 × 12345) = 0 . 6 , φα(68 × 3678) = 0 . 5 ,

aking φα(245 × 12345) as an example 

α(245 × 12345) = 

|{ 2 , 4 , 5 }| 
|{ 2 , 4 , 5 }| + |{ 1 , 3 }| = 0 . 6 

hen α = 1 , θ = 0 . 5 , since { 3 , 6 , 7 , 8 } = { 6 , 8 } ∪ { 3 , 6 , 7 , 8 } and

 1 , 2 , 3 , 4 , 5 } = { 2 , 4 , 5 } ∪ { 1 , 2 , 3 , 4 , 5 } are the maximum-subsets

atisfying the conditions in Definition 5 , they are θ-classes, cor-

esponding results are shown in Fig. 8 . 

In order to understand θ-class easily, another analytical method

s given from the perspective of mutually similar classes. 

efinition 6. Let R be a tolerance relation on U, A, A 1 , A 2 ⊆ U , we

efine 

 

+ = { x ∈ U| (x, y ) ∈ R, ∀ y ∈ A } 
f A 1 ⊆ A 

+ 
2 

and A 2 ⊆ A 

+ 
1 
, then we say A 1 and A 2 are similar to each

ther; furtherly, if A 1 = A 

+ 
2 

and A 2 = A 

+ 
1 
, then we say A 2 is a class

elative to A 1 , and A 1 is a class relative to A 2 , in the case, we say

 1 and A 2 are mutually similar classes. 

In above definition, if A 1 and A 2 are are mutually similar classes,

hen we can naturally think about whether the two classes can be

erged into one new class. 

heorem 2. In Definition 6 , the following statements are equivalent 
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Fig. 7. A tolerance relation graph. 

Fig. 8. The θ-classes in Fig. 7 with θ = 0 . 5 and α = 1 . 
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1) A 1 × A 2 is a sub-relation in R, namely, A 1 × A 2 ∈ �( R ) ; 

2) A 1 and A 2 be mutually similar classes. 

In above theorem, if O = A 1 ∪ A 2 is a θ-class, then O can be

viewed as the merging result of mutually similar classes A 1 and A 2 

(as shown in Fig. 9 ). 

3.3. One-valued formal contexts derived from information systems 

This section mainly presents variable precision relation-concept

scales, and finally derives an one-valued formal context from an

information system. 

Proposition 3. Let R be a tolerance relation on the set A, then 

R = ∪ { X × X | X ∈ �(R ) } 
where �( R ) is the set of all classical classes in A. 

Definition 7. Let S m 

= (V m 

, V m 

, I m 

) be a tolerance scale, the corre-

sponding θ-tolerance scale is defined as 

S θm 

= (V m 

, V m 

, I θm 

) 
n S θm 

, I θm 

is described as 

 

θ
m 

= ∪ { H × H | H ∈ �θ (I m 

) } 
here �θ ( I m 

) is the set of all θ-classes in V m 

. 

heorem 3. From above discussion, it is obvious that I m 

⊆ I θm 

is true.

For example, in Table 2 , θ-tolerance scales with respect to nu-

eric attributes b and c are shown in Table 6 , where α = 1 and

= 0 . 5 . 

efinition 8. Let S θm 

= (V m 

, V m 

, I θm 

) be the θ-tolerance scale of m

 AT , then an one-valued formal context transformed from S =
(U, AT ) is defined as 

 

θ
S = (U × U, AT , J θ ) 

here J θ is described as 

((x, y ) , m ) ∈ J θ ⇔ (w, v ) ∈ I θm 

, f (x, m ) = w, f (y, m ) = v 

 

θ
S 

is called the derivative context of S . 
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Fig. 9. Generating θ-class from the perspective of mutually similar classes. 

Table 6 

θ-tolerance scales with respect to attributes b and c in Table 1 . 

u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 v 1 v 2 v 3 v 4 e 5 v 6 v 7 v 8 

u 1 × × × × v 1 × × × × × ×
u 2 × × × × v 2 × × × × × ×
u 3 × × × × × × v 3 × × × × × ×
u 4 × × × × × × v 4 × × × × × ×
u 5 × × × × v 5 × × × × × × × ×
u 6 × × × × v 6 × × × × × × × ×
u 7 × × v 7 × × × ×
u 8 × × v 8 × × × ×

Table 7 

An one-valued formal context 

derived from Table 1 . 

a b c d 

(1, 1) × × × ×
(1, 2) × × × ×
(1, 3) × × ×
(1, 4) × × ×
(1, 5) ×
(1, 6) ×
(1, 7) ×
� � � � �

(8, 6) × ×
(8, 7) × × × ×
(8, 8) × × × ×
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By referring to I a and I d shown in Table 3 , and I θ
b 

and I θc shown

n Table 6 , then an one-valued formal context shown in Table 7

an be derived from Table 1 . 

. Variable precision rough set based on θ-concept lattice 

Concept lattice, or Galois lattice, as the core data structure in

ormal concept analysis theory, is a kind of powerful data analy-

is tool. In this section, an algebraic structure is derived from an

nformation system, which is called θ- concept lattice. 

Let R be a tolerance relation on U , then the corresponding cover

s denoted as U / R . Let U / R 1 and U / R 2 be covers of U , for any X ∈
 / R 1 , if there always exists Y ∈ U / R 2 satisfying X ⊆ Y , then we say

 / R 2 is coarser than U / R 1 , which is denoted as U / R 1 �U / R 2 . In the

ase, we can easily find the following conclusion: 

 1 ⊆ R 2 , if and only if U/R 1 � U/R 2 

It is known that there always exists a binary relation R B for any

 ⊆ AT in an information system ( U, AT ). In the paper, by means of
 

θ
m 

, m ∈ B, the corresponding tolerance relation on U relative to B

s defined as 

 

θ
B = { (x, y ) ∈ U × U|∀ m ∈ B, (v , w ) ∈ I θm 

, f (x, m ) = v , f (y, m ) = w

In the derivative context K 

θ
S 
, operators can be defined similar

o the ones in Definition 2 , that is, for any R ⊆ U × U , we define 

 

′ = { m ∈ AT | ((x, y ) , m ) ∈ J θ , ∀ (x, y ) ∈ R } 
orrespondingly, for any B ⊆ AT , we define 

 

′ = { (x, y ) ∈ U × U| ((x, y ) , m ) ∈ J θ , ∀ m ∈ B } 
f R ′ = B and B ′ = R, then ( U / R, B ) is called a θ-concept. For any

-concepts ( U / R 1 , B 1 ) and ( U / R 2 , B 2 ), we define 

(U/R 1 , B 1 ) � (U/R 2 , B 2 ) ⇔ R 1 ⊆ R 2 ⇔ U/R 1 � U/R 2 ⇔ B 2 ⊆ B 1 

Drawing on the above discussion, it is obvious that (B(S θ ) , �
) is a complete lattice, which is called θ-concept lattice, where

( S θ ) is the set of all θ-concepts. And further, the following con-

lusions can be immediately. 

heorem 4. In K 

θ
S 

= (U × U, AT , J θ ) , let B ⊆ AT, then B ′ = R θ
B 

. 

heorem 5. In K 

θ
S 

= (U × U, AT , J θ ) , let B ⊆ AT, R ⊆ U × U, then 

(R, B ) ∈ B( K 

θ
S ) ⇔ (U/R, B ) ∈ B( S θ ) 

Essentially, as an important algebraic structure in ( U, AT ),

(B(S θ ) , � ) can organize all hidden covers or partitions of U in

he form of lattice structure. There is an indirect way to gen-

rate (B(S θ ) , � ) , namely, generating B(K 

θ
S 
) by means of classi-

al lattice generating algorithms firstly; secondly, for any concept

(R, B ) ∈ B(K 

θ
S 
) , we replace it by (U/R, B ) ∈ B( S θ ) , then the re-

laced lattice is (B(S θ ) , � ) . 

In Table 1 , when α = 1 and θ = 1 , then the corresponding

(B(S θ ) , � ) is shown in Fig. 10 , when α = 1 and θ = 0 . 5 , then the

ne is shown in Fig. 11 . For convenience, any cover or partition

/R = { P 1 , P 2 , . . . , P l } in figures is simplified as P 1 /P 2 , . . . , /P l , mean-

hile, P i = { u 1 , u 2 , . . . , u n } is simplified as u 1 u 2 . . . u n . 

heorem 6. In K 

θ
S 

= (U × U, AT , J θ ) , let B, D ⊆ AT, if B ′′ = D, then 

 /R B = U /R D 

here (U/R D , D ) ∈ B(S θ ) . 
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Fig. 10. A θ-concept lattice derived from Table 1 with α = 1 , θ = 1 . 

Fig. 11. A θ-concept lattice derived from Table 1 with α = 1 , θ = 0 . 5 . 
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From above theorem, by means of θ-concept, the lower approx-

imation of X ⊆ U relative to B ⊆ AT is defined as 

B (X ) = 

⋃ 

P ∈ U/R D and P ⊆X 

P 

correspondingly, the upper approximation of X relative to B is 

B (X ) = 

⋃ 

P ∈ U/R D and P ∩ X � = ∅ 

P 

where D = B ′′ and ( U/R D , D ) ∈ B(S θ ) . 

Kang et al. have studied the similar problem, namely induc-

ing a lattice structure from an information system [15] . However,
his method is always used to process information systems only

ontaining nominal attributes. For instance, based the method in

bove literature, a concept lattice shown in Fig. 12 can be derived

rom Table 8 , and the corresponding extent of any lattice node is

ssentially a partition. Comparing with the method in [15] , the one

resented in the paper not only can obtain the same conclusion

rom Table 8 , but also is valid for information systems containing

umeric attributes, the corresponding extent of any lattice node

an be a partition or a cover. 

Based on above discussions, we can see that the method in the

iterature [15] is only a special case of the method proposed in the

aper essentially. 
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Fig. 12. An algebraic structure derived from Table 8 . 

Table 8 

An information system about cars. 

a b c d e 

1 low full diesel low low 

2 low full gasoline high high 

3 high full diesel medium low 

4 low compact diesel low low 

5 low full diesel high low 
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Table 9 

Some computing results on the basis of U θ with α = 

1 , θ = 0 . 5 . 

B T ∈ U θ : B ⊆ T ∩ { T ∈ U θ | B ⊆ T } 
abc abc, abcd abc 

ab abc, abcd abc 

ac ac, abc, abcd ac 

bc bc, abc, bcd, abcd bc 

a ac, abc, abcd ac 

b bc, abc, bcd, abcd bc 

c c, ac, bc, abc, bcd, abcd c 

Ø U θ Ø

t

P  

A  

b  

B  

a

T

C

P

C  

b

 

r  

d

D  

t

 

a

T

⊆
P  

a

⊆

It is known that information granules, lower and upper approx-

mations are core factors in rough set. In the classical variable pre-

ision rough set, the so-called variable precision means approxi-

ations are changed by introducing a parameter, rather than infor-

ation granules are changed. However, in the paper, the variable

recision means the information granules are changed by introduc-

ng a parameter. Clearly, there exist some differences between two

ethods, but when people explores approximate solutions rather

han accurate ones in some problems, they both contribute en-

ancing the robustness and generalization ability of rough set. 

. Reduction, core and dependency in information systems 

This section offers concept lattice-based solutions to common

roblems in rough set such as reduction, core and dependency. For

bove problems, the paper present some relatively simple solutions

ased on intents of θ-concepts. 

In the following theorems, the set of intents of all θ-concepts is

enoted as U θ . 

heorem 7. In K 

θ
S 

= (U × U, AT , J θ ) , let m ∈ B ⊆ AT, then m ∈
ore ( B ), if 

 � ∩ { T ∈ U θ | (B − m ) ⊆ T } 
roof. Since B � (B − m ) ′′ can be deduced from Proposition 2 and

 ⊆ B ′ ′ , B ′′ � (B − m ) ′′ is true. This implies B ′′ � = (B − m ) ′′ . And fur-

her, based on B ′′ � = (B − m ) ′′ ⇒ B ′ � = (B − m ) ′ , R θ
B 

� = R θ
B −m 

can be

nferred by Theorem 4 easily. Therefore, m ∈ core ( B ) holds. �

heorem 8. In K 

θ
S 

= (U × U, AT , J θ ) , let C ⊆ B ⊆ AT, if C is the

inimum-subset satisfying 

 ⊆ ∩ { T ∈ U | C ⊆ T } 
θ
hen C is a reduction of B. 

roof. From Proposition 2 , it is not hard to see that B ⊆ C ′ ′ holds.

nd further, we get B ′ ′ ⊆ C ′ ′ . In addition, C ′ ′ ⊆ B ′ ′ can be inferred

y C ⊆ B easily. Therefore, C ′′ = B ′′ is true. Since C ′′ = B ′′ ⇒ C ′ =
 

′ ⇒ R θ
B 

= R θ
C 

and C is the minimum-subset satisfying R θ
B 

= R θ
C 
, C is

 reduction of B . �

heorem 9. In K 

θ
S 

= (U × U, AT , J θ ) , let B, C ⊆ AT, then B → C, if 

 ⊆ ∩ { T ∈ U θ | B ⊆ T } 
roof. We can see that C ⊆ B ′ ′ holds by Proposition 2 , then B ′ ′ ⊆
 ⇒ B ′ ⊆ C ′ can be deduced. And further, R θ

B 
⊆ R θ

C 
can be inferred

y Theorem 4 easily. Obviously, this implies B → C holds. �

For example, in Table 1 , let B = { a, b, c} , α = 1 and θ = 0 . 5 , by

eferring Table 9 we can see core (B ) = { a } , { a } → { c } is a depen-

ency, and { a, b } is a reduction of B . 

efinition 9. Let ( G, M, I ) be a formal context, B, D ⊆ M . If B ′ ⊆ D 

′ ,
hen we say B → D is an implication. 

In fact, from the conclusion R θ
B 

⊆ R θ
D 

⇔ B ′ ⊆ D 

′ , we can see that

n implication in K 

θ
S 

is essentially a dependency . 

heorem 10. Let B → D be an implication in K 

θ
S 
, if B ⊆ B 1 and D 1 

D, then B 1 → D 1 . 

roof. It is obvious that B ′ ⊆ D 

′ can be inferred from B → D . In

ddition, B ′ 1 ⊆ B ′ and D 

′ ⊆ D 

′ 
1 can be deduced by B ⊆ B 1 and D 1 

D separately. Hence B ′ ⊆ D 

′ is true, that is, B → D holds. �
1 1 1 1 



114 X. Kang, D. Miao / Knowledge-Based Systems 102 (2016) 103–115 

Table 10 

The set of all core dependencies in Table 1 with α = 1 and 

θ = 1 . 

bd → bcd ab → ab cd → cd d → d 

b → b abd → abcd abc → abc Ø → Ø

acd → abcd ad → ad a → a ac → ac 

c → c bc → bc 

Table 11 

The set of all core dependencies in 

Table 1 with α = 1 and θ = 0 . 5 . 

ab → abc b → bc a → ac 

d → d ad → abcd c → c 

bd → bcd cd → bcd Ø → Ø
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We know that dependency, as a kind of special rule-type

knowledge, is a common knowledge expression form for its advan-

tages such as strong description and easy understanding. Concept

lattice can organize data in the form of lattice, can manifest the

“generalization and specialization” relations among concepts, so it

is suitable to discover rules. In fact, (B(S θ ) , � ) , as a kind of spe-

cial concept lattice, is suitable for mining rule-type knowledge as

well. Although concept lattice can be applied to mining dependen-

cies, the number of dependencies acquired is big, and there are a

mass of redundant dependencies. In the case, we can further elim-

inate some common redundant dependencies by means of some

inference-rule, and finally obtain a smaller set of dependencies. At

present, there have been many findings on inference-rule. In the

following paper, we chose a relatively easy inference-rule, which is

deduced from Theorem 10 . 

Inference-rule : If B ⊆ B 1 and D 1 ⊆ D , then B 1 → D 1 can be

inferred from B → D . In fact, the inference-rule can also be repre-

sented as 

B ⊆ B 1 , D 1 ⊆ D, B → D 

B 1 → D 1 

Inspired by previous research results [15,21] , we define core de-

pendencies as follows: 

Definition 10. In K 

θ
S 

= (U × U, AT , J θ ) , let B ⊆ AT , if D is a reduction

of some subset in AT , then we say D → D 

′ ′ is a core dependency. 

Theorem 11. For any B → C, if D is a reduction of B, then B → C

can be inferred from D → D 

′ ′ by means of the inference-rule. 

Proof. Since D is a reduction of B, D ⊆ B and R θ
B 

= R θ
D 

⇒ B ′ = D 

′
can be obtained easily. In addition, B ′ ⊆ C ′ can be deduced from B

→ C . Therefore D 

′ ⊆ C ′ holds, and then C ′ ′ ⊆ D 

′ ′ can be obtained.

Together with C ⊆ C ′ ′ we can get C ⊆ D 

′ ′ . In the case, we can see

that D → D 

′ ′ satisfies D ⊆ B and C ⊆ D 

′ ′ . Obviously, B → C can be

inferred from D → D 

′ ′ by the inference-rule. �

In above theorem, since D is a reduction of B, D → D 

′ ′ is a core

dependency. It is not hard to see that any B → C can be inferred

from core dependencies by the inference-rule. 

Based on the points discussed above, we can provide users with

a small set of dependencies, and users can selectively derive other

dependencies from the core dependencies according to their inter-

ests. For instance, in Table 1 , when α = 1 , θ = 1 , then the set of

all core dependencies is shown in Table 10 ; when α = 1 , θ = 0 . 5 ,

then the set of all core dependencies is shown in Table 11 . When

α = 1 , θ = 0 . 5 , taking abd → c as an example, we know { a, d } is a

reduction of { a, b, d }, and { a, d} ′′ = { a, b, c, d} , since { a, d } ⊆ { a, b,

d } and { c } ⊆ { a, b, c, d }, { a, b, d } → { c } can be inferred from { a, d }

→ { a, b, c, d } by the inference-rule. 
. Summary and outlook 

Concept lattice is a kind of mathematical tool for data anal-

sis and processing. As two mathematical branches generated in

he same era, concept lattice and rough set vary from each other

n their research methods, but the same research background and

bjective indicate that they must have something in common. Con-

tructing the connection between two theories via their respective

dvantages is conducive to abstracting a more general and univer-

al data analysis framework. In the case, the paper brings concept

attice into rough set with a view to its advantages such as out-

tanding mathematical property, intuitive lattice structure, abun-

ant semantics of concepts, and so on. 

To further enhance the robustness and generalization ability of

ough set based on the tolerance relation, this paper, by mean

f the granularity of tolerance relation, expands classical classes

o θ-classes, which actually just requires “most” rather than “all”

lements in one class are similar to each other. The so-called

ranularity of tolerance relation means that the tolerance relation

an be decomposed into several strongly connected sub-relations

nd several weakly connected sub-relations. And further, the pa-

er emphatically probes the θ-concept lattice (B(S θ ) , � ) inferred

rom an information system. As an important algebraic structure,

(B(S θ ) , � ) can organically organize all covers or partitions of U in

he form of lattice structure. Meanwhile, the paper also offers solu-

ions based concept lattice to common problems in rough set, such

s attribute reduction, core and dependency. 

Both theories and examples demonstrate that the conclusion of

he paper is reasonable and valid. Obviously, introducing concept

attice into the study of rough set is an effective means to expand

ough set. In short, the paper not only can be viewed as an use-

ul exploration and attempt for the fusion study of the two theo-

ies, but also offers a new idea for the expansion of rough set. Fur-

hermore, it also helps to reasonably analyze and interpret rough

et from the perspective of concept lattice. Although the paper has

roposed some significant theoretical findings, these findings have

o be further supplemented and improved. Our research focuses

n the next step will include how to further apply concept lattice

o deal with more complicated information systems, how to effec-

ively reduce the time complexity and space complexity in the pro-

ess of knowledge acquisition based on concept lattice, and how to

urther improve the fusion theory of two theories and finally ab-

tract a more common and universal data analysis tool, etc. 
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