
Knowledge-Based Systems 91 (2016) 219–240

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Double-quantitative fusion of accuracy and importance: Systematic

measure mining, benign integration construction, hierarchical attribute

reduction

Xianyong Zhanga,b,c,∗, Duoqian Miaob,c

a College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068, PR China
b Department of Computer Science and Technology, Tongji University, Shanghai 201804, PR China
c Key Laboratory of Embedded System and Service Computing, Ministry of Education, Shanghai 201804, PR China

a r t i c l e i n f o

Article history:

Received 4 February 2015

Revised 30 August 2015

Accepted 1 September 2015

Available online 7 September 2015

Keywords:

Rough set theory

Granular computing

Attribute reduction

Uncertainty measure

Double quantification

a b s t r a c t

Uncertainty measure mining and applications are fundamental, and it is possible for double-quantitative fu-

sion to acquire benign measures via heterogeneity and complementarity. This paper investigates the double-

quantitative fusion of relative accuracy and absolute importance to provide systematic measure mining,

benign integration construction, and hierarchical attribute reduction. (1) First, three-way probabilities and

measures are analyzed. Thus, the accuracy and importance are systematically extracted, and both are fur-

ther fused into importance-accuracy (IP-Accuracy), a synthetic causality measure. (2) By sum integration, IP-

Accuracy gains a bottom-top granulation construction and granular hierarchical structure. IP-Accuracy holds

benign granulation monotonicity at both the knowledge concept and classification levels. (3) IP-Accuracy at-

tribute reduction is explored based on decision tables. A hierarchical reduct system is thereby established,

including qualitative/quantitative reducts, tolerant/approximate reducts, reduct hierarchies, and heuristic al-

gorithms. Herein, the innovative tolerant and approximate reducts quantitatively approach/expand/weaken

the ideal qualitative reduct. (4) Finally, a decision table example is provided for illustration. This paper per-

forms double-quantitative fusion of causality measures to systematically mine IP-Accuracy, and this mea-

sure benignly constructs a granular computing platform and hierarchical reduct system. By resorting to a

monotonous uncertainty measure, this study provides an integration-evolution strategy of granular construc-

tion for attribute reduction.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Rough set theory (RS-Theory) [35,36,59,63,70,71] represents

fundamental granular computing (GrC) pattern for handling

ncertainty issues. The initial Pawlak-Model [35] acts only as

qualitative model, so it lacks the quantitative mechanism re-

arding fault-tolerance and robustness. Thus, quantitative mod-

ls exhibit improvements and have applications, and they could

n part be unified by the subsethood measure [61]. In particu-

ar, the probabilistic rough set (PRS) [1,27,28,30,51,57,58,60,78] intro-

uces the probability uncertainty measure into RS-Theory, which

orms the basis of mainstream quantitative models. PRS offers mea-

urability, generality, and flexibility and exhibits a series of con-

rete models, including the decision-theoretic rough set (DTRS) [64],
∗ Corresponding author at: College of Mathematics and Software Science, Sichuan
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ame-theoretic rough set [1,2], variable precision rough set [81],

ayesian rough set [47], and parameterized rough set [6]. With

he exception of PRS, the graded rough set [25,62] depends on

he grade measure to become another basic type of quantitative

odel.

Herein, DTRS is introduced as a model example. DTRS utilizes con-

itional probability and the Bayesian risk decision to establish three-

ay decisions and threshold-quantitative semantics [64]. As a result,

TRS improves upon some basic models and provides a quantita-

ive exploration platform. In terms of relevant studies, three-way de-

isions were analyzed in [17–19,58,60,79]; model development and

hreshold calculation were discussed in [15,16,27,45,48]; attribute re-

uction was studied in [10,12,31,65,74,75]; and model applications

regarding clustering, regression, and semi-supervised learning) were

ddressed in [13,23,24,26,66]. In fact, three-way decisions have been

xpanded into three-way decision theory, and this fundamental the-

ry has been the subject of extensive study and used in a number of

http://dx.doi.org/10.1016/j.knosys.2015.09.001
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Fig. 1. Accuracy and importance in the cardinality plane.

Table 1

Main abbreviations of this paper.

Abbreviation Original term

RS-Theory Rough set theory

GrC Granular computing

DTRS Decision-theoretic rough set

Approx-Space Approximate space

C-POS/C-BND Classification-positive/boundary region

POS/NEG/BND Set-positive/negative/boundary region

D-Table Decision table

Kn-Coarsening Knowledge coarsening

Gr-Merging Granule merging

Gr-Preservation Granule preservation

IP-Accuracy Importance-accuracy

IIP-Accuracy Internal importance-accuracy

Gr/Kn/Cl/Con Granule/knowledge/classification/concept

Gr-Con/Kn-Con/

Kn-Cl

Granular concept/knowledge’s concept/knowledge’s

classification

MT Monotonicity target
Table 2

Three-way probabilities and three-way measures in Bottom-System (U, R, X).

Metrical

essence

Causality

relevance

Metrical features Three-w

|[x]R∩X|
|[x]R | Has Relativity, concentration, locality Likeliho

|[x]R∩X|
|X| Has Absoluteness, directness, globality

(regarding X)

Posterio

|[x]R ||U| Never has Absoluteness, vividness, globality

(regarding U)

Prior pr

Table 3

Granule-statistical information in Bottom-System (U, C, X).

Granule [x]
i
C Interaction cardinality |[x]

i
C ∩ X| Granule cardinality |[x]

i
C | Genera

[x]
1
C 8 16 0.16

[x]
2
C 6 10 0.10

[x]
3
C 6 15 0.15

[x]
4
C 5 10 0.10

[x]
5
C 4 16 0.16

[x]
6
C 3 3 0.03

[x]
7
C 3 4 0.04

[x]
8
C 2 3 0.03

[x]
9
C 2 6 0.06

[x]
10
C 1 1 0.01

[x]
11
C 0 8 0.08

[x]
12
C 0 8 0.08

Table 4

Knowledge’s relevant uncertainty measures regarding IP-Accuracy.

Knowledge C∗ Kn-Con IP-Accuracy

iaX (C∗), ia¬X (C∗)
Kn-Con IIP-Accuracy

IiaX (C∗), Iia¬X (C∗)
Kn-Cl

IP-Accuracy

iaD(C∗)

{a, b, c, d, e, f } 0.5437, 0.6958 0.1000, 0.2667 1.2395

{a, b, c, d, e} 0.5437, 0.6958 0.1000, 0.2667 1.2395

{a, b, c, d} 0.5376, 0.6917 0.1000, 0.2667 1.2293

{a, b, c} 0.5366, 0.6910 0.1000, 0.2667 1.2276

{a, b} 0.5193, 0.6796 0.1000, 0.0000 1.1989

{a, c} 0.5050, 0.6700 0.1000, 0.2667 1.1750

{b, c} 0.5314, 0.6876 0.0000, 0.2667 1.2190

{a} 0.4375, 0.6250 0.1000, 0.0000 1.0625

{b} 0.5141, 0.6761 0.0000, 0.0000 1.1902

{c} 0.4762, 0.6508 0.0000, 0.2667 1.1270

∅ 0.4000, 0.6000 0.0000, 0.0000 1.0000
ay probabilities Probability

formula

Three-way

measures

Measure

formula

od probability p(X|[x]R) Accuracy aX ([x]R)

r probability p([x]R|X) Importance iX ([x]R)

obability p([x]R) Generality g([x]R)

lity g([x]
i
C) Importance iX ([x]

i
C) Accuracy aX ([x]

i
C) IP-Accuracy iaX ([x]

i
C)

0.200 0.5 0.1

0.150 0.6 0.09

0.150 0.4 0.06

0.125 0.5 0.0625

0.100 0.25 0.025

0.075 1.0 0.075

0.075 0.75 0.05625

0.050 2/3 1/30

0.050 1/3 1/60

0.025 1.0 0.025

0.000 0.0 0.0

0.000 0.0 0.0

Kn-Cl

IIP-Accuracy

IiaD(C∗)

IP-Accuracy

discrepancy, equality

rates driaD , eriaD

IIP-Accuracy

discrepancy, equality

rates drIiaD , erIiaD

0.3667 0.00%, 100.00% 0.00%, 100.00%

0.3667 0.00%, 100.00% 0.00%, 100.00%

0.3667 0.82%, 99.18% 0.00%, 100.00%

0.3667 0.96%, 99.04% 0.00%, 100.00%

0.1000 3.28%, 96.72% 72.73%, 27.27%

0.3667 5.20%, 94.80% 0.00%, 100.00%

0.1000 1.65%, 98.35% 27.27%, 72.73%

0.1000 14.28%, 85.72% 72.73%, 27.27%

0.1000 3.98%, 96.02% 100.00%, 0.00%

0.1000 9.08%, 90.92% 27.27%, 72.73%

0.0000 19.32%, 80.68% 100.00%, 0.00%
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Fig. 2. Metrical and regional targets’ preservation deduction.
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Fig. 4. Complete lattices’ order preservation and IP-Accuracy’s granulation mono-

tonicity.
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pplications [5,7,14,17–19,29,55,58,60,67,69,79]. In particular, shad-

wed sets offer useful insight into the three-way decision mecha-

ism and are thus related in some way to three-way decision theory

38,40,41,80].

Note that all quantitative models depend on underlying

ncertainty measures. For RS-Theory, uncertainty measures

nderlie to a large extent quantitative applications, so their

ining and applications have become a fundamental subject

4,6,8,21,34,43,49,51,61,76,78]. In fact, ratio |[x]∩X|
|[x]| acts as the core

easure in the bottom approximate space (Approx-Space), and it

orresponds to rough membership [37], probability [64,72], mis-

lassification degree [81], and precision [73,77]. The extensively

sed |[x]∩X|
|[x]| is essentially a relative measure to exhibit information

oncentration. In contrast, a sort of absolute measure also exists

o manifest data vividness, for example, the grade measure. Rela-

ive and absolute measures adopt different quantitative views for

easurement, thus underlying quantitative applications (especially

hose regarding the approximation/error). Usually, both hold hetero-

eneity and complementarity, and thus, each relies on its essential

enefit to occupy its own dominant environment. Therefore, their

ouble-quantitative integration/fusion exhibits systematicness and

uperiority for gaining efficient applications. For this important

opic, relative probability/precision and absolute grade were utilized

or the double-quantitative information architecture and model

onstruction [15,72,73,77]. In this paper, three-way probabilities

nd measures in Approx-Space are analyzed from the perspective

f probability statistics and application semantics, respectively;
Fig. 3. IP-Accuracy’s GrC hi
hen, relative accuracy and absolute importance – two causality

easures – are systematically extracted to implement double-

uantitative fusion. Thus, we systematically mine a synthetic

ausality measure, importance-accuracy (IP-Accuracy), which is veri-

ed as being benignly monotonous in its further granular integration

onstruction.

Attribute reduction holds optimization and generalization to

nderlie practical applications regarding knowledge discovery

nd data mining. Thus, it is always an essential subject in

S-Theory [3,11,20,31,42,50,72,75]. Classical qualitative Pawlak-

eduction mainly depends on the classification-positive region (C-

OS) and granulation monotonicity. However, quantitative C-POS

hange usually exhibits non-monotonicity and further uncertainty.

hus, quantitative model-based attribute reduction transcends ba-

ic qualitative reduction, exhibiting several reduction anomalies

32,52,65]. The difficulty of this reduction approach originates from

he constructional region complexity in quantitative expansion.

o address this challenging topic, DTRS-Reduction was researched

n [10,12,31,65,74,75], and relevant hierarchical reduction theory

as established in [74,75]. Note that uncertainty measures apply

o attribute reduction, especially metrical reduct construction and

euristic algorithm development. In particular, information reduc-

ion is performed in entropy theory [31,49,76]. By virtue of the

etrical merit, uncertainty measure-based attribute reduction has
erarchical structure.
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Fig. 5. GrC reduct hierarchy regarding IP-Accuracy, as well as hierarchical reducts of

Example 2.
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substantial research potential and application prospects. In con-

trast, the difficulty of metrical reduction technology mainly exists

in semantics-based measure mining, metrical hierarchical construc-

tion, and granulation monotonicity discovery. In this paper, the syn-

thetic causality measure IP-Accuracy first performs gradual granular

integration; then, IP-Accuracy with its inherent monotonicity is fully

utilized to establish a hierarchical reduct system, including qualita-

tive/quantitative reducts, tolerant/approximate reducts, reduct hier-

archies, and heuristic algorithms.

GrC [22,68] is one of the most powerful structural methodolo-

gies and can effectively process hierarchical information by uti-

lizing its trialistic characteristics, i.e., multiple granules, levels,
Fig. 6. Knowledge-structural hierarchies reg
nd perspectives. GrC has been the focus of much study as a result

f information granulation [39,41,44,54,56]; in particular, GrC was

lso deeply concerned with RS-Theory [9,16,21,33,45,46,53,63,73,77].

n fact, RS-Theory is a fundamental GrC pattern; thus, GrC could

ffectively apply to RS-Theory, including double quantification and

ttribute reduction mentioned above. (1) Double quantification

efers to the initial dual viewpoint and further multiple gran-

les/hierarchies, thus adhering to GrC. In this sense, this paper uti-

izes GrC to perform double-quantitative fusion mining of causal-

ty measures. (2) Attribute reduction mainly depends on knowledge

ranulation. The latter is a sort of hierarchical transformation of

nowledge structures, so it leads to structural coarsening, granu-

ar merging, regional uncertainty, and informational monotonicity.

hus, knowledge granulation closely follows GrC, while GrC could

horoughly probe the essence of attribute reduction. Focusing on

P-Accuracy, the objective of this paper is to make a novel bottom-

op GrC construction: a hierarchical integration-evolution from mi-

ro bottom Approx-Space to macro top attribute reduction. In par-

icular, the challenges posed by the granulation monotonicity of IP-

ccuracy and the relevant equality conditions are the emphasis of

his research, and they are the foundation of the hierarchical reduct

ystem.

According to the above, this paper mainly utilizes GrC to in-

estigate the double-quantitative fusion of relative accuracy and

bsolute importance, and it provides systematic measure mining,

enign integration construction, and hierarchical attribute reduc-

ion. Thus, there are four relevant parts. (1) Three-way proba-

ilities and measures are analyzed. Then, accuracy and impor-

ance are systematically extracted to perform double-quantitative

nalysis and fusion, and thus IP-Accuracy is produced. (2) IP-

ccuracy implements a bottom-top GrC construction. The relevant

ranulation monotonicity and hierarchical structure are revealed.
arding conditional attribute subsets.
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3) IP-Accuracy attribute reduction is explored based on decision

ables. A hierarchical reduct system is thereby established, includ-

ng qualitative/quantitative reducts, reduct hierarchies, and heuris-

ic algorithms. (4) Finally, a decision table example is provided for

elevant illustration. This paper performs double-quantitative fu-

ion of causality measures to systematically mine IP-Accuracy, and

his measure benignly constructs a GrC platform and hierarchical

educt system. By resorting to a monotonous uncertainty measure,

his study provides an integration-evolution strategy of granular con-

truction for attribute reduction. In particular, IP-Accuracy and its

educts hold benign monotonicity and statistical systematicness; ac-

ordingly, the novel tolerant and approximate reducts quantitatively

pproach/expand/weaken the ideal qualitative reduction by a direct

nd statistical mean.

This paper is organized as follows. Section 2 is devoted to IP-

ccuracy’s systematic mining; in Section 3, the GrC for IP-Accuracy

s constructed; Section 4 establishes attribute reduction for the mea-

ure; Section 5 provides a relevant illustration, and Section 6 con-

ludes this paper. First, the main abbreviations in this paper are listed

n Table 1.

. Importance-accuracy’s systematic mining

This section performs systematic mining to acquire a benign

ncertainty measure: importance-accuracy (IP-Accuracy), which in-

orms later sections regarding GrC construction and attribute reduc-

ion.

.1. Three-way probabilities and measures

For in-depth mining, this subsection systematically inspects

pprox-Space’s metrics from the probability statistics and applica-

ion semantics. Thus, three-way probabilities and measures produce;

fter comparative analyses, two causality measures naturally emerge.

erein, the narrow measure only applies to three-way measures (i.e.,

ccuracy, importance, and generality).

Universe U is non-empty and finite. Equivalence relation R corre-

ponds to partition U/R = {[x]R : x ∈ U}, and U/R (or mere R) means

nowledge. Thus, (U, R) constitutes Approx-Space, where [x]R is the

asic granule. Furthermore, given concept X ⊆ U, (U, R, X) is called

he bottom system (Bottom-System). From the causality mechanism,

ranule [x]R and concept X represent the factor and result, respec-

ively.

emma 2.1.1. ∀S ∈ 2U , let p(S) = |S|
|U| , then (U, 2U , p) constitutes a

robability space.

Probability space (U, 2U , p) underlies Bottom-System (U, R, X), es-

ecially from the mathematical statistics perspective. For example,

onditional probability p(X|[x]R) could be naturally well-defined:

p(X|[x]R) = p(X ∩ [x]R)

p([x]R)
= |X ∩ [x]R|/|U|

|[x]R|/|U| = |X ∩ [x]R|
|[x]R| .

Furthermore, we focus on the Bayesian formula:

p([x]R|X) = p([x]R) · p(X|[x]R)

p(X)
. (1)

here are four relevant probabilities, but p(X) = |X|
|U| becomes a con-

tant in Bottom-System (U, R, X). Thus, only the surplus three-way

robabilities are worth analyzing.

efinition 2.1.2 (Three-Way Probabilities). In Bottom-System

U, R, X), ∀[x] ∈ U/R,
R
p(X|[x]R) = |X ∩ [x]R|
|[x]R| ,

p([x]R|X) = |[x]R ∩ X|
|X| ,

p([x]R) = |[x]R|
|U| ,

(2)

ean the likelihood, posterior, and prior probabilities, respectively.

Three-way probabilities exhibit different probability semantics

nd causality connotation. Prior p([x]R) solely measures cause uncer-

ainty of knowledge R. Conditional probabilities exhibit two forms.

or the decisiveness mechanism, likelihood p(X|[x]R) and posterior

p([x]R|X) reflect causality in the cause-to-effect and effect-to-cause

irections, respectively; thus, both directly describe the correlative

elationship between the granule and concept. For the descriptive

tyle, they exhibit relativity and absoluteness, respectively. In fact,

he likelihood probability depends on information concentration to

xpress a sort of relative possibility regarding causality; in contrast,

he posterior probability depends on data directness to express a sort

f absolute possibility regarding causality.

Three-way probabilities originate from the theoretical statistics

ramework of probability space (U, 2U , p). In fact, these metrics can

lso be directly described from the applicable semantics perspective.

efinition 2.1.3 (Three-Way Measures). In Bottom-System

U, R, X), ∀[x]R ∈ U/R,

aX([x]R) = |[x]R ∩ X|
|[x]R| ,

iX([x]R) = |[x]R ∩ X|
|X| ,

g([x]R) = |[x]R|
|U| ,

(3)

re called granule [x]R’s accuracy, importance, and generality regard-

ng concept X, respectively.

In essence, three-way measures correspond to three mappings

rom Approx-Space to the one-dimensional line [0, 1], where concept

may be the mapping parameter. From discriminative perspectives,

hey hold inherent semantics in Bottom-System (U, R, X).

(1) As a granular local property, accuracy describes granular rela-

tive precision for concept X.

(2) As a granular global property in concept X, importance reflects

the granular absolute contribution for X.

(3) As a granular global property in universe U, generality reflects

a sort of granular absolute scale.

hus, accuracy highlights the relativity and locality (which are related

o fundamental causality), while the latter two highlight the abso-

uteness and globality. Furthermore, importance’s absoluteness and

lobality also adhere to essential causality because they depend on

he nuclear intersection information; in contrast, generally’s never

eflect causality because they are never concerned with the basic

oncept or further interaction. Therefore, only accuracy and impor-

ance directly contain causality. As a result, accuracy gains extensive

se [37,72,73,77,81], and its integration/fusion with importance holds

ignificance for causality reasoning. Moreover, three-way measures

xhibit a systematic relationship:

X([x]R) = g([x]R) · aX([x]R)

|X|/|U| . (4)

hich accords with the Bayesian formula (Formula (1)).

In particular, the measure in Bottom-System usually has three

asic semantics functions, i.e., (1) measure the granule by the con-

ept; (2) measure the concept by the granule; (3) set up a sort

f confidence for a causality reasoning rule from the granule to
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concept. The three measurement clues have high coordination, and

Items (1) (3) are extensively used. In the above discussions, accu-

racy and importance perform their granular descriptions. For the rule

confidence, accuracy aX([x]R) and importance iX([x]R) provide a sort

of relative and absolute confidence for causality rule [x]R ⇒ X: IF

x ∈ [x]R THEN x ∈ X , respectively.

Thus far, three-way probabilities and measures are established

from the probability statistics and application semantics, respec-

tively. Next, they are contrastively summarized in Table 2.

Along the probability clue, DTRS produces with the likelihood

probability and Bayesian decision [58,60,64]. Moreover, we have

investigated three-way weighted entropy and three-way attribute

reduction [76], which systematically integrate and hierarchically

promote three-way probabilities. In particular,
|[x]R∩X|
|[x]R| and

|[x]R∩X|
|X|

adopt different views to hold heterogeneity and complementar-

ity for causality inference. Therefore, their system and fusion are

worth analyzing for more powerful rough reasoning. Next, the two

topics are successively discussed, mainly in terms of the measure

approach.

2.2. Accuracy and importance’s system

This subsection analyzes accuracy and importance, two causality

measures, in a mathematical plane as well as their relationship from

a systematic viewpoint.

In Bottom-System (U, R, X), |[x]R| and |[x]R ∩ X| act as the di-

rect and basic cardinality; their relevant measure variables V and W
construct a fundamental two-dimensional plane (V,W) (Fig. 1) with

the triangle range. In Fig. 1, accuracy and importance correspond to

the slope and contraction, respectively. Next, let A = aX([x]R), I =
iX([x]R). Herein, the factotum is mainly utilized to highlight relevant

variables.

Proposition 2.2.1.

(1) A = W
V , ∂A

∂V = − W
V2 ≤ 0, ∂A

∂W = 1
V > 0, dA = − W

V2 dV + 1
V dW .

(2) I = W
|X| , dI

dW = 1
|X| > 0, dI = 1

|X| dW .

For system (V,W), accuracy A and importance I become binary

and univariate functions, respectively. Thus, their derivative and dif-

ferential are provided by continuous expansion; furthermore, ac-

curacy and importance exhibit monotonicity regarding the single

variable.

Theorem 2.2.2 (Quantitative Completeness). Accuracy and impor-

tance are independent. Furthermore, their application system (A, I) is

two-dimensional and so becomes complete for the quantitative Approx-

Space.

Proof. A and I have no mutual determination/derivation relation-

ships. In fact, I
A = |[x]R|

|X| is not a constant for knowledge granules.

Hence, accuracy and importance are independent, and their system

(A, I) is two-dimensional. As a result, (A, I) becomes complete for

the quantitative Approx-Space because the latter is two-dimensional

and its base is related to (V,W). �

Because of the independence, accuracy and importance hold

heterogeneity, which could also be explained by their relativ-

ity and absoluteness. Furthermore, they have quantitative com-

pleteness and complementarity for the quantitative Approx-

Space. Thus, they directly constitute a system via Cartesian
roduct integration. Clearly, the measure system (A, I) adheres to

pprox-Space’s inherent quantitative essence, thus implying essen-

ial effectiveness and adequate performance.

roposition 2.2.3. I
A = V

|X| .

(1) A = I
V |X|, ∂A

∂I = |X|
V > 0, ∂A

∂V = − I
V2 |X| ≤ 0, dA = |X|

V dI −
I
V2 |X|dV .

(2) I = AV
|X| ,

∂I
∂A = V

|X| > 0, ∂I
∂V = A

|X| > 0, dI = V
|X| dA + A

|X| dV .

In Proposition 2.2.3, accuracy and importance are systematically

nspected. Although they never hold mutual determination, their ba-

ic non-linear relationship is constructed by V , i.e., I
A = V

|X| . Thus,

he accuracy change depends on importance, while the importance

hange depends on accuracy. The change dependency becomes deci-

ive if V is unchanged.

heorem 2.2.4 (System Equivalence). Measure system (A, I) and car-

inality system (V,W) have a non-linear transformation and thus be-

ome equivalent.

roof.

A = W
V ,

I = W
|X| .

⇔
{
V = I

A |X|,
W = I|X|.

he above equivalence verifies the non-linear transformation be-

ween two systems (A, I) and (V,W). �

There are two bearing systems for accuracy and importance. The

ardinality system originates from the definition of both measures

nd thus approaches Approx-Space; in contrast, the measure system

ainly cares for both measures’ inherent systematicness, thus ex-

ibiting direct applicability. In fact, the two systems become equiv-

lent, although both have different emphases.

In Approx-Space, relative accuracy is extensively utilized

37,72,73,77,81]. However, its direct concentration also implies

ts simplicity and singleness. In view of the heterogeneity and com-

lementarity from relativity and absoluteness, double-quantification

15,72,73,77] advocates measure diversity and superiority; thus,

his suggests adding or fusing absolute information on the basis

f relative information. In fact, importance provides the absolute

stimation regarding causality; hence, accuracy and importance’s

ouble-quantitative fusion is worth further exploration, and this is

herefore the next topic.

.3. Importance-accuracy

According to three-way probabilities and measures (Section

.1), accuracy and importance become two causality measures.

n fact, they correspond to relativity/concentration and abso-

uteness/directness, respectively. Based on a system analysis

Section 2.2), their heterogeneity and complementarity are fur-

her verified. Therefore, their benign fusion is valuable for causality

nference. In this subsection, both are fused into a benign uncertainty

easure, IP-Accuracy, by adopting the weighted product technology.

erein, IP-Accuracy is mainly described by its rule confidence role.

efinition 2.3.1 (IP-Accuracy). In Bottom-System (U, R, X), ∀[x]R ∈
/R,

A = iaX([x]R) = iX([x]R) × aX([x]R) (5)
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s called granule [x]R’s importance-accuracy (IP-Accuracy) regarding

oncept X.

roposition 2.3.2.

A = W2

|X|V = |[x]R ∩ X|2

|X||[x]R| . (6)

roposition 2.3.3 (Weight Conservation).

∑
x]R∈U/R

iX([x]R) = 1. (7)

IP-Accuracy, which corresponds to a mapping from Approx-Space

o [0, 1], is formally constructed by the product fusion of importance

nd accuracy, thus exhibiting cardinality essence (Formula (6)). In

he sense of weight conservation (Formula (7)), the algebraic prod-

ct could be semantically explained as a sort of weighted product.

hus, IP-Accuracy’s fusion scientificity and measurement semantics

ould be explained as follows.

(1) First, accuracy cannot completely represent the causality be-

tween the granule and concept. For example, for two granules

with the same accuracy, the granule with greater importance

necessarily plays a more vital function in the causal reason-

ing. Then, importance could also represent the causality by

virtue of its essence. In view of metrical conservation, each

granule occupies only the part importance shares regarding

sum 1; thus, importance could be viewed as a sort of objective

weight coefficient to be appended to accuracy. The weighted

pattern effectively underlies the product fusion of importance

and accuracy; as a result, the corresponding IP-Accuracy more

synthetically represents the causality and is thus novel and

scientific.

(2) From the rule semantics, accuracy and importance give the

causality rule only relative and absolute confidences, respec-

tively. Furthermore, the fusional IP-Accuracy could provide a

sort of synthetic confidence by integrating both the relative-

ness and absoluteness. For example, aX([x]R) = 0.5 endows

reasoning rule [x]R ⇒ X with relative confidence 0.5; in con-

trast, iX([x]R) = 0.2 endows the reasoning rule with absolute

confidence 0.2, which means that the granule [x]R holds a 20%

contribution for determining X (regardless of [x]R’s scale); fur-

thermore, iaX([x]R) = 0.2 × 0.5 = 0.1 could more stably assess

the reliability of the rule. Therefore, IP-Accuracy holds the ba-

sic rule semantics: the comprehensive reliability for the de-

cision rule. Moreover, by virtue of the importance weight, IP-

Accuracy could represent the fusional measure semantics: the

granular effective precision for concept X.

From the double-quantitative perspective, IP-Accuracy effectively

uses two fundamental causality measures, accuracy and importance,

o it has measurement merit as a result of combining metrical abso-

uteness and relativeness. Moreover, the superiority of IP-Accuracy

ould be further verified by its granulation monotonicity, which is

rovided in Section 3. Thus, IP-Accuracy underlies causality-based

ough reasoning, so it could be utilized to comprehensively describe

easoning rules.

In a word, IP-Accuracy becomes a systematic synthetic causal-

ty measure to describe a rule’s reliability and granular availabil-

ty. From the mathematical viewpoint, IP-Accuracy’s causality su-

eriority mainly benefits from its non-linear promotion in system
V,W). According to Formula (3) and Fig. 1, accuracy and importance

xhibit only the pure linear cardinality form. In contrast, according to

ormula (6), IP-Accuracy uses the non-linear cardinality style. Thus,

his non-linear improvement implies more information connotations

han IP-Accuracy contains. According to Formulas (3) and (6), the

elevant causality strengthening mechanism is analyzed as follows,

nd it radically underlies the later benign granulation monotonicity

Section 3).

(1) Except for |[x]R ∩ X|, IP-Accuracy synthetically considers both

|[x]R| and |X|, rather than only one. Thus, it becomes more

comprehensive than accuracy and importance, especially

when considering causality.

(2) IP-Accuracy strengthens the nuclear interaction information,

i.e., |[x]R ∩ X|. In fact, it uses the two-order form |[x]R ∩ X|2,

which carries more effective information than the one-order

|[x]R ∩ X|. Thus, IP-Accuracy becomes more powerful than ac-

curacy and importance in terms of causality.

Finally, IP-Accuracy’s derivative and differential are provided by

ontinuous expansion.

roposition 2.3.4.

(1) ∂(IA)
∂I = A ≥ 0, ∂(IA)

∂A = I ≥ 0, d(IA) = AdI + IdA.

(2) ∂(IA)
∂V = − W2

|X|V2 ≤ 0, ∂(IA)
∂W = 2W

|X|V ≥ 0, d(IA) = − W2

|X|V2 dV +
2W
|X|V dW .

orollary 2.3.5.

∂(IA)

∂V = − 1

|X|A
2 ≤ 0,

∂(IA)

∂W = 2

|X|A ≥ 0,

d(IA) = − 1

|X|A
2dV + 2

|X|AdW .

According to Formulas (5) and (6), Proposition 2.3.4 provides

athematical analysis results in systems (A, I) and (V,W). Further-

ore, Corollary 2.3.5 expresses IP-Accuracy’s derivative and differ-

ntial from the accuracy perspective; in particular, this result fur-

her reflects that IP-Accuracy contains more basic information than

ccuracy.

. Importance-accuracy’s granular integration construction

In Section 2, IP-Accuracy – a synthetic causality measure – is sys-

ematically mined in Approx-Space by the double-quantitative fu-

ion of accuracy and importance. In micro Bottom-System (U, R, X),

P-Accuracy mainly depends on the concept to describe gran-

les, so granular concept IP-Accuracy (Gr-Con IP-Accuracy) is the

ull name in this case. Attribute reduction usually concerns a

acro top with knowledge and concept systems. To explore at-

ribute reduction, Approx-Space needs promoting to comprehen-

ive hierarchical structures. Thus, this section progressively per-

orms IP-Accuracy’s granular integration construction in three gran-

lar levels (i.e., the micro bottom, meso middle, and macro top).

oncretely, Gr-Con IP-Accuracy will be integrated into knowl-

dge’s concept IP-Accuracy and further into knowledge’s classifica-

ion IP-Accuracy; as a result, the relevant GrC hierarchical struc-

ure is finally established. Herein, IP-Accuracy has three levels,

hose relevant abbreviations are listed in Table 1, and it is used

irectly without confusions. Note that granulation monotonicity

cts as a crucial criterion to evaluate an uncertainty measure in
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RS-Theory, especially in attribute reduction [31,49,51,76]. Thus, IP-

ccuracy’s granulation monotonicity and relevant equality condi-

tions are the next research emphasis.

3.1. Granulation preliminaries

Herein, necessary granulation preliminaries are first provided. De-

cision table (D-Table) (U, C ∪ D) serves as a basic framework; the rele-

vant factotum also highlights the attribute subset with knowledge.

Thus, C∗ ⊆ C correspondingly replaces the previous knowledge R;

moreover, let k ≥ 2. Suppose{
U/C = {[x]

i
C : i = 1, . . . , n};

U/D = {Xj : j = 1, . . . , m}.
C2 ⊆ C1 ⊆ C refers to the knowledge deduction, denoted by C1 ⇒
C2; ⇒ corresponds to a knowledge-granular coarsening process and

a mathematical partial order. If C1 ⇒ C2, then C2 depends on and is

generally rougher than C1 (while knowledge C1 deduces and is gen-

erally finer than knowledge C2); thus, C1 ⇒ C2 is called knowledge

coarsening (Kn-Coarsening).

Proposition 3.1.1. In Kn-Coarsening C1 ⇒ C2,

∀[x]C1
∈ U/C1,∃[x]C2

∈ U/C2,

s.t., [x]C1
⊆ [x]C2

.

∀[x]C2
∈ U/C2,∃k ∈ N, s.t., [x]C2

=
k⋃

t=1

[x]
t
C1

.

Proposition 3.1.2. Kn-Coarsening C1 ⇒ C2 usually includes two types
of granular transformation:{

Granule merging (Gr-Merging) : [x]
1
C1

∪ · · · ∪ [x]
k
C1

=→ [x]
1
C2

,

Granule preservation (Gr-Preservation) : [x]
1
C1

=→ [x]
1
C2

.

(8)

From the granule viewpoint, Kn-Coarsening becomes a sort of

rough hierarchical transformation between knowledge structures.

Thus, it involves two types of granular actions: Gr-Merging and Gr-

Preservation. Herein, the granular superscript represents the granular

ordinal number, e.g., t in [x]
t
C1

and k in [x]
k
C1

. In fact, Gr-Merging be-

comes a radical feature of Kn-Coarsening, and representative [x]
1
C1

∪
· · · ∪ [x]

k
C1

=→ [x]
1
C2

could be directly utilized for complete granula-

tion monotonicity verification.

Definition 3.1.3 ([35,36]). Positive, negative, boundary regions (POS,

NEG, BND) of X regarding knowledge C∗ are defined by:⎧⎨
⎩

POSC∗(X) = {x : [x]C∗ ⊆ X},
NEGC∗(X) = {x : [x]C∗ ⊆ ¬X},
BNDC∗(X) = {x : [x]C∗ ∩ X,¬X �= ∅}.

(9)

Furthermore, the classification-positive/boundary region (C-POS/C-

BND) of D regarding knowledge C∗ is defined by:

{
POSC∗(D) =

⋃
X∈U/D

POSC∗(X),

BNDC∗(D) = U − POSC∗(D).
(10)

Thus, the dependency degree is given by:

γC∗(D) = |POSC∗(D)|
|U| , (11)
roposition 3.1.4. In Kn-Coarsening C1 ⇒ C2,

POSC2
(X) ⊆ POSC1

(X),

POSC2
(D) ⊆ POSC1

(D),

γC2
(D) ≤ γC1

(D).

(12)

In the qualitative Pawlak-Model, C-POS becomes the union of clas-

ification concepts’ POS, while the dependency degree becomes the

lassical measure to evaluate the classification quality. In particu-

ar, C-POS, POS, and measure γ all have granulation monotonicity

Proposition 3.1.4).

.2. Knowledge’s concept importance-accuracy

Aiming at meso Middle-System (U, C, X), this subsection utilizes

r-Con IP-Accuracy in micro Bottom-System (U, C∗, X) to integratedly

onstruct knowledge’s concept IP-Accuracy, and the corresponding

ranulation monotonicity is emphatically verified.

efinition 3.2.1 (Kn-Con IP-Accuracy). In Middle-System (U, C, X),

aX(C∗) =
∑

[x]C∗ ∈U/C∗

iaX([x]C∗) (13)

s called knowledge C∗’s IP-Accuracy regarding concept X, i.e., knowl-

dge’s concept IP-Accuracy (Kn-Con IP-Accuracy).

By using the arithmetic sum, Kn-Con IP-Accuracy is naturally es-

ablished by integrating Gr-Con IP-Accuracy because knowledge con-

ists of knowledge granules. In fact, Kn-Con IP-Accuracy promotes Gr-

on IP-Accuracy from the GrC viewpoint. Clearly, Kn-Con IP-Accuracy

aX(C∗) holds three types of harmonious semantics functions.

(1) Measure reasoning C∗ ⇒ X in a confidence sense.

(2) Assess knowledge C∗ by concept X, a systematic parameter.

(3) Systematically estimate concept X by knowledge C∗, a sort of

granule system.

Next, we make efforts to inspect IP-Accuracy’s granulation mono-

onicity in (U, C, X). For this purpose, the relevant mathematical

echanism regarding Gr-Merging is first uncovered for IP-Accuracy.

emma 3.2.2.

k

t=1

a2
t

bt
≥

(∑k
t=1 at

)2

∑k
t=1 bt

. (14)

he above inequality reaches the equal sign, if and only if (iff),

a1

b1

= · · · = ak

bk

, i.e.,
a1

b1

= · · · = ak

bk

=
∑k

t=1 at∑k
t=1 bt

. (15)

heorem 3.2.3 (Gr-Merging Monotonicity). For Gr-Merging: [x]
1
C1

∪
· · ∪ [x]

k
C1

=→ [x]
1
C2

,

aX([x]
1
C2
) ≤ iaX([x]

1
C1
) + · · · + iaX([x]

k
C1
). (16)

he above equality holds, iff Gr-Merging concerns the equal granular ac-

uracy. This equality requirement could be further divided into three con-

itions:

aX([x]
1
C1
) = · · · = aX([x]

k
C1
) = aX([x]

1
C2
) = 1;

aX([x]
1
C1
) = · · · = aX([x]

k
C1
) = aX([x]

1
C2
) = 0;

aX([x]
1
C1
) = · · · = aX([x]

k
C1
) = aX([x]

1
C2
) ∈ (0, 1).

(17)
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roof. According to Formulas (6) and (14),

aX([x]
1
C1
) + · · · + iaX([x]

k
C1
) = |[x]

1
C1

∩ X|2

|[x]
1
C1
| × |X| + · · · + |[x]

k
C1

∩ X|2

|[x]
k
C1
| × |X|

≥ (|[x]
1
C1

∩ X| + · · · + |[x]
k
C1

∩ X|)2

|[x]
1
C1
| × |X| + · · · + |[x]

k
C1
| × |X|

|([x]
1
C1

∩ X) ∪ · · · ∪ ([x]
k
C1

∩ X)|2

|[x]
1
C1

∪ · · · ∪ [x]
k
C1
| × |X| = |([x]

1
C1

∪ · · · ∪ [x]
k
C1
) ∩ X|2

|[x]
1
C2
| × |X|

= |[x]
1
C2

∩ X|2

|[x]
1
C2
| × |X| = iaX([x]

1
C2
).

hus, Formula (16) holds for G-Merging. Moreover, the equality con-

ition (Formula (15)) refers to the equal granular accuracy, and it is

urther divided into G-Merging’s three special cases regarding 0 and

(Formula (17)). �

Lemma 3.2.2, whose proof is given in Appendix A, establishes an

mportant mathematical basis. Thus, IP-Accuracy gains Gr-Merging

onotonicity. Concretely, the constructional granular IP-Accuracy

ever increases for the merged granules’ IP-Accuracy sum (Formula

16)). Next, the equality conditions (Formula (17)) are further ana-

yzed, mainly from the set-regional perspective.

roposition 3.2.4. Given Gr-Merging: [x]
1
C1

∪ · · · ∪ [x]
k
C1

=→ [x]
1
C2

.

(1) aX([x]
1
C1

) = · · · = aX([x]
k
C1

) = aX([x]
1
C2

) = 1,

iff [x]
1
C1

, . . . , [x]
k
C1

, [x]
1
C2

⊆ X,

iff [x]
1
C1

, . . . , [x]
k
C1

, [x]
1
C2

⊆ POSC1
(X), POSC2

(X).

(2) aX([x]
1
C1

) = · · · = aX([x]
k
C1

) = aX([x]
1
C2

) = 0,

iff [x]
1
C1

, . . . , [x]
k
C1

, [x]
1
C2

⊆ ¬X,

iff [x]
1
C1

, . . . , [x]
k
C1

, [x]
1
C2

⊆ NEGC1
(X), NEGC2

(X).

(3) If aX([x]
1
C1

) = · · · = aX([x]
k
C1

) = aX([x]
1
C2

) ∈ (0, 1),

then [x]
1
C1

, . . . , [x]
k
C1

, [x]
1
C2

∩ X, ¬X �= ∅,

i.e., [x]
1
C1

, . . . , [x]
k
C1

, [x]
1
C2

⊆ BNDC1
(X), BNDC2

(X).

According to Formula (15), the monotonicity equality could be

quivalently achieved by three accuracy conditions (Formula (17));

he latter are further transformed into set-regional manifestations

Proposition 3.2.4). Concretely, Items (1) (2) mean that Gr-Merging is

quivalently inside X/POS and ¬X/NEG, respectively; Item (3) shows

hat the third equality condition is only a strong case inside BND.

hese results underlie further region preservation deduction.

heorem 3.2.5 (Gr-Preservation Invariance). For Gr-Preservation

x]
1
C1

=→ [x]
1
C2

,

aX([x]
1
C2
) = iaX([x]

1
C1
). (18)

heorem 3.2.6 (Monotonicity I). In Kn-Coarsening C1 ⇒ C2,

aX(C2) ≤ iaX(C1). (19)

aX(C2) = iaX(C1), iff each Gr-Merging exists in one of the following

hree cases:

(1) in POS’s interior regarding both C1 and C2;

(2) in NEG’s interior regarding both C1 and C2;

(3) in BND’s interior regarding both C1 and C2, but on the premise of

equal granular accuracy.
roof. Kn-Coarsening usually consists of Gr-Merging and Gr-

reservation (Proposition 3.1.2). IP-Accuracy exhibits Gr-Merging

onotonicity (Theorem 3.2.3) and Gr-Preservation invariance

Theorem 3.2.5). Thus, IP-Accuracy naturally holds Kn-Coarsening

onotonicity, i.e., granulation monotonicity. For the monotonicity

quality condition, all existing Gr-Merging satisfy condition (17) and

hus equivalently exists in the above three cases. Thus, the equality

ondition achieves a natural evolution from internal Gr-Merging to

ntegral Kn-Coarsening. �

orollary 3.2.7. IP-Accuracy preservation unidirectionally deduces set-

egion preservation in Kn-Coarsening. In other words, for C1 ⇒ C2, if

aX(C2) = iaX(C1), then

POSC2
(X) = POSC1

(X),

NEGC2
(X) = NEGC1

(X),

BNDC2
(X) = BNDC1

(X);
(20)

owever, the opposite usually does not hold.

IP-Accuracy holds granulation monotonicity (Theorem 3.2.6); i.e.,

t never increases in Kn-Coarsening. In particular, monotonicity ac-

uires its equality condition from the regional perspective; con-

retely, iaX(C2) = iaX(C1) means the arbitrary and conditional Gr-

erging in POS/NEG and BND, respectively. Thus, Corollary 3.2.7

learly provides a basic connection between the measure and region.

n fact, the perfect granulation monotonicity and equality condition

egarding Kn-Coarsening promote the corresponding results regard-

ng Gr-Merging (Theorem 3.2.3); thus, they hold a strong mechanism

nd underlie later attribute reduction.

In practice, Kn-Coarsening’s integration monotonicity could be

imilarly inspected for other measures. However, accuracy and im-

ortance never have a perfect Gr-Merging mechanism, benign Kn-

oarsening monotonicity, or clear monotonicity equality condition.

hus, IP-Accuracy’s granulation monotonicity (Theorem 3.2.6) fully

eflects IP-Accuracy’s superiority, which mainly benefits from the be-

ign weight fusion and non-linear cardinality promotion (Section

.3).

In a regional way, POS and, further, C-POS underlie attribute re-

uction. To approach POS and C-POS, we finally mine Kn-Con IP-

ccuracy’s fundamental subpart, which also holds granulation mono-

onicity.

efinition 3.2.8 (Kn-Con Sub-IP-Accuracy). In Middle-System

U, C, X) where C∗ ⊆ C,

IiaX(C∗) = ∑
[x]C∗ ⊆X iaX([x]C∗);

EiaX(C∗) = ∑
[x]C∗ ⊆¬X iaX([x]C∗);

BiaX(C∗) = ∑
[x]C∗ ∩X,¬X �=∅

iaX([x]C∗).

(21)

re called knowledge C∗’s internal, external, and boundary IP-

ccuracy regarding concept X, respectively. Herein, the three types

f sub-IP-Accuracy are simply denoted by (Kn-Con) IIP-Accuracy, EIP-

ccuracy, BIP-Accuracy, respectively.

roposition 3.2.9.

(1) IiaX(C∗) = |POSC∗ (X)|
|X| .

(2) EiaX(C∗) = 0.

(3) BiaX(C∗) = ∑
[x]C∗ ⊆BNDC∗ (X) iaX([x]C∗).

(4) iaX(C∗) = IiaX(C∗) + BiaX(C∗).
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Herein, Kn-Con IP-Accuracy iaX(C∗) is further divided into IIP-

ccuracy IiaX(C∗), EIP-Accuracy EiaX(C∗), and BIP-Accuracy BiaX(C∗).

According to Proposition 3.2.9 (whose proof is given in Appendix B),

EIP-Accuracy is equal to 0, IIP-Accuracy becomes
|POSC∗ (X)|

|X| to act as

a main part of IP-Accuracy, and BIP-Accuracy becomes the sum of all

Gr-Con IP-Accuracy regarding concept X’s BND.

Theorem 3.2.10 (Monotonicity II). In Kn-Coarsening C1 ⇒ C2,

IiaC2
(X) ≤ IiaC1

(X); (22)

IiaC2
(X) = IiaC1

(X), iff POSC2
(X) = POSC1

(X). (23)

Proof. According to Propositions 3.1.4 and 3.2.9, IiaC2
(X) =

|POSC2
(X)|

|X| ≤ |POSC1
(X)|

|X| = IiaC1
(X); moreover, the monotonicity equal-

ity corresponds to condition POSC2
(X) = POSC1

(X). �

Kn-Con IIP-Accuracy represents IP-Accuracy’s internal sum re-

garding POS and also has granulation monotonicity. Thus, IIP-

ccuracy more resembles the classical regional pattern when com-

pared to IP-Accuracy.

3.3. Knowledge’s classification importance-accuracy

Aiming at macro Top-System (U, C,D), this subsection further uti-

lizes Kn-Con IP-Accuracy in meso Middle-System (U, C, X) to in-

tegratedly construct classification’s IP-Accuracy, and corresponding

granulation monotonicity is naturally organized. In particular, preser-

vation deduction of relevant targets becomes a new focus to underlie

the later reduct hierarchies.

Definition 3.3.1 (Kn-Cl IP-Accuracy). In Top-System (U, C,D),

iaD(C∗) =
m∑

j=1

iaXj
(C∗) (24)

is called knowledge C∗’s IP-Accuracy regarding classification D, i.e.,

knowledge’s classification IP-Accuracy (Kn-Cl IP-Accuracy).

By using the arithmetic sum, Kn-Cl IP-Accuracy is further estab-

lished by integrating Kn-Con IP-Accuracy because classification con-

sists of concepts. In fact, Kn-Cl IP-Accuracy further promotes Kn-

Con IP-Accuracy from the GrC viewpoint. Similarly, Kn-Cl IP-Accuracy

iaD(C∗) also holds three harmonious semantics functions.

(1) Measure reasoning C∗ ⇒ D in a confidence sense.

(2) Measure knowledge C∗ by classification D: a systematic param-

eter by integrating concepts Xj .

(3) Systematically measure classification D by knowledge C∗: a

sort of granule system.

Theorem 3.3.2 (Monotonicity III). In Kn-Coarsening C1 ⇒ C2,

iaD(C2) ≤ iaD(C1). (25)

iaD(C2) = iaD(C1), iff iaC2
(Xj) = iaC1

(Xj) for ∀ j ∈ {1, . . . , m}, iff each

Gr-Merging exists in one of the two conditions (where C1 and C2 are

equivalently concerned):

(1) in POS’s interior of only one concept;

(2) in BND’s interior of all concepts, but on the premise of equal

granular accuracy for each concept.
n particular, the two conditions imply equal accuracy G-Merging

n C-POS and C-BND and are thus called classification-quantitative

reservation.

roof. First, Kn-Cl IP-Accuracy becomes Kn-Con IP-Accuracy’s alge-

raic sum integration (regarding concepts). According to Kn-Con IP-

ccuracy’s monotonicity (Theorem 3.2.6), iaD(C2) ≤ iaD(C1) becomes

atural. Thus, we only need to further refine the equality condition

all Gr-Merging satisfies equal accuracy regarding all concepts Xj”.

For this purpose, we next adopt a two-stage discussion strategy to

dentify Gr-Merging’s regional range. Concretely, disjoint C-POS and

-BND are first concerned, and concepts are then considered. Herein,

he regional notions mainly refer to knowledge C1, but they are equiv-

lent to those regarding knowledge C2.

Consider Gr-Merging [x]
1
C1

∪ · · · ∪ [x]
k
C1

=→ [x]
1
C2

.

(1) If it is distributed in both C-POS and C-BND, then exist Xj , s.t.,

it has at least two granules to contain different accuracy values

regarding Xj . Hence, Gr-Merging is only in either C-POS or C-

BND.

(2) Suppose it is in C-POS, the union of multiple POS. If it is dis-

tributed in different POS, we could obtain the contradiction

(from granular unequal accuracy), which is similar to above.

Hence, it is only in the POS of a sole concept, and thus G-

Merging equal accuracy is naturally realized for all concepts.

(3) Suppose it is in C-BND, the union of multiple BND. By virtue of

the similar contradiction proof, its granules must exist in the

intersection of all BND and must have the same accuracy for

each concept. �

Kn-Cl IP-Accuracy holds granulation monotonicity (Theorem

.3.2), which integratedly promotes Kn-Con IP-Accuracy’s granula-

ion monotonicity (Theorem 3.2.6). Herein, the monotonicity equal-

ty’s regional mining becomes complex. By analyzing IP-Accuracy’s

onnotation, two specific regional equality conditions regarding

lassification-quantitative preservation are finally established to de-

ne Gr-Merging’s range. In fact, the conversion between the metri-

al and regional descriptions performs the GrC integration construc-

ion from the set-regional to classification-regional levels. As a result,

heorem 3.3.2’s two items have summarized and promoted Theorem

.2.6’s three items, and this GrC integration can be illustrated by

heorem 3.3.2’s proof.

orollary 3.3.3. IP-Accuracy preservation unidirectionally deduces C-

OS preservation in Kn-Coarsening. In other words, for C1 ⇒ C2, if

aD(C2) = iaD(C1), then POSC2
(D) = POSC1

(D); however, the opposite

sually does not hold.

roof. IP-Accuracy preservation implies the arbitrary and condi-

ional Gr-Merging in C-POS and C-BND, respectively (Theorem 3.3.2).

n contrast, C-POS preservation implies the arbitrary Gr-Merging in

oth C-POS and C-BND. Thus, this corollary is proved. �

IP-Accuracy preservation is stronger than C-POS preservation,

nd this conclusion is inferred by the regional equality conditions

Theorem 3.3.2).

orollary 3.3.4. In Kn-Coarsening, IP-Accuracy preservation unidi-

ectionally deduces set-region preservation regarding classification’s

ll concepts.
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roof. Kn-Cl IP-Accuracy becomes Kn-Con IP-Accuracy’s sum (re-

arding all concepts), and both hierarchical measures have granu-

ation monotonicity. Thus, by the contradiction proof, the former’s

reservation is equivalent to the latter’s preservation regarding all

oncepts. According to Corollary 3.2.7, for concept Xj , Kn-Con IP-

ccuracy preservation unidirectionally deduces set-region preserva-

ion. Hence, Kn-Cl IP-Accuracy preservation unidirectionally deduces

et-region preservation regarding classification’s all concepts. �

Corollary 3.3.4 is derived from the monotonicity integration, as

ell as Kn-Con IP-Accuracy preservation’s strongness (for set-region

reservation). Now, there are three concerned preservation targets

n the above two corollaries. In Corollary 3.3.3, IP-Accuracy preserva-

ion unidirectionally deduces C-POS preservation; then, the former

nidirectionally deduces set-region preservation in Corollary 3.3.4;

oreover, set-region preservation naturally unidirectionally induces

-POS preservation.

In Section 3.2, Kn-Con IP-Accuracy consists of three parts, i.e.,

n-Con IIP-Accuracy, EIP-Accuracy, and BIP-Accuracy. Note that Kn-

on IP-Accuracy is promoted to Kn-Cl IP-Accuracy. Thus, Kn-Cl

P-Accuracy naturally consists of three corresponding promotional

arts. Next, the relevant definition, essence, and monotonicity are

traightforwardly provided by virtue of the relevant integration and

romotion.

efinition 3.3.5 (Kn-Cl Sub-IP-Accuracy). In (U, C,D) where C∗ ⊆ C,

IiaD(C∗) = ∑m
j=1 IiaXj

(C∗);
EiaD(C∗) = ∑m

j=1 EiaXj
(C∗);

BiaD(C∗) = ∑m
j=1 BiaXj

(C∗).

(26)

re called knowledge C∗’s internal, external, boundary IP-Accuracy re-

arding classification D, respectively; in particular, the three types

f Sub-IP-Accuracy are simply denoted as Kn-Cl IIP-Accuracy, EIP-

ccuracy, BIP-Accuracy, respectively.

roposition 3.3.6.

(1) IiaD(C∗) = ∑m
j=1

|POSC∗ (Xj)|
|Xj | ≤ ∑m

j=1 |POSC∗(Xj)| = |POSC∗(D)|.
(2) EiaD(C∗) = 0.

(3) BiaD(C∗) = ∑m
j=1

∑
[x]C∗ ⊆BNDC∗ (Xj)

iaXj
([x]C∗).

(4) iaD(C∗) = IiaD(C∗) + BiaD(C∗).

Kn-Cl IP-Accuracy iaD(C∗) consists of IIP-Accuracy IiaD(C∗), EIP-

ccuracy EiaD(C∗), BIP-Accuracy BiaD(C∗). Furthermore, EIP-Accuracy

s equal to 0, IIP-Accuracy becomes
∑m

j=1

|POSC∗ (Xj)|
|Xj | to act as a main

art of IP-Accuracy, and BIP-Accuracy becomes the sum of all Gr-Con

P-Accuracy regarding all BND and concepts.

heorem 3.3.7 (Monotonicity IV). In Kn-Coarsening C1 ⇒ C2,

iaD(C2) ≤ IiaD(C1); (27)

iaD(C2) = IiaD(C1), iff POSC2
(Xj) = POSC1

(Xj),∀ j ∈ {1, . . . , m},
iff POSC2

(D) = POSC1
(D).

n particular, IIP-Accuracy preservation aims to keep both C-POS and C-

ND and is thus called classification-qualitative preservation.

In view of the homogeneous structure, IIP-Accuracy preserva-

ion (i.e., classification-qualitative preservation) is equivalent to C-

OS preservation (Theorem 3.3.7); however, the two features ex-

ibit the metrical and regional styles, respectively. As a result,

IP-Accuracy preservation could be used to define a qualitative
educt (Definition 4.2.3), which is equivalent to the Pawlak-Reduct

ut has a metrical connotation. In fact, C-POS could also fully corre-

pond to its dependency degree γC∗(D). In fact,

γC∗(D) = ∑m
j=1

|POSC∗ (Xj)|
|U| ;

IiaD(C∗) = ∑m
j=1

|POSC∗ (Xj)|
|Xj| .

hus, IiaD(C∗) has homogeneous monotonicity about and also sharply

ontrasts with γC∗(D): C-POS’s metrical form. As a result, when com-

ared to γC∗(D), IiaD(C∗) contains Xj ’s individual information, thus

ecoming rational and optimal. Therefore, IiaD(C∗) underlies the bet-

er reduction heuristic information and heuristic reduction algo-

ithm, which could be reflected by Formula (30) and Algorithm 1’s

arallel generalization (for IIP-Accuracy), respectively.

Finally, we plan to summarize the relevant preservation deduc-

ion, which radically underlies the reduction target hierarchy and at-

ribute reduction hierarchy. For this purpose, the preservation deduc-

ion of IP-Accuracy and IIP-Accuracy is first provided.

orollary 3.3.8. IP-Accuracy preservation unidirectionally deduces IIP-

ccuracy preservation.

roof. IP-Accuracy consists of IIP-Accuracy and BIP-Accuracy, and

oth IP-Accuracy and IIP-Accuracy have granulation monotonicity.

hus, that IP-Accuracy reaches its coarsening maximum unidirec-

ionally implies that IIP-Accuracy reaches its own coarsening max-

mum; this result could be verified by the contradiction proof and

IP-Accuracy factor. �

Herein, IP-Accuracy preservation is also stronger than IIP-

ccuracy preservation (Corollary 3.3.8). In fact, the former is stronger

han C-POS preservation (Corollary 3.3.3), while the latter is equiva-

ent to C-POS preservation (Theorem 3.3.7). Thus, except for the above

etrical proof, this metrical preservation relationship (between IP-

ccuracy and IIP-Accuracy) could also be equivalently proved by the

elevant regional method. In fact, the equivalent deduction transfor-

ation corresponds to the next preservation deduction commutativ-

ty.

For IP-Accuracy/IIP-Accuracy, we make great efforts to reveal the

ranulation monotonicity and also to mine the relevant equality con-

itions in the regional way. As a result, we establish a fundamental

onnection between the relevant metrical and regional preservation.

hese basic works underlie the relationship discussions between the

ovel IP-Accuracy/IIP-Accuracy reduction and classical regional re-

uction (Section 4). Now, it is time to summarize the deduction re-

ationships of these preservation targets by Fig. 2.

In Fig. 2, there are two types of preservation targets. Concretely,

etrical targets include IP-Accuracy and IIP-Accuracy; in contrast, re-

ional targets include Set-Region preservation, C-POS preservation,

nd distributional preservation (i.e., POS or NEG or BND preserva-

ion). Thus, there are two unidirectional deduction lines, i.e., Line

: IP-Accuracy preservation ⇒ Set-Region preservation ⇒ Distribu-

ional preservation ⇒ C-POS preservation; and Line II: IP-Accuracy

reservation ⇒ IIP-Accuracy preservation; moreover, there is a bidi-

ectional deduction line, i.e., Line III: C-POS preservation ⇔ IIP-

ccuracy preservation. In particular, Lines I and III compose a natural

eduction line: IP-Accuracy preservation ⇒ Set-Region preservation

Distributional preservation ⇒ C-POS preservation ⇒ IIP-Accuracy

reservation; thus, this new line exhibits commutativity with Line

I for the two preservation states: IP-Accuracy preservation and IIP-

ccuracy preservation.

Note that preservation targets’ deduction radically under-

ies relevant preservation reducts’ hierarchy. In particular, some
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reduction hierarchies were provided in [74,75] for the two-category

case. In Section 4, some reduction hierarchies will be investigated,

and they apply to the more general multi-category case.

3.4. Importance-accuracy’s granular hierarchical structure

Gr-Con IP-Accuracy, Kn-Con IP-Accuracy/IIP-Accuracy, Kn-Cl IP-

ccuracy/IIP-Accuracy are provided in Sections 2.3, 3.2, and 3.3, re-

spectively. In this subsection, the three IP-Accuracy levels are sum-

marized to establish the relevant GrC hierarchical structure. Herein,

the systematic structural figure is first provided by Fig. 3.

Next, this hierarchical structure figure is utilized to explain IP-

ccuracy’s GrC construction. There are four fundamental granular

systems, three GrC levels (micro bottom, meso middle, macro top),

two main RS-Theory terms (Approx-Space and attribute reduction),

and two GrC-hierarchical evolution lines.

(1) Bottom-System (U, C∗, X), at the micro level, mainly concerns

the knowledge-granule and concept. Thus, Gr-Con IP-Accuracy

iaX([x]C∗) is constructed by fusing accuracy and importance.

Herein, iaX([x]C∗) can systematically measure the following:

reasoning [x]C∗ ⇒ X , granule [x]C∗ (based on concept X), and

concept X (based on granule [x]C∗ ).In fact, the relevant system

and level correspond to Approx-Space.

(2) Middle-System (U, C, X), at the meso level, mainly concerns

the knowledge and concept. Thus, Kn-Con IP-Accuracy iaX(C∗)
is constructed by integrating Gr-Con IP-Accuracy iaX([x]C∗)
because knowledge C∗ is actually a granular system. Herein,

iaX(C∗) can systematically measure reasoning C∗ ⇒ X , knowl-

edge C∗ (based on concept X), and concept X (based on knowl-

edge C∗). Moreover, IIP-Accuracy IiaX(C∗) is provided to de-

scribe POS. As a result, Kn-Con IP-Accuracy and IIP-Accuracy

achieve basic granulation monotonicity.

(3) Top-System (U, C,D), at the macro level, mainly concerns

knowledge and classification. Thus, Kn-Cl IP-Accuracy iaD(C∗)
is naturally constructed by integrating Kn-Con IP-Accuracy

iaX(C∗) because classification D is actually concepts system

{X1, . . . , Xm}. Herein, iaD(C∗) can systematically measure rea-

soning C∗ ⇒ D, knowledge C∗ (based on classification D), and

classification D (based on knowledge C∗). Moreover, Kn-Cl IIP-

Accuracy IiaD(C∗) is provided to describe C-POS. Thus, Kn-Cl

IP-Accuracy and IIP-Accuracy also achieve basic granulation

monotonicity. In particular, D-Table attribute reduction exactly

corresponds to the top system and macro level; as a result, the

perfect granulation monotonicity underlies further attribute

reduction.

(4) For the above three systems, IP-Accuracy utilizes the natural

sum integration to realize the valuable GrC-hierarchical pro-

motion, i.e., iaX([x]C∗) → iaX(C∗) → iaD(C∗); this evolution-

ary line is marked by Line I. Meanwhile, IP-Accuracy’s GrC

evolution could also be completed by establishing a new

connection based on the fourth system. The added system

(U, C∗,D), which is also at the meso middle level, mainly con-

cerns knowledge-granule, classification, and Cl-Gr IP-Accuracy

ia[x]C∗ (D), as well as Cl-Gr IIP-Accuracy Iia[x]C∗ (D). Herein,

ia[x]C∗ (D) can systematically measure the following: reason-

ing [x]C∗ ⇒ D, classification D (based on granule [x]C∗ ),

and granule [x]C∗ (based on classification D). According to

next Definition 3.4.1, Cl-Gr IP-Accuracy ia[x]C∗ (D) integrates

Con-Gr IP-Accuracy ia[x]C∗ (X) in Bottom-System and is fur-

ther integrated into Cl-Kn IP-Accuracy iaC∗(D) in Top-System.

Thus, ia[x]C∗ (D) could also be used to realize the new GrC-

hierarchical evolution, i.e., ia[x]C∗ (X) → ia[x]C∗ (D) → iaC∗(D);

this promotional line is marked by Line II.
(5) Line II integrates the classification first and knowledge second,

while Line I adopts the contrary order. Thus, different terms

usually have different semantics emphases. However, accord-

ing to Theorem 3.4.2, both lines have commutativity, which

radically originates from the algebraic sum commutativity; as

a result, both lines obtain the same final measure in macro Top-

System. In particular, Line II could establish the set-operation

property regarding the classification system, which sharply

contrasts with Line I’s granulation monotonicity. Therefore,

with the exception of granulation monotonicity, Top-System

could finally achieve more classification system properties.

In summary, we adopt a bottom-top strategy to perform IP-

ccuracy’s GrC construction. In particular, IP-Accuracy granulation

onotonicity (Theorems 3.3.2 and 3.3.7) and relevant preservation

eduction (Fig. 2) not only fully reflect our basic GrC works but also

ffectively underlie the later attribute reduction (Section 4).

Next, we provide the relevant definition and property for Middle-

ystem (U, C∗,D), which are mainly concerned in the above explana-

ion Items (4) (5). For the new measure, IIP-Accuracy could gain the

elevant construction and analysis, which are similar to IP-Accuracy’s

especially in Items (4) (5)).

efinition 3.4.1.

(1) Con-Gr IP-Accuracy ia[x]C∗ (Xj) = iaXj
([x]C∗).

(2) Cl-Gr IP-Accuracy ia[x]C∗ (D) = ∑m
j=1 ia[x]C∗ (Xj);

Cl-Gr IIP-Accuracy ia[x]C∗ (D) = ∑
POSC∗ (Xj)⊇[x]C∗

ia[x]C∗ (Xj).

(3) Cl-Kn IP-Accuracy iaC∗(D) = ∑
[x]C∗ ∈U/C∗ ia[x]C∗ (D);

Cl-Kn IIP-Accuracy IiaC∗(D) = ∑
[x]C∗ ∈U/C∗ Iia[x]C∗ (D).

heorem 3.4.2.

iaC∗(D) = iaD(C∗);
IiaC∗(D) = IiaD(C∗).

(28)

Note that IP-Accuracy’s GrC hierarchical system could be com-

ared to and comprehended by a practical assessment pattern, at

east in some sense. Thus, a relevant example is finally provided to

ain more thorough explanations.

xample 1. There are m players Xj and n judges [x]i. For players Xj ,

udges [x]i are endowed with objective systematic weights Ii j , and

hey also have their own subject judgement Ai j . Thus, the weighted

roduct Ii j × Ai j leads to the effective judgement, while the further

eighted sum provides the synthetic assessment. Concretely, there

re four systems and relevant assessments.

(1) In system ([x]i, Xj) (with one judge and one player), data

Ii j × Ai j could be used for the judge to synthetically assess the

player (based on the systematic weight) and also for the player

to synthetically evaluate the judge. Thus, Ai j, Ii j, Ii j × Ai j cor-

respond to accuracy, importance, and IP-Accuracy in Bottom-

System, respectively. In particular, the former three’s subjectiv-

ity, objectivity, effectiveness generally correspond to the latter

three’s individuality, systematicness, synthesis, respectively.

(2) In system ({[x]1, . . . , [x]n}, Xj) (with systematic judges and one

player), data
∑n

i=1 Ii j × Ai j could be used for the judges sys-

tem to synthetically assess the player and also for the latter

to synthetically evaluate the former. Thus, the weighted sum

information corresponds to Kn-Con IP-Accuracy in Middle-

System one.
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(3) In system ([x]i, {X1, . . . , Xm}) (with one judge and systematic

players), data
∑m

j=1 Ii j × Ai j could be used for the judge to syn-

thetically assess the players system and also for the latter to

synthetically evaluate the former. Thus, the weighted sum in-

formation corresponds to Cl-Gr IP-Accuracy in Middle-System

two.

(4) In system ({[x]1, . . . , [x]n}, {X1, . . . , Xm}) (with systematic

judges and systematic players), data
∑m

j=1[
∑n

i=1 Ii j × Ai j] =∑n
i=1[

∑m
j=1 Ii j × Ai j] could be used for the judges system to

synthetically assess the players system and also for the latter

to synthetically evaluate the former. Thus, the weighted sum

information corresponds to Kn-Cl/Cl-Kn IP-Accuracy in Top-

System. �

. Importance-accuracy attribute reduction

IP-Accuracy’s GrC construction is hierarchically completed in

ection 3. IP-Accuracy’s/IIP-Accuracy’s granulation monotonicity

Theorem 3.3.2/3.3.7) not only verifies IP-Accuracy’s fusion superi-

rity but also underlies further reduction construction. In particu-

ar, the monotonicity equality conditions and their equivalent re-

ional manifestations, as well as the in-depth preservation deduction

Fig. 2), solidly underlie IP-Accuracy/IIP-Accuracy reducts and their

ierarchies (regarding regional reducts).

In this section, IP-Accuracy/IIP-Accuracy and its monotonic-

ty are utilized to finally investigate attribute reduction regard-

ng D-Table (U, C,D). Concretely, qualitative/quantitative reducts,

heir hierarchies, and heuristic algorithms are systematically pro-

ided. Herein, IP-Accuracy/IIP-Accuracy is at the macro top, and

onstraint Cl-Kn is usually omitted. In particular, the hierarchi-

al reduction theory has been established in [74,75]. In this

ection, we will give a well-researched and descriptive empha-

is to the hierarchical reducts, in view of multiple reducts’

iversity.

.1. Reduct preliminaries

This subsection provides some reduct preliminaries. First, the

lassical Pawlak-Reduct [35,36] is reviewed; then, generalized

educts are proposed based on a monotonicity target; finally, hier-

rchical reducts [74,75] are introduced. Herein, let B ⊆ C.

emma 4.1.1. The following two items are equivalent:

(1) POSB′(D) �= POSB(D),∀B′ ⊂ B;

(2) POSB−{b}(D) �= POSB(D),∀b ∈ B.

Herein, Items (1) (2) correspond to the maximality and inde-

endence regarding C-POS preservation, respectively. They could be

quivalently used for Pawlak-Reduct.

efinition 4.1.2 (Pawlak-Reduct). B is Pawlak-Reduct of C if it satis-

es following Items (1) (2) or (1) (3) regarding C-POS preservation.

(1) POSB(D) = POSC(D);

(2) POSB′(D) �= POSB(D),∀B′ ⊂ B;

(3) POSB−{b}(D) �= POSB(D),∀b ∈ B.

erein, Core(C) = {c ∈ C : POSC−{c}(D) �= POSC(D)} and Red(C) de-

ote Pawlak-Reduct’s core and set, respectively.
In view of C-POS granulation monotonicity, Pawlak-Reduct is nat-

rally established by preserving C-POS, thus becoming a qualitative

educt. Herein, Item (1) reflects the joint sufficiency regarding C-POS

reservation, and Items (2) (3) could be arbitrarily chosen for the in-

ividual necessity. The following core-reduct relationship is basic.

roposition 4.1.3. Core(C) = ⋂
B∈Red(C)B.

Among all reduction algorithms, heuristic algorithms are appre-

iated in view of their high efficiency. The basic heuristic algorithm

ainly utilizes the dependency degree, and

ig(c, C∗;D) = γC∗(D) − γC∗−{c}(D) (29)

ecomes the corresponding reduction-heuristic information for con-

itional attribute c.

The above Pawlak-Reduct results mainly originate from the C-POS

ranulation monotonicity (Proposition 3.1.4). In fact, they have pow-

rful generalization. Thus, we primarily propose a type of generalized

educts via a monotonicity target. Note that Ref. [11] generalizes mul-

iple types of exiting attribute reducts. In contrast, the generalized

educts proposed below mainly focus on and promote fundamental

onotonicity.

efinition 4.1.4. Let MT be an isomorphism between complete lat-

ices (2C ,⊆ ) and (L, � ); herein, if C2 ⊆ C1 ⊆ C, then MT(C2) �
T(C1), while MT(∅), MT(C) become the least and greatest elements

n L, respectively. Thus, MT is called a monotonicity target (MT) regard-

ng C. For Kn-Coarsening C1 ⇒ C2, monotonicity target preservation

MT-Preservation) is defined by MT(C2) = MT(C1).

Note that Ref. [74] utilizes the complete lattice to establish the

tructural target (ST), which is multi-dimensional. In this paper, we

ropose the monotonicity target (MT), which is also related to the

omplete lattice but is integral. For example, C-POS is MT in the map-

ing sense, where the relevant mapping changes ∅ to ∅. Clearly, MT

olds granulation monotonicity, and MT-Preservation is naturally de-

ned. Thus, the relevant MT-Preservation reducts could be further es-

ablished.

emma 4.1.5. The following two items are equivalent:

(1) MT(B′) �= MT(B),∀B′ ⊂ B;

(2) MT(B − {b}) �= MT(B),∀b ∈ B.

efinition 4.1.6 (MT-Preservation Reduct). B is MT-Preservation

educt of C if it satisfies following Items (1) (2) or (1) (3) regarding

T-Preservation.

(1) MT(B) = MT(C);

(2) MT(B′) �= MT(B),∀B′ ⊂ B;

(3) MT(B − {b}) �= MT(B),∀b ∈ B.

erein, CoreMT(C) = {c ∈ C : MT(C − {c}) �= MT(C)} and RedMT(C)
enote MT-Preservation Reduct’s core and set, respectively.

roposition 4.1.7. CoreMT(C) = ⋂
B∈RedMT(C)B.

Lemma 4.1.5 and Proposition 4.1.7 are proved in Appendixes C

nd D, where MT granulation monotonicity plays the key role. In

act, they extend Lemma 4.1.1 and Proposition 4.1.3, respectively.

oreover, MT-Preservation Reduct extends Pawlak-Reduct. Thus,
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we establish a more general framework of attribute reduction by

virtue of the national target with granulation monotonicity. MT-

Preservation Reduct and its property apply to extensive monotonic-

ity reducts. In particular, all of the reducts proposed later fall into

the MT-Preservation Reduct category, so MT-Preservation Reduct pro-

vides a unified normal pattern. For these reducts, we mainly em-

phasize their target monotonicity and preservation while neglecting

their natural definition equivalence and core-reduct relationship. As

a result, we could more thoroughly focus on multiple reduct types

and their systematic hierarchies.

Theorem 4.1.8 (Hierarchical Reduct). Strong and weak reducts are de-

fined by the strong and weak reduction targets, respectively. The strong

reduct’s core and set are denoted by Corestrong(C) and Redstrong(C), re-

spectively, and so are the weak symbols Coreweak(C) and Redweak(C).

Thus, two items hold as follows:

(1) Corestrong(C) ⊇ Coreweak(C);

(2) ∀Bstrong ∈ Redstrong(C),∃Bweak ∈ Redweak(C), s.t., Bweak ⊆
Bstrong.

According to the hierarchical reduction theory [74,75], the strong

reduct has a strong reduction target, and its core includes weak

reduct’s core. Moreover, in contrast to Item (2) (Theorem 4.1.8), the

weak reduct could exist by transcending the inclusion relationship

from the strong reduct. Moreover, denote Bstrong ⇒ Bweak; then, re-

lation ⇒ becomes a partial order with the natural transitivity, but it

transcends simple set relations ⊆ and ⊇.

4.2. Importance-accuracy qualitative reducts

This subsection utilizes IP-Accuracy and IIP-Accuracy to establish

two types of qualitative reducts and further studies their relation-

ships for qualitative Pawlak-Reduct.

Definition 4.2.1 (IP-Accuracy Reduct). B is IP-Accuracy Reduct of C
if it satisfies following Items (1) (2) or (1) (3) regarding IP-Accuracy

preservation.

(1) iaD(B) = iaD(C);

(2) iaD(B′) �= iaD(B),∀B′ ⊂ B;

(3) iaD(B − {b}) �= iaD(B),∀b ∈ B.

Herein, Coreia(C) = {c ∈ C : iaD(C − {c}) �= iaD(C)} and Redia(C) de-

note IP-Accuracy Reduct’s core and set, respectively.

IP-Accuracy’s granulation monotonicity and relevant equality con-

ditions are provided in Theorem 3.3.2. In view of Gr-Merging’s ac-

curacy requirement and region feature, the objective of IP-Accuracy

preservation is actually to quantitatively keep the classification. By

virtue of this reduction target, IP-Accuracy Reduct is naturally es-

tablished to become a qualitative reduct but exhibits a metrical

style.

Theorem 4.2.2. IP-Accuracy Reduct is stronger than Pawlak-Reduct.

Thus,

(1) Coreia(C) ⊇ Core(C).

(2) ∀Bia ∈ Redia(C),∃B ∈ Red(C), s.t., B ⊆ Bia.
IP-Accuracy preservation unidirectionally deduces C-POS preser-

ation (Corollary 3.3.3 or Fig. 2), so IP-Accuracy Reduct is stronger

han Pawlak-Reduct. Thus, the above hierarchical reduction descrip-

ion becomes clear.

efinition 4.2.3 (IIP-Accuracy Reduct). B is IIP-Accuracy Reduct of C
f it satisfies following Items (1) (2) or (1) (3) regarding IIP-Accuracy

reservation.

(1) IiaD(B) = IiaD(C);

(2) IiaD(B′) �= IiaD(B),∀B′ ⊂ B;

(3) IiaD(B − {b}) �= IiaD(B),∀b ∈ B.

erein, CoreIia(C) = {c ∈ C : IiaD(C − {c}) �= IiaD(C)} and RedIia(C)
enote IIP-Accuracy Reduct’s core and set, respectively.

heorem 4.2.4. IIP-Accuracy Reduct is equivalent to Pawlak-Reduct.

hus,

(1) CoreIia(C) = Core(C);

(2) RedIia(C) = Red(C).

IIP-Accuracy’s granulation monotonicity and relevant equality

onditions are provided in Theorem 3.3.7. In view of Gr-Merging’s

-POS result, the objective of IIP-Accuracy preservation is actually to

ualitatively keep the classification. By virtue of this reduction target,

IP-Accuracy Reduct is naturally established to become a qualitative

educt with a metrical style. Clearly, IIP-Accuracy Reduct is equivalent

o Pawlak-Reduct, according to Theorem 3.3.7 or Fig. 2.

heorem 4.2.5. IP-Accuracy Reduct is stronger than IIP-Accuracy

educt. Thus,

(1) Coreia(C) ⊇ CoreIia(C);

(2) ∀Bia ∈ Redia(C),∃BIia ∈ RedIia(C), s.t., BIia ⊆ Bia.

According to Corollary 3.3.8 or Fig. 2, Theorem 4.2.5 clearly ex-

ibits the hierarchy between IP-Accuracy and IIP-Accuracy Reducts.

oreover, this hierarchy conclusion could be inferred by Theorems

.2.2 and 4.2.4.

The above reduction hierarchies mainly focus on only three reduct

ypes: IP-Accuracy Reduct, IIP-Accuracy Reduct, and Pawalk-Reduct.

ote that the hierarchy radically originates from the reduction target

eduction. Thus, more reduction hierarchies could be established by

ig. 2 and become later research content (Section 4.4).

Aiming at qualitative IP-Accuracy and IIP-Accuracy Reducts,

euristic reduction algorithms are next constructed. Clearly, under-

ying IP-Accuracy and IIP-Accuracy (and their monotonicity) could be

ully utilized. Thus, IP-Accuracy and IIP-Accuracy are first used to con-

truct two types of reduction-heuristic information:

sigia(c, C∗;D) = iaD(C∗) − iaD(C∗ − {c});
sigIia(c, C∗;D) = IiaD(C∗) − IiaD(C∗ − {c}). (30)

oreover, the reduction core is easily calculated to underlie attribute

ddition algorithms. Thus, both the heuristic information and re-

uction core are utilized to develop the relevant heuristic reduc-

ion algorithm. Next, the IP-Accuracy-Based heuristic algorithm for

P-Accuracy Reduct is provided, i.e., Algorithm 1, while the parallel

lgorithm for IIP-Accuracy Reduct could be similarly developed.
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lgorithm 1. IP-Accuracy-Based heuristic algorithm for IP-Accuracy

educt

Input: D-Table (U, C ∪ D);

Output: IP-Accuracy Reduct Bia ∈ Redia(C).

1: Compute Coreia(C).

2: Bia = Coreia(C).

3: while iaD(Bia) �= iaD(C) do

4: ∀c ∈ C − Bia , calculate sigia(c,Bia;D);

choose c0 = argmaxc∈C−Bia
sigia(c,Bia;D);

let Bia = Bia ∪ {c0}.

5: end while

6: return Bia .

Based on the attribute addition strategy, Algorithm 1 mainly

tilizes IP-Accuracy heuristic information sigia(c, C∗;D) to calcu-

ate IP-Accuracy Reduct. Concretely, Step 1 gives the basic core;

tep 2 chooses the core as the reduct basis; Steps 3 and 4 fur-

her seek an attribute subset to satisfy the IP-Accuracy preser-

ation target, and the added c0 is randomly chosen inside C −
ia via the highest IP-Accuracy heuristic information. As a result,

lgorithm 1 could usually yield one IP-Accuracy Reduct (regard-

ess of independence/maximality), thus becoming convergent and

ffective.

Herein, the two heuristic reduct algorithms (i.e., Algorithm 1

nd its parallel) are correspondingly inspired by their own bear-

ng measures. Moreover, they could alternatively be inspired by

heir opposite bearing measures. In other words, IP-Accuracy/IIP-

ccuracy Reduct could be heuristically calculated by IIP-Accuracy/IP-

ccuracy. For Pawlak-Reduct, Algorithm 1 effectively provides a

euristic algorithm because IP-Accuracy Reduct is stronger than

awlak-Reduct (Theorem 4.2.2); in contrast, the parallel algo-

ithm for IIP-Accuracy Reduct directly provides a heuristic algo-

ithm because IIP-Accuracy Reduct is equivalent to Pawlak-Reduct

Theorem 4.2.4).

.3. Importance-accuracy quantitative reducts

In Section 4.2, two qualitative reducts are proposed, and both are

ompared to Pawlak-Reduct. For qualitative reducts, the qualitative

quality with the measure criterion becomes somewhat strict, es-

ecially in certain practical environments. In practice, there is not

nly calculation error but also data noise. Thus, the relevant quan-

itative reduct with some metrical change exhibits radical improve-

ents and underlies extensive applications. Moreover, the quanti-

ative reduct expansion could enlarge IP-Accuracy Reduct’s appli-

ation scope because IP-Accuracy preservation is relatively strict

Fig. 2). Usually, the quantitative reduct is indirectly realized by the

uantitative model and its quantitative function. Herein, we alterna-

ively resort to a new approach; i.e., the quantitative reduct is di-

ectly established by the monotonous measure and its quantitative

unction. Thus, this subsection mainly depends on IP-Accuracy/IIP-

ccuracy to construct quantitative reducts, including the novel toler-

nt and approximate reducts.

heorem 4.3.1.

(1) Define U/∅ = U and CKSC = {U/C∗ : C∗ ⊆ C}. Then, (CKSC ,⇒ )
constitutes a complete lattice; U/C and U/∅ serve as the least and

greatest elements, respectively.
(2) Define mapping kn : 2C → CKSC , ∀C∗ ∈ 2C , kn(C∗) = U/C∗.

Then, surjective kn constructs an order-preservation mapping

between complete lattices (2C,⊇ ) and (CKSC,⇒ ). Furthermore,

by virtue of kn, both complete lattices exhibit a complete lattice

homomorphism.

(3) By virtue of IP-Accuracy iaD(C∗), define mapping mia : CKSC →
[1, iaD(C)], ∀U/C∗ ∈ CKSC , mia(U/C∗) = iaD(C∗). Then, non-

surjective mia constructs an order-preservation mapping between

complete lattices (CKSC, ⇒ ) and ([1, iaD(C)], ≥ ).

(4) IP-Accuracy iaD(C∗) essentially determines mapping iaD : 2C →
[1, iaD(C)], ∀C∗ ∈ 2C , iaD(C∗) = iaD(C∗). Thus, iaD becomes

the composite mapping of kn and mia, i.e., iaD = mia ◦
kn and iaD(C∗) = (mia ◦ kn)(C∗) = mia(kn(C∗)) = mia(U/C∗) =
iaD(C∗). Additionally, iaD constructs an order-preservation map-

ping between complete lattices (2C ,⊇ ) and ([1, iaD(C)], ≥ ). As

a result, iaD holds the monotonicity and boundedness, i.e.,{
iaD(C1) ≥ iaD(C2), if C ⊇ C1 ⊇ C2;
iaD(C∗) ∈ [1, iaD(C)],∀C∗ ⊆ C.

In Theorem 4.3.1, three complete lattices and their order preser-

ation mappings are thoroughly constructed for the conditional at-

ribute, coarsening knowledge, and IP-Accuracy measure. These alge-

raic results become natural but in-depth. Herein, CKSC means the

oarsening knowledge set. Moreover, extreme ∅ and U/∅ = {U} lead

o

a∅(D) =
m∑

j=1

ia∅(Xj) =
m∑

j=1

|U ∩ Xj|2

|U||Xj| =
m∑

j=1

|Xj|
|U| = 1;

hus, IP-Accuracy iaD(C∗) has the lower bound 1. Next, these relevant

athematical results are exhibited in Fig. 4. There, the three com-

lete lattices and their representative elements (including the least

nd greatest elements) are located at three different levels; further-

ore, the three order preservation mappings connect these levels. In

articular, IP-Accuracy’s granulation monotonicity regarding coars-

ning order relation ⇒ is also expressed by a non-increasing mapping

gure.

heorem 4.3.2.

lim
∗→C

iaD(C∗) = iaD(C), (31)

.e., ∀ε > 0,∃Cε, if C∗ ⊇ Cε (i.e., C∗ ⇒ Cε), then iaD(C) − iaD(C∗) < ε.

In Theorem 4.3.2, IP-Accuracy’s limit form is provided to describe

P-Accuracy’s granulation monotonicity. In particular, the relevant ε-

ε description could be reflected by Fig. 4. This limit result reflects

sort of generalized continuity for IP-Accuracy’s granulation mono-

onicity, thus underlying the next quantitative reduct construction.

efinition 4.3.3. Define mappings driaD , eriaD : 2C → [0, 1],

C∗ ∈ 2C ,

driaD(C∗) = iaD(C) − iaD(C∗)
iaD(C)

= 1 − iaD(C∗)
iaD(C)

,

eriaD(C∗) = 1 − driaD(C∗) = iaD(C∗)
iaD(C)

.

(32)

erein, driaD (C∗) and eriaD (C∗) are called knowledge C∗’s dis-

repancy and equality rates regarding knowledge C’s IP-Accuracy,

espectively.
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Proposition 4.3.4.⎧⎨
⎩

driaD(C∗) ∈ [0, 1 − 1

iaD(C)
];

eriaD(C∗) ∈ [
1

iaD(C)
, 1];

(33)

driaD (C∗) = 0, iff iaD(C∗) = iaD(C), iff eriaD (C∗) = 1.

Theorem 4.3.5 (Monotonicity V). Discrepancy and approximation

rates hold granulation monotonicity. Concretely, in Kn-Coarsening

C1 ⇒ C2,{
driaD(C2) ≥ driaD(C1);
eriaD(C2) ≤ eriaD(C1);

(34)

driaD (C2) = driaD (C1), iff iaD(C2) = iaD(C1), iff eriaD (C2) = eriaD (C1).

Complementary discrepancy and equality rates are proposed to

measure discrepancy and equality degrees between knowledge C∗’s

and knowledge C’s IP-Accuracy, respectively. Herein, C’s P-Accuracy

acts as the ideal target value, thus becoming the comparison criterion.

Moreover, a controllable measure style of relative ratio is adopted to

form the relevant interval range with 1
iaD(C) . In particular, the rele-

vant granulation monotonicity is provided and thus leads to the cor-

responding quantitative reducts as follows.

Definition 4.3.6 (IP-Accuracy Tolerant Reduct). Give IP-Accuracy tol-

erance rate δ ∈ [0, 1 − 1
iaD(C) ]. B is IP-Accuracy δ-Tolerant >Reduct of

C if it satisfies following Items (1) (2) or (1) (3) regarding IP-Accuracy

δ-tolerance preservation.

(1) driaD (B) ≤ δ;

(2) driaD (B′) > δ, ∀B′ ⊂ B;

(3) driaD (B − {b}) > δ, ∀b ∈ B.

Herein, Coreδ
ia(C) = {c ∈ C : driaD (C − {c}) > δ} and Red

δ
ia(C) denote

IP-Accuracy δ-Tolerant Reduct’s core and set, respectively.

Definition 4.3.7 (IP-Accuracy Approximate Reduct). Give IP-

ccuracy approximation rate η ∈ [ 1
iaD(C) , 1]. B is IP-Accuracy η-

pproximate Reduct of C if it satisfies following Items (1) (2) or (1)

(3) regarding IP-Accuracy η-approximation preservation.

(1) eriaD (B) ≥ η;

(2) eriaD (B′) < η, ∀B′ ⊂ B;

(3) eriaD (B − {b}) < η, ∀b ∈ B.

Herein, Core
η
ia
(C) = {c ∈ C : eriaD (C − {c}) < η} and Red

η
ia
(C) denote

IP-Accuracy η-Approximation Reduct’s core and set, respectively.

Tolerance rate δ first provides the tolerance threshold for ob-

jective discrepancy rate driaD (C∗); thus, IP-Accuracy δ-tolerance

preservation (i.e., driaD (C∗) ∈ [0, δ]) becomes the reduction tar-

get to determine IP-Accuracy Tolerant Reduct. Similarly, equal-

ity rate eriaD (C∗) holds the objectivity, approximation rate η pro-

vides the subjective approximation threshold, and IP-Accuracy η-

approximation preservation (i.e., eriaD (C∗) ∈ [η, 1]) becomes the

reduction target. In particular, both IP-Accuracy δ-tolerance and

η-approximation preservation hold convergence for IP-Accuracy

preservation: a sort of quantitative preservation of classification

(Theorem 3.3.2); thus, both IP-Accuracy Tolerant and Approximate

Reducts are locally enlarged by surrounding the ideal knowledge

state of this sort of quantitative preservation. Based on the above
nalyses, both reducts hold not only the directness regarding the

ualitative reduction target but also the statistical property regard-

ng IP-Accuracy.

Note that IP-Accuracy Tolerant/Approximate Reduct adheres to

T-Preservation Reduct (Definition 4.1.6). In fact, IP-Accuracy δ-

olerance also has monotonicity, which comes from the discrep-

ncy rate’s monotonicity (Theorem 4.3.5). In the lattice sense, if

2 ⊆ C1 then (driaD (C2) ∈ [0, δ]) � (driaD (C1) ∈ [0, δ]), which accords

ith driaD (C2) ≥ driaD (C1) (Formula (34)). Moreover, IP-Accuracy η-

pproximation’s monotonicity could be similarly analyzed.

heorem 4.3.8. IP-Accuracy Tolerant and Approximate Reducts become

quivalent when δ + η = 1.

The two quantitative reducts exhibit clear definition duality

nd hold the equivalent transformation when δ + η = 1. Thus, IP-

ccuracy Tolerant Reduct is mainly used as a representative.

heorem 4.3.9 (Quantitative Reduct Features).

(1) Approach: IP-Accuracy δ-Tolerant (η-Approximate) Reduct ap-

proaches IP-Accuracy Reduct, when δ → 0 (η → 1).

(2) Expansion: IP-Accuracy δ-Tolerant (η-Approximate) Reduct ex-

pands IP-Accuracy Reduct and could degenerate into the latter

when δ = 0 (η = 1).

(3) Weakening: IP-Accuracy Tolerant (Approximate) Reduct is weaker

than IP-Accuracy Reduct.

roof. (1) Item (1) is natural and could also be verified by Theorem

.3.2 and Fig. 4. (2) According to Monotonicity V (Theorem 4.3.5),

hen δ = 0 (η = 1), IP-Accuracy δ-tolerance (η-approximate) preser-

ation degenerates into IP-Accuracy preservation (i.e., driaD (C∗) = 0).

3) IP-Accuracy preservation (i.e., driaD (C∗) = 0) unidirectionally de-

uces IP-Accuracy δ-tolerance (η-approximate) preservation. �

orollary 4.3.10.

(1) Coreδ
ia(C),Core

η
ia
(C) ⊆ Coreia(C);

(2) ∀Bia ∈ Redia(C), ∃Bδ
ia

∈ Red
δ
ia(C), ∃Bη

ia
∈ Red

η
ia
(C), s.t., Bδ

ia
,

Bη
ia

⊆ Bia.

IP-Accuracy Tolerant and Approximate Reducts originate from IP-

ccuracy Reduct by introducing the applicable tolerance and ap-

roximation, respectively. Theorem 4.3.9 summarizes both quanti-

ative reducts’ three fundamental features regarding qualitative IP-

ccuracy Reduct, i.e., the approach, expansion, and weakening; in

act, they correspond to δ → 0 (η → 1), δ = 0 (η = 1), δ > 0 (η < 1),

espectively. Thus, quantitative reducts also exhibit directness re-

arding the qualitative reduct in a statistical way. Therefore, when

ompared to qualitative IP-Accuracy Reduct, IP-Accuracy Tolerant

nd Approximate Reducts become two essential types of quantita-

ive reducts, thus holding efficient and extensive quantitative appli-

ations. In particular, Corollary 4.3.10 endows the above weakening

eature with the hierarchical description. More hierarchical results of

uantitative reducts will be intensively reflected in Section 4.4.

For quantitative reducts’ heuristic algorithms, a representative

s provided for calculating IP-Accuracy Tolerant Reduct. Clearly,

he discrepancy rate could be chosen to construct key heuristic

nformation:

ig
δ
ia(c, C∗;D) = driaD(C∗) − driaD(C∗ − {c}). (35)
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hus, we naturally develop the following Algorithm 2, which accords

ith the previous Algorithm 1. Herein, attribute’s sorting and choice

ased on sigδ
ia(c, C∗;D) are essentially equivalent to those based on

igia(c, C∗;D), in view of the order-preservation of relevant granula-

ion monotonicity.

lgorithm 2. IP-Accuracy discrepancy rate-based heuristic algo-

ithm for IP-Accuracy Tolerant Reduct

Input: D-Table (U, C ∪ D) and tolerance rate δ;

Output: IP-Accuracy Tolerant Reduct Bδ
ia

∈ Red
δ
ia(C).

1: Compute Coreδ
ia(C).

2: Bδ
ia

= Coreδ
ia(C).

3: while driaD (Bδ
ia
) > δ do

4: ∀c ∈ C − Bδ
ia

, calculate sig
δ
ia(c,Bδ

ia
;D);

choose c0 = argmaxc∈C−Bδ
ia

sig
δ
ia(c,Bδ

ia
;D);

let Bδ
ia

= Bδ
ia

∪ {c0}.

5: end while

6: return Bδ
ia

.

By simulating the above quantitative reducts regarding IP-

ccuracy, we could similarly study the quantitative reducts re-

arding IIP-Accuracy, which more approach Pawlak-Reduct. Within

he IIP-Accuracy framework, the discrepancy and equality rates

ecome drIia(C∗) and erIia(C∗), while the tolerance and approxi-

ation rate thresholds δ′, η′ are usually in the range [0, 1]. The

aturally defined IIP-Accuracy Tolerant and Approximate Reducts

lso approach/expand/weaken IIP-Accuracy Reduct. In particular,

he two quantitative reducts mainly surround the classification-

ualitative preservation (Theorem 3.3.7). Finally, we provide the re-

uction hierarchy for the IIP-Accuracy and IP-Accuracy quantitative

educts.

roposition 4.3.11. IIP-Accuracy Tolerant/Approximate Reduct is usu-

lly weaker than IP-Accuracy Tolerant/Approximate Reduct, especially

or appropriate tolerance/approximation rate thresholds.

.4. Importance-accuracy reduct hierarchies

In Section 4.2, we provide two qualitative reduct types (IP-

ccuracy/IIP-Accuracy Reduct) and their hierarchies regarding qual-

tative Pawlak-Reduct. In Section 4.3, we provide four quantita-

ive reduct types (IP-Accuracy/IIP-Accuracy Tolerant/Approximate

educt) and their hierarchies regarding qualitative IP-Accuracy/IIP-

ccuracy Reduct. All of these constructional reducts belong to MT-

reservation Reduct because the underlying target holds granulation

onotonicity; in particular, they hold some statistical systematic-

ess because IP-Accuracy/IIP-Accuracy holds statistical systematic-

ess; moreover, Tolerant/Approximate Reduct holds the directness.

n this section, these reduct types’ hierarchy relationships are sum-

arized. For this purpose, the above metrical and regional reduction

ruits are first utilized to provide the following reduct hierarchy figure

egarding IP-Accuracy, i.e., Fig. 5.

Next, Fig. 5 is utilized to put forth some explanations:

(1) All nine reduct types apply to the extensive multiple-

category case. The qualitative reducts concern five reduct

types (in the bottom half), which completely correspond

to the previous preservation deduction targets (Fig. 2);

herein, the set-region preservation reduct and distributional
preservation reduct are naturally defined. In contrast, the

quantitative reducts concern four reduct types (in the top half),

which are provided in Section 4.3.

(2) Arrows represent the reduction hierarchy relation ⇒ (from

reduction strengthening to weakening), which correspond

to the deduction relation of reduction preservation targets.

Thus, all of the reduct hierarchies become clear. In particu-

lar, IP-Accuracy Reduct and IIP-Accuracy Tolerant/Approximate

Reduct become the strongest and weakest reduct types,

respectively. To realize the hierarchical transformation of

both, there are actually three different approaches, includ-

ing IP-Accuracy Reduct ⇒ IP-Accuracy Tolerant Reduct ⇒ IIP-

Accuracy Approximate Reduct.

(3) Reduct hierarchies closely adhere to GrC. In fact, different hier-

archical reducts correspond to different results regarding the

granular scale, presentative precision, and applicable gener-

alization. Thus, IP-Accuracy Reduct exhibits the finest scale,

the highest formal precision, and the narrowest generalization,

while IIP-Accuracy Tolerant/Approximate Reduct exhibits the

relevant opposites.

According to hierarchical reduction theory [74,75], Fig. 5 could

e further utilized to make hierarchical descriptions regarding the

ore and reduct, such as those in Corollary 4.3.10. Note that a strong

educt can provide some guidance for seeking weak reducts. Thus,

he strongest IP-Accuracy Reduct is utilized to finally develop a hier-

rchical heuristic algorithm for searching IIP-Accuracy Approximate

educt, which becomes Algorithm 3.

lgorithm 3. IP-Accuracy Reduct-based heuristic algorithm for IIP-

ccuracy Approximate Reduct

Input: D-Table (U, C ∪ D), approximation rate threshold η′;
Output: IIP-Accuracy Approximate Reduct Bη′

Iia
∈ Red

η′
Iia

(C).

1: Give IP-Accuracy Reduct Bia .

2: Yield Core
η′
Iia

(C).

3: Search Bη′
Iia

in range Core
η′
Iia

(C) ⊆ Bη′
Iia

⊆ Bia to satisfy IIP-

Accuracy η′-approximation preservation.

4: return Bη′
Iia

.

In Algorithm 3, Step 1 provides a strong IP-Accuracy Reduct

or the hierarchical heuristics, Step 2 yields the core of weak IIP-

ccuracy Approximate Reduct, and Step 3 performs the hierar-

hical heuristic search to gain the weak target: IIP-Accuracy η′-
pproximation preservation. As a result, this algorithm is con-

ergent and effective and could achieve all IP-Accuracy Approx-

mate Reducts included in the given Bia (regardless of indepen-

ence/maximality). In particular, the hierarchical heuristic algo-

ithm sharply contrasts with the metrical heuristic algorithm (e.g.,

lgorithm 2). The two algorithm types mainly differ in the heuristic

ormation respect; for heuristic development, the hierarchical struc-

ure and monotonous measure are utilized, respectively. Moreover,

he two types of heuristic formation could be synthetically utilized to

evelop more efficient algorithms; for example, Algorithm 3 could

e efficiently improved by introducing IIP-Accuracy into Step 3’s

earch.

. A decision table example

D-Table usually originates from a real-world example, and the

elevant RS-Theory approach could depend on D-Table to bring
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extensive practical application performance. In this section, we

mainly resort to D-Table to illustrate this paper’s approach. For conve-

nience, the granule-statistical information and knowledge-structural

hierarchy are provided after basic processing; thus, they are di-

rectly utilized to illustrate the three-way measures and fusional IP-

ccuracy, IP-Accuracy’s GrC construction and granulation monotonic-

ity, qualitative/quantitative reducts and their hierarchies.

Example 2. For D-Table (U, C ∪ D), the granule-statistical informa-

tion regarding knowledge C and concept X is provided in Table 3.

Herein, |U| = 100, |U/C| = n = 12, |X| = 40.

Table 3 focuses on Bottom-System (U, C, X) via eight columns.

Thus, these columns’ data are concretely utilized to illustrate the rel-

evant subjects. First, the 1st column provides twelve granules’ se-

rial number (i.e., i in [x]
i
C), which comes from the interaction car-

dinality ordering in the 2nd column. The 4th, 5th, 6th columns ex-

hibit generality, importance, and accuracy, respectively. The three-

way measures completely correspond to three-way probabilities (i.e.,

the prior, posterior, and likelihood probabilities); in fact, they radi-

cally originate from and equivalently correspond to the two-initial

data: the interaction and granule cardinalities (in the 2nd and 3rd

columns). Moreover, the 7th column provides IP-Accuracy, which em-

bodies the corresponding data product of 5th and 6th columns.

Accuracy usually acts as the previous single causality measure, but

exhibits only the relative causality. In this paper, importance with ab-

solute causality is introduced to fuse accuracy, so IP-Accuracy is fur-

ther mined to represent synthetic causality. Herein, IP-Accuracy’s im-

provements are explained based on accuracy.

(1) There are two specific groups of granules with the same ac-

curacy, i.e., [x]
1
C , [x]

4
C with accuracy 0.5 and [x]

6
C , [x]

10
C with

1.0. In the usual accuracy environment, [x]
1
C and [x]

4
C cannot be

discriminated, so they are treated equally in the same degree.

However, they play different roles in the causality applications

(such as rule reasoning) because iX([x]
1
C) > iX([x]

4
C). For causal-

ity, [x]
1
C actually holds more absolute contributions (based on

importance) than [x]
4
C and therefore should gain more sys-

tematic attentions and synthetic availability/reliability. Fur-

thermore, the fusional IP-Accuracy could provide a synthetic

causality estimation, and [x]
1
C receives high reasoning trust be-

cause iaX([x]
1
C) > iaX([x]

4
C). The other granular group ([x]

6
C and

[x]
10
C ) also achieves a similar reasonable result.

(2) When compared to [x]
7
C and [x]

8
C , [x]

1
C and [x]

2
C depend on their

higher importance and IP-Accuracy to gain higher attention

and trust, though their accuracy is lower. As a result, [x]
1
C ⇒

X and [x]
2
C ⇒ X become more reliable than [x]

7
C ⇒ X and

[x]
8
C ⇒ X , especially from the systematic and synthetic view-

point.

The reasonable results above reflect IP-Accuracy’s development and

scientificity as derived from the usual single accuracy causality. The

radical reason is the double-quantitative fusion of both causality

measures, where accuracy and importance exhibit heterogeneity and

complementarity.

In this example, the granule-statistical information comes from

Bottom-System (U, C, X) and is thus the finest one. Herein, C =
{a, b, c, d, e, f },U/D = {X, ¬X}; thus, (n, m) = (12, 2), (|X|, |¬X|) =
(40, 60). Next, Fig. 6 provides the relevant knowledge-structural

hierarchy. This hierarchy figure evolutes the initial large
-Table and thus becomes smaller and simpler. Herein, attributes

, b, c have more complete descriptions, while attributes d, e, f

rovide only some auxiliary functions.

First, this hierarchy figure’s construction is simply explained.

(1) For Kn-Coarsening from C, the twelve granules regarding C
are the finest, so they establish a basis for the knowledge-

structural description. In particular, they depend on their ac-

curacy to exhibit the following ordering: (6) (10) (7) (8) (2) (1)

(4) (3) (9) (5) (11) (12); thus, they are represented by twelve

serial points.

(2) Each attribute subset corresponds to a knowledge-structure,

and the latter implies Gr-Merging and Gr-Preservation for

the twelve granules. Thus, for each attribute subset and

its knowledge-structure, small rectangles (containing serial

points) mark Gr-Merging, and two vertical lines are used to de-

fine X, ¬X .

(3) Knowledge’s coarsening relation is represented by the ar-

row to connect all knowledge-structures. Thus, this hierar-

chy figure is formed. In particular, the bottom half has part

Kn-Coarsening regarding {a, b, c, d, e, f } ⇒ {a, b, c, d, e} ⇒
{a, b, c, d} ⇒ {a, b, c}; in contrast, the top half has all Kn-

Coarsening regarding {a, b, c}’s subsets.

n Fig. 6, each piece of knowledge can rapidly achieve its structural

ranule and hierarchical position. In fact, this hierarchy is highly re-

ated to the reduction target structure [74], so it becomes enough for

he next knowledge-based GrC discussion and reduction analyses.

Then, we calculate each knowledge’s IP-Accuracy, IIP-Accuracy,

iscrepancy and equality rates. Note that this calculation process

adically reflects the relevant GrC construction, which is related to

he sum integration. The computational results are shown in Table

. Herein, we provide the presentative calculation process regarding

nowledge {a, b, c}, where only five granules exist.

(1) iaX(C∗) = 4
40 × 4

4 + 5
40 × 5

7 + 25
40 × 25

51 + 6
40 × 6

22 + 0
40 × 0

16 =
0.5366, ia¬X(C∗) = 0

60 × 0
4 + 2

60 × 2
7 + 26

60 × 26
51 + 16

60 × 16
22 +

16
60 × 16

16 = 0.6910; Iia¬X(C∗) = 4
40 × 4

4 = 0.1000, Iia¬X(C∗) =
16
60 × 16

16 = 0.2667.

(2) iaD(C∗) = iaX(C∗) + ia¬X(C∗) = 0.5366 + 0.6910 = 1.2276;

IiaD(C∗) = IiaX(C∗) + Iia¬X(C∗) = 0.1000 + 0.2667 = 0.3667.

(3) Similar to the above two steps, the initial twelve gran-

ules are utilized to obtain: iaD(C) = iaX(C) + ia¬X(C) =
0.5437 + 0.6958 = 1.2395; IiaD(C) = IiaX(C) + Iia¬X(C) =
0.1000 + 0.2667 = 0.3667. The two data regarding C –

1.2395 and 0.3667 – establish the comparative criterion to

calculate the discrepancy and equality rates. Thus, regard-

ing {a, b, c}, driaD = 1.2395−1.2276
1.2395 = 0.0096 = 0.96%, eriaD =

99.04%; drIiaD = 0.3667−0.3667
0.3667 = 0.00%, erIiaD = 100.00%,

Thus far, basic data processing has been completed. Next, Table 4

as well as Fig. 6) is fully utilized to illustrate IP-Accuracy’s relevant

rC terms (Section 3), including the hierarchy construction, granula-

ion monotonicity, equality condition, and preservation deduction.

(1) Kn-Con IP-Accuracy aims to calculate all Gr-Con IP-Accuracy’s

sum, and this process holds an integration from the gran-

ule to knowledge. The 2nd column verifies Kn-Con IP-

Accuracy’s granulation monotonicity (Theorem 3.2.6), and

iaX(C∗) changes from maximum 0.5437 to limit 0.4000

in Kn-Coarsening. Herein, the same Kn-Con IP-Accuracy

emerges in Kn-Coarsening {a, b, c, d, e, f } ⇒ {a, b, c, d, e}.

The strict Kn-Coarsening has three groups of Gr-Merging,



X. Zhang, D. Miao / Knowledge-Based Systems 91 (2016) 219–240 237

t

6

p

r

I

r

a

i

l

a

A

b

e

p

f

h

s

r

i

p

M

t

s

and they all satisfy the theoretical equality conditions

(Theorem 3.2.6); in particular, Gr-Merging [x]
1{a,b,c,d,e, f } ∪

[x]
4{a,b,c,d,e, f }

=→ [x]
1{a,b,c,d,e} is in BND and C-BND, and the

three granules concerned have the same accuracy, 0.5. The 3rd

column could similarly verify Kn-Con IIP-Accuracy’s granula-

tion monotonicity (as well as the equality condition on POS)

(Theorem 3.2.10). Thus, Middle-System (U, C, X)’s inspection is

finished.

(2) The 4th column’s data become the 2nd column’s double-

data sum; clearly, this fact reflects Kn-Cl IP-Accuracy’s in-

tegration regarding X,¬X . The 4th column could verify Kn-

Cl IP-Accuracy’s granulation monotonicity (Theorem 3.3.2).

Concretely, iaD(C∗) changes from maximum 1.2395 to limit

1; moreover, Kn-Coarsening {a, b, c, d, e, f } ⇒ {a, b, c, d, e}
shows the theoretical equality conditions. Meanwhile, the 5th

column – which comes from the 3rd column’s sum – could be

used to exhibit Kn-Cl IIP-Accuracy’s granulation monotonicity

(Theorem 3.3.7); in particular, there are more groups of Gr-

Merging to illustrate the equality conditions.

(3) Top-System (U, C,D) is continuously used to illustrate preser-

vation deduction (Fig. 2). Only C ⇒ {a, b, c, d, e} exhibits

IP-Accuracy preservation. In contrast, C ⇒ {a, b, c, d, e}, C ⇒
{a, b, c, d}, C ⇒ {a, b, c}, C ⇒ {a, c} all hold IIP-Accuracy

preservation; they and only they have C-POS preservation.

Thus, as is shown by this example, IP-Accuracy preservation

unidirectionally deduces IIP-Accuracy preservation (Corollary

3.3.8), while the latter is equivalent to C-POS preservation

(Theorem 3.3.7).

Finally, Table 4 (as well as Fig. 6) is utilized to calculate qualita-

ive/quantitative reducts and analyze their hierarchies (Section 4).

(1) {a, b, c, d, e} has IP-Accuracy preservation and has no proper

subsets to satisfy the target; hence, it becomes the sole IP-

Accuracy reduct. Only {a, b, c, d, e}, {a, b, c, d}, {a, b, c}, {a, c}
exhibit IIP-Accuracy preservation; hence, the smallest {a, c}
becomes the sole IIP-Accuracy reduct. For this two-category

example, the three types of regional and qualitative reducts

(i.e., the set-region preservation reduct, distributional preser-

vation reduct, and Pawlak-Reduct) become equivalent, and

they are further equivalent to IIP-Accuracy Reduct; hence, they

also have the sole reduct {a, c}.

(2) The 6th and 7th columns provide the discrepancy and

equality rates regarding IP-Accuracy and IIP-Accuracy, re-

spectively. Thus, the granulation monotonicity and gran-

ulation boundedness are verified for relevant rates, e.g.,

driaD is monotonous in [0.00%, 19.32%]. Let δ = 2.5% ∈
[0.00%, 19.32%] and η = 97.5% ∈ [80.68%, 100.00%]. Thus, only

{a, b, c, d, e}, {a, b, c, d}, {a, b, c}, {b, c} exhibit IIP-Accuracy

δ-tolerance preservation; hence, the smallest {b, c} becomes

the sole IP-Accuracy Tolerance Reduct. In fact, {b, c} is

also the sole IP-Accuracy Approximate Reduct. Similarly,

let δ′ = 30% ∈ [0%, 100%] and η′ = 70% ∈ [0%, 100%]; then,

{c} becomes the sole IIP-Accuracy Tolerance/Approximate

Reduct.

(3) In particular, all reduct results are appended to Fig. 5.

Thus, these relevant reducts naturally verify the relevant

reduct hierarchies, which are exactly and completely in

Fig. 5. For example, {a, b, c, d, e} ⊇ {a, c}, {b, c} could verify

Theorems 4.2.2, 4.2.5, and Corollary 4.3.10. Finally, the hierar-

chical heuristic Algorithm 3 is appropriately illustrated. Con-

cretely, the strongest IP-Accuracy Reduct {a, b, c, d, e} could
provide the heuristic information regarding the internal inclu-

sion to quickly search the weakest IIP-Accuracy Approximate

Reduct {c}. �

. Conclusions

Aiming at uncertainty measure mining and applications, this

aper conducts systematic double-quantitative fusion of accu-

acy and importance to mine IP-Accuracy and further explores

P-Accuracy’s granular integration construction and attribute

eduction applications. Herein, IP-Accuracy’s benign mining

dopts the double-quantitative fusion strategy, while the later

ntegration construction and attribute reduction mainly uti-

ize the GrC technology. As a result, three-way probabilities

nd measures are systemically developed, causality-based IP-

ccuracy is synthetically mined, a fundamental GrC platform is

enignly constructed, and a hierarchical reduction system is fully

stablished.

By resorting to a monotonous uncertainty measure, this study

rovides an integration-evolutionary GrC construction strategy

or attribute reduction. Note that IP-Accuracy and its reduction

old benign monotonicity and statistical systematicness. As a re-

ult, the innovative tolerant and approximate reducts, in a di-

ect and statistical way, quantitatively approach/expand/weaken the

deal qualitative reduct; thus, they efficiently and extensively ap-

ly to quantitative environments, such as those with data noise.

oreover, MT-Preservation Reduct provides a unified normal pat-

ern for monotonicity targets, thus holding great generalization

ignificance.

Several problems are retained for in-depth explorations.

(1) The uncertainty measure fusion is fundamental for the uncer-

tainty presentation and measurement. As is noted in Section

2.1, Approx-Space’s metrics usually play a dual role for the

probability statistics and application semantics. However, only

their semantics statuses are utilized for IP-Accuracy’s fusion

mining and integration construction. Thus, their statistics po-

sitions and relevant uncertainty fusions are worth exploring

further. In other words, the metrical mining and fusional ap-

plication could proceed from the statistics viewpoint and even

from the synthetic viewpoint.

(2) IP-Accuracy becomes the central uncertainty measure. It is

mined mainly by a sort of system detection for three-way mea-

sures. In fact, accuracy and importance act as main causal-

ity factors in Bottom-System, and their benign fusion bene-

fits from the weight function and synthetic semantics. As a re-

sult, fusional IP-Accuracy holds a non-linear promotion, and

its evolutionary hierarchical form holds granulation mono-

tonicity in both Middle-System and Top-System. Thus, the sur-

plus absolute generality is worth introducing to mine more

monotonous uncertainty measures. In other words, double-

quantification work needs to be carried out in an in-depth

manner.

(3) In this paper, IP-Accuracy’s GrC construction becomes one

of the main contributions, and relevant granulation mono-

tonicity underlies the in-depth attribute reduction appli-

cations. To establish attribute reduction, we actually pro-

vide a mature granular integration technology – an effec-

tive bottom-up strategy – for the evolutionary GrC construc-

tion. Thus, this hierarchical promotion approach is worth

generalizing for extensive monotonous uncertainty mea-

sures, including existing and potential measures. In particular,
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when introduced into RS-Theory, classical entropy never has

granulation monotonicity [76]; in contrast, weighted entropy

could perform a granular integration strategy to construct the

relevant conditional entropy and mutual information and to

acquire final granulation monotonicity [76].

(4) IP-Accuracy attribute reduction is systematically investigated;

herein, the tolerant and approximate reducts – two novel

quantitative reducts – have wide potential for development

in theory and in application. This metrical approach holds di-

rectness and statistics, so it differs from the model-regional

method; thus, it is worth comparing to the latter, especially

regarding quantitative performance. In particular, the illustra-

tive example concerns only the two basic categories. Thus, fur-

ther practical verification (especially regarding extensive mul-

tiple categories) is needed for both the efficiency of the rele-

vant granulation monotonicity, reduct hierarchy, and heuris-

tic algorithm and applicability of the tolerant/approximate

reducts. Moreover, MT-Preservation Reduct is worth exploring

further.

(5) This paper is devoted to the application of basic research, and

the primary approach and theoretical contribution are thor-

oughly illustrated by a D-Table example based on granule-

statistical information and the knowledge-structural hierar-

chy. In fact, offering a detailed, more real-world example could

highlight the essence and relevance of our approach. In other

words, it is worthwhile to verify the content of this paper with

an exact real-world example, especially to illustrate the inher-

ent effectiveness and efficiency. Furthermore, it is worth ap-

plying in a practical environment.

Based on the work in this paper and taking into account the

above issues, we are engaged in follow-up research and have al-

ready made some progress, including double quantification re-

garding accuracy and generality, metrical integration regarding the

probability distribution, uncertainty fusion regarding weighted en-

tropy, the GrC and reduction construction regarding information en-

tropy and mutual information. Moreover, practical applications are

concerned.
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Appendix A. Proof of Lemma 3.2.2

Proof. This lemma is verified by inducing index k; moreover,

Formula (15) mainly uses the simpler style, i.e.,
a1
b1

= · · · = ak
bk

.

(1) When k = 2, we only prove

a2
1

b1

+ a2
2

b2

≥ (a1 + a2)
2

b1 + b2

. (A.1)
By multiplying common multiple b1b2(b1 + b2), this goal in-

equality becomes:

a2
1b2(b1 + b2) + a2

2b1(b1 + b2) ≥ b1b2(a1 + a2)
2
,

i.e., a2
1b1b2 + a2

1b2
2 + a2

2b2
1 + a2

2b1b2

≥ b1b2a2
1 + 2b1b2a1a2 + b1b2a2

2,

i.e., a2
1b2

2 + a2
2b2

1 ≥ 2b1b2a1a2,

i.e., (a1b2 − a2b1)
2 ≥ 0.

Thus, Formula (14) holds when k = 2. Moreover, it degenerates

into an equality, iff
a1
b1

= a2
b2

; in other words, Formula (15) also

holds.

(2) Suppose Formulas (14) and (15) hold for k = k0. Thus,

k0∑
t=1

a2
t

bt
≥

(∑k0

t=1
at

)2

∑k0

t=1
bt

; (A.2)

moreover, the relevant equality holds, iff
a1
b1

= · · · = ak0
bk0

. Then,

consider case k = k0 + 1. Thus,

k0+1∑
t=1

a2
t

bt
=

k0∑
t=1

a2
t

bt
+

a2
k0+1

bk0+1

≥
(∑k0

t=1
at

)2

∑k0

t=1
bt

+
a2

k0+1

bk0+1

≥
(∑k0

t=1
at + ak0+1

)2

∑k0

t=1
bt + bk0+1

=
(∑k0+1

t=1
at

)2

∑k0+1
t=1

bt

.

The above two inequality signs regarding k = k0 + 1 mainly

come from the relevant results regarding k = k0 and k = 2

(i.e., Formulas (A.2) and (A.1)), respectively; thus, Formula (14)

holds. Moreover, the above two quality signs are reached,

iff
a1

b1

= · · · = ak0

bk0

,

∑k0

t=1
at∑k0

t=1
bt

= ak0+1

bk0+1

,

iff
a1

b1

= · · · = ak0

bk0

= ak0+1

bk0+1

;

thus, Formula (15) holds.

Therefore, Formulas (14) and (15) hold via the above induction. �

ppendix B. Proof of Proposition 3.2.9

roof.

IiaX(C∗) =
∑

[x]C∗ ⊆POSC∗ (X)

iX([x]C∗) × aX([x]C∗)

=
∑

[x]C∗ ⊆POSC∗ (X)

|[x]C∗ |
|X| × 1 = |POSC∗(X)|

|X| ;

EiaX(C∗) =
∑

[x]C∗ ⊆NEGC∗ (X)

iX([x]C∗) × aX([x]C∗)

=
∑

[x]C∗ ⊆NEGC∗ (X)

iX([x]C∗) × 0 = 0.

hus, Items (1) (2) (4) are proved. Moreover, Item (3) could be

roved by the equivalence between [x]C∗ ∩ X, ¬X �= ∅ and [x]C∗ ⊆
NDC∗(X). �

ppendix C. Proof of Lemma 4.1.5

roof.

(1) ∀b ∈ B, let B′ = B − {b} ⊂ B. According to Item (1), MT(B −
{b}) �= MT(B), i.e., Item (2) holds.
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(2) ∀B′ ⊂ B, then ∃b ∈ B − B′ ⊂ B, s.t., B′ ⊆ B − {b} ⊂ B. Ac-

cording to MT granulation monotonicity (Definition 4.1.4)

and Item (2), MT(B′) � MT(B − {b}) ≺ MT(B), so MT(B′) �=
MT(B), i.e., Item (1) holds. �

ppendix D. Proof of Proposition 4.1.7

roof.

(1) If c /∈ ⋂
B∈RedMT(C)B, then ∃B ∈ RedMT(C) but c /∈ B. Thus,

MT(B) = MT(C) and B ⊆ C − {c} ⊂ C. According to MT gran-

ulation monotonicity (Definition 4.1.4), MT(C − {c}) = MT(C),

so c /∈ CoreMT(C). Hence, CoreMT(C) ⊆ ⋂
B∈RedMT(C)B.

(2) If c /∈ CoreMT(C), then MT(C − {c}) = MT(C); hence, exist MT-

Preservation Reduct B in C − {c}. Thus, MT(B) = MT(C − {c}),

and B has the MT independence (i.e., Lemma 4.1.5’s Item

(2)) in C − {c}. Furthermore, MT(B) = MT(C) and B has the

MT independence in C, so B ∈ RedMT(C). However, c /∈ B be-

cause B ⊆ C − {c}. Hence, c /∈ ⋂
B∈RedMT(C)B,

⋂
B∈RedMT(C)B ⊆

RedMT(C). �
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