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Stream computing paradigm, with the characteristics of real-time arrival and departure, has 
been admitted as a major computing paradigm in big data. Relevant theories are flourishing 
recently with the surge development of stream computing platforms such as Storm, Kafka 
and Spark. Rough set theory is an effective tool to extract knowledge with imperfect 
information, however, related discussions on synchronous immigration and emigration of 
objects have not been investigated. In this paper, stream computing learning method is 
proposed on the basis of existing incremental learning studies. This method aims at solving 
challenges resulted from simultaneous addition and deletion of objects. Based on novel 
learning method, a stream computing algorithm called single-object stream-computing-
based three-way decisions (SS3WD) is developed. In this algorithm, the probabilistic rough 
set model is applied to approximate the dynamic variation of concepts. Three-way regions 
can be determined without multiple scans of existing information granular. Extensive 
experiments not only demonstrate better efficiency and robustness of SS3WD in the 
presence of objects streaming variation, but also illustrate that stream computing learning 
method is an effective computing strategy for big data.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The unprecedented popularity of novel information technology and application schema, such as cloud computing, Inter-
net of things (IOT), and mobile interconnection, accumulate a large scale of data and promote the development of big data 
[2,7,39]. The essential characteristics of big data have been summarized by many scientists, and currently 5V model and 
5R model [8] are widely accepted. Generally speaking, data with any properties or requirements mentioned in 5V and 5R 
model can be considered as big data. Fast arrival, for example, is admitted as one of the most remarkable challenges. On 
one hand, desirable result of up-to-date data cannot be achieved in a limited time because of high velocity (defined in 5V), 
on the other hand the value of complicated applications [13,15,33] will be diminished if hidden knowledge is not extracted 
real-time (defined in 5R). Specifically, there are two major reasons:
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Fig. 1. Typical computing paradigm for big data [37].

The explosive generation of data in a limited time is ubiquitous. For example, CERN’s large hadron collider produce 
petabytes of data per second in the working status. Repeating such experiment is quite costly and thus one-pass scan of 
such application is very important.

In some other applications, however, data is poured from a tremendous number of interacting instances, despite the 
seemingly negligible contribution of each participant. Typical examples of this style include click stream, RFID data and GPS 
location information.

Obviously, these kind of data need to be processed in the manner of stream computing, i.e. computed the whole data 
segmentally and sequentially. To solve the dilemma of real-time and accurate, scholars have suggested a wealth of ideas and 
they can be categorized into two computing paradigms: batch computing paradigm and stream computing paradigm.

(1) Batch computing paradigm [46] stores and computes data in batches, whereas relations between batches are ne-
glected. In most cases, both stages are handled in a highly centralized way. As depicted in Fig. 1(a), batch computing 
launches only when accumulated data is abundant.

(2) Stream computing paradigm [31], however, performs data storage and computing in memory and consider the re-
lation of batches in the way of sliding window. As described in Fig. 1(b), no data exchange occurs between hard disk and 
memory.

Generally, any machine learning method can be customized into batch learning paradigm and stream computing 
paradigm. Incremental learning method can accelerate the speed of stream data. However, most of existing incremental 
learning method compute information addition and deletion separately, although both operations may be considered [14]. 
To implement stream learning paradigm more effectively, we term a new glossary called stream computing learning method.

Stream computing learning method is defined as a novel strategy whose operations towards objects immigrations and 
emigrations are conducted at the same time.

Obviously, stream computing learning method is more consistent to the connotation of stream computing paradigm as 
compared to classical incremental learning method. Currently, researches on the variation mechanism of data, fast real-time 
computing and approximate real-time computing are rather preliminary. It is undoubtedly that approximation instead of 
accurate answer is more likely to be achieved, therefore it is imperative to introduce new theory to facilitate the research 
of stream computing learning method.

Three-way decisions theory [43] is an important extension of rough set theory [34]. Decisions are determined if it 
is informative, otherwise will be deferred. It is a rather inclusive paradigm since the hidden structure used to support 
decision-making can be generated by any kinds of learning mechanism. Gradually, it has been recognized that the theory has 
incomparable advantages in solving complicated problem because of analogous cognitive mechanism shadowed in human 
[22,32,45]. Currently, the research direction of three-way decisions are mainly concentrated on the following aspects: 1) the 
basic theory of three-way decisions [9,11,16,17]; 2) three-way decision and rough sets theory [18,41,44,53,54]; and 3) 
clustering/classification based on three-way decisions [47–49].

The contributions of this paper are as follows. Firstly, it is the first time to systematically clarify the hierarchical struc-
ture of stream computing. From the coarsest to refinement, we have stream computing paradigm, stream computing learning 
method, and stream computing learning algorithms. Major differences against incremental learning lies in the level of stream 
computing learning method. While incremental learning method performs computations in the unit of information varia-
tion direction of dataset, i.e. either addition or deletion, stream computing learning method combines both immigrations 
and emigrations into an atomic operation unit. It is straightforward to see that the stream computing learning method is 
tightly coupled as compared to incremental learning method. Consequently, detailed stream computing learning algorithm 
is also different from incremental learning algorithm, making the knowledge updating more purposeful. Secondly, the use 
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of three-way decisions in stream computing algorithms is also initially explored. Probabilistic rough set is used to approxi-
mate the concept given variations of addition and deletion are computed simultaneously. Thirdly, a novel stream computing 
algorithm called single-object stream-computing-based three-way decisions (SS3WD) is proposed. This algorithm utilizes 
conditional probability to approximate the transition of three-way regions, and finally by theoretical and practical analysis, 
we claim that at any time SS3WD not only run faster than incremental learning algorithm, but also scalable in different 
datasets. It demonstrates that stream computing learning method is effective.

The rest of the paper is organized as follows. In Section 2, the necessity and status on stream computing paradigm and 
probabilistic rough sets three-way decisions are discussed. In Section 3, problem formulation and related theorems/corollar-
ies are presented as foundations of proposed algorithm. In Section 4, the effectiveness is further demonstrated from case 
study and benchmark datasets. Finally, the whole paper is concluded in Section 5.

2. Related work

Rough set is widely used in incremental learning. This section will discuss the status of dynamic learning on the basis 
of incremental learning so that similar ideas can be transferred to flourish stream computing learning method.

Currently, studies of incremental learning with rough sets are based on different extensions of rough sets [3,23,24,27,52]
including both complete information system [19,20] and incomplete information system [27,35,36]. Inspired by the analysis 
in rough set, corresponding researches are mainly focused in two aspects, known as element variation and learning task. 
While variation of objects [6,26,29] and attributes [10,50,51] are critically analyzed in element variation, variations of lower 
and upper approximations [5,25,35,50,52], attribute reduction [12,19,21,38,40] and decision rules [1,26,28] are frequently 
investigated in learning tasks. Representative work are shown as follows:

(1) Variation of objects: Luo et al. [29] presented an efficient incremental learning algorithm using probabilistic rough 
sets. Chen et al. [6] formalized a matrix-based method which consider the variation of objects and attributes simultaneously.

(2) Variation of attributes: Chen et al. [3] discussed a dynamic maintenance approach for approximations in coarsening 
and refining attribute values based on rough sets theory in an incomplete system. Furthermore, Chen et al. [4] interpreted 
the maintenance of approximations in incomplete ordered decision systems while attribute values coarsening or refining 
and proposed algorithms for incremental updating approximations of upward and downward union of classes. Liu et al. [28]
investigated two incremental algorithms based on adding attributes and deleting attributes under probability rough sets.

(3) Lower and upper approximations: Zhang et al. [51] proposed the attribute set in the set-valued information system 
may evolve over time when new information arrives, and the incremental approaches for updating the relation matrix are 
proposed to update rough sets approximations. To compute dynamic approximations of the multiple type of data, Zhang et 
al. [52] defines a composite rough set. Luo et al. [30] extended the relation matrix on decision-theoretic rough set. Chen et 
al. [6] further investigated a method called UAGOAAS to estimate three-way region alteration when attributes and objects 
are changed simultaneously.

(4) Attribute reduction: Das et al. [10] claimed that attribute reduction launches only when error upper bound is sig-
nificantly improved. Given varying attribute values, Wang et al. [38] developed an attribute reduction algorithm based on 
complementary entropy, conditional entropy, and conditional complementary entropy.

(5) Decision rules: Liu et al. [28] introduced a new concept of interesting knowledge based on both accuracy and coverage 
for dynamic information system, and an incremental paradigm and approach for inducing decision rules are proposed when 
the object set varies over time.

Furthermore, Although few studies investigated object immigration and emigration algorithms [26,29], they simply put 
them together and failed to consider the realization of stream computing learning method given addition and deletion of 
objects occuring simultaneously. Table 1 is a comparison of research status in incremental learning method and stream 
computing learning method.

From Table 1, we can see that studies of stream computing learning method is quite limited as compared to incremental 
learning method. Updating of hidden structure and uncertainty measure is important in incremental learning, and it should 
be well considered to further reduce the computational cost. Therefore, much work can be realized in designing stream 
computing algorithm.

3. Preliminary

In this section, we will review the basic notions and concepts for three-way decisions from the perspective of probabil-
ity [43,44]. Information system is the foundation of intelligent information processing. Typically, an information system is 
defined as follows.

Definition 1. An information system is defined by a quadruple tuple: I S = (U , A, V , f ) where U is a finite non-empty set of 
data objects. A = C

⋃
D is a finite non-empty set of attributes, where C is a set of condition attribute, D is a set of decision 

attribute. V is a non-empty set of values of a ∈ A, and f is an information function from U to V .
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Table 1
Research status of dynamic computing using rough sets.

Research topic Incremental learning method Stream computing learning method

Researches Status Researches Status

Variation of objects
Chen et al. [6]

To be perfected Not given To be analyzed
Luo et al. [29]

Variation of attributes

Chen et al. [4]

To be perfected Not given To be analyzed
Li et al. [23]
Li et al. [25]
Zeng et al. [50]

Lower and upper approximations

Chen et al. [6]

To be perfected Not given To be analyzed
Qian et al. [35]
Zhang et al. [51]
Luo et al. [29]

Attribute reduction
Dey et al. [12]

To be perfected Eskandari et al. [14] To be perfected
Wang et al. [38]

Decision rules
Błaszczyński et al. [1]

To be perfected Not given To be analyzed
Liu et al. [26]

The hidden structure of information, or information granular, represent the similarity/dissimilarity relations among ob-
jects. Equivalence relation is regarded as the fundamental criterion to discern objects. Definition of equivalence relation are 
shown as follows.

Definition 2. Given a subset of attributes B ⊆ A in IS, the I N D(B) denotes an equivalence relation, which can be defined as 
follows: 

I N D(B) = {(x, y) ∈ U × U |∀a ∈ B, f (x,a) = f (y,a)}, (1)

where Ri ∈ U /C , and U/C is equivalent partition of condition attribute, with its basis |U/C | = m;
D j ∈ U /D , and U/D is equivalent partition of decision attribute, with its basis |U/D| = n.

The affiliation of objects to class can be determined by adopting maximum inclusion degree of information granular 
among all classes, and the decisions should suffice the requirement of thresholds meanwhile. In real practice, useful rules 
can be extracted given the thresholds located in the interval [0, 1]. Regarding inclusion degree as conditional probability, 
the equation probability is defined as follows.

Definition 3. Given a subset D j ⊆ U in IS, the conditional probability of an object belonging to D j given that the object 
belongs to [x]. This probability may be simply estimated as follows: 

Pr(D j|[x]) =
∣∣D j ∩ [x]∣∣

|[x]| (2)

where |•| denotes the cardinality of a set.

The result of conditional probability divides the whole universe into three regions named as positive region (POS), bound-
ary region (BND) and negative region (NEG) respectively. Details of three regions are described as follows.

Definition 4. Given a pair of thresholds α and β with 0 ≤ β < α ≤ 1, the positive, boundary and negative regions are defined 
as follows: 

P O S(α,•)(D j) = {x ∈ U‖Pr(D j|[x]) ≥ α};
BN D(α,β)(D j) = {x ∈ U |β < Pr(D j|[x]) < α};
N EG(•,β)(D j) = {x ∈ U |Pr(D j|[x]) ≤ β}.

(3)

For objects allocated in different regions, corresponding decisions can be determined. The acceptance decision confirms 
affiliations of object w.r.t class, whereas the rejection decision contributes to the class boundary. However, there is a third 
possibility signifies deferment, and it can be explained as insufficiency of given information. Detailed definitions are given 
as follows.

Definition 5. According to the three probabilistic regions, one can make three-way decisions of acceptance, deferment and 
rejection, respectively. 
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Fig. 2. Cases of stream computing learning method.

D E S Accept(Ri → D j), for Ri ⊆ P O S(α,•)(D j);
D E S Def er(Ri → D j), for Ri ⊆ BN D(α,β)(D j);
D E S Reject(Ri → D j), for Ri ⊆ N EG(•,β)(D j).

(4)

4. Stream computing algorithm for three-way knowledge updating

Real-time memory calculation is the main component of stream computing paradigm. According to dynamic characteris-
tics of object, real-time stream computing can be divided into three cases, as shown in Fig. 2:

(1) Case 1 (Simple stream computing learning method): As shown in case (a) of Fig. 2, the calculation interval within 
two computing period is not continued, and in each calculation there are only new data in memory whereas the previous 
used data is flushed.

(2) Case 2 (Single-object dynamic stream computing learning method): As described in case (b) of Fig. 2, the calculation 
interval reduces significantly. The adding of one more data triggers the deleting of data with earliest timestamp.

(3) Case 3 (Batched-object dynamic stream calculating learning method): As illustrated in case (c) of Fig. 2, the calculation 
interval is very similar to case 2. However, the amount of added data and deleted data are expanded from one to n.

Since the special requirements for high-speed computing in stream computing learning method, developing algorithms 
which can perform faster and more effective is not only an important research topic, but also one of main research directions 
in the big data computing [42] research. In what follows, we will analyze the knowledge updating in stream computing 
learning method with single-object (case 2 in Fig. 2).

The formalization of single-object variation in the context of stream computing learning method is given as follows:

Let I S(t) = {
U (t), C (t) ∪ D(t)

}
be an information system at time t , with U (t)/C (t) =

{
R(t)

1 , R(t)
2 , · · · , R(t)

m

}
and U (t)/D(t) ={

D(t)
1 , D(t)

2 , · · · , D(t)
n

}
be equivalent partition of condition and decision respectively. Assuming there is an object x

immigrates to IS whereas x emigrates from IS, then the equivalent partitions of condition are correspondingly re-

newed as U (t+1)/C (t+1) =
{

R(t+1)
1 , R(t+1)

2 , · · · , R(t+1)
m

}
and equivalent partitions of decision are correspondingly denoted as 

U (t+1)/D(t+1) =
{

D(t+1)
1 , D(t+1)

2 , · · · , D(t+1)
n

}
. 

R(t+1)
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R(t)
i − {x}, x ∈ R(t)

i ∧ x /∈ R(t+1)
i , 1 ≤ i ≤ m

R(t)
i ∪ {x}, x /∈ R(t)

i ∧ x ∈ R(t+1)
i , 1 ≤ i ≤ m

R(t)
i ∪ {x} − {x}, x ∈ R(t)

i ∧ x ∈ R(t+1)
i , 1 ≤ i ≤ m

R(t)
i , x /∈ R(t)

i ∧ x /∈ R(t+1)
i , 1 ≤ i ≤ m

{x}, x ∈ R(t+1)
i , i = m + 1

(5)

D(t+1)
j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D(t)
j − {x}, x ∈ D(t)

j ∧ x /∈ D(t+1)
j , 1 ≤ j ≤ n

D(t)
j ∪ {x}, x /∈ D(t)

j ∧ x /∈ D(t+1)
j , 1 ≤ j ≤ n

D(t)
j ∪ {x} − {x}, x ∈ D(t)

j ∧ x ∈ D(t+1)
j , 1 ≤ j ≤ n

D(t)
j , x /∈ D(t)

j ∧ x /∈ D(t+1)
j , 1 ≤ j ≤ n

{x}, x ∈ D(t+1)
, j = n + 1

(6)
j
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Equations (5) and (6) enumerate the variation of condition and decision in terms of each equivalence class. The varia-
tions can be classified into trivial and non-trivial groups. The trivial variation is that the immigration of new object does 
not belong to any existing equivalence class of condition (R(t+1)

i = {x}, where i = m + 1) or any existing equivalence class of 
decision (D(t+1)

j = {x}, where j = n + 1). In this case, x can be directly determined into the positive region of its correspond-
ing decision label. The non-trivial case is the remaining combination of equation (4) and equation (5), and the variation of 
conditional probability will be critically investigated later, as shown in Theorems 1–4.

4.1. Stream computing learning algorithm towards conditional probability

Theorem 1. Let I S(t) = {
U (t), C (t) ∪ D(t)

}
and I S(t+1) = {

U (t+1), C (t+1) ∪ D(t+1)
}

be an information system at time t and t + 1 re-

spectively. If variation of immigrated object x satisfies x /∈ R(t+1)
i ∧ x /∈ D(t+1)

j , variation trend of conditional probability w.r.t. variation 
of emigrated object are given as follows:

(1)
(

x /∈ R(t)
i ∧ x /∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
;

(2)
(

x ∈ R(t)
i ∧ x /∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
> Pr

(
D(t)

j

∣∣∣R(t)
i

)
;

(3)
(

x /∈ R(t)
i ∧ x ∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
;

(4)
(

x ∈ R(t)
i ∧ x ∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
< Pr

(
D(t)

j

∣∣∣R(t)
i

)
.

Proof. (1) Since 
(

x /∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x /∈ D(t)
j

)
⇒

(
R(t+1)

i = R(t)
i

)
∧

(
D(t+1)

j = D(t)
j

)
, according to Defini-

tion 3, Pr(D(t+1)
j

∣∣∣R(t+1)
i ) =

∣∣∣D(t+1)
j ∩R(t+1)

i

∣∣∣∣∣∣R(t+1)
i

∣∣∣
=

∣∣∣D(t)
j ∩R(t)

i

∣∣∣∣∣∣R(t)
i

∣∣∣
= Pr(D(t)

j

∣∣∣R(t)
i ), namely, Pr(D(t+1)

j

∣∣∣R(t+1)
i ) = Pr(D(t)

j

∣∣∣R(t)
i ). Hence 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
.

(2) Since 
(

x /∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x ∈ R(t)

i ∧ x /∈ D(t)
j

)
⇒

(
R(t+1)

i = R(t)
i − {x}

)
∧

(
D(t+1)

j = D(t)
j

)
, according to Definition 3, 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
=

∣∣∣D(t+1)
j ∩R(t+1)

i

∣∣∣∣∣∣R(t+1)
i

∣∣∣
=

∣∣∣D(t)
j ∩R(t)

i −{x}
∣∣∣∣∣∣R(t)

i −{x}
∣∣∣

=
∣∣∣D(t)

j ∩R(t)
i

∣∣∣∣∣∣R(t)
i

∣∣∣−1
>

∣∣∣D(t)
j ∩R(t)

i

∣∣∣∣∣∣R(t)
i

∣∣∣
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
. Hence 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
> Pr

(
D(t)

j

∣∣∣R(t)
i

)
.

(3) Since 
(

x /∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x ∈ D(t)
j

)
⇒

(
R(t+1)

i = R(t)
i

)
∧

(
D(t+1)

j = D(t)
j − {x}

)
, according to Definition 3, 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
=

∣∣∣D(t+1)
j ∩R(t+1)

i

∣∣∣∣∣∣R(t+1)
i

∣∣∣
=

∣∣∣(D(t)
j −{x})∩R(t)

i

∣∣∣∣∣∣R(t)
i

∣∣∣
=

∣∣∣D(t)
j ∩R(t)

i

∣∣∣∣∣∣R(t)
i

∣∣∣
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
. Hence 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
.

(4) Since 
(

x /∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x ∈ R(t)

i ∧ x ∈ D(t)
j

)
⇒

(
R(t+1)

i = R(t)
i − {x}

)
∧

(
D(t+1)

j = D(t)
j − {x}

)
, according to 

Definition 3, Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
=

∣∣∣D(t+1)
j ∩R(t+1)

i

∣∣∣∣∣∣R(t+1)
i

∣∣∣
=

∣∣∣(D(t)
j −{

x
}
)∩(R(t)

i −{
x
}
)

∣∣∣∣∣∣R(t)
i −{

x
}∣∣∣

=
∣∣∣D(t)

j ∩R(t)
i

∣∣∣−1∣∣∣R(t)
i

∣∣∣−1
<

∣∣∣D(t)
j ∩R(t)

i

∣∣∣∣∣∣R(t)
i

∣∣∣
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
. Hence 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
< Pr

(
D(t)

j

∣∣∣R(t)
i

)
. �

Theorem 1 summarizes the change of conditional probability for single-object variation of all x given x /∈ R(t+1)
i ∧ x /∈

D(t+1)
j . Therefore, it lays a solid foundation for estimating changes of conditional probability if immigrated object neither 

belongs to equivalence class of considered conditions nor belongs to equivalence class of considered decisions.

Theorem 2. Let I S(t) = {
U (t), C (t) ∪ D(t)

}
and I S(t+1) = {

U (t+1), C (t+1) ∪ D(t+1)
}

be an information system at time t and t + 1 re-

spectively. If variation of immigrated object x satisfies x /∈ R(t+1)
i ∧ x ∈ D(t+1)

j , variation trend of conditional probability w.r.t. variation 
of emigrated object are given as follows:
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(1)
(

x /∈ R(t)
i ∧ x /∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
;

(2)
(

x ∈ R(t)
i ∧ x /∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
> Pr

(
D(t)

j

∣∣∣R(t)
i

)
;

(3)
(

x /∈ R(t)
i ∧ x ∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
;

(4)
(

x ∈ R(t)
i ∧ x ∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
< Pr

(
D(t)

j

∣∣∣R(t)
i

)
.

Proof. (1) Since 
(

x /∈ R(t+1)
i ∧ x ∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x /∈ D(t)
j

)
⇒

(
R(t+1)

i = R(t)
i ) ∧

(
D(t+1)

j = D(t)
j ∪ x̄

)
, according to Defini-

tion 3 Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
=

∣∣∣D(t+1)
j ∩R(t+1)

i

∣∣∣∣∣∣R(t+1)
i

∣∣∣
=

∣∣∣(D(t)
j ∪{x̄})∩(R(t)

i −{x})
∣∣∣∣∣∣R(t)

i −{x}
∣∣∣

=
∣∣∣D(t)

j ∩R(t)
i

∣∣∣∣∣∣R(t)
i

∣∣∣
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
. Hence 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
.

The proofs of (2), (3), and (4) are similar to that of (1). �
Theorem 2 illustrates the change of conditional probability for single-object variation of all x given x /∈ R(t+1)

i ∧ x ∈ D(t+1)
j . 

Therefore, it lays a solid foundation for estimating changes of conditional probability if immigrated object does not belong 
to equivalence class of considered conditions whereas belongs to equivalence class of considered decisions.

Theorem 3. Let I S(t) = {
U (t), C (t) ∪ D(t)

}
and I S(t+1) = {

U (t+1), C (t+1) ∪ D(t+1)
}

be an information system at time t and t + 1 re-

spectively. If variation of immigrated object x satisfies x ∈ R(t+1)
i ∧ x /∈ D(t+1)

j , variation trend of conditional probability w.r.t. variation 
of emigrated object are given as follows:

(1)
(

x /∈ R(t)
i ∧ x /∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
< Pr

(
D(t)

j

∣∣∣R(t)
i

)
;

(2)
(

x ∈ R(t)
i ∧ x /∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
;

(3)
(

x /∈ R(t)
i ∧ x ∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
< Pr

(
D(t)

j

∣∣∣R(t)
i

)
;

(4)
(

x ∈ R(t)
i ∧ x ∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
< Pr

(
D(t)

j

∣∣∣R(t)
i

)
.

Proof. (1) Since 
(

x ∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x /∈ D(t)
j

)
⇒

(
R(t+1)

i = R(t)
i ∪ {

x
}) ∧

(
D(t+1)

j = D(t)
j

)
, according to Def-

inition 3, Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
=

∣∣∣D(t+1)
j ∩R(t+1)

i

∣∣∣∣∣∣R(t+1)
i

∣∣∣
=

∣∣∣D(t)
j ∩

{
R(t)

i ∪{
x
}}∣∣∣∣∣∣R(t)

i ∪{
x
}∣∣∣

=
∣∣∣D(t)

j ∩R(t)
i

∣∣∣∣∣∣R(t)
i

∣∣∣+1
< Pr

(
D(t)

j

∣∣∣R(t)
i

)
. Hence 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
< Pr

(
D(t)

j

∣∣∣R(t)
i

)
.

The proofs of (2), (3), and (4) are similar to that of (1). �
Theorem 3 shows the change of conditional probability for single-object variation of all x given x ∈ R(t+1)

i ∧ x /∈ D(t+1)
j . 

Therefore, it lays a solid foundation for estimating changes of conditional probability if immigrated object belongs to equiv-
alence class of considered conditions whereas does not belong to equivalence class of considered decisions.

Theorem 4. Let I S(t) = {
U (t), C (t) ∪ D(t)

}
and I S(t+1) = {

U (t+1), C (t+1) ∪ D(t+1)
}

be an information system at time t and t + 1 re-

spectively. If variation of immigrated object x satisfies x ∈ R(t+1)
i ∧ x ∈ D(t+1)

j , variation trend of conditional probability w.r.t. variation 
of emigrated object are given as follows:

(1)
(

x /∈ R(t)
i ∧ x /∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
> Pr

(
D(t)

j

∣∣∣R(t)
i

)
;

(2)
(

x ∈ R(t)
i ∧ x /∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
> Pr

(
D(t)

j

∣∣∣R(t)
i

)
;

(3)
(

x /∈ R(t)
i ∧ x ∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
> Pr

(
D(t)

j

∣∣∣R(t)
i

)
;

(4)
(

x ∈ R(t)
i ∧ x ∈ D(t)

j

)
⇒ Pr

(
D(t+1)

j

∣∣∣R(t+1)
i

)
= Pr

(
D(t)

j

∣∣∣R(t)
i

)
.
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Proof. (1) Since 
(

x ∈ R(t+1)
i ∧ x ∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x /∈ D(t)
j

)
⇒

(
R(t+1)

i =
{

R(t)
i ∪ {

x
}})

∧
(

D(t+1)
j =

{
D(t)

j ∪ {
x
}})

, accord-

ing to Definition 3, Pr
(

D j
(t+1)

∣∣∣R(t+1)
i

)
=

∣∣∣D j
(t+1)∩R(t+1)

i

∣∣∣∣∣∣R(t+1)
i

∣∣∣
=

∣∣∣
{

D(t)
j ∪{

x
}}∩

{
R(t)

i ∪{
x
}}∣∣∣∣∣∣R(t)

i ∪{
x
}∣∣∣

=
∣∣∣D(t)

j ∩R(t)
i

∣∣∣+1∣∣∣R(t)
i

∣∣∣+1
> Pr

(
D j

(t)
∣∣∣R(t)

i

)
. Hence 

Pr
(

D j
(t+1)

∣∣∣R(t+1)
i

)
> Pr

(
D j

(t)
∣∣∣R(t)

i

)
.

The proofs of (2), (3), and (4) are similar to that of (1). �
Theorem 4 reveals the change of conditional probability for single-object variation of all x given x ∈ R(t+1)

i ∧ x ∈ D(t+1)
j . 

Therefore, it lays a solid foundation for estimating changes of conditional probability if immigrated object belong to both 
equivalence class of considered conditions and equivalent class of considered decisions.

By analyzing changes of conditional probability, Theorems 1–4 cover all possible variations of single-object that leads to 
the probable variation of conditional probability. Therefore, there is no need to discern the sequence of immigrated/emi-
grated object, which can simplify the algorithm design of real-time knowledge updating.

4.2. Stream computing learning algorithm towards three-way regions

Under the background of stream computing, three-way decisions theory can take full advantages of acquired knowledge 
so that new decisions can be immediately determined. This section attempts to deduce the transition of three-way region 
by exploring relation between conditional probability change and three-way region change. Based on Theorems 1–4, we 
summarize trend variation of conditional probability from time t to time t + 1 and show it in Table 2.

It can be seen from Table 2 that the variation trend of conditional probability at time t and time t + 1 is ascending, 
remains or descending. Grouped by the three possible results, we present strategies of region changes in Corollaries 1–3
correspondingly.

Corollary 1. Let I S(t) = {
U (t), C (t) ∪ D(t)

}
and I S(t+1) = {

U (t+1), C (t+1) ∪ D(t+1)
}

represent an information system at time t and 
time t + 1 respectively. If variation of single object is one of the following situations:

(1)
(

x /∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x /∈ D(t)
j

)
;

(2)
(

x /∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x ∈ D(t)
j

)
;

(3)
(

x /∈ R(t+1)
i ∧ x ∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x /∈ D(t)
j

)
;

(4)
(

x /∈ R(t+1)
i ∧ x ∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x ∈ D(t)
j

)
;

(5)
(

x ∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x ∈ R(t)

i ∧ x /∈ D(t)
j

)
;

(6)
(

x ∈ R(t+1)
i ∧ x ∈ D(t+1)

j

)
∧

(
x ∈ R(t)

i ∧ x ∈ D(t)
j

)
.

then the positive region, boundary region and negative region of I S(t+1) is renewed as follows:

P : R(t)
i ⊆ P O S(α,β)

(
D(t)

j

)
⇒ P O S(α,β)

(
D(t+1)

j

)
= P O S(α,β)

(
D(t)

j

)
;

B : R(t)
i ⊆ BN D(α,β)

(
D(t)

j

)
⇒ BN D(α,β)

(
D(t+1)

j

)
= BN D(α,β)

(
D(t)

j

)
;

N : R(t)
i ⊆ N EG(α,β)

(
D(t)

j

)
⇒ N EG(α,β)

(
D(t+1)

j

)
= N EG(α,β)

(
D(t)

j

)
.

Proof. It can be directly deduced from Definition 4 that three-way regions at time t + 1 is identical to that at time t . �
Corollary 2. Let I S(t) = {

U (t), C (t) ∪ D(t)
}

and I S(t+1) = {
U (t+1), C (t+1) ∪ D(t+1)

}
represent an information system at time t and 

time t + 1 respectively. If variation of single object is one of the following situations:

(1)
(

x /∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x ∈ R(t)

i ∧ x /∈ D(t)
j

)
;

(2)
(

x /∈ R(t+1)
i ∧ x ∈ D(t+1)

j

)
∧

(
x ∈ R(t)

i ∧ x /∈ D(t)
j

)
;

(3)
(

x ∈ R(t+1)
i ∧ x ∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x /∈ D(t)
j

)
;
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Table 2
Updating patterns of the conditional probability for stream computing.

Theorem Patterns Changes of equivalence classes Pr
(

D(t+1)
j |R(t+1)

i

)
Trend

Immigrated object Emigrated object R(t+1)
i D(t+1)

j

1 x /∈ R(t+1)
i ∧ x /∈ D(t+1)

j x /∈ R(t)
i ∧ x /∈ D(t)

j R(t)
i D(t)

j

∣∣∣D(t)
j ∩R(t)

i

∣∣∣∣∣∣R(t)
i

∣∣∣
Constant

x ∈ R(t)
i ∧ x /∈ D(t)

j R(t)
i − {x} D(t)

j

∣∣∣D(t)
j ∩R(t)

i

∣∣∣∣∣∣R(t)
i

∣∣∣−1
Increase

x /∈ R(t)
i ∧ x ∈ D(t)

j R(t)
i D(t)

j − {x}
∣∣∣D(t)

j ∩R(t)
i

∣∣∣∣∣∣R(t)
i

∣∣∣
Constant

x ∈ R(t)
i ∧ x ∈ D(t)

j R(t)
i − {x} D(t)

j − {x}
∣∣∣D(t)

j ∩R(t)
i

∣∣∣−1∣∣∣R(t)
i

∣∣∣−1
Decrease

2 x /∈ R(t+1)
i ∧ x ∈ D(t+1)

j x /∈ R(t)
i ∧ x /∈ D(t)

j R(t)
i D(t)

j

⋃{x}
∣∣∣D(t)

j ∩R(t)
i

∣∣∣∣∣∣R(t)
i

∣∣∣
Constant

x ∈ R(t)
i ∧ x /∈ D(t)

j R(t)
i − {x} D(t)

j

⋃{x}
∣∣∣D(t)

j ∩R(t)
i

∣∣∣∣∣∣R(t)
i

∣∣∣−1
Increase

x /∈ R(t)
i ∧ x ∈ D(t)

j R(t)
i D(t)

j

⋃{x} − {x}
∣∣∣D(t)

j ∩R(t)
i −1

∣∣∣∣∣∣R(t)
i

∣∣∣−1
Constant

x ∈ R(t)
i ∧ x ∈ D(t)

j R(t)
i − {x} D(t)

j

⋃{x} − {x}
∣∣∣D(t)

j ∩R(t)
i

∣∣∣−1∣∣∣R(t)
i

∣∣∣−1
Decrease

3 x ∈ R(t+1)
i ∧ x /∈ D(t+1)

j x /∈ R(t)
i ∧ x /∈ D(t)

j R(t)
i

⋃{x} D(t)
j

∣∣∣D(t)
j ∩R(t)

i

∣∣∣∣∣∣R(t)
i

∣∣∣+1
Decrease

x ∈ R(t)
i ∧ x /∈ D(t)

j R(t)
i

⋃{x} − {x} D(t)
j

∣∣∣D(t)
j ∩R(t)

i

∣∣∣∣∣∣R(t)
i −1

∣∣∣
Constant

x /∈ R(t)
i ∧ x ∈ D(t)

j R(t)
i

⋃{x} D(t)
j − {x}

∣∣∣D(t)
j ∩R(t)

i

∣∣∣∣∣∣R(t)
i

∣∣∣+1
Decrease

x ∈ R(t)
i ∧ x ∈ D(t)

j R(t)
i

⋃{x} − {x} D(t)
j − {x}

∣∣∣D(t)
j ∩R(t)

i

∣∣∣−1∣∣∣R(t)
i

∣∣∣
Decrease

4 x ∈ R(t+1)
i ∧ x ∈ D(t+1)

j x /∈ R(t)
i ∧ x /∈ D(t)

j R(t)
i

⋃{x} D(t)
j

⋃{x}
∣∣∣D(t)

j ∩R(t)
i

∣∣∣+1∣∣∣R(t)
i

∣∣∣+1
Increase

x ∈ R(t)
i ∧ x /∈ D(t)

j R(t)
i

⋃{x} − {x} D(t)
j

⋃{x}
∣∣∣D(t)

j ∩R(t)
i

∣∣∣+1∣∣∣R(t)
i

∣∣∣
Increase

x /∈ R(t)
i ∧ x ∈ D(t)

j R(t)
i

⋃{x} D(t)
j

⋃{x} − {x}
∣∣∣D(t)

j ∩R(t)
i

∣∣∣+1∣∣∣R(t)
i

∣∣∣+1
Increase

x ∈ R(t)
i ∧ x ∈ D(t)

j R(t)
i

⋃{x} − {x} D(t)
j

⋃{x} − {x}
∣∣∣D(t)

j ∩R(t)
i

∣∣∣∣∣∣R(t)
i

∣∣∣
Constant

(4)
(

x ∈ R(t+1)
i ∧ x ∈ D(t+1)

j

)
∧

(
x ∈ R(t)

i ∧ x /∈ D(t)
j

)
;

(5)
(

x ∈ R(t+1)
i ∧ x ∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x ∈ D(t)
j

)
,

then the positive region, boundary region and negative region of I S(t+1) at time t + 1 is renewed as follows: 

P O S(α,β)

(
D(t+1)

j

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P O S(α,β)

(
D(t)

j

)
− R(t)

i ∪ R(t+1)
i , p1

P O S(α,β)

(
D(t)

j

)
∪ R(t+1)

i , p2

P O S(α,β)

(
D(t)

j

)
∪ R(t+1)

i , p3

where p1 : R(t)
i ⊆ P O S(α,β)

(
D(t)

j

)
;

p2 : R(t)
i ⊆ BN D(α,β)

(
D(t)

j

)
∧ Pr

(
D(t+1)

j |R(t+1)
i

)
≥ α;

p3 : R(t)
i ⊆ N EG(α,β)

(
D(t)

j

)
∧ Pr

(
D(t+1)

j |R(t+1)
i

)
≥ α.
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BN D(α,β)

(
D(t+1)

j

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

BN D(α,β)

(
D(t)

j

)
− R(t)

i , b1

BN D(α,β)

(
D(t)

j

)
− R(t)

i ∪ R(t+1)
i , b2

BN D(α,β)

(
D(t)

j

)
∪ R(t+1)

i , b3

where b1 : R(t)
i ⊆ BN D(α,β)

(
D(t)

j

)
∧ Pr

(
D(t+1)

j |R(t+1)
i

)
≥ α;

b2 : R(t)
i ⊆ BN D(α,β)

(
D(t)

j

)
∧ β < Pr

(
D(t+1)

j |R(t+1)
i

)
< α;

b3 : R(t)
i ⊆ N EG(α,β)

(
D(t)

j

)
∧ β < Pr

(
D(t+1)

j |R(t+1)
i

)
< α.

N EG(α,β)(D(t+1)
j ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N EG(α,β)

(
D(t)

j

)
− R(t)

i , n1

N EG(α,β)

(
D(t)

j

)
− R(t)

i , n2

N EG(α,β)

(
D(t)

j

)
− R(t)

i ∪ R(t+1)
i , n3

where n1 : R(t)
i ⊆ N EG(α,β)

(
D(t)

j

)
∧ Pr

(
D(t+1)

j |R(t+1)
i

)
≥ α;

n2 : R(t)
i ⊆ N EG(α,β)

(
D(t)

j

)
∧ α > Pr

(
D(t+1)

j |R(t+1)
i

)
> β;

n3 : R(t)
i ⊆ N EG(α,β)

(
D(t)

j

)
∧ Pr

(
D(t+1)

j |R(t+1)
i

)
≤ β.

Proof. According to Theorems 1, 2 and 4, conditional probability Pr
(

D(t+1)
j |R(t+1)

i

)
increases, therefore, we have:

1) Updating of P O S(α,β)

(
D(t+1)

j

)
at time t + 1:

1.1) Given additional condition p1 holds, based on Definition 4, we have Pr
(

D(t)
j

∣∣∣R(t)
i

)
≥ α. Since 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
> Pr

(
D(t)

j

∣∣∣R(t)
i

)
> α, R(t+1)

i ⊆ P O S(α,β)

(
D(t+1)

j

)
,

which means R(t)
i is an existing equivalence class in positive region at both time t and t + 1 but the contained elements are 

changed. Hence 

P O S(α,β)

(
D(t+1)

j

)
= P O S(α,β)

(
D(t)

j

)
− R(t)

i ∪ R(t+1)
i .

1.2) Given additional condition p2 holds, based on Definition 4, we have α > Pr
(

D(t)
j

∣∣∣R(t)
i

)
> β . Since 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
≥ α, R(t+1)

i ⊆ P O S(α,β)

(
D(t+1)

j

)
,

which means R(t)
i is an equivalence class transformed from boundary region at time t to positive region at time t + 1. 

Hence 

P O S(α,β)

(
D(t+1)

j

)
= P O S(α,β)

(
D(t)

j

)
∪ R(t+1)

i .

1.3) Given additional condition p3 holds, based on Definition 4, we have Pr
(

D(t)
j

∣∣∣R(t)
i

)
≤ β . Since 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
≥ α, R(t+1)

i ⊆ P O S(α,β)

(
D(t+1)

j

)
,

which means R(t)
i is an equivalence class transformed from negative region at time t to positive region at time t + 1. Hence 

P O S(α,β)

(
D(t+1)

j

)
= P O S(α,β)

(
D(t)

j

)
∪ R(t+1)

i .

2) Updating of BN D(α,β)

(
D(t+1)

j

)
at time t + 1:

2.1) Given additional condition b1, based on Definition 4, we have α > Pr
(

D(t)
j

∣∣∣R(t)
i

)
> β . Since 
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Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
> α, R(t+1)

i ⊆ P O S(α,β)

(
D(t+1)

j

)
,

which means R(t)
i is an equivalence class transformed from boundary region at time t to positive region at time t +1. Hence

BN D(α,β)

(
D(t+1)

j

)
= BN D(α,β)

(
D(t)

j

)
− R(t)

i .

2.2) Given additional condition b2, based on Definition 4, we have α > Pr
(

D(t)
j

∣∣∣R(t)
i

)
> β . Since 

α > Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
> β, R(t+1)

i ⊆ P O S(α,β)

(
D(t+1)

j

)
,

which means R(t)
i is an existing equivalence class in boundary region at both time t and t + 1 but the contained elements 

are changed. Hence 

BN D(α,β)

(
D(t+1)

j

)
= BN D(α,β)

(
D(t)

j

)
− R(t)

i ∪ R(t+1)
i .

2.3) Given additional condition b3, based on Definition 4, we have Pr
(

D(t)
j

∣∣∣R(t)
i

)
< β . Since 

α > Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
> β, R(t+1)

i ⊆ P O S(α,β)

(
D(t+1)

j

)
,

which means R(t)
i is an equivalence class transformed from negative region at time t to boundary region at time t + 1. 

Hence 

BN D(α,β)

(
D(t+1)

j

)
= BN D(α,β)

(
D(t)

j

)
∪ R(t+1)

i .

3) Updating of N EG(α,β)

(
D(t+1)

j

)
at time t + 1:

3.1) Given additional condition n1, based on Definition 4, we have Pr
(

D(t)
j

∣∣∣R(t)
i

)
≥ α. Since 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
> α, R(t+1)

i ⊆ P O S(α,β)

(
D(t+1)

j

)
,

which means R(t)
i is an equivalence class transformed from negative region at time t to positive region at time t + 1. Hence 

N EG(α,β)

(
D(t+1)

j

)
= N EG(α,β)

(
D(t)

j

)
− R(t)

i .

3.2) Given additional condition n2, based on Definition 4, we have α > Pr
(

D(t)
j

∣∣∣R(t)
i

)
> β . Since 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
> α, R(t+1)

i ⊆ P O S(α,β)

(
D(t+1)

j

)
,

which means R(t)
i is an equivalence class transformed from negative region at time t to boundary region at time t + 1. 

Hence 

N EG(α,β)

(
D(t+1)

j

)
= N EG(α,β)

(
D(t)

j

)
− R(t)

i .

3.3) Given additional condition n3, based on Definition 4, we have Pr
(

D(t)
j

∣∣∣R(t)
i

)
< β . Since 

Pr
(

D(t+1)
j

∣∣∣R(t+1)
i

)
> α, R(t+1)

i ⊆ P O S(α,β)

(
D(t+1)

j

)
,

which means R(t)
i is an existing equivalence class in negative region at both time t and t + 1 but contained elements are 

changed. Hence 

N EG(α,β)

(
D(t+1)

j

)
= N EG(α,β)

(
D(t)

j

)
− R(t)

i ∪ R(t+1)
i . �

Corollary 3. Let I S(t) = {
U (t), C (t) ∪ D(t)

}
and I S(t+1) = {

U (t+1), C (t+1) ∪ D(t+1)
}

represent an information system at time t and 
time t + 1 respectively. If variation of single object is one of the following situations:
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(1)
(

x /∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x ∈ R(t)

i ∧ x ∈ D(t)
j

)
;

(2)
(

x /∈ R(t+1)
i ∧ x ∈ D(t+1)

j

)
∧

(
x ∈ R(t)

i ∧ x ∈ D(t)
j

)
;

(3)
(

x ∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x /∈ D(t)
j

)
;

(4)
(

x ∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x /∈ R(t)

i ∧ x ∈ D(t)
j

)
;

(5)
(

x ∈ R(t+1)
i ∧ x /∈ D(t+1)

j

)
∧

(
x ∈ R(t)

i ∧ x ∈ D(t)
j

)
.

then the positive region, boundary region and negative region of I S(t+1) is renewed as follows: 

P O S(α,β)

(
D(t+1)

j

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P O S(α,β)

(
D(t)

j

)
− R(t)

i ∪ R(t+1)
i , p1

P O S(α,β)

(
D(t)

j

)
− R(t)

i , p2

P O S(α,β)

(
D(t)

j

)
− R(t)

i , p3

where p1 : R(t)
i ⊆ P O S(α,β)

(
D(t)

j

)
∧ Pr

(
D(t+1)

j |R(t+1)
i

)
≥ α;

p2 : R(t)
i ⊆ P O S(α,β)

(
D(t)

j

)
∧ β < Pr

(
D(t+1)

j |R(t+1)
i

)
< α;

p3 : R(t)
i ⊆ P O S(α,β)

(
D(t)

j

)
∧ Pr

(
D(t+1)

j |R(t+1)
i

)
≤ β.

BN D(α,β)

(
D(t+1)

j

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

BN D(α,β)

(
D(t)

j

)
∪ R(t+1)

i , b1

BN D(α,β)

(
D(t)

j

)
− R(t)

i ∪ R(t+1)
i , b2

BN D(α,β)

(
D(t)

j

)
− R(t)

i , b3

where b1 : R(t)
i ⊆ P O S(α,β)

(
D(t)

j

)
∧ β < Pr

(
D(t+1)

j |R(t+1)
i

)
< α;

b2 : R(t)
i ⊆ BN D(α,β)

(
D(t)

j

)
∧ β < Pr

(
D(t+1)

j |R(t+1)
i

)
< α;

b3 : R(t)
i ⊆ BN D(α,β)

(
D(t)

j

)
∧ Pr

(
D(t+1)

j |R(t+1)
i

)
≤ β.

N EG(α,β)

(
D(t+1)

j

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N EG(α,β)

(
D(t)

j

)
∪ R(t+1)

i , n1

N EG(α,β)

(
D(t)

j

)
∪ R(t+1)

i , n2

N EG(α,β)

(
D(t)

j

)
− R(t)

i ∪ R(t+1)
i , n3

where n1 : R(t)
i ⊆ P O S(α,β)

(
D(t)

j

)
∧ Pr

(
D(t+1)

j |R(t+1)
i

)
≤ β;

n2 : R(t)
i ⊆ BN D(α,β)

(
D(t)

j

)
∧ Pr

(
D(t+1)

j |R(t+1)
i

)
≤ β;

n3 : R(t)
i ⊆ N EG(α,β)

(
D(t)

j

)
.

Proof. This proof is similar to that of Corollary 2. �
Remark 1. From Corollaries 1–3, we can see that the result of three-way region variation may occur within region (for ex-
ample, positive to positive) or without regions (for example, negative to boundary) depending on the relation of conditional 
probability with regard to predefined thresholds (α, β). While the intra-region variations do not alter the remaining regions, 
the inter-region variation lead to the expanding and diminishing of two regions simultaneously. By this design, we can make 
minimum computation in stream computing.
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4.3. SS3WD: a new stream computing learning algorithm

On the basis of theorems and corollaries presented in Sections 4.1 and 4.2, this section will present an algorithm called 
Single-object Stream computing using Three-Way Decisions (SS3WD) to realize the stream computing learning method. 
Details of SS3WD are given as follows.

Algorithm 1. SS3WD
Input:

I S(t) = {
U (t), C (t) ∪ D(t)

}
; R(t)

i , D(t)
j , Pr

(
D(t)

j |R(t)
i

)
; P O S(α,β)

(
D(t)

j

)
, BN D(α,β)

(
D(t)

j

)
, N EG(α,β)

(
D(t)

j

)
; (α, β); |Ci |, |D j | x, 

and x.
Output:

P O S(α,β)

(
D(t+1)

j

)
, BN D(α,β)

(
D(t+1)

j

)
, N EG(α,β)

(
D(t+1)

j

)
.

Step 1: Find the equivalence class affiliation of immigrated and emigrated of objects, then update the equivalence classes R(t+1)
i and 

D(t+1)
j at time t + 1.

Step 2: Estimate the trend of conditional probability Pr
(

D(t+1)
j |R(t+1)

i

)
for each i and j according to Theorems 1–4 at time t + 1.

Step 3: Update the three-way decisions regions P O S(α,β)

(
D(t+1)

j

)
, BN D(α,β)

(
D(t+1)

j

)
, N EG(α,β)

(
D(t+1)

j

)
respectively accord-

ing to Corollaries 1–3.
Step 4: Compute new conditional probability for every equivalence class w.r.t. every concept (P (D j |Ci)) at time t + 1 and update 

|D j |, |Ci|. Go back to Step 1.

Remark 2. SS3WD is an implementation of stream mining learning method. Firstly, it is related to stream data mining. 
Secondly, the computations w.r.t. object variations are performed meanwhile.

Now we will analyze the computational complexity of SS3WD. Assuming that an information system IS contains m condi-
tional equivalence classes m = |U (t)/A| (U (t) ⊆ U ) and n decision equivalence classes n = |D|, in SS3WD requires (m|C | + n)

times at any time. Step 2 is the estimation of probabilistic trend, which only spends O (1). Step 3 is the region re-allocation. 
Updating regions implies the transition of objects within regions. No renovation for regions is the best situation, and in this 
case complexity of both algorithm can be regarded as O (1). In worst cases, it requires to be transferred two times. Let |Ri |
and |R j | stands for the cardinal of equivalence class i w.r.t. immigrated object (x) and class j w.r.t. emigrated object (x), 
the time cost for region adjustment is denoted as O (|Ri | + |R j |). Step 4 requires O (1) since new conditional probability 
can be computed quickly given that |R j | and |Di | is known. Time cost in step 2 and step 4 is negligible. Finally, the overall 
complexity of SS3WD is at most O (|U (t)/C ||C | + |D|) + O (|Ri | + |R j |).

Meanwhile, an incremental learning algorithm called Incremental Learning with Three-Way Decisions (IL3WD) is also 
designed based on [26,29]. It is a hybrid incremental learning algorithm which maintain decision knowledge w.r.t. object 
addition and deletion incrementally. Details of IL3WD are given as follows.

Algorithm 2. IL3WD
Input:

I S(t) = {
U (t), C (t) ∪ D(t)

}
; R(t)

i , D(t)
j , Pr

(
D(t)

j |R(t)
i

)
; P O S(α,β)

(
D(t)

j

)
, BN D(α,β)

(
D(t)

j

)
, N EG(α,β)

(
D(t)

j

)
; (α, β); |Ci |, |D j | x, 

and x.
Output:

P O S(α,β)

(
D(t+1)

j

)
, BN D(α,β)

(
D(t+1)

j

)
, N EG(α,β)

(
D(t+1)

j

)
.

Step 1: Update three-way region at time t + 1 given immigrated object x.
Step 1.1: Find the equivalence class affiliation of immigrated object, then update the two equivalence classes R(t+1)

i and D(t+1)
j

at time t + 1.
Step 1.2: Estimate the trend of conditional probability Pr

(
D(t+1)

j |R(t+1)
i

)
for each i and j according to Refs. [26,29] at time 

t + 1.
Step 1.3: Update the three-way decisions regions P O S(α,β)

(
D(t+1)

j

)
, BN D(α,β)

(
D(t+1)

j

)
, N EG(α,β)

(
D(t+1)

j

)
respectively 

according to Refs. [26,29].
Step 1.4: Compute new conditional probability for every equivalence class w.r.t. every concept (Pr(D j |Ci)) at time t+1 and 

update |D j |, |Ci |.
Step 2: Update three-way region at time t + 1 given emigrated object x.

Step 2.1: Find the equivalence class affiliation of emigrated object, then update the two equivalence classes R(t+1)
i and D(t+1)

j
at time t + 1.
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Step 2.2: Estimate the trend of conditional probability Pr
(

D(t+1)
j |R(t+1)

i

)
for each i and j in accordance with Refs. [26,29] at 

time t + 1.
Step 2.3: Update the three-way decisions regions P O S(α,β)

(
D(t+1)

j

)
, BN D(α,β)

(
D(t+1)

j

)
, N EG(α,β)

(
D(t+1)

j

)
respectively 

according to Refs. [26,29].
Step 2.4: Compute new conditional probability for every equivalence class w.r.t. every concept (P (D j |Ci)) at time t + 1 and 

update |D j |, |Ci |.
Step 3: Go back to Step 1.

Now we will analyze the computational complexity of IL3WD. Assuming that an information system IS contains m
conditional equivalence classes m = |U (t)/C | (U (t) ⊆ U ) and n decision equivalence classes n = |D|, in steps 1.1 and 2.1 of 
IL3WD, the three-way decision-making needs to calculate the conditional probability for (m|C | + n) times each, denoted 
as O (2m|C | + 2n) altogether. This lies in the fact that every variation, whether immigration or emigration, is separately 
processed. Steps 1.2 and 2.2 are the estimation of probabilistic trend, which only spends O (1). Steps 1.3 and 2.3 are the 
region re-allocation. Updating regions implies the transition of objects within regions. No renovation for regions is the best 
situation, and in this case complexity of both algorithm can be regarded as O (1). In worst cases, it requires to be transferred 
two times (no matter immigration or emigration first). Let |Ri | and |R j | stands for the cardinal of equivalence class i w.r.t.
immigrated object (x) and class j w.r.t. emigrated object (x), the time cost for region adjustment is denoted as O (|Ri | +|R j |). 
Finally, the overall complexity of IL3WD is at most O (2|U (t)/C ||C | + 2|D|) + O (|Ri | + |R j|);

SS3WD and IL3WD is analogous in many aspects. However, time cost of step 3 in SS3WD and IL3WD is not invariantly 
identical. A special case is that time cost in step 3 of SS3WD can be significantly economical than IL3WD if the following 
conditions are sufficed simultaneously: i) the conditional probability of certain equivalence class is approximate to one 
threshold; ii) at least condition attribute in x and x are identical of that equivalence class. In this case, IL3WD will have to 
adjust twice whereas SS3WD require at most one adjustment. Step 4 requires O (1) since new conditional probability can be 
computed quickly given that |R j| and |Di | is known. Time cost in step 2 and step 4 is negligible. Whether step 1 or step 3 
spends more time is closely pertinent to the dataset. However, the uncertainty in time cost does not hamper us to conclude 
that theoretically, SS3WD is expected to be faster than IL3WD. This is straightforward since the time cost of SS3WD is no 
worse than IL3WD. Finally, we have following assertions:
i) If step 1 dominates the main time cost of SS3WD (which means step 1.1 and 2.1 dominates the time cost of IL3WD) 
and no special case of step 3 occurs (means time cost in step 3 of SS3WD is equivalent to that in step 1.3 and step 2.3 of 
IL3WD), speedup will be close to 2;
ii) If special case of step 3 in SS3WD occurs, the speedup can be almost infinite;
iii) If step 3 dominates the main time cost of SS3WD, speedup will be close to 1.

We can trace the change of decision regions at different stages according to the variation of objects according to this 
algorithm, as shown in Fig. 3.

The SS3WD algorithm reflects the three-way decision-based stream computing process of arbitrary two adjacent time 
(t, t + 1). As shown in the Fig. 3, thick solid arrows represent the structure process of 3WD, which are divided into three 
steps: firstly, streaming updating the conditional equivalence classes and decision equivalence class; secondly, streaming 
updating the conditional probability; thirdly, streaming updating the three-way decisions based on the decision equivalence 
classes and the value of conditional probability. In order to reduce the redundant calculation as much as possible, the 
structure of 3WD at time t + 1 utilize information stored at time t (indicated by virtual arrow) and changes of equivalence 
class at t + 1 (indicated by solid arrows) in real time. For situations either immigration count or emigration count exceeds 
one, SS3WD is supposed to perform more times to depict knowledge variation between time t and time t + 1.

5. Examples and experiments

This section attempts to apply SS3WD for stream computing. Firstly, an example are presented to validate its correctness 
and feasibility step by step. We then compare SS3WD with IL3WD on nine UCI datasets with different sizes of objects and 
attributes. Finally, we present the results of experiments from three different perspectives.

5.1. Example

Given an information system I S(t) = {U (t), C (t) ∪ D(t)}, as shown in Table 3. where U (t) = {x1, x2, x3, x4, x5, x6, x7, x8}
represents a set of data objects at time t , C (t) = {c1, c2, c3, c4} represents a set of conditional attribute, D(t) = {d} presents a 
set of decision attribute. 

The corresponding structured memory information of Table 3 in timestamp t are stored as follows:

• equivalence class of condition: U (t)/C (t) = {R(t)
1 , R(t)

2 , R(t)
3 }, where R(t)

1 = {x1, x3, x4}, R(t)
2 = {x2, x5}, R(t)

3 = {x6, x7, x8}.

• equivalence class of decision: U (t)/D(t) = {D(t)
1 , D(t)

2 }, where D(t)
1 = {x1, x3, x6, x7}, D(t)

2 = {x2, x4, x5, x8}.
• Conditional probabilities: 
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Fig. 3. Description of SS3WD Algorithm.

Table 3
The original information system at time t .

U c1 c2 c3 c4 d U c1 c2 c3 c4 d

x1 1 0 0 1 1 x5 1 1 0 0 0
x2 1 1 0 0 0 x6 1 1 1 1 1
x3 1 0 0 1 1 x7 1 1 1 1 1
x4 1 0 0 1 0 x8 1 1 1 1 0

D(t)
1 : Pr

(
D(t)

1 |R(t)
1

)
= 2/3,Pr

(
D(t)

1 |R(t)
2

)
= 0,Pr

(
D(t)

1 |R(t)
3

)
= 2/3;

D(t)
2 : Pr

(
D(t)

2 |R(t)
1

)
= 1/3,Pr

(
D(t)

2 |R(t)
2

)
= 1,Pr

(
D(t)

2 |R(t)
3

)
= 1/3;

• Thresholds:(α, β) = (0.75, 0.35).
• Three-way decision regions of D1 D2: 
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Table 4
The information system U t+1 : U t+1 = U t ∪ {x9} − {x1}.

U c1 c2 c3 c4 d U c1 c2 c3 c4 d

x2 1 1 0 0 0 x6 1 1 1 1 1
x3 1 0 0 1 1 x7 1 1 1 1 1
x4 1 0 0 1 0 x8 1 1 1 1 0
x5 1 1 0 0 0 x9 1 1 1 1 1

D(t)
1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P O S(α,β)

(
D(t)

1

)
= ∅;

BN D(α,β)

(
D(t)

1

)
= R(t)

1 ∪ R(t)
3 ;

N EG(α,β)

(
D(t)

1

)
= R(t)

2 .

and D(t)
2 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P O S(α,β)

(
D(t)

2

)
= R(t)

2 ;
BN D(α,β)

(
D(t)

2

)
= ∅;

N EG(α,β)

(
D(t)

2

)
= R(t)

1 ∪ R(t)
3 .

.

Consequently, we can make decisions of acceptance, deferment and rejection at time t , respectively according to Defini-
tion 5.

In what follows, we propose two different examples of the data stream objects to illustrate the real time stream com-
puting process of three-way decisions.

Example. We assume at time t + 1, the object x9 is immigrated, whereas the object x1 is emigrated, as shown in Table 4. 

Step 1 of SS3WD
For the equivalence classes induced by C (t) and D(t) , we have the knowledge of equivalence classes as following: 

R(t+1)
1 = R(t)

1 − {x} = {x3, x4};
R(t+1)

2 = R(t)
2 = {x2, x5};

R(t+1)
3 = R(t)

3 ∪ {x} = {x6, x7, x8, x9};
D(t+1)

1 = D(t)
1 ∪ {x} − {x} = {x3, x6, x7, x9};

D(t+1)
2 = D(t)

2 = {x2, x4, x5, x8}.
As a result, 

(
x ∈ R(t+1)

3 ∧ x ∈ D(t+1)
1

)
∧

(
x ∈ R(t)

1 ∧ x ∈ D(t)
1

)
.

Step 2 of SS3WD

• Update the three-way decisions of D(t+1)
1 :

We can estimate the trend of conditional probability as follows: 

Pr
(

D(t+1)
1

∣∣∣R(t+1)
1

)
< Pr

(
D(t)

1

∣∣∣R(t)
1

)
; (T heorem 2(4))

Pr
(

D(t+1)
1

∣∣∣R(t+1)
2

)
= Pr

(
D(t)

1

∣∣∣R(t)
2

)
; (T heorem 2(3))

Pr
(

D(t+1)
1

∣∣∣R(t+1)
3

)
> Pr

(
D(t)

1

∣∣∣R(t)
3

)
. (T heorem 4(3))

• Update the three-way decisions of D(t+1)
2 :

We can also estimate the trend of conditional probability as follows: 

Pr
(

D(t+1)
2

∣∣∣R(t+1)
1

)
> Pr

(
D(t)

2

∣∣∣R(t)
1

)
; (T heorem 1(2))

Pr
(

D(t+1)
2

∣∣∣R(t+1)
2

)
= Pr

(
D(t)

2

∣∣∣R(t)
2

)
; (T heorem 1(1))

Pr
(

D(t+1)
2

∣∣∣R(t+1)
3

)
< Pr

(
D(t)

2

∣∣∣R(t)
3

)
. (T heorem 3(1))

Step 3 of SS3WD

• Firstly, we will find the elements of D(t+1)
1 .

According to Corollary 2, since R(t)
1 ⊆ BN D(α,β)

(
D(t)

1

)
and β < Pr

(
D1

(t+1)
∣∣R1

(t+1)
) = 1/2 < α, we have

BN D(α,β)(D(t+1)
1 ) = BN D(α,β)

(
D(t)

1

)
− {x} = R(t)

1 ∪ R(t)
3 − {x} = R(t+1)

1 ∪ R(t)
3 . According to Corollary 3, since R(t)

3 ⊆
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BN D(α,β)

(
D(t)

1

)
and Pr

(
D1

(t+1)
∣∣R3

(t+1)
) = 3/4 ≥ α, we have P O S(α,β)

(
D(t+1)

1

)
= P O S(α,β)

(
D(t)

1

)
∪ R(t+1)

3 = R(t+1)
3 , 

BN D(α,β)

(
D(t+1)

1

)
= BN D(α,β)

(
D(t)

1

)
− R(t)

3 = R(t+1)
1 ∪ R(t)

3 − R(t)
3 = R(t+1)

1 .

• Secondly, we will find the elements of D(t+1)
2 .

According to Corollary 3, since R(t)
1 ⊆ N EG(α,β)

(
D(t)

2

)
and β < Pr

(
D2

(t+1)
∣∣R1

(t+1)
) = 1/2 < α, we have

BN D(α,β)

(
D(t+1)

2

)
= BN D(α,β)

(
D(t)

2

)
∪ R(t+1)

1 = R(t+1)
1 , N EG(α,β)

(
D(t+1)

2

)
= N EG(α,β)

(
D(t)

2

)
− R(t)

1 = R(t)
3 . Accord-

ing to Corollary 2, since R(t)
3 ⊆ N EG(α,β)

(
D(t)

2

)
and Pr

(
D2

(t+1)
∣∣R3

(t+1)
) = 1/4 < β , we have N EG(α,β)

(
D(t+1)

2

)
=

N EG(α,β)

(
D(t)

2

)
∪ {x} = R(t)

3 ∪ {x} = R(t+1)
3 .

In summary, the three-way decision regions are updated by real time stream computing as follows: 

D(t+1)
1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P O S(α,β)

(
D(t+1)

1

)
= R(t+1)

3 ;
BN D(α,β)

(
D(t+1)

1

)
= R(t+1)

1 ;
N EG(α,β)

(
D(t+1)

1

)
= R(t+1)

2 .

and D(t+1)
2 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P O S(α,β)

(
D(t+1)

2

)
= R(t+1)

2 ;
BN D(α,β)

(
D(t+1)

2

)
= R(t+1)

1 ;
N EG(α,β)

(
D(t+1)

2

)
= R(t+1)

3 .

Step 4 of SS3WD
Accordingly, at time t + 1 in Example 1, we can make three-way decisions of acceptance, deferment and rejection, respec-
tively according to Definition 5. Meanwhile, we need to update the conditional probability of R1 and R3 because of object 
variation. Since equivalence class of C2 remains unchanged, we will update the conditional probability of Di , i = 1, 2 w.r.t. 
R j , j = 1, 3

Pr(D(t+1)
1 |R(t+1)

1 ) = (2 − 1)/(3 − 1) = 1/2;Pr(D(t+1)
2 |R(t+1)

1 ) = 1/(3 − 1) = 1/2;
Pr(D(t+1)

1 |R(t+1)
3 ) = (2 + 1)/(3 + 1) = 3/4;Pr(D(t+1)

2 |R(t+1)
1 ) = 1/(3 + 1) = 1/4;

From the above-mentioned example, we can observe that it is possible to immediately estimate the trend of conditional 
probability and compute the three-way decisions given variation of the objects. Hence, the stream computing update theory 
and algorithm are proved to be effective.

5.2. Experimental analysis

In this section, we conduct experiments to verify the efficiency and robustness of SS3WD. To accomplish it, we design 
altogether three experiments. The first experiment endeavored to demonstrate the stream computing efficiency, whereas 
the second managed to testify the performance on real big dataset. The third experiment, however, attempted to seek the 
relationship between thresholds setting and computation cost. All experiments are performed on a computer with Intel®

Core™ 2 Duo CPU E7500 and 4 GB of memory, running Microsoft Windows 7. Methods are programmed in Java with 
MyEclipse and JDK 1.6.0. We select eight datasets from the University of California Irvine (UCI) Machine Learning Database 
Repository (http :/ /archive .ics .uci .edu /ml /datasets) as benchmarks to assess the computational cost respectively. They are 
“Skin–NoSkin”, “Letter”, “Magic”, “Shuttle”, “IRIS”, “Zoo”, “Haberman”, and “Breast-cancer”. Detailed characteristics of the 
eight datasets are shown in Table 5. For datasets which contains numerical attribute, we simply divide them into 10 equal 
bins so that equivalence class can be generated.

Experiment 1. Comparison of computational time on small dataset.

In the first experiment, we intend to show the overall performance of SS3WD w.r.t. IL3WD by using the metric of 
accumulated time. To reduce the impact of accidental factors, all experiments are executed 10 times. As for thresholds 
(α, β), we arbitrarily assign them as (α, β) = (0, 75, 0.3) in the first two experiments so that three disjoint regions can be 
determined. 

Assuming that the memory space can keep at most 100 records, we examine the performance of both algorithms as 
gradually increasing the proportion of data stored at time t for aforementioned eight datasets. To achieve it, we select 
ten different sizes of records (10, 20, 30, · · · , 100). Experimental results of two algorithms for updating three-way decision 
regions are shown in Fig. 4(a)–(h) respectively. The time in Fig. 4 includes the effort of finding variations in equivalence class 
of both conditional attributes and decision classes, estimating changes of conditional probability and updating three-way 
decisions for all possible cases, whereas time for calculating original equivalence class is excluded. 

It can be observed from Fig. 4 that both algorithms are almost linearly increased as objects continuously processed 
in memory. SS3WD always performs faster than IL3WD. However, the gradient is much different and SS3WD is much 
smaller than IL3WD. Algorithm speedup is another essential metric to evaluate the efficiency in previous work concerning 
incremental learning [29]. We present an analytical comparison between the SS3WD and Luo [29]. The speedup is defined 

http://archive.ics.uci.edu/ml/datasets
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Fig. 4. Elapsed time between IL3WD and SS3WD on eight UCI datasets.
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Table 5
The basic information of the eight datasets.

No. Data sets name Samples Features Concepts count

1 Skin–NoSkin 64486 3 2
2 Letter 20000 16 12
3 Magic 19020 10 2
4 Shuttle 58000 9 5
5 IRIS 60750 8 3
6 Zoo 60600 17 7
7 Haberman 55080 3 2
8 Breast-cancer 60860 10 4

Table 6
Speedup of SS3WD versus IL3WD in eight UCI datasets.

DataSets Size of processed ratio

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Skin_NoSkin 1.378 1.466 1.597 1.521 1.503 1.594 1.558 1.624 1.382 1.518
Letter 1.401 1.716 1.296 1.367 1.378 1.475 1.529 1.496 1.392 1.456
Magic 1.563 1.574 1.462 1.756 1.696 1.559 1.667 1.773 1.550 1.857
Shuttle 1.163 1.478 1.411 1.452 1.616 1.567 1.622 1.601 1.175 1.557
IRIS 1.362 1.606 1.739 1.603 1.603 1.522 1.557 1.754 1.362 1.667
Zoo 1.576 1.585 1.884 1.557 1.581 1.644 1.562 1.534 1.560 1.468
Haberman 1.528 1.584 1.328 1.652 1.636 1.732 1.662 1.682 1.512 1.618
Breast-cancer 1.418 1.572 1.695 1.665 1.815 1.823 1.776 1.831 1.432 1.794

Table 7
Experimental results examined from time t to t + 5 on eight UCI datasets.

Data set Algorithm t t1 t2 t3 t4 t5 mean±std p-value

Skin_NoSkin IL3WD 0.076 0.062 0.063 0.059 0.058 0.060 0.063 ± 0.007 0.0022
SS3WD 0.055 0.043 0.040 0.039 0.039 0.038 0.042 ± 0.006

Letter IL3WD 0.110 0.087 0.075 0.071 0.070 0.072 0.081 ± 0.015 0.0931
SS3WD 0.079 0.074 0.058 0.052 0.051 0.049 0.061 ± 0.013

Magic IL3WD 0.110 0.093 0.078 0.072 0.066 0.067 0.081 ± 0.017 0.0173
SS3WD 0.071 0.059 0.053 0.041 0.039 0.043 0.053 ± 0.012

Shuttle IL3WD 0.074 0.068 0.063 0.062 0.066 0.062 0.066 ± 0.005 0.0108
SS3WD 0.063 0.046 0.045 0.043 0.041 0.039 0.046 ± 0.009

IRIS IL3WD 0.079 0.076 0.069 0.062 0.066 0.062 0.066 ± 0.005 0.0079
SS3WD 0.058 0.048 0.040 0.041 0.040 0.040 0.044 ± 0.007

Zoo IL3WD 0.078 0.064 0.070 0.060 0.059 0.060 0.065 ± 0.008 0.0079
SS3WD 0.050 0.040 0.037 0.039 0.037 0.036 0.040 ± 0.005

Haberman IL3WD 0.065 0.054 0.050 0.050 0.048 0.050 0.053 ± 0.006 0.0043
SS3WD 0.043 0.034 0.038 0.031 0.030 0.029 0.034 ± 0.005

Breast-cancer IL3WD 0.063 0.057 0.057 0.055 0.056 0.058 0.058 ± 0.003 0.0079
SS3WD 0.044 0.036 0.034 0.033 0.031 0.032 0.035 ± 0.005

as Ti
Ts

, with Ts be the computation time of the SS3WD and Ti be the computation time of the IL3WD. From Table 6 we 
can see that 1 and 2 is the lower bound and upper bound of speedup, and it is coincide with the analysis of algorithm 
complexity.

Additionally, average time differences reach maximal when 90 percent of data stored in memory. To better demonstrate 
the superiority of SS3WD, we check the time cost one by one starting from the time when 90 percent of data is processed. 
We run this experiment ranges from time t to t + 5 to test its stability. Results of IL3WD and SS3WD are described in 
Table 7. The values before “±” presents the average time to execute either IL3WD or “SS3WD algorithm” on given dataset, 
whereas the values after “±” gives the standard deviation of executing time. The unit of average time is measured by 
10−3 seconds.

It can be observed that almost half time is reduced as compared to IL3WD. The Wilcoxon signed-rank test conducted 
at a 5% significance level in eight UCI datasets reveals that the acceleration is statistically significant. Therefore, SS3WD is 
particularly efficient for knowledge extraction of massive data. Moreover, the smaller variance to average value reveals in 
different datasets reveals that SS3WD is quite robust and scalable.

Experiment 2. Comparison of computational time in big dataset.

To verify the performance of the proposed algorithm SS3WD, we select a real big data set from UCI (http :/ /archive .ics .
uci .edu /ml /machine-learning-databases /kddcup99-mld /kddcup99 .html), which contains nearly 5 million records, 1 decision 

http://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup99.html
http://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup99.html
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Fig. 5. The average elapsed times between IL3WD and SS3WD on KDD99.

Fig. 6. Time cost of different (α,β) with SS3WD method on UCI dataset.

attributes and 41 condition attributes. This dataset is used to identify the intrusion behavior on Internet. Analogously, we 
regard it as streaming data and execute on both SS3WD and IL3WD. The average accumulated time is reported in every 20 
percent. Accordingly, we have five pairwise results, as described in Fig. 5.

From Fig. 5 we can observe that SS3WD outperforms IL3WD significantly. The time cost of IL3WD is nearly twice when 
all data are computed. Since the magnitude of big data is easily to reach PB or ZB, reducing half signifies that we can 
complete the same task with less space but more advanced resources.

Experiment 3. Computational time with different thresholds.

The selection of thresholds may also impact the performance of both algorithms since the equivalence class may be 
different. Since the difference of time cost in Fig. 4 and Fig. 5 is rather dramatic, herein we only present the accumulated 
average time cost of the datasets appeared in Fig. 4. Inspired by thresholds of α and β discussed in Ref, we randomly select 
five pairs which observe the hypothesis α + β = 1. They are (α, β) = (0.6, 0.4), (0.7, 0.3), (0.8, 0.2), (0.9, 0.1) and (1, 0)

respectively. Detailed change trend of computation time on SS3WD are given in Fig. 6 respectively.
The results displayed in Fig. 6 reveals that thresholds have minor fluctuations on performance. Moreover, the absolute 

computing time seems to be more affected by the size of original dataset as compared to concept number |D| and attribute 
number |C |. Such result illustrates that in most cases, O (|U (t)/C ||C |) occupies most of calculations in both SS3WD and 
IL3WD. The conditional probability variation in equivalence class do not necessarily yield to variations of three-way regions, 
and it is the reason why time cost may fluctuate with different thresholds. Furthermore, variations in thresholds will deter-
mine the decision quality, which is beyond the scope of present paper. How to find an optimal pair of threshold is still an 
open issue to be investigated.

Remark 3. Herein we will discuss the reason why throughout the experiments no significant speedup is observed. As 
declared in assertion ii) (see page 14), drastic speedup is probable if the immigration object and emigration object share 
the condition values. We know that in benchmark such case is not frequently appeared, and unfortunately it is only a 
necessary condition. The distribution in certain equivalence class should be around either α or β so that incremental 
learning should update twice, and the final region disposal keep consistent as original. In this case, only new object x is 
required to assign the affiliation of region in SS3WD. Considering the limitation of memory, it demands decision class of the 
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identical equivalence class data nearby should not deviate the threshold much. It is thus an event with small probability. 
Besides, speedup of accumulated time is significant unless the aforementioned case occurs frequently in certain subset. 
Therefore, it is also not likely to appear in the Fig. 6. All experiments can support the remaining assertions, thus stating that 
stream computing learning method is efficient.

6. Conclusion

Stream computing paradigm is a new computing paradigm in the era of big data which embraces simplified calculation 
and advanced resource scheduling. In this paper, we firstly discriminate concept between incremental learning method and 
stream computing learning method. Secondly, we integrate three-way decisions theory to approximate the real-time concept 
variations. Thirdly, conditional probabilities are employed as an indicator to determine region affiliation of objects generated 
by equivalence relation, whereas the dynamism of conditional probability is determined by simultaneously immigration and 
emigration of object. Theoretically, the correctness is guaranteed by four theorems and three corollaries. Finally, experiments 
shows that proposed algorithm SS3WD is not only faster, but also more robust.

There are several directions to be investigated for applying rough sets on stream computing learning method. Firstly, 
we can explore the integration of three-way decisions and stream computing learning method in some challenging field 
such as multi-source and spatio-temporal interoperated scenario. This signifies that not only rough set, but also other tools 
such as formal concept analysis, shadowed sets as well as fuzzy sets can be considered. Secondly, hierarchical granular 
structure on stream computing learning method should be studied for tasks of concept drift. Thirdly, we can replace the 
binary relations based on the data properties and derive different types of stream computing learning method under the 
umbrella of three-way decisions.
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