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a b s t r a c t 

Attribute reduction in rough set theory serves as a fundamental topic for information 

processing, and its basis is usually a decision table (D-Table). D-Table attribute reduc- 

tion concerns three hierarchical types, and only classification-based reduction is related to 

information-theoretic representation. Aiming at inducing comprehensive D-Table attribute 

reduction with hierarchies and information, this paper concretely constructs a D-Table’s 

three-layer granular structures and three-way informational measures via granular com- 

puting and Bayes’ theorem. With regard to the D-Table, the micro-bottom, meso-middle, 

and macro-top are hierarchically organized according to the formal structure and sys- 

tematic granularity. Then, different layers produce different three-way informational mea- 

sures by developing Bayes’ theorem. Thus, three-way weighted entropies originate from 

three-way probabilities at the micro-bottom and further evolve from the meso-middle to 

the macro-top, and their granulation monotonicity and evolution systematicness are ac- 

quired. Furthermore, three-way informational measures are analyzed by three-layer gran- 

ular structures to achieve their hierarchical evolution, superiority, and algorithms. Finally, 

structural and informational results are effectively illustrated by a D-Table example. This 

study establishes D-Table’s hierarchical structures to reveal constructional mechanisms and 

systematic relationships of informational measures. The obtained results underlie the D- 

Table’s hierarchical, systematic, and informational attribute reduction, and they also enrich 

the three-way decisions theory. 

© 2017 Published by Elsevier Inc. 

 

 

 

 

 

 

1. Introduction 

Rough set theory is fundamental for information processing. Its core reduction (especially attribute reduction) can effec-

tively implement simplification and reasoning, and a decision table (D-Table) usually serves as the basis [4,23,35,36,44] but

has no special reports on granular hierarchical structures. D-Table reduction includes “three steps”: attribute reduction, cat-

egory reduction, and rule reduction [25] . Category reduction can change into attribute reduction on a condition class [39] ,

while rule reduction simply eliminates repeatability, and thus, the D-Table’s attribute reduction is worthwhile to comprehen-

sively research. Herein, D-Table concerns four basic elements, i.e., the decisional classification, decisional class, conditional
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Fig. 1. Background, thought, and contribution of the new research. 
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classification, and conditional class, which are simply denoted by D-Classification, D-Class, C-Classification, and C-Class, 

respectively. 

D-Table attribute reduction has “three types” of hierarchies. The classical and prevalent type [25] depends on D-

Classification and C-Classification and, thus, can be called classification-based reduction, and it exhibits research pathways in

the model region, discernibility matrix, decision rule, and information measure [13,20,31,38] . Classification-based reduction

implements whole optimization to, on average, fit all of the D-Classes, but its compromise might not necessarily be suitable

for specific optimization with regard to every D-Class. Thus, Yao and Zhang [43] utilized D-Class and C-Classification to es-

tablish a new attribute reduction called class-specific reduction to solve the relevant blind spots. Moreover, attribute reduc-

tion based on D-Class and C-Class can describe category reduction [39] and, thus, becomes the third type. With regard to the

D-Table, the three types of attribute reduction are actually located at different levels, and thus, relevant hierarchical struc-

tures and informational evolution become significant; herein, granulation monotonicity plays an important role in attribute

reduction with regard to C-Classification [13,23,33,48] and therefore becomes the main criterion for evaluating informational

measures. Note that three-way decisions serve as a fundamental methodology with extensive applications. Hu [9] discussed

three-way decisions based on semi-three-way decision spaces, and Li et al. [16] adopted the multi-granularity to study

three-way cognitive concept learning. In particular, Yao [40] pointed out that the three-level analysis falls into the cate-

gory of three-way decisions, so the three-layer attribute reduction and relevant three-level measure construction become a

typical case and a good example of three-way decisions. 

Information theory provides an effective approach for uncertainty processing, which also exists in rough set theory, and

the relevant information measure has been introduced into rough set theory for uncertainty representation and measure-

ment [2,3,7,10,17,34] . As a result, the attribute reduction depends on measures to be related to the informational description.

Miao and Wang [21,22] offered the informational representation of knowledge reduction and decision reduction, where the

entropy and mutual information are highlighted; Wang et al. [32] conducted a comparative study on attribute reduction

from the algebra and information viewpoints, where the conditional entropy acts as a main tool; Ma et al. [20] constructed

a sort of conditional information entropy to obtain the heuristic reduction algorithms; Jiang et al. [14] presented the relative

decision entropy to propose a feature selection algorithm; moreover, Slezak [29] used the (conditional) entropy to define

approximate reducts. On the whole, the entropy, conditional entropy, and mutual information become basic informational

measures to describe attribute reduction. However, they mainly originate from the perspective of information theory so are

applied to only the usual classification-based reduction. For these information-theoretic measures, their construction mecha- 

nisms and systematic relationships are worthwhile to thoroughly clarify from the viewpoint of rough sets themselves based

on the D-Table and attribute reduction. 

The above background is described in Fig. 1 , and the current research mainly rests on the solid arrow “information

theory → three existing measures → classification-based reduction” which concerns only one level. In contrast, our overall and

long objective is to induce comprehensive D-Table attribute reduction from hierarchical and informal perspectives, and D-

able’s hierarchical structures and informational measures naturally become a research basis. As a starting point, this paper

concretely constructs D-Table’s three-layer granular structures and three-way informational measures. This research thought 

is also clarified by Fig. 1 (mainly the virtual arrow as well as the question mark), and granular computing (GrC) and Bayes’

theorem will be basically utilized. 

1) GrC within a trialistic framework [42] acts as a structural methodology to process hierarchical information. GrC exten-

sively concerns information granulation and is applied in rough set theory [18,27,28,45] . Herein, D-Table and its infor-

mational measures concern D-Classification, D-Class, C-Classification, and C-Class to adhere to GrC, and thus, GrC-based

multi-granule, multi-level, and multi-view can be fully utilized to implement structural construction and informational

evolution, where granulation monotonicity must seek to underlie further attribute reduction. 

2) According to Bayes’ theorem [1] : 

p(W/D t ) = 

p(W ) × p(D t /W ) 

p (D t ) 
, (1) 

where W and D t mean the model parameter and observed data, respectively. The posterior probability is proportional to

the produce of the prior probability and likelihood function, and thus, Bayesian inference highlights the posterior part [1] .

Bayes’ theorem and Bayesian inference are introduced into rough set theory to offer concrete results [8,26,30,41] . With
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Table 1 

Conditional and decisional classifications and classes. 

Item C-Classification C-Class D-Classification D-Class 

Mathematical symbol U/IND (A ) [ x ] i A , i = 1 , .., n U/IND (D) X j , j = 1 , .., m 

Granular essence Conditional granule set Conditional granule Decisional granule set Decisional granule 
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regard to the D-Table, Bayes’ theorem can induce hierarchical evolution and systematic relationships of informational

measures, which thus enables it to become central. 

The research developed in this paper is presented as follows. (1) With regard to the D-Table, three-layer structures (i.e.,

the macro-high, meso-middle, and micro-bottom) are hierarchically organized by the formal structure and systemic gran-

ularity. (2) Three-layer structures perform hierarchical bottom-middle-top evolution via both Bayes’ theorem and inte-

grated fusion to gain three-way informational measures, as well as their granulation monotonicity and system equations.

Herein, the entropy �p (.)log p (.) is not applicable, and thus, we resort to the weighted entropy 
∑ 

wp(. ) log p(. ) , which

already exists in applications [15,24,47] . (3) Based on three-layer structures, the hierarchical evolution, superiority, and

algorithms of three-way informational measures are discussed. (4) Finally, structural and informational results are effec-

tively illustrated by a D-Table example. In terms of contributions, the D-Table’s hierarchical structures are established to

reveal constructional mechanisms and systematic relationships of informational measures, and thus, the obtained results

deepen and interpret the existing information-theoretic measures and firmly underlie the D-Table’s hierarchical, system-

atic, and informational reduction; in particular, our concrete research regarding the three-layer granular structures and

three-way informational measures enriches the three-way decisions theory, especially from its wide view [19] . These

contributions can be well reflected by Fig. 1 where our research covers the entire three levels. 

The remainder of this paper is organized as follows. Section 2 reviews the D-Table and its information-theoretic mea-

sures on classifications. Section 3 presents the D-Table’s three-layer granular structures. Section 4 hierarchically constructs

the D-Table’s three-way informational measures, including the three-way probabilities at the micro-bottom and the three-

way weighted entropies at the meso-middle and macro-top. Section 5 utilizes the three-layer structures to make hier-

archical analyses of three-way informational measures, including the hierarchical evolution, superiority, and algorithms.

Section 6 provides a D-Table example for a relevant illustration. Finally, Section 7 concludes this paper and highlights our

contributions on informational measures and attribute reduction, which enrich the three-way decisions. 

2. A decision table and its information-theoretic measures on classifications 

This section reviews the D-Table and its information-theoretic measures on classifications. 

2.1. A decision table 

This subsection introduces the D-Table by Pawlak [25] . 

Rough set theory focuses on the data that is represented in an information table: 

(U, AT , { V a : a ∈ AT } , { I a : a ∈ AT } ) , 
where U is the universe with finite objects, AT is the finite attribute set, V a is the value domain for a ∈ AT , and I a : U → V a

is an information function. Each object x takes a value I a ( x ) on attribute a . The D-Table is a special type of information table

with AT = C ∪ D and C ∩ D = ∅ , where C and D denote the sets of condition attribute and decision attribute, respectively. 

Next, D-Table is simply denoted by (U, C ∪ D) for the sake of discussion. In view of attribute reduction, the condition

part concerns the parameter A ⊆ C (rather than only the constant C), while the decision part concerns the constant D. 

IND (A ) = { (x, y ) ∈ U × U : ∀ a ∈ A , I a (x ) = I a (y ) } 
serves as an equivalence relation to cause C-Class [ x ] A , which implies a type of basic granule. The classified structure

/IND (A ) = { [ x ] A : x ∈ U} means knowledge or C-Classification, where U/IND (∅ ) = { U} . Suppose that U/IND (A ) = { [ x ] i A :
i = 1 , .., n } , and thus, | U/IND (A ) | = n . Similarly, D can induce the equivalence relation IND (D) and further D-Classification

/IND (D) = { X j : j = 1 , .., m } , which consists of m D-Classes. Four basic notions of the D-Table are summarized in Table 1 . 

Attribute reduction requires a parameter change of A ⊆ C, and this change implies knowledge/C-Classification granula-

tion. If B ⊆ A ⊆ C, then U/IND (A ) and U/IND (B) correspond to the finer and coarser granulation structures, respectively. As

a result, a partial order of transformations emerges, and the relevant relation and granulation with regard to coarsening are

denoted by 

U /IND (A ) 

−→ U /IND (B) ; (2)

Accordingly, 

∀ [ x ] B ∈ U/IND (B) , ∃ k ∈ N , s.t., 

k ⋃ 

t=1 

[ x ] t A = [ x ] B . 
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According to [48] , knowledge coarsening U /IND (A ) 

−→ U /IND (B) implies some groups of granule merging, and a represen-

tative group is represented by 

k ⋃ 

t=1 

[ x ] t A 
= −→ [ x ] B . (3) 

For attribute reduction, knowledge granulation provides the GrC mechanism for presentational uncertainty, and granulation

monotonicity becomes a fundamental criterion for evaluating uncertainty measures [13,23,33,48] . Based on joint integration,

an uncertainty measure necessarily has granulation monotonicity, if it has monotonicity in every group of granular merging.

Therefore, granulation monotonicity can be effectively probed by observing a representative group of granules merging. 

2.2. Information-theoretic measures on classifications 

Regarding the D-Table, this subsection reviews information-theoretic measures on classifications by Miao [21] . 

First, we can define a mapping on σ -algebra 2 U , i.e., 

p : 2 

U → Q , p(T ) = 

| T | 
| U| , ∀ T ⊆ U, (4) 

where |.| means the set cardinality. ( U , 2 U , p ) constitutes a probability space, where conditional probability p(T /T 0 ) = 

| T | 
| T 0 | 

(suppose T 0 ⊆U and | T 0 | � = 0). This mathematical space establishes the usual probability framework of rough set theory, and

thus, informational measures on classifications can be directly constructed by referring to information theory. 

Definition 1 ( [21] ) . The entropy on C-Classification U/IND (A ) is 

H(A ) = −
n ∑ 

i =1 

p([ x ] i A ) log p([ x ] i A ) , (5) 

where the function log has the base number of 2; similarly, we can obtain 

H(D) = −
m ∑ 

j=1 

p(X j ) log p(X j ) . (6) 

The conditional entropy on D-Classification U/IND (D) given C-Classification U/IND (A ) is 

H(D/ A ) = −
n ∑ 

i =1 

[ 

p([ x ] i A ) 
m ∑ 

j=1 

p(X j / [ x ] 
i 
A ) log p(X j / [ x ] 

i 
A ) 

] 

; (7) 

Similarly, we can obtain 

H(A / D) = −
m ∑ 

j=1 

[ 

p(X j ) 
n ∑ 

i =1 

p([ x ] i A /X j ) log p([ x ] i A /X j ) 

] 

. (8) 

Furthermore, the mutual information is the difference between the informational and conditional entropies, i.e., 

I(A;D) = H(D) − H(D/ A ) = H(A ) − H(A / D) = I(D;A ) . (9)

Three information-theoretic measures (on classifications) are determined in rough set theory, and they hold the basic

semantics or function. A classification with multiple granules can be viewed as an information source, and its entropy mea-

sures its average information content to represent its uncertainty. C-Classification and D-Classification act as two informa-

tion sources. Their conditional entropy measures the average information content and uncertainty for the main classification

after achieving the premise classification, while their mutual information measures the information content from one clas-

sification to the other to represent the reduced uncertainty of one classification when knowing the other. In short, the

information-theoretic measures become fundamental for uncertainty representation in rough set theory. 

Theorem 1 ( [21] ) . The entropy, conditional entropy, and mutual information have granulation monotonicity. Concretely, 

U /IND (A ) 

−→ U /IND (B) 
⇒ H(B) ≤ H (A ) , H (D/ B) ≥ H(D / A ) , I(B;D ) ≤ I(A;D) . (10) 

For knowledge granulation, information-theoretic measures have monotonicity, and thus, they can be utilized to construct

informational reduction via the informational preservation criterion. 

Definition 2 ( [21,32] ) . B is an entropy-based reduct of C if it satisfies the following two conditions: 

(1) H(B) = H(C) ;
(2) H(B − { b} ) < H(B) , ∀ b ∈ B. 
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Table 2 

Basic descriptions of a D-Table’s three-layer granular structures. 

Structure Composition Granular scale Granular level Simple name Relevant reduction 

I U /IND (A ) , U /IND (D) Macro Top Macro-Top Classification-based attribute reduction 

II U/IND (A ) , X j Meso Middle Meso-Middle Class-specific attribute reduction 

III [ x ] i A , X j Micro Bottom Micro-Bottom Category reduction or transformational attribute reduction 

Structure IV contains [ x ] i A and U/IND (D) to concern the granular meso scale and middle level, but it never has reduction connections. 

Fig. 2. Hierarchical/Granular relationships of the D-Table’s three-layer granular structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B is a mutual information-based reduct of C if it satisfies the following two conditions: 

(1) I(B;D) = I(C;D) ;
(2) I(B − { b};D) < I(B;D) , ∀ b ∈ B. 

Two types of informational reducts are determined, and they correspond to the informational viewpoint and representa-

tion [21,32] . The former is applied to the information table (U, C) and is related to the knowledge-based reduct, while the

latter is applied to the D-Table (U, C ∪ D) and can also be represented by the conditional entropy. 

3. Three-layer granular structures of a decision table 

Aiming at the D-Table (U, C ∪ D) , this section utilizes GrC technology to establish three-layer granular structures, which

underlie later information construction. 

According to the four granular notions presented in Table 1 , D-Table contains two types of classifications to contain

multiple granules. C-Classification U/IND (A ) has n C-Classes with regard to [ x ] i A , while D-Classification U/IND (D) has m

D-Classes with regard to X j . The relevant classification and class lead to three-layer granular structures, as shown in Table 2 .

According to Table 2 , the D-Table carries three-layer granular structures, which are accompanied by four concrete struc-

tures. The macro scale and top level produce Structure I, which is the bearing basis of classification-based attribute reduc-

tion [25] . In particular, the meso scale and middle level produce two types of symmetrical structures: Structures II and IV;

the former underlies class-specific attribute reduction [43] , while the latter has no significance for (attribute) reduction.

The micro scale and bottom level produce Structure III, which is related to category reduction or its transformation [25,39] .

Therefore, the main Structures I, II, III constitute three-layer granular structures and thus are named the vivid Macro-Top,

Meso-Middle, and Micro-Bottom, respectively, while Structure IV implements some supplementary material. 

Three-layer granular structures and their hierarchical/granular relationships are also elaborated in Fig. 2 . There, two

composition elements are individually set up to become clear, although they simultaneously exist in the universe U . The

arrow shows a relevant change process between the classification and class. From the GrC perspective, Macro-Top → Meso-
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Middle → Micro-Bottom implies concretization for a specific class in the top-bottom direction, while the opposite means

generalization for the classes family in the bottom-to-top direction. 

Next, three-layer granular structures are mainly considered from a systematic viewpoint, and the numeric result and

decomposition/merging relationships are described. 

Macro-Top, Meso-Middle, Structure IV have 1, m, n parallel patterns, respectively, while the Micro-Bottom has m × n

parallel patterns. Thus, Macro-Top becomes sole for the given A and the constant D, m D-Classes imply parallel m Meso-

Middles for the given C-Classification U/IND (A ) , while the n C-Classes imply parallel n patterns of Structure IV for the given

D-Classification U/IND (D) . 

The following conclusion presents the systematic decomposition (from a higher level to a lower level), which matches

the downward arrow direction in Fig. 2 . 

1) One Macro-Top can be decomposed into m Meso-Middles, while one Meso-Middle can be decomposed into n Micro-

Bottoms. 

2) One Macro-Top can be decomposed into n patterns of Structure IV, while one pattern of Structure IV can be decomposed

into m Micro-Bottoms. 

3) One Macro-Top can be decomposed into m × n Micro-Bottoms. The top-to-bottom decomposition has two equivalent

approaches through having two middle structures with regard to the Meso-Middle and Structure IV. 

In contrast, the following conclusion presents systematic merging (from a lower level to a higher level), which matches

the upward arrow direction. 

1) The related n Micro-Bottoms can be merged into one Meso-Middle, while the related m Meso-Middles can be merged

into one Macro-Top. 

2) The related m Micro-Bottoms can be merged into one pattern of Structure IV, while related n patterns of Structure IV

can be merged into one Macro-Top. 

3) All m × n Micro-Bottoms can be merged into one Macro-Top. The bottom-top merging has two equivalent approaches

based on the Meso-Middle and Structure IV, if the middle structures are considered. 

The relevant merging in the direction Micro-Bottom → Meso-Middle → Macro-Top provides a powerful GrC mechanism for

hierarchical construction and informational fusion. 

Thus far, the D-Table has gained its three-layer granular structures as well as their hierarchical and systematic relation-

ships. The relevant construction and result are owed to the GrC technology with regard to the multi-granule, multi-level

and multi-view, and they are actually determined by only the D-Table’s formal structure. Therefore, they exhibit general

significance for the D-Table’s measure construction and attribute reduction. 

4. Three-way informational measures of a decision table 

Based on the above three-layer granular structures, this section investigates three-way informational measures and their

hierarchies and systematicness. Herein, the bottom-middle-top merging direction is utilized to implement the hierarchi-

cal evolution and integrated fusion of the information measures. In Section 4.1 , three-way probabilities are analyzed at

the Micro-Bottom; in Section 4.2 , they are hierarchically integrated to three weighted entropies at the Meso-Middle; in

Section 4.3 , three-way weighted entropies integratedly evolve from the Meso-Middle to Macro-Top. In particular, Bayes’

theorem at the Micro-Bottom acts as a basic point for informational evolution; this theorem and its development present

information systematicness at three levels. Moreover, granulation monotonicity is achieved, especially at the Meso-Middle 

and Macro-Top levels. 

4.1. Three-way probabilities at the micro-bottom 

At the Micro-Bottom, C-Class [ x ] i A and D-Class X j are of concern. They exist in approximate space (U, A ) and can produce

some fundamental measures, including probabilities. This subsection analyzes three-way probabilities, mainly by connecting 

the Meso-Middle and its reasoning mechanism. Three-way probabilities become bottomed measures that underlie informa-

tional construction at higher levels. 

Within the probability framework (related to Eq. (4) ), we can produce the following product formula: 

p(X j ) × p([ x ] i A /X j ) = p([ x ] i A ∩ X j ) = p([ x ] i A ) × p(X j / [ x ] 
i 
A ) . (11) 

Based on the mathematical transformation, this probabilistic formula induces two types of Bayes’ theorem, which are related

to two middle structures. To clarify the related mechanism, contrasting the Meso-Middle and Structure IV is first provided

in Fig. 3 . 

Fig. 3 extracts the middle structure of Fig. 2 but integrates two composition elements with conditional and decisional

parts. This figure provides two structural mechanisms and the relevant systems. (1) Regarding the Meso-Middle, C-Classes

[ x ] i A ( i = 1 , . . . , n ) form a partition of U . One D-Class X j exhibits the following total probability: 

p(X j ) = 

n ∑ 

i =1 

p([ x ] i A ) p(X j / [ x ] 
i 
A ) , 
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Fig. 3. Meso-Middle and Structure IV underlying Bayes’ theorem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and Bayes’ formula becomes 

p([ x ] i A /X j ) = 

p([ x ] i A ) × p(X j / [ x ] 
i 
A ) 

n ∑ 

i =1 

p ([ x ] i A ) p (X j / [ x ] 
i 
A ) 

. (12)

On this basis, the Micro-Bottom induces Bayes’ theorem: 

p([ x ] i A /X j ) = 

p([ x ] i A ) × p(X j / [ x ] 
i 
A ) 

p (X j ) 
. (13)

Four probabilities emerge, but p ( X j ) can be viewed as a constant (in view of the Meso-Middle). The three surplus proba-

bilities are worthwhile to discuss and are named the likelihood, prior, and posterior probabilities in [47] . (2) In contrast,

Structure IV and its partition with regard to X j ( j = 1 , . . . , m ) induce Bayes’ theorem at the Micro-Bottom: 

p(X j / [ x ] 
i 
A ) = 

p(X j ) × p([ x ] i A /X j ) 

p ([ x ] i A ) 
. (14)

p ( X j ) and p(X j / [ x ] 
i 
A ) are called the prior and posterior probabilities, respectively, in [30] . 

Both Bayes’ theorems (i.e., Eqs. (13 ) and (14) ) correspond to the product formula (i.e., Eq. (11) ), which becomes equivalent

and symmetrical in terms of the mathematics, but they have different emphases. The former is related to the Meso-Middle,

which underlies class-specific attribute reduction [43] , and thus, it becomes important for three-layer granular structures

and their hierarchical reduction. The latter is related to Structure IV, and thus, it adheres to the practical determina-

tion mechanism (that X j and [ x ] i A act as the internal cause and external manifestation, respectively), but it goes against

the hierarchical structure and reduction related to specific D-Class. Correspondingly, the probability naming based on Eq.

(13) in [47] originates from the formal structure with regard to the Meso-Middle, while the prior and posterior probabilities

based on Eq. (14) in [30] follow the practical pattern related to Eq. (1) and thus become more general. To link appropriately

to the main Meso-Middle, the first Bayes’ theorem (i.e., Eq. (13) ) is adopted, and thus, three-way probabilities emerge but

their naming is neglected. 

Definition 3. At the Micro-Bottom, three-way probabilities are defined by 

p(X j / [ x ] 
i 
A ) = 

| [ x ] i A ∩ X j | 
| [ x ] i A | 

, p([ x ] i A ) = 

| [ x ] i A | 
| U| , p([ x ] i A /X j ) = 

| [ x ] i A ∩ X j | 
| X j | . (15)

Theorem 2. Three-way probabilities hold systematicness with regard to Bayes’ theorem (i.e., Eq. (13) ). 

In view of the Meso-Middle, the three-way probabilities are determined to exhibit systematicness. According to Fig. 3 ,

they could have some explanation from rule reasoning, where [ x ] i A and X j become the predecessor and successor for a de-

cision rule [ x ] i A ⇒ X j , respectively [25] . Moreover, their quantitative features can be revealed by their forms in Eq. (15) . (1)

Conditional probability p(X j / [ x ] 
i 
A ) depends on predecessor [ x ] i A to describe successor X j . It relatively measures the inter-

action information between [ x ] i A and X j on the basis of the former. Its definition exhibits the informational feature with

regard to the relativity, concentration, and locality. (2) C-Class probability p([ x ] i A ) measures only the predecessor and never

concerns the successor and further interaction. It embodies absoluteness, directness, and globality with regard to U . (3)

Conditional probability p([ x ] i A /X j ) describes the predecessor on the condition of the successor. It absolutely measures the

interaction information on the premise of the successor, and it exhibits absoluteness, directness, and globality with regard

to X j . 

p([ x ] i A ) never concerns rule reasoning. p(X j / [ x ] 
i 
A ) and p([ x ] i A /X j ) utilize core interaction information | [ x ] i A ∩ X j | to

directly reflect reasoning, but they have different preference premises for the successor and predecessor, which con-

cern the predecessor-successor and successor-predecessor directions, respectively. From the double-quantitative perspec-

tive [5,6,37,46,48] , they depend on the information concentration and data directness to express a type of relative and

absolute reasoning possibilities, respectively. 
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Theorem 3. For three-way probabilities, p([ x ] i A ) and p([ x ] i A /X j ) have granulation monotonicity: 

U /IND (A ) 

−→ U /IND (B) 
⇒ p([ x ] i B ) ≤ p([ x ] i A ) , p([ x ] i B /X j ) ≤ p([ x ] i A /X j ) , (16) 

but p(X j / [ x ] 
i 
A ) does not necessarily have granulation monotonicity. 

Three-way probabilities draw basic conclusions of granulation monotonicity/non-monotonicity, where 

U /IND (A ) 

−→ U /IND (B) 
⇒ [ x ] i B ⊆ [ x ] i A (17) 

acts as a granular root. Hence, only p([ x ] i A ) and p([ x ] i A /X j ) can be directly utilized for category reduction (or its transfor-

mational attribute reduction), which is located at the Micro-Bottom. 

Three-way probabilities gain systematicness and monotonicity/non-monotonicity, and their reasoning connotations and 

quantification features underlie further combined construction for benign measures. For example, p([ x ] i A ) and p(X j / [ x ] 
i 
A )

are fused by the weighed product to mine a monotonic uncertainty measure, which is used to implement hierarchical

construction and attribute reduction [48] . Next, three-way probabilities are fused by the weighed product of information

function p (.)log p (.), and the further sum integration with regard to the C-Classes will lead to three-way weighted entropies

at the Meso-Middle. 

4.2. Three-way weighted entropies at the meso-middle 

Based on three-way probabilities at the Micro-Bottom, this subsection constructs three-way weighted entropies at the

Meso-Middle and reveals their granulation monotonicity and evolution systematicness. Relevant results take a link function

to underlie the latter informational construction at the Macro-Top. 

A promotional measure at the Meso-Middle requires probability fusion when integrating C-Classes into C-Classification.

First, the entropy is inspected in view of its fundamentality. With regard to C-Classification U/IND (A ) , p([ x ] i A ) and

p([ x ] i A /X j ) form their probabilistic distributions, but p(X j / [ x ] 
i 
A ) cannot because usually 

∑ n 
i =1 p(X j / [ x ] 

i 
A ) � = 1 . By using the

informational function �p (.)log p (.), we generally derive three-way entropies at the Meso-Middle: 

H(X j / A ) = −
n ∑ 

i =1 

p(X j / [ x ] 
i 
A ) log p(X j / [ x ] 

i 
A ) , (18) 

H 

X j (A ) = −
n ∑ 

i =1 

p([ x ] i A ) log p([ x ] i A ) , (19) 

H(A /X j ) = −
n ∑ 

i =1 

p([ x ] i A /X j ) log p([ x ] i A /X j ) . (20) 

According to entropy properties, H 

X j (A ) and H(A /X j ) naturally have granulation monotonicity: 

U /IND (A ) 

−→ U /IND (B) 
⇒ H 

X j (B) ≤ H 

X j (A ) , H(B/X j ) ≤ H(A /X j ) ;
However, H(X j / A ) does not necessarily have granulation monotonicity. The granulation monotonicity/non-monotonicity is

verified by an example in Appendix A. 

Three-way entropies go against the monotonicity demand and lack clear systematicness. We need to go beyond func-

tion �p (.)log p (.) to seek benign measures that have both monotonicity and systematicness. This requirement triggers the

following evolution of weighted entropies. 

Bayes’ theorem provides systematicness of three-way probabilities and, thus, becomes the starting point. Herein, we first

make a key transformation for Bayes’ theorem. According to Eq. (13) with stable X j , 

p([ x ] i A /X j ) = 

p([ x ] i A ) · p(X j / [ x ] 
i 
A ) 

p (X j ) 
, ∀ i ∈ { 1 , . . . , n } . 

By calculating the information item −p(. ) log p(. ) with regard to p([ x ] i A /X j ) , 

−p([ x ] i A /X j ) log p([ x ] i A /X j ) = − p([ x ] i A ) · p(X j / [ x ] 
i 
A ) 

p(X j ) 
[ log p([ x ] i A ) + log p(X j / [ x ] 

i 
A ) − log p(X j )] . 

Based on the factor p ( X j ) multiplication and further consolidation, 

− p(X j ) p([ x ] i A /X j ) log p([ x ] i A /X j ) 

= − p(X j / [ x ] 
i 
A ) p([ x ] i A ) log p([ x ] i A ) − p([ x ] i A ) p(X j / [ x ] 

i 
A ) log p(X j / [ x ] 

i 
A ) + p([ x ] i A ) p(X j / [ x ] 

i 
A ) log p(X j ) . 
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According to the i -based summation, 

−
n ∑ 

i =1 

p(X j ) p([ x ] i A /X j ) log p([ x ] i A /X j ) 

= −
n ∑ 

i =1 

p(X j / [ x ] 
i 
A ) p([ x ] i A ) log p([ x ] i A ) −

n ∑ 

i =1 

p([ x ] i A ) p(X j / [ x ] 
i 
A ) log p(X j / [ x ] 

i 
A ) + 

n ∑ 

i =1 

p([ x ] i A ) p(X j / [ x ] 
i 
A ) log p(X j ) . 

(21)

The final item in Eq. (21) becomes 

n ∑ 

i =1 

p([ x ] i A ) p(X j / [ x ] 
i 
A ) log p(X j ) = 

n ∑ 

i =1 

p([ x ] i A ∩ X j ) log p(X j ) = 

[ 

n ∑ 

i =1 

p([ x ] i A ∩ X j ) 

] 

× log p(X j ) = p(X j ) log p(X j ) . 

(22)

The above step-by-step deduction implies the hierarchical evolution of Bayes’ theorem. Bayes’ theorem and its three-way

probabilities at the Micro-Bottom evolve in the entropy direction, and thus, weight-based entropies and their relationships

emerge at the Mecro-Middle. Concretely, Eq. (22) provides a constant that is based on X j , and thus, systematic Eq. (21) con-

cerns three weighted and informational items. Next, we introduce the weighted entropy, which already has basic applica-

tions [15,24,47] . Suppose that ( ξ , p i ) denotes a probability distribution and w i ≥ 0 means the weight; then, the weighted

entropy is defined by 

H W 

(ξ ) = −
n ∑ 

i =1 

w i p i log p i . 

The weighted entropy introduces weights into the entropy, where the weights reflect the importance degrees for information

receivers or attention degrees of information receivers, and the weighted entropy develops the entropy while degenerates

into the latter via w i = 1 . 

According to the probability distribution, p([ x ] i A ) and p([ x ] i A /X j ) naturally produce weighted entropies, while p(X j / [ x ] 
i 
A )

tolerably induces a weighted entropy in a general sense. Thus, Eq. (21) produces three-way weighted entropies and their

systematicness, and the symbol H W 

(.) is used to differ from the entropy H (.). 

Definition 4. At the Meso-Middle, three-way weighted entropies are defined by 

H W 

(X j / A ) = −
n ∑ 

i =1 

p([ x ] i A ) p(X j / [ x ] 
i 
A ) log p(X j / [ x ] 

i 
A ) , 

H 

X j 
W 

(A ) = −
n ∑ 

i =1 

p(X j / [ x ] 
i 
A ) p([ x ] i A ) log p([ x ] i A ) , 

H W 

(A /X j ) = −
n ∑ 

i =1 

p(X j ) p([ x ] i A /X j ) log p([ x ] i A /X j ) . 

(23)

Proposition 1. The weighted entropy H W 

(A /X j ) is the product of the constant p ( X j ) and the entropy H(A /X j ) . In other words, 

H W 

(A /X j ) = p(X j ) ×
[ 

−
n ∑ 

i =1 

p([ x ] i A /X j ) log p([ x ] i A /X j ) 

] 

= p(X j ) H(A /X j ) . 

Three-way weighted entropies originate from three-way entropies by introducing weight coefficients of specific proba-

bilities, and thus, they implement double-quantitative fusion [5,6,37,46,48] to acquire better informational features. H 

X j 
W 

(A )

improves absolute H 

X j (A ) by introducing relative p(X j / [ x ] 
i 
A ) to the importance weights, while H W 

(A /X j ) and H W 

(X j / A )

improve the relative H(A /X j ) and H(X j / A ) by introducing absolute p ( X j ) and p([ x ] i A ) , respectively. Herein, H W 

(A /X j ) has

a simpler form according to Proposition 1 . In other words, three-way weighted entropies inherit the essential uncertainty

semantics of three-way properties by using different probability weights, and thus, they become robust for uncertainty mea-

surement. Their superiority is next clarified by their perfect monotonicity and systematicness. 

Theorem 4. At the Meso-Middle, three-way weighted entropies have granulation monotonicity. Concretely, 

U /IND (A ) 

−→ U /IND (B) 
⇒ H W 

(X j / B) ≥ H W 

(X j / A ) , H 

X j 
W 

(B) ≤ H 

X j 
W 

(A ) , H W 

(B/X j ) ≤ H W 

(A /X j ) . (24)

Theorem 4 is proved in Appendix B . Although the entropy H(X j / A ) is initially non-monotonic, the weighted entropy

H W 

(X j / A ) becomes monotonic. For the H W 

(X j / A ) monotonicity, the relevant proof becomes difficult and requires a mathe-

matical trick, and thus, a concave feature of the function −u log u is effectively utilized in Appendix B . 
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Theorem 5. Three-way weighted entropies have systematicness: 

H W 

(A /X j ) = H 

X j 
W 

(A ) + H W 

(X j / A ) + p(X j ) log p(X j ) . (25) 

In other words, H W 

(A /X j ) is a linear translation of the sum of H 

X j 
W 

(A ) and H W 

(X j / A ) , where p ( X j )log p ( X j ) is a constant at the

Meso-Middle. 

Eq. (25) originates from Eqs. (21) –(23) , and it develops Bayes’ theorem at the Micro-Bottom to establish a systematic

equation of three-way weighted entropies. Furthermore, it can change into 

H W 

(A /X j ) = H 

X j 
W 

(A ) − [ −p(X j ) log p(X j ) − H W 

(X j / A )] ; (26) 

the linear transformation item with regard to the above H W 

(X j / A ) , which exhibits non-negativity by using U/IND (A ) 

−→

U/IND (∅ ) , i.e., 

− p(X j ) log p(X j ) − H W 

(X j / A ) 

≥ − p(X j ) log p(X j ) − H W 

(X j / ∅ )) = −p(X j ) log p(X j ) + p(U) p(X j /U) log p(X j /U) = 0 . 

According to Eqs. (25) and (26) , eliminating the conversion distance can produce a new measure to simplify the systematic

equation. 

Definition 5. At the Meso-Middle, the linear weighted entropy with regard to the weighted entropy H W 

(X j / A ) is defined

by 

H 

lin 
W 

(X j / A ) = −p(X j ) log p(X j ) − H W 

(X j / A ) . (27) 

Corollary 1. The linear weighted entropy H 

lin 
W 

(X j / A ) has granulation monotonicity: 

U /IND (A ) 

−→ U /IND (B) 
⇒ H W 

(X j / B) ≤ H 

lin 
W 

(X j / A ) . (28) 

Corollary 2. Three-way weighted entropies have the equivalent systematicness: 

H W 

(A /X j ) = H 

X j 
W 

(A ) − H 

lin 
W 

(X j / A ) . (29) 

In other words, H W 

(A /X j ) is the difference of H 

X j 
W 

(A ) and H 

lin 
W 

(X j / A ) . 

The linear weighted entropy H 

lin 
W 

(X j / A ) corresponds to H W 

(X j / A ) by virtue of a specific linear transformation. The former

uses the superscript lin (which means linear ) to differ from the latter, but both are viewed as only one item for three-way

weighted entropies. In contrast to H W 

(X j / A ) , H 

lin 
W 

(X j / A ) exhibits opposite granulation monotonicity, and it simplifies the

systematicness of three-way weighted entropies. 

In summary, this section at the Meso-Middle becomes important to link the Micro-Bottom and Macro-Top. Bayes’ the-

orem (i.e., Eq. (13) ) provides three-way probabilities systematicness, and it further plays a fundamental role in the infor-

mational evolution of weighted entropies. It induces essential measures and systematic equations of three-way weighted

entropies. Next, three-way weighted entropies are promoted from the Meso-Middle to the Macro-Top. 

4.3. Three-way weighted entropies at the macro-top 

For three-way weighted entropies at the Meso-Middle, their monotonicity and systematicness are established. They can

hierarchically evolve to Macro-Top by using the natural sum integration with regard to multiple D-Classes. This subsection

constructs three-way weighted entropies at the Macro-Top and offers their monotonicity and systematicness. Their equiva-

lent relationships with the previous information-theoretic measures are finally clarified. 

Definition 6. At Macro-Top, three-way weighted entropies are defined by 

H W 

(D/ A ) = 

m ∑ 

j=1 

H W 

(X j / A ) (or H 

lin 
W 

(D/ A ) = 

m ∑ 

j=1 

H 

lin 
W 

(X j / A )) , 

H 

D 
W 

(A ) = 

m ∑ 

j=1 

H 

X j 
W 

(A ) , 

H W 

(A / D) = 

m ∑ 

j=1 

H W 

(A /X j ) . 

(30) 

Corollary 3. H 

lin 
W 

(D/ A ) is a linear transformation of H W 

(D/ A ) . According to Eqs. (27) and (30) , 

H 

lin 
W 

(D/ A ) = −
m ∑ 

j=1 

p(X j ) log p(X j ) −
m ∑ 

j=1 

H W 

(X j / A ) = H(D) − H W 

(D/ A ) , (31) 
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where entropy H(D) = − ∑ m 

j=1 p(X j ) log p(X j ) is in contrast. 

With regard to the Meso-Middle, the Macro-Top exhibits the hierarchical promotion and systematic integration from

D-Classes to D-Classification. Accordingly, three-way weighted entropies at Macro-Top are integratedly fused by three-way

weighted entropies at the Meso-Middle, and they exhibit a type of informational sum. H 

lin 
W 

(D/ A ) and H W 

(D/ A ) exhibit

a linear transformation to be viewed as only one item. Three-way weighted entropies at Macro-Top depend on the sum

integration to naturally inherit monotonicity and systematicness at the Meso-Middle, and the relevant features are presented

as follows. 

Theorem 6. At Macro-Top, three-way weighted entropies have granulation monotonicity. Concretely, 

U /IND (A ) 

−→ U /IND (B) 
⇒ 

H W 

(D/ B) ≥ H W 

(D/ A ) , H 

lin 
W 

(D/ B) ≤ H 

lin 
W 

(D/ A ) , H 

D 
W 

(B) ≤ H 

D 
W 

(A ) , H W 

(B/ D) ≤ H W 

(A / D) . 
(32)

Theorem 7. Three-way weighted entropies have systematicness: 

H W 

(A / D) = H 

D 
W 

(A ) + H W 

(D/ A ) − H(D) 

= H 

D 
W 

(A ) − [ H(D) − H W 

(D/ A )] = H 

D 
W 

(A ) − H 

lin 
W 

(D/ A ) . (33)

In other words, H W 

(A / D) is a linear translation of the sum of H 

D 
W 

(A ) and H W 

(D/ A ) or the difference between H 

D 
W 

(A ) and

H 

lin 
W 

(D/ A ) . 

At Macro-Top, an information-theoretic system already exists to contain the entropy, conditional entropy, and mutual

information [21] , which are reviewed in Definition 1 . Herein, three-way weighted entropies establish a novel informational

system. Both of the systems’ relationships are analyzed next. 

Theorem 8. The weight-entropy system and information-theoretic system are equivalent. Concretely, the weighted entropies

H W 

(D/ A ) , H 

lin 
W 

(D/ A ) , H 

D 
W 

(A ) , and H W 

(A / D) are equivalent to the conditional entropy H(D/ A ) , mutual information I(A;D) ,

entropy H(A ) , and conditional entropy H(A / D) , respectively. In other words, 

H W 

(D/ A ) = H (D/ A ) , H 

lin 
W 

(D/ A ) = I(A;D) , H 

D 
W 

(A ) = H(A ) , H W 

(A / D) = H(A / D) . (34)

Proof. 

(1) H W 

(D/ A ) = H W 

(X 1 / A ) + . . . + H W 

(X m 

/ A ) 

= +[ −p([ x ] 1 A ) p(X 1 / [ x ] 
1 
A ) log p(X 1 / [ x ] 

1 
A ) − . . . − p([ x ] n A ) p(X 1 / [ x ] 

n 
A ) log p(X 1 / [ x ] 

n 
A )] + . . . 

+ [ −p([ x ] 1 A ) p(X m 

/ [ x ] 1 A ) log p(X m 

/ [ x ] 1 A ) − . . . − p([ x ] n A ) p(X m 

/ [ x ] n A ) log p(X m 

/ [ x ] n A )] 

= −p([ x ] 1 A )[ p(X 1 / [ x ] 
1 
A ) log p(X 1 / [ x ] 

1 
A ) + . . . + p(X m 

/ [ x ] 1 A ) log p(X m 

/ [ x ] 1 A )] − . . . 

− p([ x ] n A )[ p(X 1 / [ x ] 
1 
A ) log p(X 1 / [ x ] 

n 
A ) + . . . + p(X m 

/ [ x ] n A ) log p(X m 

/ [ x ] 1 A )] 

= −
n ∑ 

i =1 

[ 

p([ x ] i A ) 
m ∑ 

j=1 

p(X j / [ x ] 
i 
A ) log p(X j / [ x ] 

i 
A ) 

] 

= H(D/ A ) . 

(35)

(2) H 

lin 
W 

(D/ A ) = H(D) − H W 

(D/ A ) = H(D) − H(D/ A ) = I(A;D) . (36)

(3) H 

D 
W 

(A ) = 

m ∑ 

j=1 

H 

X j 
W 

(A ) = −
m ∑ 

j=1 

[ 

n ∑ 

i =1 

p(X j / [ x ] 
i 
A ) p([ x ] i A ) log p([ x ] i A ) 

] 

= −
m ∑ 

j=1 

[ p(X j / [ x ] 
1 
A ) p([ x ] 1 A ) log p([ x ] 1 A ) + . . . + p(X j / [ x ] 

n 
A ) p([ x ] n A ) log p([ x ] n A )] 

= −
[ 

m ∑ 

j=1 

p(X j / [ x ] 
1 
A ) 

] 

p([ x ] 1 A ) log p([ x ] 1 A ) − . . . −
[ 

m ∑ 

j=1 

p(X j / [ x ] 
n 
A ) 

] 

p([ x ] n A ) log p([ x ] n A ) 

= −p([ x ] 1 A ) log p([ x ] 1 A ) − . . . − p([ x ] n A ) log p([ x ] n A ) 

= H(A ) . 

(37)
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Fig. 4. Equivalence of the weight-entropy system and the information-theoretic system. 

 

 

 

 

 

 

 

 

 

 

 

(4) H W 

(A / D) = 

m ∑ 

j=1 

H W 

(A /X j ) = 

m ∑ 

j=1 

p(X j ) H(A /X j ) 

= −
m ∑ 

j=1 

[ 

p(X j ) 
n ∑ 

i =1 

p([ x ] i A /X j ) log p([ x ] i A /X j ) 

] 

= H(A / D) . 

(38) 

�

Corollary 4. For the weight-entropy system and information-theoretic system, the corresponding informational measures have the

same granulation monotonicity. 

Corollary 5. The weight-entropy system and information-theoretic system have equivalent systematic equations. In other words, 

H W 

(A / D) = H 

D 
W 

(A ) + H W 

(D/ A ) − H (D) ⇐⇒ H (A / D) = H(A ) + H(D/ A ) − H(D) , 

H W 

(A / D) = H 

D 
W 

(A ) − H 

lin 
W 

(D / A ) ⇐⇒ H(A / D ) = H(A ) − I(A;D) . 
(39) 

Theorem 8 and its corollaries reveal the equivalence and correspondence between the two informational systems. The

relevant results are well clarified in a relationship figure: Fig. 4 , where vertical virtual arrows show the corresponding equiv-

alence for informational measures and systematicness. 

What is the root cause for the theoretical equivalence of both systems? Based on the proof in Eqs. (35) –(38) , the weight-

entropy system mainly adopts an integration order on the C-Class-first and D-Class-second principle, i.e., n C-Classes are

first fused by the weighted entropy function while m D-Classes are, second, integrated by the sum operation. In contrast,

the information-theoretic system adopts the opposite order, i.e., m D-Classes are first fused by the entropy function, while

n C-Classes are, second, integrated by the weight-sum operation. The above results and proofs reflect some operational

commutativity, which can be fully reflected by the sum operation orders with regard to i and j . This commutativity ensures

the final systematic equivalence, which is mainly from a mathematical viewpoint. In the next section, both systems will

be compared by the D-Table’s three-layer structures to manifest the reduction advancement of three-way informational

measures. 
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Table 3 

Three-layer granular structures and three-way informational measures. 

Hierarchical structure Components Three-way informational measures Granulation monotonicity Systematic equations 

Micro-Bottom [ x ] i A , X j p(X j / [ x ] 
i 
A ) , Has in part p([ x ] i A /X j ) 

p([ x ] i A ) , p([ x ] i A /X j ) = p([ x ] i A ) × p(X j / [ x ] 
i 
A ) ÷ p(X j ) 

Meso-Middle U/IND (A ) , H W (X j / A ) (or H lin W (X j / A ) ), Has H W (A /X j ) , 

X j H 
X j 
W 

(A ) , H W (A /X j ) = H 
X j 
W 

(A ) + H W (X j / A ) + p(X j ) log p(X j ) , 

= H 
X j 
W 

(A ) − H lin W (X j / A ) 

Macro-Top U/IND (A ) , H W (D/ A ) (or H lin W (D/ A ) ), Has H W (A / D) 

U/IND (D) H D W (A ) , H W (A / D) = H D W (A ) + H W (D/ A ) − H(D) 

= H D W (A ) − H lin W (D/ A ) 

Fig. 5. Hierarchical evolution of informational measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Hierarchical analyses of three-way informational measures based on three-layer granular structures 

Three-way information measures are hierarchically established, and their final weight-entropy system is equivalent to the

existing information-theoretic system. By virtue of the three-layer structures, this section makes some hierarchical analyses

of three-way informational measures, including the evolution summary, comparison superiority, and invocation algorithms. 

5.1. Hierarchical evolution of three-way informational measures 

Based on the three-layer structures, this subsection summarizes the hierarchical evolution of three-way informational

measures. 

Let us first clarify the overall research concept. According to the systemic classification and class, D-Table (U, C 
⋃ 

D)

contains three-layer structures to implement the hierarchical evolution of information measures. In probability space, three-

way probabilities at the Micro-Bottom are determined by Bayes’ theorem, which is related to the Meso-Middle. At the Meso-

Middle, the three-way entropies lack complete monotonicity and clear systematicness; thus, Bayes’ theorem evolves via

the weighted information function wp(. ) log p(. ) and integrated sum operation �, and thus, three-way weighted entropies

emerge to gain benign monotonicity and perfect systematicness. Finally, three-way weighted entropies of all D-Classes are

integratedly fused by the sum operation, and thus, three-way weighted entropies at Macro-Top naturally emerge to acquire

their monotonicity and systematicness. Herein, three-layer granular structures and three-way informational measures are

concluded in Table 3 . 

Table 3 is utilized to review some of the basic results. (1) The Micro-Bottom concerns C-Class and D-Class to produce

the three-way probabilities. They partly have granulation monotonicity and follow Bayes’ theorem, where p ( X j ) is a con-

stant. (2) The Meso-Middle concerns C-Classification and D-Class to construct three-way weighted entropies. They have

granulation monotonicity and evolution systematicness. The latter hierarchically develops Bayes’ theorem, and the constant

−p(X j ) log p(X j ) adjusts H W 

(X j / A ) to H 

lin 
W 

(X j / A ) . (3) Macro-Top includes C-Classification and D-Classification to establish

further three-way weighted entropies. They also exhibit granulation monotonicity and evolution systematicness. The latter

deeply develops Bayes’ theorem, and the constant H(D) transforms H W 

(D/ A ) to H 

lin 
W 

(D/ A ) . 

Based on the above reviews, we next emphasize the hierarchical evolution of three-way informational measures. From

the GrC viewpoint, the development process depends on D-Table’s three-layer structures, and Fig. 5 , which is relevant, is

first provided. 
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According to the left half of Fig. 5 , three-way informational measures go through the Meso-Middle to exhibit two steps

of integrated promotion among the three-layer structures. (1) The Micro-Bottom evolves to the Meso-Middle by integrating

C-Classes to C-Classification. Accordingly, three-way probabilities are integratedly fused into three-way weighted entropies 

by the weighted entropy function 

∑ n 
i =1 wp(. ) log p(. ) , and the relevant monotonicity and systematicness are determined

by developing Bayes’ theorem. (2) The Meso-Middle evolves to the Macro-Top by integrating D-Classes to D-Classification.

Accordingly, three-way weighted entropies at the Meso-Middle are integratedly fused into three-way weighted entropies at

Macro-Top by the sum operation 

∑ m 

j=1 , and the relevant monotonicity and systematicness are naturally gained by the in-

ternal integration. The above hierarchical evolution adopts the bottom-middle-top construction technology, which is a basic

GrC strategy, to implement the integrated fusion of three-way informational measures. In contrast, the top-middle-bottom

strategy can conversely implement decomposed extraction, which is reflected by the downward virtual arrows in Fig. 5 .

On the whole, the hierarchical evolution of the three-way informational measures corresponds to a type of bidirectional

information construction. 

5.2. Hierarchical superiority of three-way informational measures 

According to Fig. 5 , information measures adhere to three-layer structures to have two types of hierarchical evolution.

Both types go through different middle structures with regard to the Meso-Middle and Structure IV, and they are called the

weight-entropy evolution and information-theoretic evolution, respectively, according to their top measures. This subsection 

mainly makes their parallel comparison to reveal hierarchical superiority of the weight-entropy evolution, which is related

to three-way informational measures. 

The weight-entropy evolution is analyzed above according to the left half of Fig. 5 . According to the right half, the

information-theoretic evolution also has two steps of integrated promotion, which are realized by Structure IV. (1) The

Micro-Bottom evolves to Structure IV by integrating D-Classes to D-Classification. Accordingly, the probabilities are integrat-

edly fused into entropies by the entropy function H = 

∑ m 

j=1 p(. ) log p(. ) , but granulation monotonicity is never involved. (2)

Structure IV evolves to Macro-Top by integrating C-Classes to C-Classification. Accordingly, the entropies at Structure IV are

integratedly fused into three-way weighted entropies at Macro-Top by the weighted sum operation 

∑ n 
i =1 wH, and the rele-

vant monotonicity and systematicness are finally established. The above analyses mainly depend on the basic information-

theoretic forms in Definition 1 . In fact, the proof of Theorem 8 implies some transformations, such as 

H(D/ A ) = −
n ∑ 

i =1 

[ 

p([ x ] i A ) 
m ∑ 

j=1 

p(X j / [ x ] 
i 
A ) log p(X j / [ x ] 

i 
A ) 

] 

= −
n ∑ 

i =1 

[ 

m ∑ 

j=1 

p([ x ] i A ) p(X j / [ x ] 
i 
A ) log p(X j / [ x ] 

i 
A ) 

] 

, 

and thus, a type of transformative weighted entropies can be properly mined at Structure IV to change the above operation.

Except for the bottom-middle-top integrated fusion, the top-middle-bottom decomposed extraction also exists to supple-

ment the bidirectional information construction. 

Next, the weight-entropy evolution and information-theoretic evolution are compared, mainly in the integrated fusion 

direction. (1) For the granular integration, the former takes effect first from C-Classes to C-Classification and then from D-

Classes to D-Classification, while the latter adopts the inverse integration order. (2) For information fusion, the former uses

the weighted entropy first and the sum second, while the latter uses the entropy first and the weighted sum second. (3)

For granulation monotonicity, the former has monotonicity at the Meso-Middle to further simplify the monotonicity at the

Macro-Top, while the latter never involves monotonicity at Structure IV and, thus, the monotonicity at Macro-Top becomes

complex. (4) For systematicness, both have the basic Bayes’ theorem, and thus, they can establish systemic equations at the

three granular levels. (5) For the results at Macro-Top, both produce two equivalent systems: the weight-entropy system and

information-theoretic system, which have equivalent measures and systematicness ( Fig. 4 ). The equivalence transformation

relies on the changing order of the sum. As a result, the sum-order exchange and decomposition extraction can be utilized

for the information-theoretic measures to produce three-way weighted entropies at the Meso-Middle. Moreover, three-way

entropies can be calculated from the Meso-Middle to the Macro-Top, and thus, they have a closer hierarchical mechanism,

because the information-theoretic measures are usually directly calculated to become more complex. 

The weight-entropy evolution and information-theoretic evolution depend on the Meso-Middle and Structure IV, respec-

tively, and thus, they become symmetrical and parallel but have different emphases. For the former, Bayes’ theorem at the

Micro-Bottom ( Eq. (13) ) focuses on rule reasoning, and three-way entropies exhibit granulation monotonicity at both the

Meso-Middle and Macro-Top. For the latter, Bayes’ theorem at the Micro-Bottom ( Eq. (14) ) focuses on practical determi-

nation, and its granulation monotonicity is applied to only Macro-Top. Both have similar granular and hierarchical mecha-

nisms, but the former has more superiority in view of the attribute reduction. Only the weight-entropy evolution is useful

for class-specific attribute reduction, which exists at the Meso-Middle [43] . Both can be equivalently used for classification-

based attribute reduction, which exists at Macro-Top, but the former becomes more thorough and simple for granulation

monotonicity. In other words, the former (with three-way informational measures) effectively underlies hierarchical attribute 

reduction based on D-Table’s three-layer structures. 
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Algorithm 1 An algorithm of three-way probabilities. 

Input: C-Class [ x ] i A and D-Class X j , as well as | U| ; 
Output: Three-way probabilities p(X j / [ x ] 

i 
A ) , p([ x ] i A ) , p([ x ] i A /X j ) . 

1: Compute | [ x ] i A | , | X j | , | [ x ] i A ∩ X j | . 
2: According to Eq. (15) , compute 

p(X j / [ x ] 
i 
A ) = 

| [ x ] i A ∩ X j | 
| [ x ] i A | 

, p([ x ] i A ) = 

| [ x ] i A | | U| , p([ x ] i A /X j ) = 

| [ x ] i A ∩ X j | 
| X j | . 

3: return p(X j / [ x ] 
i 
A ) , p([ x ] i A ) , p([ x ] i A /X j ) . 

Algorithm 2 A probability-based algorithm of the three-way weighted entropies at the Meso-Middle. 

Input: C-Classification U/IND (A ) = { [ x ] i A : i = 1 , .., n } and D-Class X j , as well as | U| ; 
Output: Three-way weighted entropies at the Meso-Middle: H W 

(X j / A ) and H 

lin 
W 

(X j / A ) , H 

X j 
W 

(A ) , H W 

(A /X j ) . 

1: Compute | X j | and p(X j ) . 

2: H W 

(X j / A ) = 0 , H 

X j 
W 

(A ) = 0 , H W 

(A /X j ) = 0 . 

3: for i ∈ { 1 , .., n } do 

4: Compute p(X j / [ x ] 
i 
A ) , p([ x ] i A ) , p([ x ] i A /X j ) by Algorithm 1 . 

5: According to Eq. (23) , let 

H W 

(X j / A ) ← H W 

(X j / A ) − p([ x ] i A ) p(X j / [ x ] 
i 
A ) log p(X j / [ x ] 

i 
A ) , 

H 

X j 
W 

(A ) ← H 

X j 
W 

(A ) − p(X j / [ x ] 
i 
A ) p([ x ] i A ) log p([ x ] i A ) , 

H W 

(A /X j ) ← H W 

(A /X j ) − p(X j ) p([ x ] i A /X j ) log p([ x ] i A /X j ) . 

6: end for 

7: According to Eq. (27) , compute H 

lin 
W 

(X j / A ) = −p(X j ) log p(X j ) − H W 

(X j / A ) . 

8: return H W 

(X j / A ) and H 

lin 
W 

(X j / A ) , H 

X j 
W 

(A ) , H W 

(A /X j ) . 

Algorithm 3 An algorithm of three-way weighted entropies from the Meso-Middle to the Macro-Top. 

Input: C-Classification U/IND (A ) and D-Classification U/IND (D) = { X j : j = 1 , .., m } ; 
Output: Three-way weighted entropies at Macro-Top: H W 

(D/ A ) and H 

lin 
W 

(D/ A ) , H 

D 
W 

(A ) , H W 

(A / D) . 

1: H W 

(D/ A ) = 0 and H 

lin 
W 

(D/ A ) = 0 , H 

D 
W 

(A ) = 0 , H W 

(A / D) = 0 . 

2: for j ∈ { 1 , .., m } do 

3: Compute H W 

(X j / A ) and H 

lin 
W 

(X j / A ) , H 

X j 
W 

(A ) , H W 

(A /X j ) by Algorithm 2 . 

4: According to Eq. (30) , let 

H W 

(D/ A ) ← H W 

(D/ A ) + H W 

(X j / A ) , 

H 

lin 
W 

(D/ A ) ← H 

lin 
W 

(D/ A ) + H 

lin 
W 

(X j / A ) , 

H 

D 
W 

(A ) ← H 

D 
W 

(A ) + H 

X j 
W 

(A ) , 

H W 

(A / D) ← H W 

(A / D) + H W 

(A /X j ) . 

5: end for 

6: return H W 

(D/ A ) and H 

lin 
W 

(D/ A ) , H 

D 
W 

(A ) , H W 

(A / D) . 

 

 

 

 

 

 

 

 

 

 

 

5.3. Hierarchical algorithms of three-way informational measures 

In view of the above hierarchical evolution and superiority, this subsection develops hierarchical algorithms of three-way

informational measures. 

Algorithm 1 utilizes the division operation in Definition 3 to yield three-way probabilities at the Micro-Bottom, where the

cardinality determination becomes a basis. Algorithm 2 utilizes the weight-entropy function in Definition 4 to yield three-

way weighted entropies at the Meso-Middle. There, the constant probability p ( X j ) at the Micro-Bottom is directly calculated.

In the “for” loop with regard to the C-Classes, three-way probabilities are computed by invoking Algorithm 1 , and three-

way entropies implement the summation for weighted information item wp(. ) log p(. ) . Finally, H 

lin 
W 

(X j / A ) is achieved by

its linear transformation definition with regard to H W 

(X j / A ) , i.e., Definition 5 . Algorithm 3 utilizes the sum operation in

Definition 6 to yield three-way weighted entropies at Macro-Top. In the “for” loop with regard to the D-Classes, three-

way entropies at the Meso-Middle are computed by invoking Algorithm 2 , and they are further integrated into three-way

entropies at Macro-Top. 

Algorithms 1–3 closely follow the bottom-middle-top evolution of three-way informational measures to exhibit a strong

hierarchical relation, and the algorithm at a lower level underlies the algorithm at a higher level. Simply speaking, the
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Table 4 

A decision table. 

U a b c d 

x 1 3 3 3 1 

x 2 1 1 1 1 

x 3 1 1 1 1 

x 4 2 2 2 1 

x 5 4 4 3 2 

x 6 1 1 1 2 

x 7 1 3 1 2 

x 8 2 2 2 2 

x 9 5 4 3 3 

x 10 1 3 1 3 

x 11 1 1 1 3 

x 12 2 2 2 3 

Fig. 6. Granulation hierarchies and three-way weighted entropies of C-Classifications. 

 

 

 

 

 

 

 

 

three algorithms are applied to three different granular levels, and the former underlies the later by virtue of the invoca-

tion. Finally, the computational complexity is simply given according to the Micro-Bottom, which is located within the loop

framework. Algorithm 1 concerns only one Micro-Bottom, and thus, its complexity can be viewed as O (1). Algorithm 2 con-

cerns one Meso-Middle or n Micro-Bottoms, and thus, its complexity becomes O ( n ). Algorithm 3 concerns one Macro-Top or

m Meso-Middles or m × n Micro-Bottoms, and thus, its complexity becomes O ( mn ). 

6. Example illustration based on a decision table 

Aiming at the D-Table, this section illustrates three-layer granular structures and three-way informational measures by an

example from [47] . The basic information of D-Table (U, C ∪ D) is provided in Table 4 , where U = { x 1 , . . . , x 12 } , C = { a, b, c} ,
D = { d} ; U/IND (D) = { X 1 , X 2 , X 3 } , X 1 = { x 1 , . . . , x 4 } , X 2 = { x 5 , . . . , x 8 } , and X 3 = { x 9 , . . . , x 12 } . 

Eight attribute subsets A ⊆ C exist to produce only six types of C-Classifications: 

(1) U/IND ({ a, b, c} ) = U/IND ({ a, b} ) = {{ x 2 , x 3 , x 6 , x 11 } , { x 4 , x 8 , x 12 } , { x 1 } , { x 5 } , { x 7 , x 10 } , { x 9 }} , 
(2) U/IND ({ a, c} ) = U/IND ({ a } ) = {{ x 2 , x 3 , x 6 , x 7 , x 10 , x 11 } , { x 4 , x 8 , x 12 } , { x 1 } , { x 5 } , { x 9 }} , 
(3) U/IND ({ b, c} ) = {{ x 2 , x 3 , x 6 , x 11 } , { x 4 , x 8 , x 12 } , { x 1 } , { x 5 , x 9 } , { x 7 , x 10 }} , 
(4) U/IND ({ c} ) = {{ x 2 , x 3 , x 6 , x 7 , x 10 , x 11 } , { x 4 , x 8 , x 12 } , { x 1 , x 5 , x 9 }} , 
(5) U/IND ({ b} ) = {{ x 2 , x 3 , x 6 , x 11 } , { x 4 , x 8 , x 12 } , { x 1 , x 7 , x 10 } , { x 5 , x 9 }} , 
(6) U/IND (∅ ) = { U} . 

The relevant granulation hierarchies are described in a Hasse diagram: Fig. 6 , where the arrow shows knowledge roughening

U /IND (. ) 

−→ U /IND ( .. ) . 

Herein, C-Classification U/IND (C) and its six C-Classes are utilized to illustrate three-layer structures and three-way mea-

sures, where n = 6 , m = 3 and X acts as a representative D-Class. 
1 
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Table 5 

Three-way weighted entropies for hierarchical C-Classification. 

C-Classification: X 1 -based three-way weighted entropies: U/IND (D) -based three-way weighted entropies: 

U/IND (A ) (H W (X 1 / A ) or H lin W (X 1 / A ) , H X 1 
W 

(A ) , H W (A /X 1 )) (H W (D/ A ) or H lin W (D/ A ) , H D W (A ) , H W (A / D)) 

(1) (0.298 or 0.230, 0.730, 0.500) (1.063 or 0.522, 2.355, 1.833) 

(2) (0.396 or 0.132, 0.632, 0.500) (1.189 or 0.396, 1.896, 1.500) 

(3) (0.298 or 0.230, 0.730, 0.500) (1.229 or 0.356, 2.189, 1.833) 

(4) (0.528 or 0.0 0 0, 0.50 0, 0.50 0) (1.585 or 0.0 0 0, 1.50 0, 1.50 0) 

(5) (0.431 or 0.097, 0.597, 0.500) (1.459 or 0.126, 1.959, 1.833) 

(6) (0.528 or 0.0 0 0, 0.0 0 0, 0.0 0 0) (1.585 or 0.0 0 0, 0.0 0 0, 0.0 0 0) 

(

(  

 

(  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) There are 6 × 3 = 18 Micro-Bottoms, and ([ x ] 2 C = { x 4 , x 8 , x 12 } , X 1 ) is considered. The three-way probabilities are 

p(X 1 / [ x ] 
2 
C ) = 1 / 3 , p([ x ] 2 C ) = 3 / 12 , p([ x ] 2 C /X 1 ) = 1 / 4 , 

and Bayes’ theorem (i.e., Eq. (13) ) becomes 

p([ x ] 2 C /X 1 ) = 

p([ x ] 2 C ) × p(X 1 / [ x ] 
2 
C ) 

p (X 1 ) 
= 

3 / 12 × 1 / 3 

4 / 12 

= 1 / 4 , 

where constant p(X 1 ) = 4 / 12 . 

2) There are m = 3 Meso-Middles, and (U/IND (C) , X 1 ) is considered. According to the probability integration of n = 6 C-

Classes, the three-way weighted entropies at the Meso-Middle are 

H W 

(X 1 / C) = 0 . 298 or H 

lin 
W 

(X 1 / C) = 0 . 230 , H 

X 1 
W 

(C) = 0 . 730 , H W 

(C/X 1 ) = 0 . 500 , 

where the constant −p(X 1 ) log p(X 1 ) = 0 . 528 is used to gain H 

lin 
W 

(X 1 / C) from H W 

(X 1 / C) , and the relevant systematic

equation (i.e., Eq. (29) ) becomes 

H W 

(C/X 1 ) = H 

X 1 
W 

(C) − H 

lin 
W 

(X 1 / C) = 0 . 730 − 0 . 230 = 0 . 500 . 

3) There is only one Macro-Top (U/IND (C) , U/IND (D)) . According to the weight-entropy integration of m = 3 D-Classes, the

three-way weighted entropies at Macro-Top are 

H W 

(D/ C) = 1 . 063 or H 

lin 
W 

(D/ C) = 0 . 522 , H 

D 
W 

(C) = 2 . 355 , H W 

(C/ D) = 1 . 833 , 

where the constant H(D) = 1 . 585 is used to gain H 

lin 
W 

(D/ C) from H W 

(D/ C) , and the relevant systematic equation (i.e.,

Eq. (33) ) becomes 

H W 

(C/ D) = H 

D 
W 

(C) − H 

lin 
W 

(D/ C) = 2 . 355 − 0 . 522 = 1 . 833 . 

The above analyses partly illustrate three-layer structures and three-way informational measures (as well as relevant

systematicness from Bayes’ theorem), which are mainly summarized in Table 3 . In particular, three-way information mea-

sures are calculated by basic definitions or relevant Algorithms 1–3 , where the weight-entropy evolution (in Fig. 5 ) plays an

important role. 

For the six types of C-Classification, their three-way weighted entropies of X 1 and U/IND (D) are presented by a three-

dimensional vector in Table 5 , and the final weighted entropies at Macro-Top are also marked in Fig. 6 . Thus, we have

utilized Table 5 and Fig. 6 to verify the granulation monotonicity of the three-way informational measures. 

Fig. 6 and Table 5 are used to provide further illustration, mainly at Macro-Top. For the three-way weight-entropy vector

(in Fig. 6 or in the third column of Table 5 ), the first element contains H W 

(D/ A ) and H 

lin 
W 

(D/ A ) , and their sum is equal to

the constant H(D) = 1 . 585 . The third element H W 

(A / D) is the difference between the second element H 

D 
W 

(A ) and the first

element H 

lin 
W 

(D/ A ) , and this result reflects the systematic equation: Eq. (33) . The measure change in the arrow direction

in Fig. 6 effectively verifies the granulation monotonicity. In contrast to three-way weighted entropies, Definition 1 (which

exhibits order exchange) is utilized to calculate the entropy, conditional entropy, and mutual information, and these infor-

mational measures yield the same results. Thus, the equivalence of the weight-entropy system and information-theoretic

system (in Fig. 4 ) is verified. However, the hierarchical calculation of the three-way weighted entropies becomes ingenious

in contrast to the direct but complex calculation of the information-theoretic measures. 

7. Conclusions 

D-Table is a basis for implementing attribute reduction. Aiming at D-Table and its attribute reduction, this paper uti-

lizes the systematic granularities of the classification and class to establish three-layer granular structures ( Fig. 2 ), and these

structures underlie extensive hierarchical applications, including measure mining and reduction construction. Thus, this pa-

per further constructs three-way informational measures at three-layer structures, including three-way probabilities at the

Micro-Bottom and three-way weighted entropies at the Meso-Middle and Macro-Top. Three-way informational measures

originate from Bayes’ theorem ( Fig. 3 ) and perform a thorough hierarchical evolution ( Fig. 5 ) with monotonicity and system-

aticness (Table 3 ), and notably, they have hierarchical invocation algorithms ( Algorithms 1–3 ). 
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Table A.6 

Probability calculation and granulation monotonicity/non-monotonicity of three-way entropies. 

D-Class Type symbols [ x ] 1 A probability [ x ] 2 A probability [ x ] B probability Entropy on A Entropy on B Entropy relationship 

X 1 p(X 1 / [ x ] . ) or H(X 1 /. ) 0.025 0.700 0.3625 0.4932 0.5307 H(X 1 / B) > H(X 1 / A ) 

X 1 p([ x ] . ) or H X 1 (. ) 0.500 0.500 1.0 0 0 0 1.0 0 0 0 0.0 0 0 0 H X 1 (B) < H X 1 (A ) 

X 1 p([ x ] . /X 1 ) or H(./X 1 ) 1/29 28/29 1.0 0 0 0 0.2164 0.0 0 0 0 H(B/X 1 ) < H(A /X 1 ) 

X 2 p(X 2 / [ x ] . ) or H(X 2 /. ) 0.975 0.300 0.6375 0.5567 0.4141 H(X 2 / B) < H(X 2 / A ) 

X 2 p([ x ] . ) or H X 2 (. ) 0.500 0.500 1.0 0 0 0 1.0 0 0 0 0.0 0 0 0 H X 2 (B) < H X 2 (A ) 

X 2 p([ x ] . /X 2 ) or H(./X 2 ) 39/51 12/51 1.0 0 0 0 0.7871 0.0 0 0 0 H(B/X 2 ) < H(A /X 2 ) 
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This study basically concerns GrC-based multi-granule, multi-level, and multi-view. The relevant work holds two funda-

mental contributions for informational measures, and the latter is especially related to attribute reduction. 

1) D-Table’s three-layer granular structures – a novel viewpoint – is adopted to construct informational measures, which are

related to attribute reduction. Two types of hierarchical evolution, which are based on the Meso-Middle and Structure IV

( Fig. 5 ), thoroughly establish the structural mechanisms and systemic relationships for the novel weight-entropy system

and the existing information-theoretic system. These two systems exhibit theoretical equivalence ( Fig. 4 ), and both have

practical emphases ( Fig. 5 ), and thus, the former’s results obtained in this paper deepen and explain the latter, which

directly refers to information theory. In particular, the monotonicity evolution based on the Meso-Middle can simplify

the final monotonicity at Macro-Top, which was previously attached to information-theoretic measures ( Theorem 1 ). 

2) Based on the basic comparison, three-way informational measures focus more on C-Classification monotonicity and D-

Class specificity to have the hierarchical evolution be superior, especially from the attribute reduction perspective. As

a result, this study emphasizes granulation monotonicity and systematic equations at each level to underlie further at-

tribute reduction, including informational, systematic, and hierarchical reduction. For example, the three-way attribute 

reduction at Macro-Top in [47] can be deepened, and the informational attribute reduction at the Meso-Middle can be

defined as in Definition 2 to link class-specific attribute reduction, and the three-layer attribute reduction in Table 2 is

worthwhile to explore by introducing the category reduction transformation. 

Thus, our whole research regarding the three-layer granular structures and three-way informational measures enrich the

three-way decisions theory, especially in its generalized sense [19] . 

In summary, this paper focuses on D-Table, reduction, and information to conduct an appropriate study of rough set

theory. Three-layer granular structures and three-way informational measures are worthwhile to investigate further for data

analysis, including the extensive construction of uncertainty measures and the comprehensive promotion of attribute re-

duction. Our research team is devoting its focus to follow-up work on reduction from the informational, systematic, and

hierarchical perspectives. Moreover, the concerned structure and measure mainly aim at the classical rough sets with equiv-

alence relations, and the relationships between informational measures and extended rough sets (including neighborhood

rough sets, fuzzy rough sets, dominance rough sets, set-valued rough sets) are extensively discussed [2,3,7,10–12] . According

to these extended models, the relevant work of this study is worthwhile to generalize deeply for future studies and practical

applications. 
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Appendix A. Example illustration for granulation monotonicity/non-monotonicity of three-way entropies 

Suppose that C-Classification U/IND (A ) has two C-Classes [ x ] 1 A and [ x ] 2 A , while D-Classification U/IND (D) has two D-

Classes X 1 and X 2 . The relevant cardinality information is given as follows: (1) | [ x ] 1 A | = 40 = | [ x ] 2 A | ; (2) | X 1 | = 29 , | X 2 | = 51 ;

and (3) | [ x ] 1 A ∩ X 1 | = 1 , | [ x ] 1 A ∩ X 2 | = 39 , | [ x ] 2 A ∩ X 1 | = 28 , | [ x ] 2 A ∩ X 2 | = 12 . 

Granular merging [ x ] 1 A ∪ [ x ] 2 A 
= −→ [ x ] B produces knowledge coarsening U /IND (A ) 


−→ U /IND (B) , where U /IND (A ) =
{ [ x ] 1 A , [ x ] 2 A } and U/IND (B) = { [ x ] B } . According to Eqs. (18) –(20) , three-way entropies based on X 1 and X 2 are calculated in

Table A.6 . 

For three-way entropies, the final entropy relationship in Table A.6 verifies their granulation monotonicity/non-

monotonicity, especially the non-monotonicity that is based on H(X / B) > H(X / A ) and H(X / B) < H(X / A ) . 
1 1 2 2 

http://dx.doi.org/10.13039/501100001809
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Appendix B. Proof of Theorem 4 : granulation monotonicity proof of three-way weighted entropies at the 

Meso-Middle 

Proof. Because knowledge granulation consists of granular merging, the informational monotonicity of granular merging

can be integrated to informational monotonicity in knowledge granulation. Therefore, we are only required to prove the

informational monotonicity for a representative group of granular merging, i.e., 

k ⋃ 

t=1 

[ x ] t A 
= −→ [ x ] B . 

(1) f (u ) = −u log u ( u ∈ [0, 1]) is a concave function, and thus, 

k ∑ 

t=1 

λt = 1 
⇒ −
k ∑ 

t=1 

λt p t log p t ≤ −
[ 

k ∑ 

t=1 

λt p t 

] 

log 

[ 

k ∑ 

t=1 

λt p t 

] 

. (B.1)

This concave property can effectively deduce the key inequality relation in the following transformation: 

−
k ∑ 

t=1 

p([ x ] t A ) p(X j / [ x ] 
t 
A ) log p(X j / [ x ] 

t 
A ) 

= −
k ∑ 

t=1 

p([ x ] B ) 
| [ x ] t A | 
| [ x ] B | p(X j / [ x ] 

t 
A ) log p(X j / [ x ] 

t 
A ) 

= p([ x ] B ) 

[ 

−
k ∑ 

t=1 

| [ x ] t A | 
| [ x ] B | p(X j / [ x ] 

t 
A ) log p(X j / [ x ] 

t 
A ) 

] 

≤ − p([ x ] B ) 

[ 

k ∑ 

t=1 

| [ x ] t A | 
| [ x ] B | p(X j / [ x ] 

t 
A ) 

] 

log 

k ∑ 

t=1 

| [ x ] t A ∩ X j | 
| [ x ] B | 

= − p([ x ] B ) 
| [ x ] B ∩ X j | 

| [ x ] B | log 
| [ x ] B ∩ X j | 

| [ x ] B | 
= − p([ x ] B ) p(X j / [ x ] B ) log p(X j / [ x ] B ) . 

(B.2)

(2) Note that 

H 

X j 
W 

(A ) = −
n ∑ 

i =1 

p(X j / [ x ] 
i 
A ) p([ x ] i A ) log p([ x ] i A ) 

= −
n ∑ 

i =1 

p([ x ] i A ∩ X j ) log p([ x ] i A ) . 

(B.3)

As a result, 

−
k ∑ 

t=1 

p([ x ] t A ∩ X j ) log p([ x ] t A ) 

= − p([ x ] 1 A ∩ X j ) log p([ x ] 1 A ) − . . . − p([ x ] k A ∩ X j ) log p([ x ] k A ) 

≥ − p([ x ] 1 A ∩ X j ) log p([ x ] B ) − . . . − p([ x ] k A ∩ X j ) log p([ x ] B ) 

= −
k ∑ 

t=1 

p([ x ] t A ∩ X j ) log p([ x ] B ) 

= −
[ 

k ∑ 

t=1 

p([ x ] t A ∩ X j ) 

] 

log p([ x ] B ) 

= − p([ x ] B ∩ X j ) log p([ x ] B ) . 

(B.4)

(3) H W 

(A /X j ) = −
n ∑ 

i =1 

p([ x ] i A ∩ X j ) log p([ x ] i A /X j ) , so H W 

(A /X j ) ≥ H W 

(B/X j ) can be proved by a similar process with regard
to Eq. (B.4) . �
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