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ABSTRACT

Like the traditional machine learning, the multi-label learning is faced with the curse of dimensionality.
Some feature selection algorithms have been proposed for multi-label learning, which either convert the
multi-label feature selection problem into numerous single-label feature selection problems, or directly
select features from the multi-label data set. However, the former omit the label dependency, or produce
too many new labels leading to learning with significant difficulties; the latter, taking the global label de-
pendency into consideration, usually select a few redundant or irrelevant features, because actually not
all labels depend on each other, which may confuse the algorithm and degrade its classification perfor-
mance. To select a more relevant and compact feature subset as well as explore the label dependency, a
granular feature selection method for multi-label learning is proposed with a maximal correlation min-
imal redundancy criterion based on mutual information. The maximal correlation minimal redundancy
criterion makes sure that the selected feature subset contains the most class-discriminative information,
while in the meantime exhibits the least intra-redundancy. Granulation can help explore the label de-
pendency. We study the relation of the label granularity and the performance on four data sets, and
compare the proposed method with other three multi-label feature selection methods. The experimental
results demonstrate that the proposed method can select compact and specific feature subsets, improve
the classification performance and performs better than other three methods on the widely-used multi-

label learning evaluation criteria.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional machine learning algorithms usually aim to find the
most relevant class label [ of the unseen instance, which are called
single-label learning algorithms. Unlike the single-label learning,
given a predefined label space L, the task of multi-label learning
algorithms is to predict a set of relevant labels Y of the unseen
instance, where Y € L and |Y| > 1 [1-4].

Multi-label instances exist in various real-world domains. For
example, in the image domain [5], an image may exhibit multi-
ple semantic classes, such as city and sea. In the text domain [6],
a document may belong to several predefined topics simultane-
ously, such as, society and entertainment. In the biology domain [7],
a gene could have a set of functions, such as metabolism and tran-
scription. What's more, the labels usually exhibit some correlations,
for example, an image containing beach has a greater possibility to
contain sea simultaneously than to contain grassland.

* Corresponding author.
E-mail addresses: dqmiao@tongji.edu.cn, miaoduogian@163.com (D. Miao).

http://dx.doi.org/10.1016/j.patcog.2017.02.025
0031-3203/© 2017 Elsevier Ltd. All rights reserved.

As in the traditional machine learning algorithm, the classifi-
cation performance of multi-label learning algorithm greatly de-
pends on the quality of available features, and the algorithm is of-
ten faced with the curse of dimensionality [8-10]. The data sets
used for learning usually contain a large number of features, some
of which are irrelevant or redundant for classification purpose. The
irrelevant or redundant features do not only increase the algorithm
complexity, but also degrade the classification performance [11].
Feature selection is a process of reducing dimensionality of the fea-
ture space, which aims to select a subset of the most relevant fea-
tures without losing class-discriminative information, and remove
irrelevant and redundant features [12].

Feature selection is an important problem for pattern classi-
fication systems, and there are a large number of approaches to
feature selection for machine learning, however most of them are
dedicated for single-label learning, for example, Peng [13] pro-
posed a min-redundancy and max-relevance criterion (mRMR)
based on mutual information for feature selection in single-label
learning. Recently, as the multi-label learning has attracted more
attention, some scholars stressed the relevance of feature dimen-
sion reduction problem in multi-label learning. One commonly en-
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Fig. 1. Label correlation.

countered way dealing with the multi-label learning is to trans-
form the multi-label problem into numerous single-label problems
[14,15], and then the relevant features for each transformed new
single label can be easily selected with the aid of any traditional
single-label methods [16-18]. However, this way either ignores the
correlation among labels which may cover very important informa-
tion contained in the multi-label data, or creates too many new la-
bels, resulting in the difficulty of the ensuing learning. To solve the
difficulty arising in this way, some feature selection methods have
been proposed to deal with multi-label data directly by evaluating
the feature in term of dependency with all labels [19-22]. How-
ever, the proposed methods directly handling multi-label learning
usually select features by considering the entire set of labels at a
time, while there does not always exist a strong correlation be-
tween any pair of labels, especially in data with a large collection
of labels. Thus the selected feature may be very useful for a single
label, while insignificant or even harmful for another label with
limited dependency, which may make the selected feature subset
too complicated and degrade the performance. Furthermore, the
complexity of the algorithm for feature selection and classification
may be strongly impacted by the number of labels.

For example, Fig. 1 displays the statistical information about the
labels of the Medical data set. Medical is a multi-label data set
about medical diagnosis [23], which has been used in Computa-
tional Medicine Centers 2007 Medical Natural Language Processing
Challenge. It includes a free-text summary of patient clinical his-
tory, impression and their prognosis, labeled with ICD-9-CM codes.
There are 45 possible labels in Medical data set, and each label is
shown as a node of the graph. The node size is in proportion to the
number of instances belonging to the corresponding label. An edge
of the graph indicates that there exists more than a single instance
simultaneously associated with the two labels linked by the edge,
and the width of the edge relates to the number of instances. For
a concise structure illustration, any pair of labels simultaneously
associated with just one instance is not shown in this figure. As
seen, there are four main groups of labels marked with different
colors, and different groups almost do not have any links in Fig. 1.
The rest of the remaining nodes are independent.

Therefore, to prudently explore the label correlation, while se-
lect a more relevant and compact feature subset, we propose a
granular feature selection method for multi-label learning with
a maximal correlation minimal redundancy criterion based on
mutual information. Granular computing(GrC) is about processing
complex information entities called information granules, which

arise in the process of data abstraction and derivation of knowl-
edge from data [24-27]. Information granule is the generic con-
struct of granular computing. Firstly, the labels can be abstracted
into several information granules according to their correlations.
The relevant labels are placed into the same information granule
by considering the dependency, which doesn’t exhibit a significant
degradation on the classification performance, for labels in the
same information granule have the largest dependency, while la-
bels in different information granules have very little dependency.
Then, for an information granule, an immediate method is to select
features having the maximal dependency on this information gran-
ule, while having minimal intra-redundancy. However, there are
numerous labels in an information granule, so it is not easy to take
all label combinations into computing the dependency directly. An
approximated way is to choose the feature having the largest cor-
relation with each label in the information granule while minimal
correlation with already selected features, called maximal correla-
tion minimal redundancy criterion. Maximal correlation criterion
guarantees that we pick out the most related features and omit ir-
relevant features, while minimal redundancy criterion makes sure
redundant features are not selected. Finally, a specific feature sub-
set is separately selected for each information granule of labels by
this way, which is more relevant and compact. The method does
not only consider the correlation among labels, but also selects
more specific feature subsets for labels to improve the classifica-
tion performance. The main contributions of this study include:

o We consider a granulation method to granulate labels of the la-
bel space into several information granules to explore the local
dependency among labels and choose a specific and compact
feature subset for each information granule of labels, on which
there are few researches.

o We propose a feature selection method for multi-label learning
based on mRMR [13], which does not only maximize the de-
pendency between the feature subset and the target informa-
tion granule, but also minimizes the redundancy in the feature
subset. We also prove that the maximal dependency of the fea-
ture and the target information granule can be approximated by
maximizing the sum of the individual correlation of the feature
and each label in the target information granule.
The comprehensive experiments are involved to verify the ef-
fectiveness of the label granularity on the size of the optimal
feature subset and the classification performance on four multi-
label data sets. Furthermore, we compare the proposed method
with other three feature selection methods. The results show
that the proposed method can choose compact and specific fea-
ture subsets, and achieve better performances in comparison
with the performance of the existing methods.

2. Related studies

Feature dimensionality reduction mechanisms can be mainly di-
vided into feature extraction and feature selection. Recently, fea-
ture extraction technique, including principle component analysis
(PCA) [19] and linear discriminant analysis (LDA) [28], has been
considered to reduce feature dimensions in multi-label classifica-
tion. For example, Zhang and Zhou [19] proposed a dimension-
ality reduction method for multi-label naive Bayes classification
(MLNB). It firstly eliminated irrelevant and redundant features by
PCA. Then, the appropriate subset of features was selected for clas-
sification using a genetic algorithm.

Among proposed multi-label algorithms, one popular way is to
transform the multi-label learning task into several single-label
learning tasks, such as binary relevance(BR) [29], label power-
set(LP) [30], and Pruned Problem transformation (PPT) [31], which
is called Problem transformation method [1], and then the resulting
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problem can be easily solved by single-label learning algorithms
[32-34]. Similarly, some feature selection methods for multi-label
learning transform the multi-label data into single-label data, then
select the relevant features for each label. Binary relevance(BR)
transformation is used to create a binary single-label data set for
each label in [35], and then feature subset is selected for each
single-label data set with relief and information gain measures.
However, this method may yield poor classification performance
because it handles the labels independently, leading to informa-
tion losses about correlation among labels. The label powerset(LP)
is applied to transform the music multi-label data set Emotions into
a single-label data set in [15]. The most relevant features are then
selected in accordance with the dependency between feature and
label, which is measured by x? statistics. Although the LP consid-
ers the correlation among labels, it may create too many new la-
bels, and cause the over-fitting and imbalance problem [36].

The problem transformation method usually does not take the
label correlation into account, or create numerous new labels,
which may degrade the classification performance. Therefore, some
feature selection methods are put forward to select features on
multi-label data set directly. In [21], Lee put forward a feature se-
lection method for multi-label classification based on multivari-
ate mutual information (MUMI). An effective feature subset is se-
lected by maximizing the dependency between selected features
and labels, and label interaction is considered without resorting to
problem transformation. Lin [22] proposed a multi-label learning
feature selection based on max-dependency and min-redundancy
(MDMR). The method chooses feature according to the dependency
between the candidate feature and all labels and the conditional
redundancy between the candidate feature and the selected fea-
tures simultaneously. A fast multi-label feature selection based on
information-theoretic feature ranking algorithm was proposed in
[37], where features were ranked according to their importance,
and then the top-ranked features were chosen. Almost all methods
directly selecting features from multi-label data set consider the
global dependency among labels, but not all labels greatly depend
on each other. The selected features when taking all labels into
consideration may have very important discriminative information
for one label, while may not exhibit any discriminative value for
another label which has little dependency on the label. Meanwhile,
it is not easy work to compute the dependency between each pair
of labels, especially when data sets have a large number of labels.

3. Preliminaries

In this section, we briefly recall the main concepts, which will
be used in further discussion.

3.1. Mutual information

The Shannon’s entropy [38,39] is a measure of uncertainty of
random variables. The entropy of a random variable X is defined
as:

H(X) = - px)log p(x). (1)

xeX
where p(x) is the probability of x. The joint entropy between two
variables X and Y is defined as follows:

H(X,Y)=-Y "> p(xy)logpx.y), 2)
xeX yeY
where the p(x, y) is the joint probability of x and y.
When the variable X is known while Y is not, the conditional

entropy can measure the remaining uncertainty, which is defined
as:

H(YIX) ==Y px y)logp(ylx), 3)

xeX yeY

where p(y|x) is the conditional probability. Here, the conditional
entropy can be replaced by entropy and joint entropy as follows:

H(Y|X)=HX,Y) - HX). (4)

Mutual information is one of the widely used measures of de-
pendency of variables. More specifically, it quantifies the obtained
information of one random variable, through the other random
variable. The mutual information between two random variables
is defined as follows:

. p(x.y)
MI(X;Y) = gy%;p(x y)log =2 200D (5)

If the value of mutual information between two random variables
is high, this means that the two variables are highly dependent.

Lemma 1. Mutual information can be represented by the correspond-
ing individual entropies as [40]:

MI(X:Y) = H(Y) — H(Y|X) = H(X) — H(X]Y)
=HX)+H(Y)-H(X.Y). (6)
Proof.
p(x.y)
; |
MI(X;Y) = )%y;p(x Nlog 2
=) > px.y)logpx.y) =Y Y p(x y)log p(x)p(y)
xeX yeY xeX yeY
=Y > px.y)logp(x.y) =Y Y px y)logp(x)
xeX yeY xeX yeY
=YY px.y)logp(y)
xeX yeY
=Y > p(x.y)logp(x,y) — Y p(x)logp(x)
xeX yeY xeX
- p(y)logp(y)
yeY

= HX) + H(Y) — H(X.Y).
O

Assuming that we already have variable Z, the mutual informa-
tion between X and Y given the value of variable Z, called condi-
tional mutual information, is defined as follows [40]:

p(x,y|2)
222 pexy. Z)lo‘gp(XIZ)pQ/IZ) @

xeX yeY zeZ

MI(X;Y|Z) =

Lemma 2. There exists a relationship between conditional mutual in-
formation and mutual information coming in the form [40]:

MI(X;Y|Z) = MI(X; Y, Z) — MI(X; Z). (8)
Proof.
, px.y|2)
MI(X;Y|Z) = g% ;p(x y, Z)lng(xlz)p(ylz)
_ p@)px.y,2)
"L 2 L Py DlEG T T

_ pOP@)PK. Y. 2)
=22 2 Py Alog P, 2)p.2)

xeX yeY zeZ
_ px, (,2)
gg;p(" Y- Dlog b .2)
p(x.2)
"2 2 P dlog ey
— MI(X: Y, Z) — MI(X: Z).
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Fig. 2. The structure of the proposed algorithm.

4. Proposed algorithm

In multi-label learning, let F = R? stand for the b-dimensional
input feature space, and L= {l;,l,,--- Iq} denote the predefined
label space. Each instance X; € F can be represented as a b-
dimensional feature vector X; = {x}.x}, - x}, which is associated
with a set of labels Y;CL. By learning from a training multi-label
data set Tn = {(X1,Y7). X3.Y2), ..., (Xa, Ys)}. the multi-label learn-
ing algorithm assigns the relevant labels to the unseen instance,
while the algorithm performance is significantly related with the
input features.

To improve the algorithm performance, a granular feature se-
lection method is proposed to select the most dependent features.
The proposed feature selection method is independent of classifier
algorithm. Firstly, the labels in label space L are granulated into
several information granules G based on their similarity informa-
tion contained in the training data set Tn to select more specific
and relevant features as discussed in Section 4.1. For each label in-
formation granule, we can get a feature subset having the maximal
dependency on the labels with the maximal correlation minimal
redundancy criterion, introduced in Section 4.2, then train a clas-
sifier model for each pair of feature subset and label information
granule. For an unseen instance, the output is the combination of
the prediction achieved by each classifier model. The overall struc-
ture of the algorithm is shown in Fig. 2.

4.1. Granulation

In granular computing, information granules are collections of
entities that usually originate at the numeric level and are ar-
ranged together due to their similarity, functional or temporal ad-
jacency, indistinguishability, coherency or the like. In this paper,
the labels are arranged into information granules G according to
their similarity. The labels in one information granule are rele-
vant to each other, while labels in different information granules
are irrelevant, so that the label correlation is explored as much as
possible. The size of G is smaller than the size of the label space
L. Imbalance problem is an inherent property in multi-label data,
and it is very likely that one information granule contains much
more labels than another one. To avoid a lack of balance problem
among labels, the size of each information granule is limited to
evenly arrange labels into information granules. For balanced clus-
tering, a balanced k-means method has been proposed in [41]. K-
means clustering is a popular technique. Here the k-means method
is used to realize granulation refer to Algorithm 1. Then a feature
subset S for each label information granule G is selected using the
feature selection technique.

Algorithm 1 Label granulation.

Input: Number of information granules n; Label space L; Label
data W; iterations it;
Output: n label information granules
fori=1tondo
//Initialize information granules G; and information granule
centers g;
Gi<—¢
g; < randomly selected member of L
end for

while it > 0 do
for each [; ¢ L do
for k=1 ton do
dy; < distance(l;, g, W)
end for
end for
No< |L|
while No > 0 do
Find arg minlskin_ljd d,q-
if |Gy = [[L|/n] then
dyj < o0
else
Add [; to the information granule Gy
d,j < o0
No < No—-1
end if
end while
Calculate centers of information granule g;
if all g, == g, then
break;
else
Gi<—¢
8k < g;<
end if
it <—it—1
end while
Output the label information granules Gy, Gy, - - -, Gy;

4.2. Maximal correlation minimal redundancy criterion

The crux of feature selection is to select a feature subset S con-
sisting of m features coming from the input feature set F(m < b),
which jointly have the maximal dependency on the target label
information granule G. Based on mutual information, the depen-
dency is measured by MI(S; G). To ensure the maximal dependency
between S and G, every selected feature should exhibit the largest
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contribution to MI(S; G). Suppose a subset S,,_; with m —1 fea-
tures has been picked, and the label information granule G con-
tains r labels. The mth feature is the one with the maximal mu-
tual information with label information granule G given the feature
subset S,;,_1, which is quantified by conditional mutual information
expressed in the form:

Max MI(G; Xm|Sm_1) = Max{MI(G; Sm_1 U {Xn}) — MI(G: Sm_1)],

9)
where the MI(G; S;) is calculated as follows:
p(sn’h G)
MI(Sp; G) = Sm, G)log—————

- _PGm1,Xm, G)
=222 PSn1.Xm. Olog s X p(©) (10)

=3 Y b A b )

p(X1, - Xm, b, - - lr)
P, Xm )p(h, 1)

It can be seen that the computing cost increases exponentially
as the number of features and labels increase. Here comes the dif-
ficultly when directly implementing the maximal dependency. A
min-redundancy and max-relevance criterion(mRMR) is proposed
in [13] to solve this problem. Based on mRMR, we consider a fea-
ture selection method for multi-label learning.

To maintain as much class-discriminative power about the la-
bel information granule G as possible, the selected feature subset
S should be maximally related to G, specifically to all labels in G,
which is called maximal correlation criterion, a approximation of
the max dependency. The correlation is expressed in terms of mu-
tual information. The selected S satisfies the following condition
with the mean value of mutual information between S and G:

1
5] > MI(x;: G). (11)

| X;eS

From the above expression, one can guarantee the maximal cor-
relation criterion stating that each new selected feature x; exhibits
the maximal correlation to G, so the condition can be converted
into the following one:

maxD(x;, G), D = MI(x;; G). (12)

Unlike traditional classification problem having only a single la-
bel, there are usually multiple labels in the information granula-
tion G. It is hard to implement the above criterion, especially when
the size of G is large. Intuitively, the maximal correlation crite-
rion between feature x; and information granule G shown in Eq.
(12) is approximately equal to the criterion stating that feature x;
has the maximal correlation with each label |; € G. This fact has
been proved in the appendix. Thus, the condition can be rewritten
as:

x log

maxD(S, G),D =

max C(x;,G),C = %ZMI(xi;lj)_ (13)
ljeG

According to the maximal correlation criterion, it is likely that
the new selected feature may exhibit a significant dependency on
some features of the selected feature subset, thus increasing intra-
redundancy in S. When two features show significant dependency,
the respective class-discriminative power would not increase much
if one of them has been added. Therefore the selected feature
should have the largest correlation to the label information granule
G, while it should exhibit the minimal dependency on the selected
feature subset S. Therefore, the following minimal redundancy con-
dition can be added when selecting a new feature.

minR(x;, S), R = %' > MI(x;: xj). (14)

X;eS

Table 1

Multi-label data sets used in the experiments.
Name Instance Feature Label Cardinality Density
Enron 1702 1001 53 3.378 0.064
Medical 978 1449 45 1.245 0.028
Emotions 593 72 6 1.869 0.311
Genbase 662 1185 27 1.252 0.046

Combining the two constraints specified above, the operator
I'(C, R) is defined to combine C and R, and consider the following
simpler form to optimize C and R simultaneously:

maxI'(C,R), ' =C—R. (15)

Given a feature subset S and the label information granule G,
the task of feature selection is to find the ith feature from the set
F — S when maximizing the I'(-). The I'(-) can be formed by using
(13) and (14) as:

1 1
I'(C,R) = el IZMI(xi; lj) - 5 > Mi(x;: x;). (16)
ieG

X;eS

The method is realized in the form of Algorithm 2.

Algorithm 2 Granular feature selection for multi-label learning.
Input:
Feature set F; The size of feature subset m;
Label information granule G;
Output: Feature subset S
// Initialize the feature subset
S= ¢;
fori=1tobdo
Compute the mutual information MI(x;; ;) between feature x;
and label [; in G;
Compute the mutual information MI(x;; x;) between feature x;
and each feature x;;
end for
repeat
Find the feature x; € F satisfying Eq. (15)
S=Su{x};
F=F\{x};
until |S| ==m
Output the selected feature subset S for label information gran-
ule G;

Lemma 3. The label information granule G with a coarser granularity
has a larger size of the best feature subset S.

Proof. If a label |; € L is added to G represented by G, then G is
coarser than G. Suppose S, S; and S are the best feature subsets for
G, I; and G respectively, S’ = SUS;, therefore IS'1 = 1S]. IS'| = |5 if
and only if §;cS. O

5. Experimental studies
5.1. Data sets and experimental setting

To evaluate the performance of the proposed method, we exper-
iment with four multi-label data sets covering different domains,
as shown in Table 1[42]. In the table, the ‘name’ is the name of the
data set and the ‘instance’, the ‘feature’ and the ‘label’ stand for the
instance number, the feature number, and the label number of the
data set, separately. The ‘cardinality’ is the label cardinality which
is the average number of labels associated with each instance. The
‘density’ is the label density which is the average number of labels
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Fig. 3. Classification performance on Enron according to the number of selected features using the proposed method with different numbers (1,9,27,53) of information
granules: (A) Hamming loss; (B) One error; (C) Coverage; (D) Ranking loss; (E) Average precision.

of instances data set divided by the number of labels in the data
set.

Enron data set comes from the UC Berkeley Enron Email Anal-
ysis Project [43], and contains 1702 multi-labeled Enron e-mails,
where the e-mails messages are made public from the Enron cor-
poration. There are 53 possible tags in the data, such as Empty
Message, Company Business, and Purely Personal.

Medical [23] data set contains 978 instances, and each instance
is a radiology text report consisting of the medical history and
symptom and associated with a subset of 45 ICD-9-CM labels.

Emotions [15] data set contains 593 instances, each of which is
a song and represented by 8 rhythmic features and 64 timbre fea-
tures. The instances are labeled with 6 possible emotions.

Genbase [44] data set consists of 662 proteins, and each protein
chain is represented using a 1185 motif sequence vocabulary. The
labels are 27 protein function families, such as a class of receptors,
a class of oxydoreductases, and a class of transferases.

After selecting features, a classifier is used to produce the out-
put. Zhang [45] combined the k-nearest neighbors algorithm and
Bayesian inference to propose a multi-label lazy learning approach,
i.e. multi-label k-nearest neighbors algorithm(ML-KNN). ML-KNN is
a well known multi-label classification scheme for its efficiency.
To produce the output, the ML-KNN method is chosen to com-
plete classification. As recommended in [45], the number of near-
est neighbors is set to 10, and the smoothing factor equals to 1. To
obtain stable results, ten-fold cross-validations evaluation is used in
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Fig. 4. Classification performance on Medical according to the number of selected features using the proposed method with different numbers (1,5,9,45) of information
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the experiment, and the average classification performance is re-
ported.

5.2. Evaluation criteria

Different from the single-label learning algorithm, the perfor-
mance evaluation for the multi-label learning algorithm is more
complicated. The following five widely used multi-label evaluation
criteria are used to quantify the performance in this paper, namely
Hamming loss, coverage, one-error, ranking loss and average precision
[46]. Given a test data set Ts = {(X;.Y7). (X5.Y3), -, (X, Yz)}, the
multi-label learning algorithm predicts a relevant label set Yi’ for
each unseen instance X;, and then the used evaluation criteria are
defined as:

(1) Hamming Loss: it evaluates the average difference between
the predicted label set Y,./ and the ground-truth label set Y}, i.e, a
predicted label is not actually belonging to the instance or an un-
predicted label is actually belonging to the instance. The perfor-

mance of Hamming Loss is defined as:

1
yHammingLoss = E Z |Y1 AYIL
i=1

where A represents the difference between two sets, and || stands
for the cardinality of a set. The smaller the value of Hamming loss,
the better the performance. The algorithm achieves the best per-
formance, when the Hamming loss attains O.

(2) Coverage: the measure evaluates how far we need, on aver-
age, to go down the ranked list of labels in order to cover all the

(17)



E Li et al./Pattern Recognition 67 (2017) 410-423 417

,,
b

| — L B T T = T 048 T it T L e e L T—r—
- -y
.= --=2
-3 046 =ipied
-F ]
=&~ Base Line 044 == Base Line

i
8 5
2 AL &
£026 ¥ ell a
£ /’ ¥ (=
g . H -
G s
025} i -
024 E
Foul b 4 A % § .4 % 4 .A. .k §o H K 4 4 K 3 gasL b 4 o B o4 o B 4.8 gy o8l g g 0 .
"™ 5 9 13 17 21 25 29 33 37 41 45 49 53 57 B1 65 69 72 1 6 9 13 17 21 26 29 33 37 41 45 49 53 57 61 65 6972
Feature Number Feature Number
2 L s e e o B 03— T T =
-1 |
24 -»=-2 0.2 --=2
-3 =3
23! g 0.2 -
=& Base Line =& Base Line

Coverage

1.95,

Ranking Loss
o © o o
B B & B
—

o
8
T

e
N

Boft g Spo gl ow. b gl ow. M gl g eE F oy
13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 72
Feature Number

)

L L
5 9

P R A R fow g W W g
13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 72
Feature Number

5 9

8
oL
5]
o
o
@
=3
o
2
< o7 -2 B
-3
0.69 —-=p a!
=& Base Line
0.68 g
0.67 L2

I N WO O S [ S S SRR (N R S N D |
9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 72
Feature Number

(E)

Fig. 5. Classification performance on Emotions according to the number of selected features using the proposed method with different numbers (1,2,3,6) of information

granules: (A) Hamming loss; (B) One error; (C) Coverage; (D) Ranking loss;

ground-truth labels of the instance.

(18)

.1 t
Yeovergage = t '21: HI]S',X ri(l) -1,
where r;(]) is a ranking function, which maps the predicted outputs
for any I € Y;. The labels of each test instance are ranked in de-
scending order according to the associated probability. The smaller
the value of the coverage, the better the performance.
(3) One-error: it computes how many times the top-ranked la-
bel is not in the set of relevant labels of the instance. The smaller
the value of one error, the better the performance.

(19)

)/Oneermr =

%Z([argrrllixri(l)] ¢Y;).
i=1

(E) Average precision.

(4) Ranking Loss: it expresses the number of times that irrelevant
labels are ranked higher than relevant labels.

1< 1
Viningos = 7 ZlY”Y||{(la,lb) ri(la) > ri(lp), (la,

(20)

where Y; denotes the complementary set of Y; set which is the
complement with respect to L. The smaller the value of one error,
the better the performance.

(5) Average Precision: the criterion evaluates the average frac-
tion of labels ranked above a particular label I € Y;, which actually
are in Y;. The bigger the value of average precision, the better the
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performance.

TG 1
Y averagebrecision — T Zm Z
leY;

i=1

{I'e Y (') <r;(D}]
ri(D) '

(21)

5.3. Granulation test

In this section, the effect of the label granularity is researched.
As shown in Figs. 3, 4, 5 and 6, we involve a base line in each fig-
ure denoting the direct results of the use of the ML-KNN without
any preprocessing of features or labels. Furthermore, in Figs. 3, 4,
5 and 6, the method with one information granule means no gran-
ulation processing, while the method with the largest number of
information granules converts the label set into numerous single
labels and shows the performance without considering the label
dependency. More specifically, 1, 9, 27, and 53 label information

granules are considered for Enron, and 1, 5, 9, and 45 label infor-
mation granules are studies in case of Medical, while 1, 2, 3, and
6 label information granules for Emotions, and 1, 3, 9, and 27 label
information granules for Genbase. Different numbers of features are
chosen, which can demonstrate the relationship between the fea-
ture number and the granularity of the label information granule.
Figs. 3, 4, 5 and 6 show the performances obtained for the data set
Enron, Medical, Emotions, and Genbase, respectively.

In Fig. 3, the feature numbers are selected from 10 to 150 with
a step of 10, and 200, 250, 300. It can be seen that almost all
methods with feature selection achieve better results than the base
method on all set feature number, except the one with one infor-
mation granule, because the feature number is too small resulting
in a significant loss of information. However, the performance of
the method with one information granule improves quickly with
the increasing of feature number, and performs better than the
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Fig. 7. Classification performance on Enron according to the number of selected features using compared feature selection methods: (A) Hamming loss; (B) One error; (C)

Coverage; (D) Ranking loss; (E) Average precision.

base method when the feature number is greater than 120. The
performance of the method with a single information granule is
enhanced as the feature number increases. However, the perfor-
mances of the four methods endowed with information granula-
tion increase reaching the best performance, and then decrease
gradually with the increasing of the number of features. The meth-
ods with granulation perform better than the one without granu-
lation. Furthermore, the method with smaller size of information
granule earlier reaches the best performance. As shown in Fig. 3,
for Enron, the method with 27 information granules results in the
best performance with regard to the Hamming loss criterion and
one error criterion, and the performance is very close to the best
one, obtained by using the method with 53 information granules,
on the other three criteria. The label dependency is an important
factor, although the method considering the label dependency does
no better than the method transforming the label set into single la-
bels with regard to some criteria because of the loose label depen-
dency observed for the Enron data set. Thus, the feature selection
and information granulation can improve the performance of the
method for this data set.

With regard to the Medical data set, the size of selected fea-
ture subset ranges from 10 to 150 with a step of 10, with the per-
formance displayed in Fig. 4. Compared to the base method, the
performance shape of Medical is similar to the one of Enron on
Hamming loss, one error and average precision. Regarding cover-
age and ranking loss, the base method is worse than the best per-
formance of the methods taking the label dependency into consid-
eration, namely the method with 1, 5, and 9 information granules.
From Fig. 4, it can be seen that the feature number with the best
performance has a negative correlation with the number of in-
formation granules, and after obtaining the best performance, the

performance of each considered method degrades gradually as the
number of features increases. For Medical, the best performance is
achieved by the method with 9 information granules on one er-
ror and average precision, while the method with 5 information
granules outperforms on the rest of the criteria. Furthermore, the
best performances of the method with 5, 9 information granules
are greater than the performances of the method with 1, 45 infor-
mation granules. Therefore, the proposed method performs well on
Medical data set.

For Emotions data set, all feature numbers are considered, be-
cause it has a small number of features as shown in Table 1. From
Fig. 5, it can be seen that all feature selection methods firstly
vary forward to the best performance, then change away as the
feature number increases, and finally achieve the same results as
the base method when all of the 72 features are selected. All of
the methods considering feature selection always perform signifi-
cantly better than the base method except the beginning and the
ending, because very few features are selected, and the feature
subset does not have enough class-discriminative information, or
too many features are selected, and irrelevant features degrade
the performance. The best performances on Emotions are obtained
by the method with 2 information granules on all evaluation cri-
teria beside the coverage. The method with 2 information gran-
ules gets the best performance around 37 features and is earlier
than the one with 1 information granule, which reaches the best
around 60 features, namely the best feature subset of the former is
smaller than the later, because the label information granules with
a coarser granularity has a larger best feature subset. The method
with 6 information granules perform not very well, because of ig-
noring label dependency.
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Coverage; (D) Ranking loss; (E) Average precision.

As shown in Fig. 6, all the performances on Genbase are very ex-
cellent versus the feature number which is set from 10 to 150 with
a step of 10, for the Genbase data set has a few labels and very
small label cardinality, while many features. Compared with the
base method, the methods considering feature selection still per-
form better, although the base method obtains very excellent per-
formance. The method with 9 information granules outperforms
among all the methods. The method without granulating achieves
stable results after 50 features.

From the experiment, the proposed feature selection method
can improve the algorithm performance of ML-KNN, and performs
better than those without granulation or ignoring label depen-
dency. There are two properties summarized about the granular
feature selection in multi-label learning as follows:

o The size of selected feature subset influences the algorithm per-
formance. For a given label information granule, the selected
feature subset is too small resulting in losing much informa-
tion, not able to stand for the class-discriminative information
contained in the data set. If too great features are selected, the
unnecessary feature do not only increase the computing cost,
but also may degrade classification accuracy.

o The label granularity affects the size of selected feature subset
achieving the best performance. The label granularity is more
rough, namely more labels are considered in one label infor-
mation granule, less information losing about label dependency.
However, the selected feature subset is large for the label infor-
mation granule with rough granularity, and the selected feature
probably has significant dependency on some labels in the label
information granule, while little, even negative effect on others,
so that the algorithm performance is degraded.

Furthermore, there is a drawback on the method without con-
sidering the label dependency that the algorithm complexity is
much higher than others because of training a classification model
for each label information granule.

5.4. Comparative analysis

To show the quality of the proposed method compared to oth-
ers, we compare the proposed method with multi-label feature se-
lection methods MUMI [21], MDMR [22] and FIMF [37] which are
introduced in Section 2. The compared results on Genbase are not
displayed in this section, because it is very easy to classify, and
the results cannot show the differences of the compared methods.
Considering the results in Section 5.3, for multi-label data sets En-
ron, Medical and Emotions, the number of information granules is
correspondingly set to be 9, 5 and 2 on the proposed method. The
compared results are shown in Figs. 7, 8 and 9.

From Figs. 7, 8 and 9, it is intuitively noticed that for a sin-
gle data set, the compared performances in each evaluation cri-
teria has similar variation, so we don’t discuss the individual re-
sult in every evaluation criterion. As shown in Fig. 7, the proposed
method outperforms the others on each considered feature num-
ber on Enron. On Medical, it can be seen from Fig. 8, that the pro-
posed method obtains the best performance on a smaller feature
number than others, and the obtained best performance is better
than other three. It means that the proposed method is fast and
effective. For the experiment on Emotions displayed in Fig. 9, the
proposed method achieves much better results than MUMI. Com-
pared to MDMR and FIMF, the proposed method has a similar vari-
ation as the feature number increases, and even gets a little better
results on some evaluation criteria. Among the three data sets, the
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Emotions data set has the smallest label number, and it cannot ex-
ert the advantage of the proposed method very well. Overall, the
proposed method can get a better quality than MUMI, MDMR and
FIMF on the used data sets, particularly on data sets with a larger
number of labels.

6. Conclusions

In this paper, we have proposed a granular feature selection
method for multi-label learning with a maximal correlation and
minimal redundancy criterion, which takes the local label depen-
dency into consideration. The maximal correlation and minimal re-
dundancy criterion can approximate the maximal dependency on
feature selection in multi-label learning, where the selected fea-
tures are most relevant to the target label information granule,
meanwhile there is the least redundancy in the feature subset. To
verify the effectiveness, the performance of the proposed method
has been compared with those not reducing the features, not gran-
ulating the labels, or not exploring the label dependency. We also
have compared the proposed method and three well known multi-
label feature selection methods. The experimental results show
that the proposed method performs better and can select a com-
pact feature subset. Especially, the multi-label feature selection
could have very significant impact on clinical application, includ-
ing one emerging field named radiomics, where a large number
of quantitative imaging features have been fitted into a compu-
tational model to predict the clinical interested outcomes. Robust
and meaningful feature selection algorithms can largely improve
the model performance in this field. Therefore, it is necessary to

explore the label dependency properly with granular computing in
multi-label feature selection.

Although the proposed method can reduce the dimensionality
of the feature space, it requires the training of the classifier for ev-
ery label information granulation. This may substantially increase
the algorithm complexity, when the number of information gran-
ule is very large. Hence, it is worthwhile to research and develop a
way of measuring a granularity to guide on how to determine the
best number of information granules.
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Appendix

Section 4.2 shows that the maximal correlation of feature x; and
information granule G can be approximated by maximizing the de-
pendency of x; and each label |; in G. Firstly, considering the max-
imal correlation criterion in Eq. (12), the mutual information be-
tween feature x; and information granule G can be represented in

terms of entropies through Lemma 1 as follows:
MI(x;; G) = H(x;) + H(G) — H(x;, G). (22)

Science the labels in information granule G are fixed, it can be eas-
ily seen that the entropy of G is a constant. Using Eqgs. (12) and
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(22), we have
max MI(x;; G) = max(H(x;) + H(G) — H(x;, G))
=max (H(x;) — H(x;, G)) + H(G) (23)
o max(H(x;) — H(x;, G)).
Here, we define a quantity ®(x;; G) representing the term H(x;)

minus H(x;, G). Then, the upper bound of ®(x;; G) can be formed
as follows:

O(x; G) = H(x;) — H(x;, G)
=Y p(x)logp(xi) + Y -y p(xi I, b+ k)
x logp(xi, Iy, I, - - -, It)

Xili, b, - I
=Z'-'ZP(Xi,th,---,lr)lOgM

p(x;)
=Z‘-'ZP(Xi,ll,lz,~--,lr)
I pthll, - L x)p(Llls, - - I, ;) - - - p(e]x;) p(x;)
x log
p(x;)
—H( |k, - b x) —H( s, o b x) — - = H|X3)
<0.

(24)

Obviously, the upper bound of ®(x;; G) is 0 while it obtains
the maximal value when all variables are maximally dependent. In
Eq. (24), for labels in G are already given and this means that x
should have the maximal correlation on each label [; in G, i.e. the
condition shown in Eq. (13).
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