
International Journal of Approximate Reasoning 88 (2017) 401–434
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Three-way attribute reducts ✩

Xianyong Zhang a,b, Duoqian Miao c,d,∗
a College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, PR China
b Institute of Intelligent Information and Quantum Information, Sichuan Normal University, Chengdu 610066, PR China
c Department of Computer Science and Technology, Tongji University, Shanghai 201804, PR China
d Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai 201804, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 June 2016
Received in revised form 23 May 2017
Accepted 21 June 2017
Available online 27 June 2017

Keywords:
Three-way decisions
Attribute reducts
Three-way reducts
Quantitative reducts
Qualitative reducts
Relative dependency degree

Three-way decisions are a fundamental methodology with extensive applications, while 
attribute reducts play an important role in data analyses. The combination of both topics 
has theoretical significance and applicable prospects, but rarely gains direct research at 
present. In this paper, three-way decisions are introduced into attribute reducts and thus 
three-way attribute reducts are systematically investigated. Firstly, classical qualitative 
reducts are reviewed by the dependency degree. Then, the dependency degree implements 
approximation analyses to be improved to a controllable measure: the relative dependency 
degree, which is monotonic to relatively measure the attribute dependency. Given an 
approximate bar, the relative dependency degree defines the applicable quantitative 
reducts, which approach, expand, and weaken the classical qualitative reducts. This type 
of quantitative reducts is actually the positive quantitative reducts for three-way reducts. 
Thus, three-way quantitative reducts are established by the relative dependency degree and 
dual thresholds. The positive, boundary, and negative quantitative reducts divide the power 
set of the condition attribute set and thus gain acceptance, noncommitment, and rejection 
decisions, respectively; they exhibit the potential derivation from the higher level to the 
lower level. Furthermore, three-way qualitative reducts are established by degeneration 
to implement three-way decisions, and three-way quantitative and qualitative reducts 
exhibit the approximation, expansion, and strength; by virtue of superiority analyses, 
three-way reducts improve the latent two-way reducts with only acceptance and rejection 
decisions. Finally, three-way reducts are practically illustrated by observing an example of 
decision tables. By developing the relative dependency degree with controllability, three-
way reducts implement both a quantitative generalization for qualitative reducts and a 
structural completion for attribute reducts. The relevant study provides a new insight into 
both three-way decisions and attribute reducts.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Three-way decisions are an extension of the commonly used binary decisions with an added third option. They play a 
key role in everyday decision-making and thus establish a novel and important theory in knowledge discovery, manage-
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ment, and utilization [47]. The idea of three-way decisions is first introduced in the rough set theory by Yao, especially in 
the decision-theoretic rough sets [4,16,17,46,49]. At present, the theory of three-way decisions moves to a more general 
trisecting-and-acting framework based on a generic tri-partition of the universe that can assume different interpretations 
and requires different decision strategies [8,9,20,29–31,33,42,54,55,64]. Herein, we return to the rough set theory and fo-
cus on its basis: data tables with objects and attributes. According to a condition classification, the positive, negative, and 
boundary regions of a concept divide the universe of objects, and they gain three-way decisions [46,47,49]. According to a 
type of attribute reducts, the set of condition attributes is divided into three-way classes, and they have similar semantics 
of three-way decisions but slightly different names [6,25,39,53]. Herein, a group of relevant names proposed by Yao and 
Zhang [53] is adopted. Let RED denote the set of all reducts and let R ∈ RED. Thus, the set C of condition attributes exhibits 
a three-way classification:

CORE = ∩RED,

MARGINAL = ∪RED − ∩RED,

NONUSEFUL = C − ∪RED. (1)

The three-way classification provides a three-level characterization of attributes, from the important to the marginal impor-
tant and to the unimportant, and it can represent a pair of lower and upper bounds for any reduct R:

CORE ⊆ R ⊆ USEFUL = ∪RED = CORE ∪ MARGINAL. (2)

However, in terms of the basic space structure, attribute reducts actually exist in the power set of the condition attribute 
set, i.e., 2C . There are rarely direct reports on the division of attribute reducts in 2C , especially from the fundamental view-
point of three-way decisions. The relevant research can probe systematic reduct structures to establish practical reduction 
decisions, so it has theoretical significance and applicable prospects. It becomes our main topic in this paper to implement 
the novel combination of three-way decisions and attribute reducts.

As a subset of C , an attribute reduct satisfies two conditions of joint sufficiency and individual necessity, so it can vastly 
gain the same ability with respect to C . Attribute reducts play an important role in data table analyses and thus have exten-
sive studies [3,10,14,19,21,24,32,41,56]. The classical reducts for decision tables, proposed by Pawlak [28], are equivalently 
established on the positive region and dependency degree to become a type of qualitative reducts. The qualitative reducts 
carry absoluteness to lack a quantitative mechanism, while quantitative reducts implement applicable improvements. For 
a main approach, quantitative models are constructed to produce quantitative regions, and then quantitative regions pro-
duce quantitative reducts. There are multiple quantitative models (especially the probabilistic rough sets) [5,7,36,44,50,52]
and corresponding quantitative reducts [12,13,23,45,60,63]. In particular, Chen et al. [2] establish the three-way decision re-
duction in neighborhood systems, where the positive, boundary, and negative quantitative regions are parallelly utilized. To 
simulate the classical reduct pattern, the model way mainly quantifies the antecedent region and thus has the indirect quan-
tification function for attribute reducts. In contrast, uncertainty measures (including informational measures) can implement 
the direct quantification [11,15,18,38,48,61,62] and thus are deeply used in attribute reducts [2,22,37]. As a result, several 
measures quantify attribute reduction to produce the approximate reducts with tolerance conditions, and Slezak [34,35], 
Wroblewski [40], Zhang and Miao [59] utilize the informational entropy, quality measure, and double-quantitative measure, 
respectively. In this paper, we aim to directly quantify the final reduction action. As a key process, the underlying reduct 
target needs to be quantified to produce the reduct approximation, and a superior measure with reasoning and controllabil-
ity is especially required. Note that the dependency degree γ of attributes serves as an initial and fundamental measure in 
knowledge base [1,26,28,45]. In fact, γ closely adheres to the positive region and qualitative reduct, so it has the absolute 
semantics of attribute dependency to underlie rough reasoning. We will resort to the dependency degree and its quantitative 
mechanism to develop an improved measure: the relative dependency degree γrelative, which has the approximate function 
and relative semantics of attribute dependency in interval [0, 1]. The monotonic and controllable measure γrelative and its 
quantitative bar α further produce the quantitative target and reduct. The γrelative–α quantitative reducts approach, expand, 
and weaken the classical qualitative reducts and thus exhibit application significance of optimization and generalization.

Usually, only attribute reducts themselves are concerned for applications, in both the qualitative and quantitative pat-
terns. This strategy implies two-way reducts and decisions for 2C . That is, RED gains acceptance for the reduction action, 
and surplus 2C − RED becomes the other part which is negative to be not considered. By following the idea of three-
way decisions, a third class and decision are worth adding to represent transitional uncertainty between the positive and 
negative certainty. In RED, usual reducts correspond to the positive choice and thus can be named as positive reducts. 
In contrast, 2C − RED, which currently has no in-depth descriptions, can be further divided into two parts with respect 
to reduction potentiality and impossibility. In this paper, the boundary reducts – a new and variational type of attribute 
reducts – are proposed in the measure style to describe uncertain reducts in 2C − RED, and the surplus subsets in 2C − RED
generally constitute the negative reducts; with the addition of the positive reducts related to RED, three-way reducts are 
thereby established by the structural improvements and connotative development. In the qualitative pattern, that monotonic 
γ reaches maximum γmax based on C produces the positive reducts; interval value γ ∈ (0, γmax) contains the possibility of 
reduct targets, and relevant reduct conditions lead to the boundary reducts; attribute subsets which are neither the posi-
tive nor boundary reducts have complete impossibility and thus become the negative reducts. Similarly, we will construct 
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three-way reducts in the quantitative pattern, by using the monotonic measure γrelative ∈ [0, 1] and dual bars α, β . Con-
cretely, the above γrelative–α quantitative reducts utilize reduct target γrelative ≥ α to become the positive reducts; reduct 
target γrelative ∈ (β, α) produces the boundary reducts; the surplus subsets in 2C become the negative reducts. As a result, 
three-way reducts are established in both the qualitative and quantitative patterns to divide 2C , and they can be unified by 
γrelative which effectively replaces γ . In fact, the positive reducts correspond to the usual reducts which are currently used, 
the boundary reducts extract the potential reducts which have the theoretical possibility for practical applications, while the 
negative reducts collect the surplus subsets which need only negation. For the reduction action, three-way reducts corre-
spond to acceptance, noncommitment, and rejection of three-way decisions, respectively. For three-way reducts, after their 
establishment at the 2C level, we will depend on the C level to systematically discuss their internal derivation, as well 
as the expansion and strength between the qualitative and quantitative patterns. Moreover, the superiority of three-way 
reducts is revealed by the comparison to the two-way reducts.

Finally, the motivation of three-way attribute reducts is summarized from the applied view. In the structural mechanism, 
the usual reducts pursue the systematic accuracy to induce the two-way reducts. However, the real-world environment 
inevitably contains data noise, so the fault tolerance needs to be introduced for the systematic structure. In fact, real-life 
examples with data noise are easily found and their accompanying data tables hold practical deviation, so the two-way 
reducts adopt the two-way decisions to may lead to systematic overfitting. Thus, the three-way reducts adhere to the 
three-way decisions to gain the structure improvement and application robustness, and the quantitative and qualitative 
patterns also provide more application spaces. In summary, three-way reducts aim to offer a better structural and systematic 
mechanism to apply to noise scenarios, and supporting examples extensively exist in practice.

Against the above background and thought, this paper introduces three-way decisions into attribute reducts to make 
three basic contributions, i.e., the improvement of dependency degree, generalization of quantitative reducts, and construc-
tion of three-way reducts. The relevant contents are organized as follows. Section 2 reviews the classical qualitative reducts 
by the dependency degree γ . Section 3 develops the relative dependency degree γrelative and constructs the γrelative-α quan-
titative reducts, i.e., the positive quantitative reducts. Section 4 establishes three-way reducts (including the quantitative and 
qualitative patterns) and analyzes their internal and mutual relationships; moreover, we reveal the superiority of three-way 
reducts in contrast to two-way reducts. Section 5 illustrates three-way reducts by observing an example of decision tables. 
Finally, Section 6 concludes this paper.

2. Qualitative attribute reducts

In this section, we review the qualitative attribute reducts, which are the classical notions [27,28].
The rough set theory focuses on data represented in an information table:

T = (O B, AT , {Vat | at ∈ AT }, {Iat | at ∈ AT }),
where O B is a finite nonempty set of objects called the universe, AT is a finite nonempty set of attributes, Vat is the 
domain of values for at ∈ AT , and Iat : O B → Vat is an information function. Each object x takes a value Iat(x) on attribute 
at .

A decision table is a special type of information tables with AT = C ∪ D and C ∩ D = ∅, where C and D are the sets 
of condition and decision attributes, respectively. Given a subset of condition attributes A ⊆ C , we define an equivalence 
relation by:

E A = {(x, y) ∈ O B × O B | ∀a ∈ A(Ia(x) = Ia(y))}.
This equivalence relation induces a classification of O B , i.e., πA = {[x]A | x ∈ O B}, where [x]A = {y | yE A x} is the equivalence 
class containing object x. The family of equivalence classes in πA serves as building blocks to construct regions.

Definition 1. For a subset of objects X ⊆ O B , the positive, negative, and boundary regions of X given πA are defined by:

POS(X |πA) = {x | [x]A ⊆ X},
NEG(X |πA) = {x | [x]A ⊆ O B − X},
BND(X |πA) = O B − POS(X |πA) ∪ NEG(X |πA). (3)

For the set D of decision attributes, we can similarly produce a partition πD = {[x]D | x ∈ O B}, which usually has two or 
more decision classes. On the basis of Definition 1, the positive region of decision classification πD is defined by taking the 
union of the positive regions of all decision classes. Furthermore, the relevant measurement is produced to represent the 
rough dependency.

Definition 2. The positive region of classification πD given πA is defined by:

POS(πD |πA) =
⋃

POS(X |πA). (4)

X∈πD
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The dependency degree of classification πD given πA is defined by:

γ (πD |πA) = |POS(πD |πA)|
|O B| . (5)

The positive region POS(πD |πA) collects the object which can be properly classified to decision classes of πD by employ-
ing condition classification πA . γ (πD |πA) is the cardinality ratio of the positive region and the universe and thus represents 
the relevant ability to classify objects. As a result, γ (πD |πA) measures the attribute dependency of decision classification 
πD from condition classification πA , which underlies rough reasoning. The positive region and its dependency degree have 
monotonicity (with respect to the set inclusion of attributes):

A1 ⊆ A2 ⊆ C =⇒ POS(πD |πA1) ⊆ POS(πD |πA2),

A1 ⊆ A2 ⊆ C =⇒ γ (πD |πA1) ≤ γ (πD |πA2). (6)

That is, a subset of attributes normally produces the smaller positive region and dependency degree than its superset’s. 
Hence, the dependency degree has range boundedness:

γ (πD |πA) ∈ [0, γ (πD |πC )], ∀A ⊆ C, (7)

where γ (πD |πC ) becomes the maximum. Furthermore, a classical attribute reduct is a minimal set of C to produce the same 
positive region or dependency degree with respect to classification πC , and the relevant form with dependency degree γ is 
mainly adopted in this paper.

Definition 3. A subset of condition attributes R ⊆ C is an attribute reduct of C if it satisfies two conditions:

(S) γ (πD |πR) = γ (πD |πC ),

(N) ∀c ∈ R(γ (πD |πR−{c}) < γ (πD |πR)).

The set of all corresponding reducts is denoted by RED(πD).

Definition 3 provides the classical attribute reducts. The reduct target is to preserve maximum γ (πD |πC ) to acquire the 
same classification ability of initial C . Condition (S) is called the joint sufficiency that all attributes in R are jointly sufficient 
to keep the dependency degree with respect to C . Condition (N) is called the individual necessity that each attribute in R is 
necessary for keeping the dependency degree with respect to R . Condition (N) reflects the minimality of an attribute reduct, 
where the removal of any attribute would result in the smaller γ value. Condition (N) can be equivalently replaced by:

(N′) ∀R ′ ⊂ R(γ (πD |πR ′) < γ (πD |πR)).

Although the classical reducts adopt the uncertainty measure γ , they are essentially a type of qualitative reducts because 
they are related to a sort of qualitative absoluteness.

Definition 4. The sets of core and useful attributes are defined by the intersection and union of all reducts, respectively [53]. 
That is,

CORE(πD) = ∩RED(πD),

USEFUL(πD) = ∪RED(πD). (8)

As two fundamental notions, the sets of core and useful attributes restrict any reduct in the form of lower and upper 
bounds (Eq. (2)) and can further underlie the three-way division at the C level (Eq. (1)). They are mainly concerned in 
this paper. For the classical qualitative reducts, they are defined in Definition 4 by all reducts. CORE(πD) and USEFUL(πD)

provide the bounds of an arbitrary qualitative reduct R:

CORE(πD) ⊆ R ⊆ USEFUL(πD), (9)

and they correspond to the three-way division of C . CORE(πD) can be computed by:

CORE(πD) = {c | γ (πD |πC−{c}) < γ (πD |πC )}, (10)

so an attribute is a core attribute if it is needed to preserve γ (πD |πC ). From the two sides of the rough set theory argued 
by Yao [51], the above Eqs. (8) and (10) refer to the conceptual and computational formulations, respectively, for the set of 
core attributes. In terms of the intersection of the family of reducts, Eq. (8) provides an explicit link to the reduct notion, 
which leads to a better understanding of classical reducts and core attributes. In terms of the inequality condition from C , 
Eq. (10) explicitly provides a computationally efficient method and never requires computing the set of all reducts. Working 
together, the two formulations offer both an in-depth connotation and a basic computation. In contrast, USEFUL(πD) only 
has its conceptual formulation in Eq. (8) but never has its computational formulation.
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3. Relative dependency degree and quantitative attribute reducts

The classical qualitative reducts, where the dependency degree makes only its qualitative function, have a basic limi-
tation, i.e., they become somewhat strict and cannot apply to the quantitative environment. Relevant quantitative reducts 
based on uncertainty measures have practical improvements and applicable significance. Zhang and Miao [59] mine a mono-
tonic double-quantitative measure to establish the approximate and tolerant reducts. In this section, the dependency degree 
makes full use of its quantitative function to be improved to the relative dependency degree, and this novel measure further 
produces quantitative reducts.

3.1. Relative dependency degree based on lattice bases and measure mechanisms

As a mathematical preliminary, we first analyze the lattice bases and measure mechanisms. Based on the tolerance and 
approximation, the dependency degree γ and its monotonicity are utilized to further develop the relative dependency de-
gree γrelative. By virtue of approximate descriptions and quantitative improvements, γrelative is a controllable and monotonic 
measure to relatively measure the attribute dependency and to firmly underlie quantitative reducts.

A decision table contains three lattices.

(1) The first lattice (2C , ⊆) concerns subsets of condition attributes, where ∅ and C are the least and greatest elements, 
respectively.

(2) Define π∅ = {O B}, 2πC = {πA | A ⊆ C}, and πA1 ⇐ πA2 if E A1 ⊇ E A2 . Then, the second lattice (2πC , ⇐) concerns 
condition classifications, where π∅ and πC are the least and greatest elements, respectively.

(3) The third one ({γ (πD |πA) | A ⊆ C}, ≤) concerns the dependency degree, and it has maximum γ (πD |πC ) and minimum 
0, where γ (πD |π∅) = 0. ({γ (πD |πA) | A ⊆ C}, ≤) becomes a sublattice of lattice ([0, γ (πD |πC )], ≤).

These three lattices have relevant homomorphic mappings. (1) Define mapping

π : 2C −→ 2πC , π(A) = πA, ∀A ∈ 2C .

Surjective π is an order-preservation mapping to become a homomorphic mapping, so lattices (2C , ⊆) and (2πC , ⇐) corre-
spond to a homomorphism. (2) Define mapping

γπ : 2πC −→ {γ (πD |πA) | A ⊆ C}, γπ (πA) = γ (πD |πA), ∀πA ∈ 2πC .

Similarly, surjective γπ is an order-preservation mapping, and lattices (2πC , ⇐) and ({γ (πD |πA) | A ⊆ C}, ≤) correspond to 
a homomorphism. (3) The dependency degree essentially determines surjective mapping

γ : 2C −→ {γ (πD |πA) | A ⊆ C}, γ = γ (A) = γ (πD |πA), ∀A ∈ 2C .

γ is actually the composite mapping of above π and γπ , i.e.,

γ = γπ ◦ π : γ (A) = (γπ ◦ π)(A) = γπ (π(A)) = γπ (πA) = γ (πD |πA), ∀A ∈ 2C .

As a result, the dependency degree with respect to attribute subsets takes effect mainly by the middle level of condition 
classifications, and homomorphic mapping γ induces the homomorphism between lattices (2C , ⊆) and ({γ (πD |πA) | A ⊆
C}, ≤).

Three lattices and their homomorphic mappings are constructed for the condition attribute, condition classification, and 
dependency degree. From the algebraic viewpoint, the relevant homomorphism results effectively describe the fundamental 
structural relationship between systematic hierarchies. They are particularly exhibited in Fig. 1. There, the three lattices and 
their representative elements (including the least and greatest elements) are located at three different levels, and the three 
homomorphic mappings connect these levels.

In mathematics, the above lattice bases highlight the monotonicity and boundedness of the dependency degree, i.e., 
Eqs. (6) and (7). On these bases, we further reveal the relevant mechanism of error tolerance, and we mainly focus on the 
dependency degree and its micro quantitative change.

Lemma 1. Dependency degree γ has an absolute description with respect to error bar ε. That is,

∀ε ∈ (0, γ (πD |πC )), ∃Aε ∈ 2C , if A ⊇ Aε, then γ (πD |πC ) − γ (πD |πA) < ε. (11)

In Lemma 1, quantitative threshold ε aims to restrict the absolute error γ (πD |πC ) − γ (πD |πA) in lattice ({γ (πD |πA) |
A ⊆ C}, ≤), so

γ (πD |πC ) − γ (πD |πA) < ε
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Fig. 1. Three lattices and their homomorphic mappings, error tolerance.

represents the absolute tolerance for the dependency degree. To satisfy this tolerance condition, Aε acts as a lower bound 
to provide the feasible condition range {A | A ⊇ Aε} in lattice (2C , ⊆). The relevant ε–Aε description is also reflected by 
Fig. 1. In fact,

{A | γ (πD |πC ) − γ (πD |πA) < ε} (12)

is the necessary and sufficient range, and it includes at least C and thus is nonempty. This fact shows both the existence 
of parameter Aε and the correctness of Lemma 1. Therefore, we can seek the attribute subset whose dependency degree 
approaches the ideal maximum γ (πD |πC ), and Eq. (12) provides the tolerant range to construct quantitative reducts, where 
qualitative reducts correspond to the degeneration with a stricter range:

{A | γ (πD |πA) = γ (πD |πC )}.
For the dependency degree, Lemma 1 depends on its monotonicity and boundedness to underlie the quantitative reducts 

with the absolute error. Because the relative error/accuracy has more controllability and applicability, our perspective is 
shifted to the relative measure based on γ . By divided by γ (πD |πC ) (which is temporarily supposed to be nonzero), 
Lemma 1 can derive two corollaries.

Corollary 1. Dependency degree γ has a relative description with respect to error bar δ. That is,

∀δ ∈ (0,1), ∃Aδ ∈ 2C , if A ⊇ Aδ, then
γ (πD |πC ) − γ (πD |πA)

γ (πD |πC )
< δ. (13)

Corollary 2. Dependency degree γ has a relative description with respect to accuracy bar α. That is,

∀α ∈ (0,1), ∃Aα ∈ 2C , if A ⊇ Aα, then
γ (πD |πA)

γ (πD |πC )
> α. (14)

By virtue of the dependency degree, Corollaries 1 and 2 adopt the reverse relative descriptions. The former concerns the 
relative error and its tolerant threshold, while the latter concerns the accuracy and its required threshold. Only the latter is 
next utilized to construct quantitative reducts, and nonempty set

{A | γ (πD |πA)

γ (πD |πC )
> α}

provides the feasible range for approximate reducts. As a basis, we first extract the relevant measure in Eq. (14).

Definition 5. Define mapping γrelative : 2C −→ [0, 1], γrelative = γrelative(∅) = 0, and

∀∅ �= A ∈ 2C, γrelative = γrelative(A) =
{

γ (πD |πA)
γ (πD |πC )

, if γ (πD |πC ) �= 0;
1, if γ (πD |πC ) = 0.

(15)

γrelative(A) is called the relative dependency degree of A, with respect to dependency degree γ (πD |πC ).

For γ of all attribute subsets, γ (πD |πC ) is the maximum to serve as the ideal and referential value, so γrelative(A)

proposed in Definition 5 mainly aims to measure the unidirectional approximation of γ (πD |πA) with respect to γ (πD |πC ).
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(1) Critical ∅ has γ (∅) = 0 to exhibit the smallest approximation, so γrelative(∅) = 0 is firmly defined despite of the 
γ (πD |πC ) value.

(2) When γ (πD |πC ) = 0, nonempty set A has γ (A) = 0 to reach the equality, so γrelative(A) = 1 is defined to represent 
the largest approximation. For the γrelative(A) stipulation, γrelative = 1 becomes more reasonable than γrelative = 0 for the 
approximate description, especially when considering the further reduction requirement.

(3) When γ (πD |πC ) �= 0, γrelative(A) adopts the factor form of γ (πD |πA) and γ (πD |πC ), and the relative ratio effectively 
represents the approximate degree.

Theorem 1. The relative dependency degree has monotonicity. That is,

A1 ⊆ A2 =⇒ γrelative(A1) ≤ γrelative(A2), (16)

and nonempty A1 and A2 lead to the following equality constraint:

γrelative(A1) = γrelative(A2) ⇐⇒ γ (πD |πA1) = γ (πD |πA2). (17)

Theorem 2. The relative dependency degree has controllability with respect to boundedness range [0, 1]. That is,

γrelative(A) ∈ [0,1], ∀A ⊆ C . (18)

In particular,

γrelative = 1 ⇐⇒ γ = γ (πD |πC ). (19)

The γ monotonicity (Eq. (6)) produces the γrelative monotonicity, i.e., Theorem 1. Furthermore, the γrelative monotonicity 
induces the γrelative range, i.e., Theorem 2, and the relevant range [0, 1] manifests the γrelative controllability. As a result, 
γrelative(A) exactly measures the approximate degree between γ (πD |πA) and γ (πD |πC ). If γrelative(A) is greater, then the 
approximate degree becomes greater, and γrelative(A) = 1 reaches the ideal equality according to Eq. (19). For measure 
γrelative, its approximate measurement function essentially underlies the follow-up approximate/quantitative reducts based 
on the fundamental dependency degree.

The above approximate mechanism of γrelative(A) places emphasis on the comparability of γ (πD |πA) and γ (πD |πC ). 
In fact, γ (πD |πC ) originates from the cardinality ratio and thus becomes a dimensionless constant without a unit, so we 
can relatively focus on γ (πD |πA) to mine the dependency semantics of γrelative(A). γrelative(A) can be viewed to indirectly 
describe γ (πD |πA) by referring to its background constant γ (πD |πC ), i.e., γrelative(A) relatively represents the dependency 
degree of attribute subset A with respect to entire attribute set C . In the relativity sense, γrelative(A) is generally named 
as the relative dependency degree for subset A. In contrast, the previous γ (A) can be called as the absolute dependency 
degree to directly describe γ (πD |πA) without reference. By virtue of the fundamental dependency semantics of γ , we can 
say that γrelative(A) relatively measures the attribute dependency while that the absolute dependency degree γ absolutely 
measures the attribute dependency. As an example with simplification, we can analyze the main case γ (πD |πC ) �= 0 in 
Eq. (15). Thus, γrelative(A) mainly introduces constant factor 1/γ (πD |πC ) to relatively represent γ (πD |πA), and the latter 
exactly measures the attribute dependency with A.

Except for the above explanation based on γ , the approximate mechanism and dependency semantics of γrelative(A) can 
be exactly clarified by the more essential form with respect to the positive region. For this purpose, γrelative(A) first exhibits 
the regional style by relevant definitions.

Theorem 3. Measure γrelative can be equivalently represented by the positive region cardinality. That is, γrelative(∅) = 0, and

∀∅ �= A ∈ 2C, γrelative(A) =
{ |POS(πD |πA)|

|POS(πD |πC )| , if |POS(πD |πC )| �= 0;
1, if |POS(πD |πC )| = 0.

(20)

In Theorem 3, γrelative mainly adopts the factor form to represent the relative cardinality ratio of POS(πD |πA) and 
POS(πD |πC ), so γrelative can be interpreted by the positive region cardinality. Herein, the reference of a maximum constant 
becomes |POS(πD |πC )|. Aiming at the ideal target regarding C , γrelative(A) measures the unidirectional approximation degree 
between |POS(πD |πA)| and |POS(πD |πC )|, i.e., the internal approximation degree between POS(πD |πA) and POS(πD |πC ), 
where POS(πD |πA) ⊆ POS(πD |πC ). This regional approximation is equivalent to the above metrical approximation with re-
spect to γ . By comparing Eqs. (5) and (20), γ (πD |πA) and γrelative(A) usually have the same numerator |POS(πD |πA)| but 
different denominators |O B| and |POS(πD |πC )|, respectively. Both measures contrastively represent the attribute depen-
dency which essentially originates from the positive region, but γ and γrelative place emphasis on the absoluteness from 
universe O B and the relativity from reference POS(πD |πC ), respectively. In contrast to the γrelative name, γ can be also 
named as the absolute dependency degree. By virtue of the semantics of positive regions, γrelative(A) measures a relative 
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ability to classify objects to decision classes (by employing condition classification πA ) in contrast to |POS(πD |πC )|. In other 
words, we can also conclude that γrelative(A) relatively measures the attribute dependency.

In mathematics, measure γrelative and its monotonicity/boundedness are related to lattice ({γrelative(A) | A ⊆ C}, ≤) with 
minimum 0 and maximum 1, which is a sublattice of lattice ([0, 1], ≤). According to Eq. (16), surjective γrelative is an 
order-preservation mapping to induce the homomorphism between lattices (2C , ⊆) and ({γrelative(A) | A ⊆ C}, ≤). From 
the lattice viewpoint, we next uncover an important connection between measures γrelative and γ , and the previous lattice 
({γ (πD |πA) | A ⊆ C}, ≤) is replaced by simpler symbol ({γ (A) | A ⊆ C}, ≤).

In the main case with γ (πD |πC ) �= 0, define mapping

f : {γ (A) | A ⊆ C} −→ {γrelative(A) | A ⊆ C}, f (γ (A)) = γrelative(A), ∀A ⊆ C .

This definition reflects the mapping commutativity, i.e., f ◦γ = γrelative. Surjective f further becomes a one-to-one mapping 
because of the injection feature:

γ (A1) �= γ (A2) =⇒ γrelative(A1) �= γrelative(A2). (21)

Meanwhile, f is an order-preservation mapping because of

γ (A1) ≤ γ (A2) =⇒ γrelative(A1) ≤ γrelative(A2). (22)

As a result, f constructs an isomorphism between ({γ (A) | A ⊆ C}, ≤) and ({γrelative(A) | A ⊆ C}, ≤). In the specific case 
γ (πD |πC ) = 0, {γ (A) | A ⊆ C} = {0} degenerates into a single element set, while {γrelative(A) | A ⊆ C} = {0, 1} degenerates 
into a dual element set, where γrelative = 0 and γrelative = 1 correspond to the empty and nonempty sets, respectively. These 
analyses offer the measure relationships as follows.

Theorem 4. ({γ = γ (A) | A ⊆ C}, ≤) and ({γrelative = γrelative(A) | A ⊆ C}, ≤) are two sublattices of lattice ([0, 1], ≤). They con-
struct an isomorphism when γ (πD |πC ) �= 0. When γ (πD |πC ) = 0, they degenerate into ({0}, ≤) and ({0, 1}, ≤), respectively, where 
only γrelative = 0 from all nonempty attribute subsets corresponds to γrelative = 1. The trivial non-isomorphism has only a sole root:

γ (πD |πC ) = 0 =⇒ ∀A �= ∅,

{
γ (A) = 0,

γrelative(A) = 1.
(23)

According to Theorem 4, the algebraic isomorphism in most cases effectively reflects the structure equivalence of mea-
sures γ and γrelative, while γ = 0 for all attribute subsets is extended to γrelative = 0 and γrelative = 1 to discriminate the 
empty and nonempty attribute sets, respectively. In view of

γ (πD |πC ) ≤ 1 =⇒ γrelative(A) ≥ γ (A),

the necessary interval [0, γ (πD |πC )] is extended to [0, 1] by the linear transformation with extension factor 1/γ (πD |πC ), 
or the exact set {0} is extended to {0, 1} with two points by the reasonable discrimination stipulation. In the isomorphism 
sense, the sole difference between measures γ and γrelative is clarified by Eq. (23). The fourth lattice ({γrelative(A) | A ⊆
C}, ≤) and its relevant structure mapping and approximation description can be appended to Fig. 1, which already presents 
three lattices and their descriptions.

Finally, we summarize the improvement of γrelative for γ . γrelative is established to implement the approximation descrip-
tion for ideal maximum γ (πD |πC ) or |POS(πD |πC )|, and it depends on the dependency degree or positive region to exhibit 
fundamental semantics of the relative measure of the attribute dependency. As a result, γrelative also has a core function for 
dependency reasoning and attribute reducts. When compared to γ , γrelative has the same or even more measurement effi-
ciency due to the main isomorphism equivalence or the point expansion. However, γrelative has better controllability based 
on maximum constant 1 and minimum constant 0; in contrast, γ has uncontrollable range [0, γ (πD |πC )] because γ (πD |πC )

is a variable for different decision tables. Therefore, γrelative positively improves γ and thus can effectively replaces the lat-
ter. The relevant improvement and replacement can be clarified by the later contents of three-way reducts. In fact, the 
successful mining of γrelative benefits from the idea of double quantification with respect to relativity and absoluteness [43,
57,59].

3.2. Quantitative reducts based on the relative dependency degree

By improving the dependency degree γ , the relative dependency degree γrelative is mined to represent the approximation 
degree of γ (πD |πA) with respect to γ (πD |πC ), and it relatively measures the attribute dependency. γrelative has controllabil-
ity and monotonicity, and its ideal value is 1 because γ (πD |πC ) serves as an initial criterion. To implement the quantitative 
approximation, we introduce an approximate parameter α ∈ (0, 1], where α usually approaches to 1 while α = 1 mainly 
applies to the completion. In practice, α can be determined by the expert experience or user requirement. Next, γrelative and 
α are utilized to construct a type of approximate reducts, which is denoted by γrelative–α quantitative reducts.
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The approximate mechanism is provided by measure γrelative and relevant Corollary 2. On this basis, γrelative(A) ≥ α is 
focused on. According to Eq. (15), γrelative(A) ≥ α means that γ (πD |πA) is not smaller than α × γ (πD |πC ) to approach 
ideal γ (πD |πC ), so γrelative(A) ≥ α represents the relative approximation for the dependency degree. According to Eq. (20), 
γrelative(A) ≥ α means that |POS(πD |πA)| is not smaller than α × |POS(πD |πC )| to approach ideal |POS(πD |πC )|. On the 
premise of POS(πD |πA) ⊆ POS(πD |πC ), γrelative(A) ≥ α quantifies and takes the internal approximation of POS(πD |πA) with 
respect to POS(πD |πC ). For this approximate strategy of γrelative ≥ α, the necessary and sufficient range of attribute subsets 
becomes:

{A | γrelative(A) ≥ α} = {A | γ (πD |πA) ≥ α × γ (πD |πC )} = {A | |POS(πD |πA)| ≥ α × |POS(πD |πC )|}. (24)

Therefore, γrelative ≥ α resorts to the fundamental function of the dependency degree and positive region to correspond 
to approximate reasoning based on the attribute dependency, and it reasonably becomes a direct approximate target to 
construct approximate/quantitative reducts. The γrelative ≥ α monotonicity is next derived by the γrelative monotonicity (The-
orem 1).

Corollary 3. The approximate target γrelative ≥ α has monotonicity. That is, if A1 ⊆ A2 , then

γrelative(A1) ≥ α =⇒ γrelative(A2) ≥ α. (25)

Based on the above approximation analyses, γrelative becomes an objective measure while α provides a subjective bar, 
so approximate demand γrelative ≥ α becomes a target of approximate/quantitative reducts. The γrelative ≥ α monotonic-
ity is beneficial to relevant reduct studies. A γrelative–α quantitative reduct is a minimal set of C to satisfy approximate 
requirement γrelative ≥ α.

Definition 6. A subset of condition attributes R ⊆ C is a γrelative–α quantitative reduct of C if it satisfies two conditions:

(Sα) γrelative(R) ≥ α,

(Nα) ∀c ∈ R(γrelative(R − {c}) < α).

The set of all γrelative–α quantitative reducts is denoted by REDα(πD).

According to approximate target γrelative ≥ α, Conditions (Sα) and (Nα) naturally concern the joint sufficiency and in-
dividual necessity, respectively. By virtue of the target monotonicity (Eq. (25)), γrelative–α quantitative reducts fall into the 
framework of generalized reducts with a monotonicity target, which is established by Zhang and Miao [59]. As a result, the 
individual necessity (Nα) can be equivalently described by:

(N′
α) ∀R ′ ⊂ R(γrelative(R ′) < α),

and the relevant equivalence proof is also proved in Appendix A.

Definition 7. For γrelative–α quantitative reducts, the sets of core and useful attributes are defined by the intersection and 
union of all reducts, respectively. That is,

COREα(πD) = ∩REDα(πD),

USEFULα(πD) = ∪REDα(πD). (26)

The core and useful attributes are normally defined, and they provide the lower and upper bounds of a quantitative 
reduct R , i.e.,

COREα(πD) ⊆ R ⊆ USEFULα(πD). (27)

Moreover, the set of core attributes has the computational formulation:

COREα(πD) = {c | γrelative(C − {c}) < α}, (28)

which is proved in Appendix B. According to Eq. (28), an attribute is a core attribute if it is necessarily needed to preserve 
target γrelative ≥ α. In fact, the deletion of a core attribute leads to that an arbitrary and relevant subset cannot reach 
γrelative ≥ α in view of the γrelative monotonicity. Thus, Algorithm 1 provides the relevant calculation. Step 1 makes the 
initialization, and Steps 2–6 circularly search the single attribute which satisfies the computable condition. If the γrelative
calculation and discrimination as well as the set renewal related to |C | = m are viewed as basic operations, then the time 
complexity changes from T (m) = 2m + 0 to T (m) = 2m + m; thus, the time complexity T (m) = o(m) becomes feasible, 
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Algorithm 1 A basic algorithm of the core attribute set regarding γrelative–α quantitative reducts.
Input: Decision table T with threshold α;
Output: The core attribute set COREα(πD ).
1: COREα(πD ) = ∅.
2: for each c ∈ C do
3: if γrelative(C − {c}) < α then
4: COREα(πD ) ← COREα(πD ) ∪ {c};
5: end if
6: end for
7: return COREα(πD ).

while the space complexity is similarly effective. In a word, COREα(πD) is computable, and it further underlies γrelative–α
quantitative reducts by its role of the lower bound.

γrelative–α quantitative reducts mainly originate from the relative dependency degree and thus can be calculated by this 
bearing measure. Furthermore, monotonic γrelative constructs heuristic information:

Sig(A, c) = γrelative(A ∪ {c}) − γrelative(A); (29)

Sig(A, c) represents the deference degree of the γrelative change when subset A is added by attribute c. Furthermore, 
Sig(A, c) and COREα(πD) can be utilized to develop a heuristic algorithm (i.e., Algorithm 2) to gain a γrelative–α quanti-
tative reduct.

Algorithm 2 A heuristic algorithm for a γrelative–α quantitative reduct.
Input: Decision table T with threshold α;
Output: A γrelative–α quantitative reduct Rα ∈ REDα(πD ).
1: Compute COREα(πD ) by Algorithm 1.
2: Rα = COREα(πD ).
3: while γrelative(Rα) < α do
4: ∀c ∈ C − Rα , calculate Sig(Rα, c); choose c0 = arg max

c∈C−Rα

Sig(Rα, c), and let Rα ← Rα ∪ {c0}.

5: end while
6: return Rα .

Algorithm 2 adopts both an addition strategy based on COREα(πD) and a rapid calculation based on Sig(A, c). In Steps 1 
and 2, COREα(πD) is calculated and thus becomes a reduct basis from the lower bound. In Steps 3–5, a superset of 
COREα(πD) is sought to satisfy the reduct target γrelative ≥ α, and the added attribute c0 in the “while” loop is chosen 
by the highest heuristic information Sig(Rα, c) inside C − Rα to gain a fast reduct way. In Step 6, the superset based on 
the attribute addition is output. The final result depends on the choice order of the maximum of heuristic information. 
For the computational complexity, the γrelative calculation as well as the relevant comparison, subtraction, renewal related 
to |C | = m are viewed as basic operations. In the best case, the core is non-empty to exactly become the sole reduct, and 
then Algorithm 2 has time complexity T (m) = (2m + c) + 2 = o(m), where 2m + c comes from Algorithm 1. The worst case 
corresponds to COREα(πD) = ∅ and Redα(πD) = {C}; thus, Algorithm 1 in Step 1 concerns 2m, the judgement and loop of 
Step 3 need m times, and Step 4 first relates the Sig determination and comparison, as well as the set assignment to 2m, 
m − 1, 1, respectively; therefore, the total time complexity becomes T (m) = 2m + [2m + 3m(m − 1)/2] = o(m2). The space 
complexity can be similarly analyzed. Algorithm 2 is convergent and effective to yield a γrelative–α quantitative reduct.

Next, the γrelative–α quantitative reducts are analyzed based on the classical qualitative reducts. For the qualitative reduct 
target,

γ = γ (πD |πC ) ⇐⇒ γrelative = 1. (30)

The equivalent target is a part of the quantitative target: γrelative ≥ α. Therefore, the qualitative reducts (Definition 3) have 
a new style based on γrelative. For the joint sufficiency and individual necessity, Conditions (S), (N), and (N′) can be equiva-
lently expressed by following forms, respectively, i.e.,

(S1) γrelative(R) = 1,

(N1) ∀c ∈ R(γrelative(R − {c}) < 1),

(N′
1) ∀R ′ ⊂ R(γrelative(R ′) < 1).

Conditions (S1), (N1), and (N′
1) are compared to Conditions (Sα), (Nα), and (N′

α) in the quantitative pattern, respectively. 
These analyses provide the following reduct expansion.

Theorem 5. The γrelative–α quantitative reducts expand the classical qualitative reducts and can degenerate into the latter by setting 
up α = 1.
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The γrelative–α quantitative reducts exhibit the theoretical expansion to include the classical qualitative reducts. The 
former reducts are more viewed as a novel type of approximate reducts to be practically applied. In usual cases, the quan-
titative target approaches the ideal qualitative target, so the γrelative–α quantitative reducts mainly approximate the latter, 
where α approaches value 1.

Zhang and Miao [58] define the strength relationship for two types of attribute reducts. Suppose I and II denote two 
type of reducts, and relevant reduct notions are labeled by subscripts I and II. If the reduct target of I derives the target of 
II, i.e., the former is stronger than the latter, then the strength between reducts I and II is defined and denoted by I � II, 
which means that reduct I is stronger than reduct II or that reduct II is weaker than reduct I. Strength relation � constructs 
a partial order to describe a basic relationship between reduct types. By virtue of the reduct conditions, I � II produces a 
reduct relationship:

∀R I ∈ REDI, ∃R II ∈ REDII, s.t., R II ⊆ R I. (31)

That is, a strong reduct includes at least a weak reduct; however, a weak reduct can exist beyond this inclusion relationship. 
By virtue of the reduct intersection, Eq. (31) derives a relationship of core attributes:

COREI ⊇ COREII. (32)

That is, the set of core attributes with respect to the stronger reduct necessarily includes the set of core attributes with re-
spect to the weaker reduct; however, the opposite usually does not hold. Unfortunately, similar certain relationships cannot 
be established for the sets of useful attributes, and USEFULI(πD) and USEFULII(πD) can exhibit usual set relationships. The 
reduct strength is next used to describe the strength connection between the quantitative and qualitative reducts.

For reduct targets,

γ = γ (πD |πC ) ⇐⇒ γrelative = 1 =⇒ γrelative ≥ α. (33)

That is, the qualitative target derives the quantitative target; however, the opposite usually does not holds. The target 
strength produces the condition strength of joint sufficiency and individual necessity, and the latter underlies the further 
reduct strength. Relevant strength is described as follows according to the above reduct strength theory [58].

Lemma 2. Consider the γrelative–α quantitative reducts and the classical qualitative reducts. For the joint sufficiency, the quantitative 
condition weakens the qualitative condition; for the individual necessity, the quantitative condition strengthens the qualitative con-
dition. Concretely, that R satisfies Condition (Sα) can be realized by that R satisfies Condition (S), while that R satisfies Condition 
(Nα)/(N′

α) deduces that R satisfies Condition (N)/(N′).

Theorem 6. The γrelative–α quantitative reducts are weaker than the classical qualitative reducts. They have relationships:

∀R ∈ RED(πD), ∃Rα ∈ REDα(πD), s.t., Rα ⊆ R;
CORE(πD) ⊇ COREα(πD). (34)

Theorem 6 exhibits the strength between the quantitative and qualitative reduct types, as well as their relevant rela-
tionships. When compared to the qualitative reducts, the quantitative reducts have more reduction optimization by tending 
to less attributes. In fact, a qualitative reduct can internally derive a quantitative reduct according to Eq. (34), and deleting 
unnecessary attributes related to (Sα) and (Nα) becomes key in view of Eq. (33). According to a deletion approach from a 
qualitative reduct, a constructional algorithm is developed to seek a quantitative reduct.

Algorithm 3 A constructional algorithm of a γrelative–α quantitative reduct from a classical qualitative reduct.
Input: A decision table T with threshold α, and a classical qualitative reduct R ∈ RED(πD );
Output: A γrelative–α quantitative reduct Rα ∈ REDα(πD ) to satisfy Rα ⊆ R .
1: Compute COREα(πD ) by Algorithm 1.
2: Rα = R;
3: for each c ∈ R − COREα(πD ) do
4: if γrelative(Rα − {c}) ≥ α then
5: Rα ← Rα − {c};
6: end if
7: end for
8: return Rα .

In Algorithm 3, core set COREα(πD) and qualitative reduct R provide the lower and upper bounds to seek quantitative 
reduct Rα , i.e.,

COREα(πD) ⊆ Rα ⊆ R,
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and a deletion strategy is adopted in the operational range R − COREα(πD). In Step 1, COREα(πD) is computed to determine 
the lower bound. In Step 2, the upper bound R is chosen as the searching starting-point. In Steps 3–7, the “for” loop 
sequentially checks attribute c ∈ R − COREα(πD) by the “if” condition. If the attribute deletion preserves the quantitative 
target γrelative ≥ α, then the attribute is deleted; otherwise, it has the necessity to be retained. By sequentially checking 
all attributes in R − COREα(πD), Rα satisfies target γrelative ≥ α (with respect to Condition (Sα)) and never contains any 
unnecessary attributes (with respect to Condition (Nα)), so it becomes a quantitative reduct in R . In Step 8, Rα is output. 
Herein, the measurement, comparison, and renewal are viewed as basic operations, and suppose |R − COREα(πD)| = m′ . 
According to Algorithm 1, Step 1 becomes relatively stable and is related to T (m) = o(m), where m means |C |. Furthermore, 
main Steps 3–7 concern the time complexity range [2m′, 3m′]. The total time complexity becomes T (m, m′) = o(m) +o(m′) =
o(m). Algorithm 3 is convergent and effective, and the final quantitative reduct depends on the sequences of attributes in 
the “for” loop.

According to γrelative, the strength between the quantitative and qualitative reducts benefits from α ≤ 1. Relevant strength 
results can be generalized to the quantitative reducts based on two thresholds. Theorem 6 derives following Corollary 4, 
which underlies an algorithm similar to Algorithm 3.

Corollary 4. If 0 < α1 ≤ α2 ≤ 1, then the γrelative–α1 quantitative reducts are weaker than the γrelative–α2 qualitative reduct. They 
have relationships:

∀Rα2 ∈ REDα2(πD), ∃Rα1 ∈ REDα1(πD), s.t., Rα1 ⊆ Rα2 ;
COREα2(πD) ⊇ COREα1(πD). (35)

Finally, the γrelative–α quantitative reducts are summarized. By improving the dependency degree, the relative depen-
dency degree represents the relative attribute dependency to bear the approximate mechanism, and γrelative ≤ α becomes 
the approximate target. According to the conditions of joint sufficiency and individual necessity, the quantitative reducts 
are naturally defined and studied by simulating the qualitative reducts. With respect to the classical qualitative reducts, 
the γrelative–α quantitative reducts exhibit three fundamental features: the expansion, approach, and weakening, which 
correspond to α = 1, α → 1, and α < 1, respectively. Therefore, the quantitative reducts exhibit the development and 
improvement, when compared to the qualitative reducts, and they have applicable significance by the quantitative approxi-
mation. In fact, the γrelative–α quantitative reducts closely follow the qualification thought of approximate reducts [34,35,40,
59], especially the approximate pattern established by Zhang and Miao [59], but they utilize a completely different measure 
γrelative by improving the basic measure γ .

4. Three-way attribute reducts

According to the approximate mechanism, the relative dependency degree γrelative is a superior measure with semantics 
fundamentality and measure controllability. As two special cases, the classical qualitative reducts adopt qualitative target 
γrelative = 1 to implement the qualitative absoluteness, while the γrelative–α quantitative reducts adopt approximate target 
γrelative ≥ α to make the quantitative expansion and improvement. In this section, the γrelative–α quantitative reducts are 
first extended to three-way quantitative reducts: a complete quantitative pattern, by using fundamental γrelative and dual 
thresholds α, β . Then, three-way quantitative reducts degenerate into three-way qualitative reducts: a complete qualitative 
pattern. Furthermore, three-way reducts are summarized by combing the quantitative and qualitative patterns. Finally, the 
superiority of three-way reducts is revealed by the comparison to two-way reducts. In other words, this section thoroughly 
discusses three-way attribute reducts by four parts: three-way quantitative reducts, three-way qualitative reducts, their 
summary of qualitative and quantitative patterns, and their superiority in contrast to two-way reducts.

4.1. Three-way quantitative reducts

To clarify the complete quantitative extension, three-way quantitative reducts are illustrated by two subsections of defi-
nitions and relationships.

4.1.1. Definitions of three-way quantitative reducts
Three-way quantitative reducts can be established by the quantitative mechanism. To expand and approximate the classi-

cal qualitative reducts, the γrelative–α quantitative reducts mainly apply to the high measure γrelative by using high threshold 
α, so they correspond to an affirmation of quantitative reducts. Generally, the low γrelative corresponds to a negation of 
quantitative reducts, while the moderate γrelative corresponds to an uncertain boundary between the affirmation and nega-
tion. In other words, γrelative and its three degree levels can be utilized to produce three parts of quantitative reducts. For 
this purpose, we first introduce quantitative bars and their usual range:

0 ≤ β < α ≤ 1. (36)
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Measure γrelative and dual thresholds α, β constitute a quantitative system, denoted as γrelative–(α, β). For the quantitative 
system γrelative–(α, β), the γrelative–α quantitative reducts provide only a main case, and the other patterns of quantitative 
reducts can be developed according to the systematic completion.

For the γrelative–α quantitative reducts, γrelative ≥ α serves as the reduct target and exhibits the monotonicity (Corol-
lary 3). In the system γrelative–(α, β), we naturally add two measure targets:

γrelative ∈ (β,α), γrelative ≤ β. (37)

For quantitative reducts, γrelative ∈ (β, α) serves as a moderate reduct target because of the theoretical uncertainty and 
practical possibility, while γrelative ≤ β needs the complete negation because of its low γrelative value. The moderate target 
usually does not have the monotonicity. In other words, if A1 ⊆ A2, then γrelative(A1) ∈ (β, α) and γrelative(A2) ∈ (β, α)

cannot make mutual deduction. In contrast, γrelative ≤ β has the monotonicity, i.e., if A1 ⊆ A2, then

γrelative(A1) ≤ β ⇐= γrelative(A2) ≤ β. (38)

γrelative–α quantitative reducts act as a normal pattern to achieve the approximate target; the boundary pattern can 
be defined by maintaining the moderate target γrelative ∈ (β, α); and the negation pattern needs to finally collect both all 
attribute subsets with γrelative ≤ β and surplus attribute subsets with γrelative > β . Along this idea, three-way quantitative 
reducts are established as follows.

Definition 8. Three-way γrelative–(α, β) quantitative reducts concern the positive, boundary, and negative quantitative 
reducts. (1) First, the γrelative–(α, β) positive quantitative reducts are exactly the γrelative–α quantitative reducts. For sys-
tematic consistency, new symbols (SPOS

α,β ), (NPOS
α,β), and (N′ POS

α,β ) replace previous (Sα), (Nα), and (N′
α), respectively; the sets of 

attribute reducts and core/useful attributes are updated by:

REDPOS
α,β(πD) = REDα(πD),

COREPOS
α,β(πD) = COREα(πD),

USEFULPOS
α,β(πD) = USEFULα(πD). (39)

(2) Then, a subset of condition attributes R ⊆ C is a γrelative–(α, β) boundary quantitative reduct of C if it satisfies two 
conditions:

(SBND
α,β ) γrelative(R) ∈ (β,α),

(NBND
α,β ) ∀c ∈ R(γrelative(R − {c}) ≤ β.

The set of all boundary reducts is denoted by REDBND
α,β (πD). Accordingly, the sets of core and useful attributes are denoted 

and defined by:

COREBND
α,β (πD) = ∩REDBND

α,β (πD),

USEFULBND
α,β (πD) = ∪REDBND

α,β (πD). (40)

(3) Finally, a subset of condition attributes R ⊆ C is a γrelative–(α, β) negative reduct of C if it is neither the γrelative–(α, β)

positive nor boundary quantitative reducts. The set of all negative reducts is denoted by REDNEG
α,β (πD), and

REDNEG
α,β (πD) = 2C − (REDPOS

α,β(πD) ∪ REDBND
α,β (πD)). (41)

In Definition 8, three-way quantitative reducts are formally defined based on system γrelative–(α, β).

(1) The γrelative–(α, β) positive quantitative reducts are exactly the γrelative–α quantitative reducts, which are proposed in 
Definition 6.

(2) The boundary quantitative reducts simulate the γrelative–α quantitative reducts but adopt moderate target γrelative ∈
(β, α).

(3) To collect the surplus subsets with negation, the negative quantitative reducts are defined by the complementarity of 
the positive and boundary quantitative reducts.

For γrelative–(α, β) reducts, the positive quantitative reducts have been discussed; the boundary quantitative reducts become 
a new type of quantitative reducts and thus are next focused on; and the negative quantitative reducts actually become a 
generalized notion and thus have no exact relevant elements, such as the joint sufficiency and core attributes.

The γrelative–(α, β) boundary quantitative reducts are related to moderate γrelative and interval (β, α). In view of the 
reduction uncertainty and possibility, γrelative ∈ (β, α) becomes the reduct target, and its nonmonotonicity will lead to less 
properties. The joint sufficiency is presented by Condition (SBND). For the individual necessity,
α,β
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∀c ∈ R(γrelative(R − {c}) /∈ (β,α).

is simplified to Condition (NBND
α,β ) by virtue of the (SBND

α,β ) premise and γrelative monotonicity. Moreover, (NBND
α,β ) is equivalent 

to the condition:

(N′ BND
α,β ) ∀R ′ ⊂ R(γrelative(R ′) ≤ β).

The equivalence benefits from the γrelative ≤ β monotonicity (Eq. (38)) and thus its proof is similar to the proof in Ap-
pendix A. The set of core attributes COREBND

α,β (πD) has the lower and upper bounds:

{c | γrelative(C − {c}) ≤ β}
⊆ COREBND

α,β (πD)

⊆ {c | γrelative(C − {c}) /∈ (β,α)}
= {c | γrelative(C − {c}) ≤ β} ∪ {c | γrelative(C − {c}) ≥ α}. (42)

The bound proof is provided in Appendix C and is similar to the proof of COREα(πD) in Appendix B. This bound conclusion 
originates from the restriction of dual thresholds and implies that COREBND

α,β (πD) cannot be directly computed. By simulating 
Algorithm 2 but deleting the set basis of core attributes, a heuristic algorithm of the γrelative–(α, β) boundary quantitative 
reduct can be similarly developed by heuristic information Sig(A, c).

The γrelative–(α, β) positive and boundary quantitative reducts act as two fundamental types of quantitative reducts and 
have some difference. To describe the approximation and possibility of quantitative reduction, they use the high target 
γrelative ≥ α and moderate target γrelative ∈ (β, α), respectively. The two targets exhibit the monotonicity and nonmonotonic-
ity, respectively, and thus lead to different descriptions. (SPOS

α,β) and (SBND
α,β ) with respect to the joint sufficiency have the 

same structure but piecewise γrelative values, while (NPOS
α,β)/(N′ POS

α,β ) and (NBND
α,β )/(N′ BND

α,β ) with respect to the individual neces-

sity exhibit the similar analyses as above. For the core attributes, COREPOS
α,β(πD) exhibits the exactness and computability, 

while COREBND
α,β (πD) exhibits the bounds and incomputability.

Three-way γrelative–(α, β) quantitative reducts complete the γrelative–α quantitative reducts by introducing the boundary 
quantitative reducts and by collecting the negative quantitative reducts. In the whole calculation, the positive and boundary 
quantitative reducts are mainly concerned, and the negative quantitative reducts become the supplementarity.

4.1.2. Relationships of three-way quantitative reducts
Based on the above definitions, the relationships of three-way quantitative reducts are analyzed, mainly at two levels of 

2C and C .
By virtue of system γrelative–(α, β), 2C is divided into three pairwise parts.

(1) Part {A | γrelative(A) ≥ α} has the high measure degree and refers to the joint sufficiency (SPOS
α,β ). Furthermore, the 

attribute subsets which satisfy the individual necessity (NPOS
α,β ) constitute a subpart: REDPOS

α,β(πD), while the surplus 
subpart refers to the individual unnecessity to belong to REDNEG

α,β (πD).

(2) Part {A | γrelative(A) ∈ (β, α)} has the moderate measure degree and refers to the joint sufficiency (SBND
α,β ). Furthermore, 

the attribute subsets which satisfy the individual necessity (NBND
α,β ) constitute a subpart: REDBND

α,β (πD), while the surplus 
subpart refers to the individual unnecessity to belong to REDNEG

α,β (πD).

(3) Part {A | γrelative(A) ≤ β} has the low measure degree and directly belongs to REDNEG
α,β (πD).

The above partitional mechanism is illustrated in Fig. 2 by the measure range, joint sufficiency, and individual necessity/un-
necessity. As a result, the systematic structure of three-way quantitative reducts is revealed in 2C .

2C exhibits five blocks. The negative quantitative reducts involve three blocks, i.e.,

REDNEG
α,β (πD) = Blocki

α,β ∪ Blockii
α,β ∪ Blockiii

α,β,⎧⎪⎨
⎪⎩

Blocki
α,β = {A | γrelative(A) ≥ α} − REDPOS

α,β(πD),

Blockii
α,β = {A | γrelative(A) ∈ (β,α)} − REDBND

α,β (πD),

Blockiii
α,β = {A | γrelative(A) ≤ β}.

(43)

(1) Blocki
α,β collects the subset which reaches the joint sufficient (SPOS

α,β) rather than individual necessity (NPOS
α,β) (with 

respect to the positive quantitative reducts).
(2) Blockii

α,β is similar for Conditions (SBND
α,β ) and (NBND

α,β ) (with respect to the boundary quantitative reducts).

(3) Blockiii
α,β collects the subset with the low measure degree γrelative ≤ β , which cannot satisfy the joint sufficient of both 

the positive and boundary quantitative reducts.
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Fig. 2. The partitional mechanism, systematic structure, and three-way decisions of three-way quantitative reducts.

The three blocks are labeled in Fig. 2. Moreover, the positive and boundary quantitative reducts include only one block, 
respectively. The structure of three-way quantitative reducts is exactly described as follows.

Theorem 7. Three-way γrelative–(α, β) quantitative reducts are pairwise of entire 2C . That is,

REDPOS
α,β(πD) ∪ REDBND

α,β (πD) ∪ REDNEG
α,β (πD) = 2C ;⎧⎪⎪⎨

⎪⎪⎩
REDPOS

α,β(πD) ∩ REDBND
α,β (πD) = ∅,

REDPOS
α,β(πD) ∩ REDNEG

α,β (πD) = ∅,

REDBND
α,β (πD) ∩ REDNEG

α,β (πD) = ∅.

(44)

Based on Theorem 7, three-way γrelative–(α, β) quantitative reducts exhibit a three-way division for their existing space 
2C . According to relevant constructional mechanisms, they naturally correspond to three-way decisions for the reduction 
action.

(1) The positive quantitative reduct RPOS
α,β ∈ REDPOS

α,β(πD) adopts the acceptance decision. That is, RPOS
α,β is viewed as a normal 

reduct to be quantitatively utilized, as is analyzed for the γrelative–α quantitative reduct (in Section 3.2).
(2) The negative quantitative reduct RNEG

α,β ∈ REDNEG
α,β (πD) adopts the rejection decision. That is, RNEG

α,β is not a normal reduct 
to be quantitatively used.

(3) The boundary quantitative reduct RBND
α,β ∈ REDBND

α,β (πD) adopts the noncommitment decision. In fact, RBND
α,β has the un-

certainty and possibility for the affirmation and negation of the normal quantitative reduct, and its nonjudgement leads 
to that RBND

α,β cannot be accepted or rejected.

In a word, three-way quantitative reducts need to reasonably adopt three-way decisions in the quantitative environment, 
and this fundamental conclusion is also marked in Fig. 2.

Although three-way γrelative–(α, β) quantitative reducts are piecewise in 2C , they can have common attributes in C . Next, 
their relationships, mainly those of the positive and boundary quantitative reducts, are analyzed at the C level.

Theorem 8. With respect to three-way γrelative–(α, β) quantitative reducts, a positive reduct with at least two attributes properly 
includes a boundary reduct or a nonempty negative reduct, while a boundary reduct with at least two attributes properly includes a 
nonempty negative reduct. That is,

(1) ∀RPOS
α,β ∈ REDPOS

α,β(πD), |RPOS
α,β | ≥ 2, ∃RBND

α,β ∈ REDBND
α,β (πD), s.t., RBND

α,β ⊂ RPOS
α,β,

or, ∃∅ �= RNEG
α,β ∈ REDNEG

α,β (πD), s.t., RNEG
α,β ⊂ RPOS

α,β;
(2) ∀RBND

α,β ∈ REDBND
α,β (πD), |RBND

α,β | ≥ 2, ∃∅ �= RNEG
α,β ∈ REDNEG

α,β (πD), s.t., RNEG
α,β ⊂ RBND

α,β .

Proof. The joint sufficiency and individual necessity are first considered. Suppose R ∈ REDPOS
α,β(πD).

Condition (SPOS
α,β) implies R /∈ REDBND

α,β (πD) and R /∈ REDNEG
α,β (πD), but Condition (NPOS

α,β) implies γrelative(R − {c}) < α for 
arbitrary c ∈ R . If R has only one attribute c, then R − {c} = ∅ is not a reduct. Otherwise, nonempty subset R − {c} exhibits 
two cases by considering β .
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(1) If γrelative(R − {c}) ∈ (β, α), then R − {c} satisfies Condition (SBND
α,β ), so R − {c} directly becomes or properly includes a 

boundary quantitative reduct.
(2) If γrelative(R − {c}) ≤ β , then R − {c} ∈ REDNEG

α,β (πD). Case R ∈ REDBND
α,β (πD) is similar. Concretely, (SBND

α,β ) implies R /∈
REDNEG

α,β (πD); however, Condition (NBND
α,β ) implies γrelative(R − {c}) ≤ β for arbitrary c ∈ R , so R − {c} ∈ REDNEG

α,β (πD) if 
R − {c} �= ∅.

Therefore, a multiple-attribute quantitative reduct with the higher γrelative level is not a quantitative reduct with the 
lower γrelative level, but the former can derive the latter by deleting at least an attribute. In other words, the above theorem 
holds. �

Based on Theorem 8, a positive quantitative reduct with at least two attributes may derive only the boundary quan-
titative reduct, only the negative quantitative reduct, or both the boundary and negative quantitative reducts. The three 
results depend on basic relationships between γrelative(R − {c}) and β , as well as concrete cases of R and c. Whether a 
positive quantitative reduct derives a boundary quantitative reduct can be judged by the attribute existence for requirement 
γrelative(R − {c}) ∈ (β, α).

Theorem 9. If positive quantitative reduct RPOS
α,β ∈ REDPOS

α,β(πD) has only one attribute c, then RPOS
α,β − {c} = ∅ is not a boundary 

quantitative reduct. Otherwise, RPOS
α,β has at least two attributes to exhibit two cases.

(1) RPOS
α,β properly includes a boundary quantitative reduct if

∃c ∈ RPOS
α,β, γrelative(RPOS

α,β − {c}) > β, i.e., max
c∈RPOS

α,β

γrelative(RPOS
α,β − {c}) > β. (45)

(2) RPOS
α,β cannot properly include a boundary quantitative reduct if

∀c ∈ RPOS
α,β, γrelative(RPOS

α,β − {c}) ≤ β, i.e., max
c∈RPOS

α,β

γrelative(RPOS
α,β − {c}) ≤ β. (46)

On the basis of Theorem 8, Theorem 9 can be easily proved by the quantitative reduct definition. It provides a theoretical 
framework to seek a potential boundary quantitative reduct in a given positive quantitative reduct. A relevant algorithm (i.e., 
Algorithm 4) is further developed.

Algorithm 4 A constructional algorithm of a potential boundary quantitative reduct from a positive quantitative reduct.

Input: A decision table T with thresholds α, β , and a positive quantitative reduct RPOS
α,β ∈ REDPOS

α,β (πD );

Output: A boundary quantitative reduct RBND
α,β ∈ REDBND

α,β (πD ) satisfying RBND
α,β ⊂ RPOS

α,β , or a judgement that no boundary quantitative reducts in RPOS
α,β .

1: if |RPOS
α,β | = 1 then

2: return The judgement that no boundary quantitative reducts in RPOS
α,β .

3: else
4: for c ∈ RPOS

α,β do

5: if γrelative(RPOS
α,β − {c}) > β then

6: Let RBND
α,β = RPOS

α,β − {c}.

7: for c∗ ∈ RPOS
α,β − {c} do

8: if γrelative(RBND
α,β − {c∗}) > β then

9: RBND
α,β ← RBND

α,β − {c∗};
10: end if
11: end for
12: return RBND

α,β .
13: end if
14: end for
15: return The judgement that no boundary quantitative reducts in RPOS

α,β .
16: end if

In Algorithm 4, |RPOS
α,β | = 1 represents only one attribute in the positive quantitative reduct, so there are no inter-

nal boundary quantitative reducts. The external “for” loop aims to find out an attribute c to satisfy the basic condition 
γrelative(RPOS

α,β − {c}) > β , and only the existence of attribute c determines the existence of a boundary quantitative reduct 
and the relevant operation; as a result, the second nonexistence judgement after the “for” loop corresponds to that multiple-
element RPOS

α,β includes only the negative quantitative reduct. In the main case with existing attribute c, RPOS
α,β − {c} becomes 

the inspection basis; by deleting unnecessary attribute c∗ in RPOS
α,β − {c}, the internal “for” loop aims to achieve the joint 

sufficiency (SBND
α,β ) and individual necessity (NBND

α,β ) to obtain boundary quantitative reduct RBND
α,β , where

RBND ⊆ RPOS − {c} ⊂ RPOS.
α,β α,β α,β
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The final boundary quantitative reduct depends on the orders of two “for” test sequences. The measurement, comparison, 
and renewal related to |RPOS

α,β | = m′′ are viewed as basic operations to analyze the worst case, where RBND
α,β exists. Thus, 

the outside loop runs m′′ times to finally acquire a starting point for compression, and the time complexity concerns 
2m′′ + 1; after reducing an attribute, the inside loop runs m′′ − 1 times to implement the compression, where a single 
attribute set is finally achieved by deleting m′′ − 2 attributes, and the time complexity involves 3(m′′ − 1) − 1; therefore, 
the total time complexity becomes T (m′′) = 5m′′ − 3 = o(m′′) in the worst case. In a word, Algorithm 4 can effectively gain 
a concrete example or a nonexistence judgement for the internal boundary quantitative reduct, when given an arbitrary 
positive quantitative reduct.

Finally, the relationship of core attributes is provided for the positive and boundary quantitative reducts. The relevant 
computational formulation (Eq. (28)) and dual bounds (Eq. (42)) produce following Corollary 5. As a result, COREPOS

α,β(πD)

and COREBND
α,β (πD) can have some overlaps at the C level. However, for useful attributes, USEFULPOS

α,β(πD) and USEFULBND
α,β (πD)

cannot yield some certain relationships.

Corollary 5. COREPOS
α,β(πD) and COREBND

α,β (πD) have the following relationships:

COREPOS
α,β(πD) ∩ COREBND

α,β (πD) = {c | γrelative(C − {c}) ≤ β};
COREPOS

α,β(πD) − COREBND
α,β (πD) = {c | γrelative(C − {c}) ∈ (β,α)};

COREBND
α,β (πD) − COREPOS

α,β(πD) ⊆ {c | γrelative(C − {c}) ≥ α)}. (47)

4.2. Three-way qualitative reducts

Three-way γrelative–(α, β) quantitative reducts have been established. We now turn to relevant three-way qualitative 
reducts, which can be produced by the associated degeneration technology.

The reduct target of classical qualitative reducts has an equivalent form:

γ = γ (πD |πC ) ⇐⇒ γrelative = 1. (48)

This result actually underlies the relevant development and degeneration of three-way attribute reducts. For the above devel-
opment, the classical qualitative reducts are first generalized to the γrelative–α quantitative reducts with target γrelative ≥ α, 
i.e., the γrelative–(α, β) positive quantitative reduct; furthermore, the positive quantitative reducts are completely ex-
tended to three-way quantitative reducts in system γrelative–(α, β). In contrast, three-way quantitative reducts can utilize 
(α, β) = (1, 0) to degenerate into three-way qualitative reducts, where γrelative = 0 deduces γ = 0 while ∅ corresponds to 
the reduction negation; accordingly, the positive quantitative reducts degenerate into the classical qualitative reducts. This 
degeneration strategy can naturally achieve three-way qualitative reducts and their relevant results via the established plat-
form of three-way quantitative reducts. To formally link up the classical qualitative reducts, the initial γ style (rather than 
the equivalent γrelative form) is mainly adopted for three-way qualitative reducts, and they are first defined by referring to 
three-way quantitative reducts (Definition 8).

Definition 9. Three-way qualitative reducts concern the positive, boundary, and negative reducts. (1) First, the positive qual-
itative reducts are exactly the classical qualitative reducts defined in Definition 3. For systematic consistency, new symbols 
(SPOS), (NPOS), and (N′ POS) replace previous (S), (N), and (N′), respectively; the sets of attribute reducts and core/useful 
attributes are updated by:

REDPOS(πD) = RED(πD),

COREPOS(πD) = CORE(πD),

USEFULPOS(πD) = USEFUL(πD). (49)

(2) Then, a subset of condition attributes R ⊆ C is a boundary qualitative reduct of C if it satisfies two conditions:

(SBND) γ (πD |πR) ∈ (0, γ (πD |πC )),

(NBND) ∀c ∈ R(γ (πD |πR−{c}) = 0).

The set of boundary qualitative reducts is denoted by REDBND(πD). Accordingly, the sets of core and useful attributes are 
denoted and defined by:

COREBND(πD) = ∩REDBND(πD),

USEFULBND(πD) = ∪REDBND(πD). (50)
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(3) Finally, a subset of condition attributes R ⊆ C is a negative qualitative reduct of C if it is neither a positive qualitative 
reduct nor a boundary qualitative reduct. The set of negative qualitative reducts is denoted by REDNEG(πD), and

REDNEG(πD) = 2C − (REDPOS(πD) ∪ REDBND(πD)). (51)

In Definition 9, three-way qualitative reducts are established by measure γ and its maximum γ (πD |πC ) and minimum 0. 
The positive qualitative reducts have monotonic target γ = γ (πD |πC ) to implement the complete certainty and accuracy 
for attribute reduction; the boundary qualitative reducts have nonmonotonic target γ ∈ (0, γ (πD |πC )) to represent the 
complete uncertainty and large possibility; while the negative qualitative reducts make the surplus collection. The positive 
qualitative reducts have been studied by the classical qualitative reducts. For the boundary qualitative reducts, the individual 
necessity (NBND) has an equivalent description:

(N′ BND) ∀R ′ ⊂ R(γ (πD |πR ′) = 0).

Moreover, the set of core attributes exhibits a form of lower and upper bounds:

{c | γ (πD |πC−{c}) = γ (πD |πC )}
⊆ COREBND(πD)

⊆ {c | γ (πD |πC−{c}) /∈ (0, γ (πD |πC ))}
= {c | γ (πD |πC−{c}) = 0} ∪ {c | γ (πD |πC−{c}) = γ (πD |πC )}. (52)

The negative qualitative reducts mainly consist of three blocks, i.e.,

REDNEG(πD) = Blocki ∪ Blockii ∪ Blockiii,⎧⎪⎨
⎪⎩

Blocki = {A | γ (πD |πA) = γ (πD |πC )} − REDPOS(πD),

Blockii = {A | γ (πD |πA) ∈ (0, γ (πD |πC ))} − REDBND(πD),

Blockiii = {A | γ (πD |πA) = 0}.
(53)

Blocki collects the subset which reaches the joint sufficient (SPOS) rather than individual necessity (NPOS) (with respect to 
the positive qualitative reducts); Blockii is similar for Conditions (SBND) and (NBND) (with respect to the boundary qualitative 
reducts); and Blockiii collects the surplus subset with minimum γ = 0. Furthermore, the three-way qualitative reducts 
completely classify 2C according to Theorem 7 (or Fig. 2).

Corollary 6. Three-way qualitative reducts are pairwise of 2C . That is,

REDPOS(πD) ∪ REDBND(πD) ∪ REDNEG(πD) = 2C ;⎧⎪⎨
⎪⎩

REDPOS(πD) ∩ REDBND(πD) = ∅,

REDPOS(πD) ∩ REDNEG(πD) = ∅,

REDBND(πD) ∩ REDNEG(πD) = ∅.

(54)

Based on the constructional mechanism and partition result, three-way qualitative reducts naturally adopt three-way de-
cisions in the qualitative environment. As the classical qualitative reducts, the positive qualitative reducts in REDPOS(πD) are 
related to the reduction affirmation and thus gain the acceptance decision; as a generalized notion, the negative qualitative 
reducts in REDNEG(πD) are related to the complete reduction negation and thus gain the rejection decision; as a new type of 
qualitative reducts, the qualitative boundary reducts in REDBND(πD) are related to the reduction uncertainty and possibility 
and thus gain the noncommitment decision.

At the C level, Theorems 8, and 9, Corollary 5 of three-way quantitative reducts can derive corresponding conclusions of 
three-way qualitative reducts. As an example, Theorem 9 produces following Corollary 7. This theoretical result clarifies the 
potential derivation from the positive to boundary qualitative reducts, so it underlies a relevant structural algorithm, which 
is similar to previous Algorithm 4 for three-way quantitative reducts.

Corollary 7. If the positive qualitative reduct RPOS ∈ REDPOS(πD) has only one attribute c, then RPOS − {c} = ∅ is not a boundary 
qualitative reduct. Otherwise, RPOS has at least two attributes to exhibit two cases.
(1) RPOS properly includes a boundary qualitative reduct if

∃c ∈ RPOS, γ (πD |πRPOS−{c}) > 0, i.e., max
c∈RPOS

γ (πD |πRPOS−{c}) > 0. (55)

(2) RPOS cannot properly include a boundary qualitative reduct if

∀c ∈ RPOS, γ (πD |πRPOS−{c}) = 0, i.e., max
c∈RPOS

γ (πD |πRPOS−{c}) = 0. (56)
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Fig. 3. A summary of three-way quantitative and qualitative reducts.

4.3. A summary of three-way quantitative and qualitative reducts

Thus far, three-way reducts are established in both the quantitative and qualitative patterns. Aiming at three-way quanti-
tative and qualitative reducts, we next make their systematic summary, including their mutual relationship. For this purpose, 
a summary figure – Fig. 3 – is first provided.

According to Fig. 3, three-way reducts concern three contents.

(1) Three-way qualitative reducts can be equivalently described by the dependency degree γ and relative dependency 
degree γrelative. The positive and boundary qualitative reducts originate from high target γ = γ (πD |πC ) (or γrelative = 1) 
and moderate target γ ∈ (0, γ (πD |πC )) (or γrelative ∈ (0, 1)), respectively, while the negative qualitative reducts mainly 
implement the negative collection based on γ (or γrelative).

(2) Three-way quantitative reducts are described by only the relative dependency degree. The positive and boundary quan-
titative reducts originate from high target γrelative ≥ α and moderate target γrelative ∈ (β, α), respectively, while the 
negative quantitative reducts mainly implement the negative collection based on γrelative .

(3) The three-way reducts, including both the qualitative and quantitative patterns, completely divide 2C , which is the 
existing space of attribute reducts. The positive, boundary, and negative reducts adopt the acceptance, noncommitment, 
and rejection decisions, respectively, for the attribute reduction action. As a result, three-way reducts closely adhere to 
attribute reducts and three-way decisions.

For measures, novel γrelative improves initial γ , and the former can fully replace the latter to implement the function 
for qualitative reducts. In other words, three-way quantitative and qualitative reducts can be uniformly described by γrelative
(rather than γ ). Next, we want to explain the special case with γ (πD |πC ) = 0. There, any nonempty attribute subset 
satisfies γ = 0 = γ (πD |πC ) and γrelative = 1. With the addition of the individual necessity, the three-way quantitative and 
qualitative reducts have the same results. The positive reducts include only any single element set, the boundary reducts 
exhibit emptiness, while the negative reducts contain all the surplus subsets in 2C (including ∅). That is, the sets of positive, 
boundary, and negative reducts exhibit {{c} | c ∈ C}, ∅, and 2C − {{c} | c ∈ C}, respectively. These results become natural for 
attribute reducts. In particular, the positive reducts can be realized by γrelative = 1 rather than γrelative = 0. This correlation 
of the reduct and measure clarifies the rationality of the γrelative definition (Definition 5) as well as the necessary difference 
of non-isomorphism (Eq. (23)).

Three-way reducts exhibit clear systematic structures at the 2C level. They can be further analyzed at the C level. In 
particular, their reduct derivation (which originates from the measure difference or target strength) becomes an emphasis, 
for the quantitative and qualitative patterns.

(1) For the pattern interior, three-way reducts exhibit the potential derivation from the higher measure degree to the lower 
measure degree. The potential derivation relationships are labeled in Fig. 3 by solid arrows. The quantitative derivation 
is illustrated by Theorems 8, 9, and Algorithm 4, while the qualitative derivation is partly provided by Corollary 7.

(2) For the pattern connection, three-way reducts exhibit the expansion, approximation, and strength between the qualita-
tive and quantitative patterns. These relationships are together labeled in Fig. 3 by dashed double-headed arrows. The 
relationships between the positive qualitative and quantitative reducts are revealed by Theorems 5, 6, and Algorithm 3. 
Next, relevant connections of the boundary/negative reducts are provided between the qualitative and quantitative pat-
terns.
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The boundary reducts have the nonmonotonic target with respect to the measure interval, thus becoming a new type 
of attribute reducts. By virtue of measure γrelative, the quantitative target γrelative ∈ (β, α) can produce the qualitative target 
γrelative ∈ (0, 1) by setting up (α, β) = (1, 0). Moreover, the former is stronger than the latter, i.e.,

γrelative ∈ (β,α) =⇒ γrelative ∈ (0,1). (57)

As a result, the following expansion and strength of boundary reducts become clear.

Proposition 1. The boundary quantitative reducts expand the boundary qualitative reducts and can degenerate into the latter by 
setting up (α, β) = (1, 0).

Lemma 3. For the joint sufficiency of boundary reducts, the quantitative condition strengthens the qualitative condition; for the individ-
ual necessity of boundary reducts, the quantitative condition weakens the qualitative condition. Concretely, that R satisfies Condition 
(SBND

α,β ) deduces that R satisfies Condition (SBND), while that R satisfies Condition (NBND
α,β )/(N′ BND

α,β ) can be realized by that R satisfies 
Condition (NBND)/(N′ BND).

Proposition 2. The boundary quantitative reducts are stronger than the boundary qualitative reducts. They have relationships:

∀RBND
α,β ∈ REDBND

α,β (πD), ∃RBND ∈ REDBND(πD), s.t., RBND ⊆ RBND
α,β ;

COREBND
α,β (πD) ⊇ COREBND(πD). (58)

In theory, the boundary quantitative reducts exhibit the expansion significance to include the boundary qualitative 
reducts. In practice, the boundary quantitative reducts depend on concrete thresholds to approximate and strengthen the 
boundary qualitative reducts. With respect to the boundary qualitative reducts, the boundary quantitative reducts exhibit 
the expansion, approach, and strengthening, which correspond to (α, β) = (1, 0), (α, β) → (1, 0), and (α, β) ≺ (1, 0) (which 
denotes α < 1 and β > 0), respectively. According to Proposition 2, a boundary quantitative reduct can internally derive a 
boundary qualitative reduct; by simulating Algorithm 3, we can similarly develop a constructional algorithm, where incal-
culable COREBND(πD) needs to be not concerned.

The boundary reducts become a new type of reducts to exhibit some specific features, when compared to the positive 
reducts. The boundary and positive reducts focus on a nonmonotonic target with the moderate measure interval and a 
monotonic target with the high measure value, respectively. For the reduct strength, the boundary quantitative reducts 
are stronger than the boundary qualitative reducts, while the opposite holds for the positive reducts, i.e., the positive 
quantitative reducts are weaker than the positive qualitative reducts.

Thus far, we uncover the connections of the positive/boundary reducts between the quantitative and qualitative pat-
terns. Furthermore, we can further analyze the connections of the negative reducts. At the 2C level, the positive/boundary 
quantitative and qualitative reducts can have the usual set relationship, and this conclusion can be theoretically clarified by 
the strength relationship between the positive/boundary quantitative and qualitative reducts, i.e., Theorem 6 and Proposi-
tion 2. As a result, the negative quantitative and qualitative reducts may have the usual set relationships. At the C level, the 
positive/boundary quantitative and qualitative reducts mainly concern the expansion, approximation, and strength, so the 
negative quantitative and qualitative reducts have the corresponding properties; however, the strength and derivation have 
no significance for the negative collection of reducts.

Corollary 8. The negative quantitative reducts expand the negative qualitative reducts and can degenerate into the latter by setting up 
(α, β) = (1, 0).

For the negative quantitative and qualitative reducts, their theoretical expansion is presented in Corollary 8 by (α, β) =
(1, 0), and their practical approximation can be explained by (α, β) → (1, 0). In particular, the negative reducts consist of 
six blocks (Eqs. (43) and (53)), i.e.,

Blocki
α,β, Blockii

α,β, Blockiii
α,β, and Blocki, Blockii, Blockiii.

These six blocks correspondingly exhibit the expansion and approximation. Moreover, Blocks i and ii are closely related to 
conditions of the positive and boundary reducts, and their set relationships can be obtained by Lemmas 2 and 3; based on 
the measure degree, the inclusion relationship of block iii can be achieved, i.e.,

{A | γrelative(A) ≤ β} ⊇ {A | γ (πD |πA) = 0}.
Therefore, these blocks exhibit following results at the 2C level, although their collections – REDNEG

α,β (πD) and REDNEG(πD)

– usually have no inclusion or extension relationships.
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Proposition 3. For the negative reducts, their three internal blocks exhibit the inclusion or extension between the quantitative and 
qualitative patterns. That is,

Blocki
α,β ⊇ Blocki,

Blockii
α,β ⊆ Blockii,

Blockiii
α,β ⊇ Blockiii. (59)

From a viewpoint of measure γrelative, the above relationship between the quantitative and qualitative reducts originates 
from the relationship between quantitative thresholds (α, β) and (1, 0). The relevant conclusion can be generalized for 
three-way quantitative reducts by relationships α1 ≤ α2 and β1 ≥ β2. As an example, Proposition 4 is next provided to 
extend previous Corollary 4, where the positive quantitative reducts are described by α1 ≤ α2.

Proposition 4. If 0 ≤ β2 ≤ β1 < α1 ≤ α2 ≤ 1, then the γrelative–(α1, β1) positive/boundary quantitative reducts are weaker/stronger 
than the γrelative–(α2, β2) positive/boundary quantitative reducts. Concretely, they exhibit two groups of relationships.

∀RPOS
α2,β2

∈ REDPOS
α2,β2

(πD), ∃RPOS
α1,β1

∈ REDPOS
α1,β1

(πD), s.t., RPOS
α1,β1

⊆ RPOS
α2,β2

;
COREPOS

α2,β2
(πD) ⊇ COREPOS

α1,β1
(πD). (60)

∀RBND
α1,β1

∈ REDBND
α1,β1

(πD), ∃RBND
α2,β2

∈ REDBND
α2,β2

(πD), s.t., RBND
α2,β2

⊆ RBND
α1,β1

;
COREBND

α1,β1
(πD) ⊇ COREBND

α2,β2
(πD). (61)

Note that Chen et al. [2] propose the three-way decision reduction by referring to reduction notions in [63]. There, 
three-way reducts depend on the quantitative model of decision-theoretic rough sets to preserve the positive, negative, and 
boundary regions by using the absolute cardinality measure, so they implement the indirect quantification and can exhibit 
nonempty overlaps in 2C . In contrast, three-way reducts proposed in this paper, which never depend on quantitative models, 
mainly maintain the rank of γrelative (or γ ) by using the relative ratio measure, so they implement the direct quantification 
and can exhibit the partition feature in the existing space of reducts. Therefore, the latter three-way reducts are more 
closely related to quantitative reducts and three-way decisions.

The main use of attribute reducts is to provide rules in decision tables, so three-way reducts are finally interpreted from 
the rule perspective. As is previously pointed out, γ (πD |πC ) represents the inherit classification power to generate certain 
rules, and the classical reduct R mainly preserves the same classification ability to produce and simplify reasoning rules. As 
a result, initial [x]C −→ [x]D is embodied by simpler [x]R −→ [x]D . Next, the three-way reducts with R are considered for 
the rule generation and simplification (i.e., [x]R −→ [x]D from [x]C −→ [x]D ), where γrelative(R) effectively locates γ (πD |πR)

in interval [0, γ (πD |πC )].

(QL1) The positive qualitative reduct R is exactly the classical reduct, so R corresponds to the maximal classification ability 
γ (πD |πR) = γ (πD |πC ) to generate and simplify certainty rules.

(QL2) The boundary qualitative reduct R has a classification ability γ (πD |πR) ∈ (0, γ (πD |πC )) (but not the maximal one) 
to generate and simplify certainty rules.

(QL3) The negative qualitative reduct R – the surplus collection – cannot generate certainty rules because γ (πD |πR) = 0
implies no classification abilities, or cannot effectively simplify certainty rules because of the R redundancy.

The above results adhere to three-way qualitative reducts, and the three-way quantitative reducts are similarly analyzed as 
follows by adding a quantitative background with threshold (α, β).

(QN1) The positive quantitative reduct R corresponds to the high γ (πD |πR) ∈ [αγ (πD |πC ), γ (πD |πC )] to generate and 
simplify certainty rules.

(QN2) The boundary quantitative reduct R has the middle classification ability γ (πD |πR) ∈ (βγ (πD |πC ), αγ (πD |πC )) to 
generate and simplify certainty rules.

(QN3) The negative quantitative reduct R – the surplus collection – is not suitable to generate certainty rules because of 
the low classification ability γ (πD |πR) ∈ [0, βγ (πD |πC )), or cannot effectively simplify certainty rules because of the 
R redundancy.

The classical reduct and three-way reducts mainly focus on the reasoning rules, but both carry different classification pow-
ers. The standard reduct is the positive qualitative reduct, and has the strongest classification power and the widest certainty 
rule coverage. However, the classical reduct could cause the overfitting of rule reasoning, especially in the data noise envi-
ronment. Thus, the positive quantitative reduct adopts the error tolerance to have the relatively strong classification power 
and the relatively wide reasoning range. Note that the positive reducts concern mainly necessity rules. In contrast, the 
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Fig. 4. The division mechanism of three-way qualitative reducts.

boundary reducts further decrease the classification power and necessity rule range, but from the dependency mechanism, 
they intensify possible rules to accompany necessity rules. Finally, the surplus negative reducts are usually not used for 
the rule generation and simplification. In short, three-way reducts extend and improve the classical reduct by virtue of the 
classification power, and they can induce more uncertain rules to be suitable for practical applications.

4.4. The superiority of three-way reducts in contrast to two-way reducts

Yao [46] thoroughly reveals the superiority of three-way decisions in contrast to two-way decisions. Herein, three-way 
reducts, which have the qualitative and quantitative patterns, also have their relevant superiority. In this subsection, their 
benefit is analyzed at the 2C level, via the comparison to the two-way reducts.

Current studies mainly focus on only attribute reducts related to data analyses, not only in the qualitative environment 
but also in the quantitative environment. From the perspective of 2C , there are only two classes to include the reduct and 
nonreduct, and they correspond to only two-way decisions with respect to acceptance and rejection for the reduction action. 
Thus, three-way reducts make the structure improvement and decision development in both the qualitative and quantitative 
patterns.

For the classical qualitative reducts, we can achieve the two-way reducts, which are in general, and they constitute two 
classes of 2C :

RED(πD) and NONRED(πD) = 2C − RED(πD). (62)

RED(πD) is normally accepted and used, while NONRED(πD) has the implication of strict reduction rejection. In the three-
way qualitative reducts,

RED(πD) = REDPOS(πD),

NONRED(πD) = REDBND(πD) ∪ REDNEG(πD). (63)

In other words, RED(πD) still exists to collect the positive qualitative reduct, while NONRED(πD) is further divided into 
more detailed subparts: REDBND(πD) and REDNEG(πD). REDBND(πD) consists of the boundary qualitative reduct to represent 
the reduction possibility and uncertainty; REDNEG(πD) implies the reduction impossibility, and its three blocks reveal the 
concrete causes. The division mechanism of three-way qualitative reducts is presented in Fig. 4. To make the certainty/un-
certainty analyses, let REDideal(πD) denote the ideal reduct set for applications. REDideal(πD) is located at the following 
range with lower and upper bounds:

REDPOS(πD) ⊆ REDideal(πD) ⊆ REDPOS(πD) ∪ REDBND(πD). (64)

For ideal REDideal(πD), REDPOS(πD), REDNEG(πD), and REDBND(πD) represent the positive and negative certainty, and un-
certainty, respectively, for the reduction action. For qualitative reducts, REDPOS(πD) becomes the necessary part to use the 
acceptance decision, REDBND(πD) becomes the possible part to use the noncommitment decision, while REDNEG(πD) be-
comes the negative part to use the rejection decision. Therefore, the three-way qualitative reducts more adhere to the 
practical methodology of three-way decisions.

To apply to the quantitative environment, three-way quantitative reducts introduce the accuracy approximation (or the 
fault tolerance) to generalize the three-way qualitative reducts. For the discriminant bar, they actually move specific (0, 1)

to usual (α, β) based on γrelative. With respect to the three-way qualitative division, the three-way quantitative division 
usually has no enlargement or lessening relationships in 2C , but it has the similar structural mechanism. For example,

REDPOS(πD) ⊆ RED∗ (πD) ⊆ REDPOS(πD) ∪ REDBND(πD). (65)
α,β ideal α,β α,β
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Table 1
A decision table for illustrating three-way reducts.

O B c1 c2 c3 c4 c5 d

o1 0 1 1 1 0 1
o2 1 0 0 0 1 1
o3 2 2 0 1 0 1
o4 1 1 1 1 0 2
o5 0 0 0 0 1 2
o6 2 2 2 0 1 2
o7 0 0 1 1 0 3
o8 1 1 0 1 0 3
o9 2 2 2 2 2 3

For ideal RED∗
ideal(πD), three-way quantitative reducts are related to the positive and negative certainty, and uncertainty 

in the quantitative pattern. Therefore, they have the quantitative advance and also adhere to the three-way decisions. In 
particular, the positive quantitative reducts are directly constructed by the dependency degree γrelative and the approxi-
mate requirement γrelative ≥ α, and they generalize the classical qualitative reducts to exhibit the practical advantage in 
quantitative applications. If only considering the positive quantitative reducts in the usual way, we can yield the two-way 
quantitative reducts, which are in general, and they constitute:

REDα(πD) and NONREDα(πD) = 2C − REDα(πD). (66)

By introducing bar β ,

REDα(πD) = REDPOS
α,β(πD),

NONREDα(πD) = REDBND
α,β (πD) ∪ REDNEG

α,β (πD). (67)

That is, the γrelative–α quantitative reducts become the γrelative–(α, β) positive quantitative reducts, and NONREDα(πD) is 
reasonably divided into two detailed descriptions with respect to the γrelative–(α, β) boundary and negative quantitative 
reducts. Therefore, three-way quantitative reducts have the structure improvement and decision development for the two-
way reducts.

In the above entire studies, usual assumption 0 ≤ β < α ≤ 1 (Eq. (36)) theoretically ensures the three-way number of 
attribute reducts, so three-way qualitative and quantitative reducts generally exist. In fact, the assumption can be enlarged 
to a reasonable range:

0 ≤ β ≤ α ≤ 1, (68)

by adding a specific case α = β . As a result, three-way quantitative reducts can exhibit the expansion and degeneration with 
respect to two-way reducts, where only the positive reducts are mainly utilized in the current style. The relevant result is 
described by the following theorem.

Theorem 10. (1) Three-way quantitative reducts expand two-way quantitative reducts and can degenerate into the latter by setting 
up α = β . (2) Three-way quantitative reducts expand two-way qualitative reducts and can degenerate into the latter by setting up 
α = β = 1.

Proof. (1) When α = β , the positive and negative quantitative reducts correspond to REDα(πD) and NONREDα(πD), respec-
tively, while the boundary quantitative reducts never emerge.

(2) When α = β = 1, the positive and negative quantitative reducts correspond to RED(πD) and NONRED(πD), respec-
tively, while the boundary quantitative reducts never emerge. �

In summary, three-way reducts have four aspects of superiority when compared to the two-way reducts, i.e., the reduct 
structure, decision semantics, quantitative application, and improved expansion.

5. Three-way reducts illustrations based on an example of decision tables

Aiming at three-way reducts, this section finally provides relevant illustrations by observing a decision table example. 
Moreover, the practical example will be used to extract several general conclusions regarding the attribute set redundancy 
and the dependency measure distribution. The concrete decision table is given in Table 1. There, O B = {o1, ..., o9}, C =
{c1, c2, c3, c4, c5}, D = {d}. According to the basic calculation,

πC ={{o1}, {o2}, ..., {o9}},
πD ={{o1,o2,o3}, {o4,o5,o6}, {o7,o8,o9}},

i.e., πC consists of nine granules with the single element style while πD consists of three specific decision classes.
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Fig. 5. Lattice (2C ,⊆).

5.1. Lattice observations based on measures

As a basis, Table 1 is first used to make some observations for relevant lattices, which are related to the dependency 
degree γ and relative dependency degree γrelative.

C consists of five condition attributes, so 2C has 25 = 32 attribute subsets of C to constitute lattice (2C , ⊆). The relevant 
lattice structure is presented in Fig. 5.

The thirty-two attribute subsets produce sixteen classifications to constitute lattice (2πC , ⇐). The transformation between 
lattices (2C , ⊆) and (2πC , ⇐) is completed by homomorphism mapping π . The relevant lattice structure of (2πC , ⇐) is 
presented in Fig. 6.

In Fig. 6, each node has three lines of data. The first line marks the classification and its serial number, the second line 
marks the subset origination, and the third line denotes the result of the positive region and measures γ , γrelative. As an 
example, we explain the data of node 8.

(1) As shown in the line 1, the 8th classification refers to

o1o7,o4o8, ... = {{o1,o7}, {o4,o8}, {o2}, {o3}, {o5}, {o6}, {o9}},
which consists of two granules with dual elements and five surplus granules with a single element.

(2) As shown in the line 2, the 8th classification comes from three subsets: {c1, c4}, {c1, c5}, and {c1, c4, c5}, which are 
simply denoted by c1c4, c1c5, and c1c4c5, respectively. In particular, {c1, c4, c5}, which is collected in the bracketed form 
(c1c4c5), becomes redundant, because its proper subset {c1, c4}/{c1, c5} can express the same classification. As a result, 
{c1, c4, c5} never becomes any reduct in the narrow sense, such as the positive and boundary reducts.

(3) As shown in the line 3, the 8th classification produces the positive region {o2, o3, o5, o6, o9} (which is denoted by 
o2o3o5o6o9), dependency degree 5/9, and relative dependency degree 5/9. In this example, the two types of measures 
become equal, i.e., γrelative = γ , because of γ (πD |πC ) = 1.

According to the five condition attributes, Fig. 5 has six levels with thirty-two attribute subsets, while Fig. 6 has five levels 
with sixteen classifications. In general, if |C | = m then lattice (2C , ⊆) necessarily has m + 1 levels with 2m subsets, while 
(2πC , ⇐) has at most m + 1 levels with at most 2m classifications. The final levels of subset classifications mainly depend on 
the concrete granulation structure of attributes. For a given attribute number, the lattice structure of (2C , ⊆) is stable, but 
mapping π can produce multiple structures of (2πC , ⇐) according to the formal structure of the concrete decision table. 
For attribute reducts, (2πC , ⇐) becomes the analysis basis while (2C , ⊆) provides the accessible implement. By gathering 
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Fig. 6. Lattice (2πC ,⇐) and relevant classifications, subsets, regions, and measures.

information of subsets and classifications, Fig. 6 also reflects the homomorphic feature of mapping π . Moreover, all eight 
redundant subsets in the brackets of Fig. 6 can be collected and saved in the negative reducts, i.e.,

C, {c1, c2, c4, c5}, {c1, c3, c4, c5}, {c2, c3, c4, c5}, {c1, c4, c5}, {c2, c4, c5}, {c3, c4, c5}, {c4, c5}
∈ REDNEG(πD),REDNEG

α,β (πD). (69)

The redundant subsets can deduce a theoretical conclusion.

Proposition 5. If an attribute subset and its proper subset have the same classification, then it is absolutely redundant and never 
belongs to any reduct in the narrow sense. For the generalized notion of three-way reducts, the absolutely redundant subset belongs to 
only the negative reducts.

According to Proposition 5, the absolutely redundant subset, which originates from the formal structure of decision 
tables, never satisfies arbitrary individual necessity to be denied for usual attribute reducts. It can be first determined to 
implement the optimal calculation for three-way reducts. Furthermore, the opposite of absolute redundance is the relative 
redundance. According to concrete individual necessity, the relatively redundant subset becomes redundant in terms of its 
proper subset and relevant subclassification.

The sixteen classifications produce thirteen positive regions and eight measure values. In view of γrelative = γ ,

0 ≤ 1/9 ≤ 2/9 ≤ 3/9 ≤ 4/9 ≤ 5/9 ≤ 7/9 ≤ 1 (70)

constitutes equivalent lattices ({γ (A) | A ⊆ C}, ≤) and ({γrelative(A) | A ⊆ C}, ≤), which are a sublattice of lattice ([0, 1], ≤). 
The relevant transformations from lattice (2C , ⊆) are realized by homomorphic mappings γ and γrelative, respectively. More-
over, the lattice equality reflects the isomorphism of lattices which originates from γ (πD |πC ) = 1 �= 0. The final measure 
results are mainly related to the positive region, where classification πD is added for consideration. The information of 
regions and measures are also marked in Fig. 6 by line 3 of data notes. As a result, the order-preservation of homomorphic 
mappings γ , γrelative, and isomorphic mapping f , i.e., the measure monotonicity in Eqs. (6), (16), and (22), are illustrated 
by Fig. 6. In particular, Fig. 6 contains enough information to underlie the follow-up illustrations for three-way reducts.

Herein, eight measure values are related to number nine, which is related to the cardinality of universe O B or region 
POS(πD |πC ). In general, we can give a following distribution conclusion for γ , i.e., Proposition 6. Furthermore, the γrelative
distribution is similarly deduced in Corollary 9, mainly by the γrelative connotation with respect to the positive region 
(Theorem 3). The two conclusions of measure distribution have some comparability. For example, the measure change 
depends on the positive region, whose nonempty supplementarity necessarily involves at least two condition attributes.
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Proposition 6. For the dependency degree γ , if |O B| = n then it exhibits an integer multiple with respect to factor 1/n, i.e., k/n
(k ∈ {0, 1, ..., n}). Its minimum 0 and maximum can be obtained at least by subsets ∅ and C , respectively. Its maximum is not greater 
than 1, and its second maximum is not greater than (n − 2)/n.

Corollary 9. For the relative dependency degree γrelative, if |POS(πD |πC )| = n′ then it exhibits an integer multiple with respect to 
factor 1/n′ , i.e., k/n′ (k ∈ {0, 1, ..., n′}). Its minimum 0 and maximum 1 can be obtained at least by subsets ∅ and C , respectively, and 
its second maximum is not greater than (n′ − 2)/n′ .

5.2. Illustrations for three-way quantitative reducts

On the basis of Table 1 and Fig. 6, three-way quantitative reducts are calculated in this subsection to clarify their internal 
relationships.

Except for the application requirement, the measure distribution can be considered for the threshold determination. For 
γrelative, eight ordered values 0, 1/9, 2/9, 3/9, 4/9, 5/9, 7/9, 1 correspond to 4, 1, 2, 2, 1, 2, 3, 1 classifications, respectively. 
Thus, we mainly take (α, β) = (7/9, 2/9) to illustrate three-way quantitative reducts, and relevant results based on (α, β) =
(5/9, 3/9) are simply and finally provided.

For the reduct target γrelative ∈ [7/9, 1], only classifications (1)–(4) reach the joint sufficiency (SPOS
α,β ) but classification (1) 

never satisfies the individual necessity (NPOS
α,β). For classification (1), subclassification (2)/(3)/(4) can also reach (SPOS) with 

respect to [7/9, 1]. As a result, the subsets related to classification (1) correspond to not the positive qualitative reducts but 
the negative qualitative reducts; in fact, C and {c1, c2, c3, c4}/{c1, c2, c3, c5} become the absolutely and relatively redundant, 
respectively. By extracting the positive quantitative reducts from classifications (2)–(4), the sets of attribute reducts and 
core/useful attributes are obtained:

REDPOS
7/9,2/9(πD) = {{c1, c2, c3}, {c1, c2, c4}, {c1, c2, c5}, {c1, c3, c4}, {c1, c3, c5}},

COREPOS
7/9,2/9(πD) = {c1},

USEFULPOS
7/9,2/9(πD) = C .

For the reduct target γrelative ∈ (2/9, 7/9), only classifications (5) and (7)–(10) reach the joint sufficiency (SBND
α,β ) but 

classification (5) never satisfies the individual necessity (NBND
α,β ). By extracting the boundary quantitative reducts from clas-

sifications (7)–(10), the sets of attribute reducts and core/useful attributes are obtained:

REDBND
7/9,2/9(πD) = {{c1, c3}, {c1, c4}, {c1, c5}, {c2, c3}, {c2, c4}, {c2, c5}},

COREBND
7/9,2/9(πD) = ∅,

USEFULBND
7/9,2/9(πD) = C .

The negative reducts with respect to threshold (7/9, 2/9) are collected as follows:

REDNEG
7/9,2/9(πD) = 2C − {{c1, c2, c3}, {c1, c2, c4}, {c1, c2, c5}, {c1, c3, c4}, {c1, c3, c5}}

− {{c1, c3}, {c1, c4}, {c1, c5}, {c2, c3}, {c2, c4}, {c2, c5}}.
The negative reducts include 32 − 5 − 6 = 21 subsets, and they can be divided into three blocks according to Eq. (43). 
(1) Blocki

7/9,2/9 mainly collects two groups of subsets:

C, {c1, c2, c4, c5}, {c1, c3, c4, c5};
{c1, c2, c3, c4}, {c1, c2, c3, c5}.

These five subsets satisfy (SPOS
α,β ) rather than (NPOS

α,β). The first group originates from the absolutely redundant subsets with 
high measure γrelative ≥ α, which are collected in Eq. (69), while the second group originates from the relatively redundant 
subsets with respect to (NPOS

α,β). (2) Blockii
7/9,2/9 mainly collects two groups of subsets:

{c2, c3, c4, c5}, {c1, c4, c5}, {c2, c4, c5};
{c2, c3, c4}, {c2, c3, c5}.

These five subsets satisfy (SBND
α,β ) rather than (NBND

α,β ). The first group originates from redundant subsets with a moder-
ate measure γrelative ∈ (2/9, 7/9), while the second group corresponds to the relatively redundant subsets with respect to 
(NBND

α,β ). (3) Blockiii
7/9,2/9 collects the surplus eleven subsets with low level γrelative(A) ≤ 2/9:

{c3, c4, c5}, {c4, c5};
{c1, c2}, {c3, c4}, {c3, c5}, {c1}, {c2}, {c3}, {c4}, {c5},∅,

where the first group concerns the absolutely redundant subsets with the low measure.
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The above calculation process mainly utilizes the lattices (2C , ⊆), (2πC , ⇐), and ({γrelative(A) | A ⊆ C}, ≤) to obtain 
the three-way quantitative reducts, where the positive and boundary quantitative reducts are first calculated and Fig. 6 is 
fully utilized. Moreover, all classifications play an important role in relevant connections and make a three-way division. As a 
result, three-way qualitative reducts completely divide 2C , and they can implement corresponding three-way decisions in the 
qualitative environment. According to the quantitative threshold (α, β) = (7/9, 2/9), the five positive quantitative reducts 
{c1, c2, c3}, {c1, c2, c4}, {c1, c2, c5}, {c1, c3, c4}, {c1, c3, c5} can be accepted and used, the six boundary quantitative reducts 
{c1, c3}, {c1, c4}, {c1, c5}, {c2, c3}, {c2, c4}, {c2, c5} correspond to the noncommitment decision, while the surplus twenty-one 
negative quantitative reducts are completely rejected.

To verify the results of core attributes,

γrelative(C − {c1}) = 5/9,

γrelative(C − {c2}) = γrelative(C − {c3}) = 7/9,

γrelative(C − {c4}) = γrelative(C − {c5}) = 1

are calculated to produce a three-way partition for C :

{c | γrelative(C − {c}) ≤ 2/9} = ∅,

{c | γrelative(C − {c}) ∈ (2/9,7/9)} = {c1},
{c | γrelative(C − {c}) ≥ 7/9} = {c2, c3, c4, c5}.

On this basis, we have:

COREPOS
7/9,2/9(πD) = {c1} = {c | γrelative(C − {c}) ≤ 7/9},

{c | γrelative(C − {c}) ≤ 2/9} = ∅ ⊆ COREBND
7/9,2/9(πD) = ∅ ⊆ {c | γrelative(C − {c}) /∈ (2/9,7/9)} = {c2, c3, c4, c5}.

For the core attributes, these results practically verify the computational formulation and dual bounds in the previous 
theoretical studies, i.e., Eqs. (28) and (42) as well as Algorithm 1. For Algorithm 2, on the basis of core attribute c1, 
Sig({c1}, c4) = Sig({c1}, c5) reaches the maximum of heuristic information for adding c ∈ {c2, c3, c4, c5}, so c4 or c5 is first 
added. Similarly, c2/c3 is next and finally added. According to the different addition order, Algorithm 2 outputs one positive 
quantitative reduct of

{c1, c2, c4}, {c1, c2, c5}, {c1, c3, c4}, {c1, c3, c5},
but {c1, c2, c3} cannot be obtained. Moreover, we can verify the mutual relationship between COREPOS

7/9,2/9(πD) and 
COREBND

7/9,2/9(πD), i.e.,

COREPOS
7/9,2/9(πD) ∩ COREBND

7/9,2/9(πD) = ∅ = {c | γrelative(C − {c}) ≤ 2/9};
COREPOS

7/9,2/9(πD) − COREBND
7/9,2/9(πD) = {c1} = {c | γrelative(C − {c}) ∈ (2/9,7/9)};

COREBND
7/9,2/9(πD) − COREPOS

7/9,2/9(πD) = ∅ ⊆ {c2, c3, c4, c5} = {c | γrelative(C − {c}) ≥ 7/9)}.
Herein, the sets of useful attributes exhibit the equality, i.e.,

USEFULPOS
7/9,2/9(πD) = C = USEFULBND

7/9,2/9(πD).

For the relationships of the three-way quantitative reducts, Theorems 8, 9, and Algorithm 4 provide the main results 
and thus are next illustrated. For all the positive quantitative reducts, {c1, c2, c3}/{c1, c3, c4}/{c1, c3, c5}, {c1, c2, c4}, and 
{c1, c2, c5} properly include boundary quantitative reducts {c1, c3}, {c1, c4}, {c1, c5}, respectively, and they actually satisfy 
the existence condition with respect to γrelative(R − {c}) > 2/9. Suppose positive quantitative reduct {c1, c2, c3} is put into 
Algorithm 4. |{c1, c2, c3}| = 3 > 1, and by the attribute deletion we have:

γrelative({c1, c2, c3} − {c1}) = γrelative({c1, c2, c3} − {c2}) = 3/9 > 2/9,

γrelative({c1, c2, c3} − {c3}) = 2/9.

When c1/c2 is deleted, Algorithm 4 returns a boundary quantitative reduct {c2, c3}/{c1, c3}, which is properly included in 
{c1, c2, c3}. Moreover, we can verify that an arbitrary boundary quantitative reduct has two attributes and properly includes 
at least a nonempty negative quantitative reduct.

Finally, three-way quantitative reducts are achieved for the other threshold (α, β) = (5/9, 3/9). The positive quantitative 
reducts exhibit:
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REDPOS
5/9,3/9(πD) = {{c1, c2, c3}, {c2, c3, c4}, {c2, c3, c5}, {c1, c4}, {c1, c5}},

COREPOS
5/9,3/9(πD) = ∅,

USEFULPOS
5/9,3/9(πD) = C .

The boundary quantitative reducts yield:

REDBND
5/9,3/9(πD) = {{c2, c4}, {c2, c5}},

COREBND
5/9,3/9(πD) = {c2},

USEFULBND
5/9,3/9(πD) = {c2, c4, c5}.

The negative quantitative reducts produce:

REDNEG
5/9,3/9(πD) = 2C − {{c1, c2, c3}, {c2, c3, c4}, {c2, c3, c5}, {c1, c4}, {c1, c5}} − {{c2, c4}, {c2, c5}}.

These results can be utilized to make similar analyses for the three-way quantitative reducts and their relationships. For 
example, COREBND

5/9,3/9(πD) has the following form with respect to lower and upper bounds (Eq. (42)):

{c | γrelative(C − {c}) ≤ 3/9} = ∅ ⊆ COREBND
5/9,3/9(πD) = {c2} ⊆ {c | γrelative(C − {c}) /∈ (3/9,5/9)} = C .

5.3. Illustrations for three-way qualitative reducts

In this subsection, Table 1 and Fig. 6 are further used to illustrate the three-way qualitative reducts, which can be 
described based on γ and γ (πD |πC ) (or γrelative and (α, β) = (1, 0)).

For the reduct target γ = γ (πD |πC ) (or γrelative = 1), only classification (1) reaches the joint sufficiency (SPOS) and 
originates from three attribute subsets: {c1, c2, c3, c4}, {c1, c2, c3, c5}, and C . Furthermore, only c1c2c3c4 and c1c2c3c5 satisfy 
the individual necessity (NPOS), while C is absolutely redundant. For the positive qualitative reduct, the sets of attribute 
reducts and core/useful attributes are obtained:

REDPOS(πD) = {{c1, c2, c3, c4}, {c1, c2, c3, c5}},
COREPOS(πD) = {c1, c2, c3},

USEFULPOS(πD) = C .

For the reduct target γ ∈ (0, γ (πD |πC )) (or γrelative ∈ (0, 1)), eleven classifications with labels (2)–(11) and (15) reach the 
joint sufficiency (SBND), but classifications (2)–(5), (8), (10) and (11) never satisfy the individual necessity (NBND). As far as 
classification (8) is concerned, its subclassification (15) can also reach the interval target with respect to (SBND), so the subset 
with respect to classification (8) corresponds to not the boundary qualitative reduct but the negative qualitative reduct. Only 
surplus classifications (6), (7), (9) and (15) and their nonredundant subsets are related to the individual necessity (NBND)

and the boundary reduct. For the boundary qualitative reduct, the sets of attribute reducts and core/useful attributes are 
obtained:

REDBND(πD) = {{c1, c2}, {c1, c3}, {c2, c3}, {c4}, {c5}},
COREBND(πD) = ∅,

USEFULBND(πD) = C .

The negative qualitative reducts are collected as follows:

REDNEG(πD) = 2C − {{c1, c2, c3, c4}, {c1, c2, c3, c5}} − {{c1, c2}, {c1, c3}, {c2, c3}, {c4}, {c5}}.
The 32 − 2 − 5 = 25 subsets can be divided into three blocks Blocki, Blockii, and Blockiii according to Eq. (53). (1) For 
classification (1), C satisfies (SPOS) rather than (NPOS) (with respect the positive qualitative reduct); (2) For classifications 
(2)–(11) and (15), the following subsets satisfy (SBND) rather than (NBND) (with respect to the boundary qualitative reduct), 
i.e.,

{c1, c2, c4, c5}, {c1, c3, c4, c5}, {c2, c3, c4, c5}, {c1, c4, c5}, {c2, c4, c5}, {c3, c4, c5}, {c4, c5};
{c1, c2, c3}, {c1, c2, c4}, {c1, c2, c5}, {c1, c3, c4}, {c1, c3, c5}, {c2, c3, c4}, {c2, c3, c5}, {c1, c4}, {c1, c5}, {c2, c4},
{c2, c5}, {c3, c4}, {c3, c5}

The twenty subsets exhibit two groups. The first group originates from the absolutely redundant subsets with γ ∈
(0, γ (πD |πC )) (or γrelative ∈ (0, 1)), while the second group corresponds to the relatively redundant subsets with respect 
to (NBND). (3) For classifications (12)–(14) and (16), the following four subsets
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{c1}, {c2}, {c3},∅,

exhibit the low measure γ (or γrelative) and thus never satisfy (SPOS) and (SBND) (with respect to the positive and boundary 
qualitative reducts).

Three-way qualitative reducts completely divide 2C into three classes, and they can gain corresponding three-way deci-
sions in the qualitative environment. Two positive qualitative reducts {c1, c2, c3, c4} and {c1, c2, c3, c5} can be accepted and 
used; five boundary qualitative reducts {c1, c2}, {c1, c3}, {c2, c3}, {c4}, and {c5} correspond to the noncommitment decision; 
and the surplus twenty-five negative qualitative reducts are rejected.

To verify the results of core attributes,

γ (πD |πC−{c1}) = 5/9,

γ (πD |πC−{c2}) = γ (πD |πC−{c3}) = 7/9,

γ (πD |πC−{c4}) = γ (πD |πC−{c5}) = 1;
are calculated to produce a three-way partition for C :

{c | γ (πD |πC−{c}) = 0} = ∅,

{c | γ (πD |πC−{c}) ∈ (0, γ (πD |πC ))} = {c1, c2, c3},
{c | γ (πD |πC−{c}) = γ (πD |πC )} = {c4, c5}.

On this basis, we have the computational formulation and dual bounds:

COREPOS(πD) = {c1, c2, c3} = {c | γ (πD |πC−{c}) < γ (πD |πC )},
{c | γ (πD |πC−{c}) = 0} = ∅ ⊆ COREBND(πD) = ∅ ⊆ {c | γ (πD |πC−{c}) /∈ (0, γ (πD |πC ))} = {c4, c5}.

Moreover, we can verify the mutual relationship between COREPOS(πD) and COREBND(πD), i.e.,

COREPOS(πD) ∩ COREBND(πD) = ∅ = {c | γ (πD |πC−{c}) = 0};
COREPOS(πD) − COREBND(πD) = {c1, c2, c3} = {c | γ (πD |πC−{c}) ∈ (0, γ (πD |πC ))};
COREBND(πD) − COREPOS(πD) = ∅ ⊆ {c4, c5} = {c | γ (πD |πC−{c}) = γ (πD |πC )}.

Herein, the sets of useful attributes exhibit the equality, i.e.,

USEFULPOS(πD) = C = USEFULBND(πD).

Finally, we can illustrate the relationships of the three-way qualitative reducts, including the potential derivation in 
Corollary 7. Based on the practical verification, each positive qualitative reduct properly includes at least a boundary quali-
tative reduct, while each boundary qualitative reduct with at least two attributes also properly includes at least a nonempty 
negative qualitative reduct.

5.4. Relationship illustrations between three-way quantitative and qualitative reducts

According to Table 1 and Fig. 6, three-way quantitative/qualitative reducts and their internal relationships have been il-
lustrated. In this subsection, the strength relationships are further illustrated between three-way quantitative and qualitative 
reducts.

As is previously pointed out, three-way quantitative reducts theoretically expand and practically approximate three-way 
qualitative reducts. With respect to threshold (α, β), the qualitative reducts are stable on (1, 0), while the quantitative 
reducts possibly have multiple choices. For the (α, β) determination, the concrete decision table is worth considering, and 
some special cases may lead to the qualitative degeneration of the quantitative reducts. For this decision table example with 
Table 1, γrelative has the discrete distribution:

0 ≤ 1/9 ≤ 2/9 ≤ 3/9 ≤ 4/9 ≤ 5/9 ≤ 7/9 ≤ 1.

If α is so great to be greater than the second maximum 7/9, then the positive quantitative reducts degenerate into the 
positive qualitative reducts; furthermore, if β is so small to be smaller than the second minimum 1/9, then the boundary 
and negative quantitative reducts degenerate into the boundary and negative qualitative reducts, respectively. In contrast, if 
1/9 ≤ β < α ≤ 7/9, then three-way quantitative reducts necessarily differ from three-way qualitative reducts. These analyses 
can produce a general conclusion based on the second maximum/minimum.

Proposition 7. In lattice ({γrelative(A) | A ⊆ C}, ≤), the second maximum and minimum of γrelative are denoted by γ max2
relative and γ min2

relative , 
respectively. If α > γ

max2 , then the positive quantitative reducts degenerate into the positive qualitative reducts; furthermore, if β <
relative
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γ
min2
relative , then the three-way quantitative reducts completely degenerate into three-way qualitative reducts. In contrast, if α ≤ γ

max2
relative

and β ≥ γ
min2
relative , then three-way quantitative reducts differ from three-way qualitative reducts.

According to Proposition 7, three-way quantitative reducts with α > γ
max2
relative and β < γ

min2
relative also exhibit the qualitative 

degeneration, which involves the previous case (α, β) = (1, 0). Moreover, α ≤ γ
max2
relative and β ≥ γ

min2
relative can theoretically en-

sure the difference and non-degeneration between three-way quantitative and qualitative reducts. In the theoretical sense, 
the usual case γ min2

relative ≤ β < α ≤ γ
max2
relative avoids the latent qualitative degeneration and implements the practical quan-

titative applications, and the above quantitative results with thresholds (7/9, 2/9) and (5/9, 3/9) provide some powerful 
illustrations. As a result, the γrelative distribution is worth considering for the threshold determination.

Next, we focus on the reduct strength, which is described in Theorem 6, Proposition 2, and Algorithm 3. First consider 
case (α, β) = (7/9, 2/9). (1) The positive quantitative reducts are weaker than the positive qualitative reducts.

COREPOS
7/9,2/9(πD) = {c1} ⊆ {c1, c2, c3} = COREPOS(πD)

shows the extension of core attributes between the positive quantitative and qualitative reducts.

REDPOS
7/9,2/9(πD) = {{c1, c2, c3}, {c1, c2, c4}, {c1, c2, c5}, {c1, c3, c4}, {c1, c3, c5}},

REDPOS(πD) = {{c1, c2, c3, c4}, {c1, c2, c3, c5}}.
Based on the results of positive reducts, each positive qualitative reduct includes at least one positive quantitative reduct. 
Suppose qualitative reduct {c1, c2, c3, c4} is put into Algorithm 3, and then positive quantitative reduct RPOS

7/9,2/9 has the 
bound form:

{c1} ⊆ RPOS
7/9,2/9 ⊆ {c1, c2, c3, c4}.

Only core attribute c1 cannot be deleted; thus, if first deleting c2/c3/c4, then {c1, c3, c4}/{c1, c2, c4}/{c1, c2, c3} is output to 
become the final quantitative reduct RPOS

7/9,2/9 in the given qualitative reduct {c1, c2, c3, c4}. (2) The boundary quantitative 
reducts are stronger than the boundary qualitative reducts.

COREBND
7/9,2/9(πD) = ∅ = COREBND(πD)

accords with the inclusion of core attributes between the positive quantitative and qualitative reducts.

REDBND
7/9,2/9(πD) = {{c1, c3}, {c1, c4}, {c1, c5}, {c2, c3}, {c2, c4}, {c2, c5}},

REDBND(πD) = {{c1, c2}, {c1, c3}, {c2, c3}, {c4}, {c5}}.
Based on the results of boundary reducts, each boundary quantitative reduct includes at least one boundary qualitative 
reduct. In particular, there are no boundary quantitative reducts to include boundary qualitative reduct {c1, c2}. This fact 
verifies the basic opposite for the reduct strength. In other words, the weaker reduct can also exist by breaking away 
from the inclusion relationship from its stronger reduct, although each strong reduct necessarily includes at least one weak 
reduct [58]. (3) Based on the above results, the positive/boundary quantitative and qualitative reducts have the usual set 
relationship. For example, we can achieve the following nonempty relationships:

REDBND
7/9,2/9(πD) ∩ REDBND(πD) = {{c1, c3}, {c2, c3}},

REDBND
7/9,2/9(πD) − REDBND(πD) = {{c1, c4}, {c1, c5}, {c2, c4}, {c2, c5}},

REDBND(πD) − REDBND
7/9,2/9(πD) = {{c1, c2}, {c4}, {c5}}.

As a result, the negative quantitative and qualitative reducts also have the usual set relationships. The internal blocks of the 
negative quantitative and qualitative reducts are calculated in Sections 5.2 and 5.3, respectively. By the simple verification, 
we have their mutual inclusion/extension relationships as follows:

Blocki
7/9,2/9 ⊇ Blocki,

Blockii
7/9,2/9 ⊆ Blockii,

Blockiii
7/9,2/9 ⊇ Blockiii.

From the quantitative viewpoint, the quantitative and qualitative reducts focus on (α, β) = (7/9, 2/9) and (α, β) = (1, 0), 
respectively. Based on the direct verification, the other case (α, β) = (5/9, 3/9) is used to similarly illustrate relationships 
between the three-way quantitative and qualitative reducts. Furthermore, the relevant strength relationships are exhibited 
by the two types of quantitative reducts, i.e., the positive/boundary reducts based on (5/9, 3/9) are weaker/stronger than 
the positive/boundary reducts based on (7/9, 2/9).
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COREPOS
7/9,2/9(πD) = {c1} ⊇ ∅ = COREPOS

5/9,3/9(πD)

shows the inclusion of core attributes of the positive quantitative reduct between (7/9, 2/9) and (5/9, 3/9).

REDPOS
7/9,2/9(πD) = {{c1, c2, c3}, {c1, c2, c4}, {c1, c2, c5}, {c1, c3, c4}, {c1, c3, c5}},

REDPOS
5/9,3/9(πD) = {{c1, c2, c3}, {c2, c3, c4}, {c2, c3, c5}, {c1, c4}, {c1, c5}}.

Each positive quantitative reduct with (7/9, 2/9) includes only one positive quantitative reduct with (5/9, 3/9), but reducts 
{c2, c3, c4} and {c2, c3, c5} with (5/9, 3/9) cannot be included.

COREBND
7/9,2/9(πD) = ∅ ⊆ {c2} = COREBND

5/9,3/9(πD)

shows the extension of core attributes of the boundary quantitative reducts between (7/9, 2/9) and (5/9, 3/9).

REDBND
7/9,2/9(πD) = {{c1, c3}, {c1, c4}, {c1, c5}, {c2, c3}, {c2, c4}, {c2, c5}},

REDBND
5/9,3/9(πD) = {{c2, c4}, {c2, c5}}.

Each boundary quantitative reduct with (5/9, 3/9) includes only one boundary quantitative reduct with (7/9, 2/9), but 
reducts {c1, c3}, {c1, c4}, {c1, c5}, and {c2, c3} with (7/9, 2/9) cannot be included.

5.5. Superiority illustrations of three-way reducts in contrast to two-way reducts

In this subsection, Table 1 and Fig. 6 are finally used to illustrate the superiority of three-way reducts in contrast to 
two-way reducts.

The classical qualitative reducts imply the two-way reducts:

RED(πD) = {{c1, c2, c3, c4}, {c1, c2, c3, c5}},
NONRED(πD) = 2C − {{c1, c2, c3, c4}, {c1, c2, c3, c5}},

and they adopt the two-way decisions with respect to acceptance and rejection, respectively. They develop to three-way 
reducts, and we can verify the relevant structure improvement:

RED(πD) = REDPOS(πD),

NONRED(πD) = REDBND(πD) ∪ REDNEG(πD).

Three-way qualitative reducts are calculated in Section 5.2, and they gain three-way decisions with respect to acceptance, 
noncommitment, and rejection, respectively. Moreover, the ideal reduct set has the form with lower and upper bounds:

{{c1, c2, c3, c4}, {c1, c2, c3, c5}}
⊆ REDideal(πD)

⊆ {{c1, c2, c3, c4}, {c1, c2, c3, c5}, {c1, c2}, {c1, c3}, {c2, c3}, {c4}, {c5}}.
When α = 7/9, the two-way quantitative reducts become:

RED7/9(πD) = {{c1, c2, c3}, {c1, c2, c4}, {c1, c2, c5}, {c1, c3, c4}, {c1, c3, c5}},
NONRED7/9(πD) = 2C − {{c1, c2, c3}, {c1, c2, c4}, {c1, c2, c5}, {c1, c3, c4}, {c1, c3, c5}}.

They adopt the two-way decisions with respect to acceptance and rejection, respectively. By introducing the other bar 
β = 2/9, they are improved to the three-way quantitative reducts. The results of the three-way quantitative reducts are 
computed in Section 5.3. As a result,

RED7/9(πD) = REDPOS
7/9,2/9(πD),

NONRED7/9(πD) = REDBND
7/9,2/9(πD) ∪ REDNEG

7/9,2/9(πD).

Three-way quantitative reducts correspond to the three-way decisions. In the quantitative environment with (7/9, 2/9), the 
ideal reduct set has the range:

{{c1, c2, c3}, {c1, c2, c4}, {c1, c2, c5}, {c1, c3, c4}, {c1, c3, c5}}
⊆ RED∗

ideal(πD)

⊆ {{c1, c2, c3}, {c1, c2, c4}, {c1, c2, c5}, {c1, c3, c4}, {c1, c3, c5}, {c1, c3}, {c1, c4}, {c1, c5}, {c2, c3}, {c2, c4}, {c2, c5}}.
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The quantitative reducts based on α = 5/9 and (α, β) = (5/9, 3/9) can be similarly analyzed.
Herein, case α = β implies REDNEG

α,β (πD) = ∅ and thus is utilized to produce the degenerate pattern of two-way reducts. 
Suppose α = β = 5/9, and then the two-way quantitative reducts exhibit:

REDPOS
5/9,5/9(πD) = {{c1, c2, c3}, {c2, c3, c4}, {c2, c3, c5}, {c1, c4}, {c1, c5}} = RED5/9(πD),

REDNEG
5/9,5/9(πD) = 2C − {{c1, c2, c3}, {c2, c3, c4}, {c2, c3, c5}, {c1, c4}, {c1, c5}} = NONRED5/9(πD).

By using α = β = 1, three-way quantitative reducts degenerate into the two-way qualitative reducts, i.e.,

REDPOS
1,1 (πD) = {{c1, c2, c3, c4}, {c1, c2, c3, c5}} = RED(πD),

REDNEG
1,1 (πD) = 2C − {{c1, c2, c3, c4}, {c1, c2, c3, c5}} = NONRED(πD).

6. Conclusions

In this paper, three-way decisions are introduced into attribute reducts and thus three-way attribute reducts are sys-
tematically investigated at the 2C and C levels. The analyses of lattices and measures establish the solid mathematical 
foundation, so the dependency degree γ with inherent dependency semantics is improved to the relative dependency de-
gree γrelative. In particular, novel measure γrelative becomes monotonic to relatively describe the attribute dependency and 
becomes controllable to quantitatively measure attribute reducts. According to advanced measure γrelative , we adopt the 
following research line of reduct construction:

the positive qualitative reducts

−→ the positive quantitative reducts

−→ three-way quantitative reducts

−→ three-way qualitative reducts.

The positive qualitative reducts are the classical qualitative reducts based on γ . For quantitative applications, the positive 
qualitative reducts utilize the quantification approximation to be generalized to the positive quantitative reducts, i.e., the 
γrelative–α quantitative reducts. By adding bar β , the positive quantitative reducts are completely extended to three-way 
quantitative reducts. By setting up (α, β) = (1, 0), three-way quantitative reducts degenerate into three-way qualitative 
reducts, which can be described by γ or γrelative and include the classical qualitative reducts. As a result, the positive, 
boundary, and negative reducts constitute three-way reducts to divide 2C : the existing space of attribute reducts, and they 
gain acceptance, noncommitment, and rejection of three-way decisions, respectively. In particular, the positive qualitative 
reducts are highly related to the approximate reducts [34,35,40,59], while the boundary reducts become a new reduct type 
to describe the theoretical uncertainty and practical possibility of attribute reduction. For three-way reducts, they have 
potential derivation from the higher level to the lower level, and they have approximation, expansion, and strength between 
the quantitative and qualitative patterns. Three-way reducts improve the latent two-way reducts with only acceptance and 
rejection of two-way decisions. These relevant results are finally illustrated by observing an example of decision tables, 
where several general conclusions are also extracted. By developing the relative dependency degree with controllability, 
three-way reducts implement a quantitative generalization for qualitative reducts and a structural completion for attribute 
reducts. The relevant study provides a new insight into both three-way decisions and attribute reducts.

As an original notion, three-way attribute reducts are worth deeply researching and extensively applying, so several 
issues are retained for the follow-up studies.

(1) As a monotonic uncertainty measure, the relative dependency degree relatively transforms and quantitatively improves 
the fundamental dependency degree. For γrelative, its dependency semantics and controllability superiority produce the 
division and development of three-way reducts, and it can effectively replace γ to implement qualitative and quanti-
tative reducts. γrelative needs the in-depth use, by the comparison and replacement for γ . Other monotonic measures, 
such as information measures, can be relatively considered by relative development or metrical fusion.

(2) The positive quantitative reducts have more generation and optimization to practically apply to the quantitative envi-
ronment, even with data noise. Thresholds α and β are related to the measure distribution, and their determination 
can be realized by the expert experience or user requirement. Their threshold modeling is worth considering, such as 
by the decision theory with cost and risk.

(3) The quantitative reducts originate from the direct and relative quantification of reduct targets and attribute reducts. 
Within the framework of double quantification [43,57,59], they can be further considered by using the direct and 
absolute quantification or by combing some indirect quantification.

(4) Three-way reducts are related to the subset classification with large number 2|C | , so their concrete calculation needs 
some simplified strategies, such as the mutual relationships and the attribute structures. The systematicness of three-
way reducts, including the relationships among the internal parts, the relationships between the quantitative and 
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qualitative patterns, are worthy of the real-life verification and application, especially in noise scenarios. For three-
way reducts, the relevant three-way classification of attributes, i.e., the core, marginal, nonuseful attributes at the C
level [53], can be deeply researched to extend the results of core attributes.
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Appendix A. Equivalence proof between Conditions (Nα) and (N′
α)

Proof. (1) ∀R ′ ⊂ R , then ∃c ∈ R − R ′ ⊂ R , s.t., R ′ ⊆ R − {c} ⊂ R . According to the γrelative monotonicity (Theorem 1), 
γrelative(R ′) ≤ γrelative(R − {c}) ≤ γrelative(R); according to Condition (Nα), γrelative(R − {c}) < α. Hence, γrelative(R ′) < α, i.e., 
(N′

α) holds.
(2) ∀c ∈ R , let R ′ = R − {c} ⊂ R . According to Condition (N′

α), γrelative(R − {c}) < α, i.e., (Nα) holds.
Based on the above two items, (Nα) and (N′

α) become equivalent. �
Appendix B. Proof of Eq. (28): COREα(πD) = {c | γrelative(C − {c}) < α}

Proof. (1) If c /∈ COREα(πD), then ∃R ∈ REDα(πD) but c /∈ R . Thus, γrelative(R) ≥ α, and R ⊆ C − {c} ⊂ C . According to the 
γrelative monotonicity (Theorem 1), γrelative(C − {c}) ≥ α, so c /∈ {c | γrelative(C − {c}) < α}. Hence, {c | γrelative(C − {c}) < α} ⊆
COREα(πD).

(2) If c /∈ {c | γrelative(C − {c}) < α}, then γrelative(C − {c}) ≥ α. Thus, ∃R ⊆ C − {c} to satisfy γrelative(R) ≥ α and Condition 
(Nα), so R ∈ REDα(πD). However, c /∈ R because R ⊆ C −{c}. Hence, c /∈ COREα(πD), COREα(πD) ⊆ {c | γrelative(C −{c}) < α}.

Based on the above two items, COREα(πD) = {c | γrelative(C − {c}) < α}. �
Appendix C. Proof of Eq. (42) to provide lower and upper bounds of COREBND

α,β (πD)

Proof. (1) If c /∈ COREBND
α,β (πD), then ∃R ∈ REDBND

α,β (πD) but c /∈ R . Thus, γrelative(R) ∈ (β, α), and R ⊆ C − {c} ⊂ C . According 
to the γrelative monotonicity (Theorem 1), γrelative(C −{c}) > β , so c /∈ {c | γrelative(C −{c}) ≤ β}. Hence, {c | γrelative(C −{c}) ≤
β} ⊆ COREBND

α,β (πD).
(2) If c /∈ {c | γrelative(C − {c}) /∈ (β, α)}, then γrelative(C − {c}) ∈ (β, α). Thus, ∃R ⊆ C − {c} to satisfy γrelative(R) ∈ (β, α)

and Condition (NBND
α,β ), so R ∈ REDBND

α,β (πD). However, c /∈ R because R ⊆ C − {c}. Hence, c /∈ COREBND
α,β (πD), COREBND

α,β (πD) ⊆
{c | γrelative(C − {c}) /∈ (β, α)}.

Based on the above two items, the formula of lower and upper bounds holds, i.e.,

{c | γrelative(C − {c}) ≤ β} ⊆ COREBND
α,β (πD) ⊆ {c | γrelative(C − {c}) /∈ (β,α)}. � (C.1)
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