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a b s t r a c t 

Like the traditional machine learning, the multi-label learning is faced with the curse of dimensionality. 

Some feature selection algorithms have been proposed for multi-label learning, which either convert the 

multi-label feature selection problem into numerous single-label feature selection problems, or directly 

select features from the multi-label data set. However, the former omit the label dependency, or produce 

too many new labels leading to learning with significant difficulties; the latter, taking the global label de- 

pendency into consideration, usually select a few redundant or irrelevant features, because actually not 

all labels depend on each other, which may confuse the algorithm and degrade its classification perfor- 

mance. To select a more relevant and compact feature subset as well as explore the label dependency, a 

granular feature selection method for multi-label learning is proposed with a maximal correlation min- 

imal redundancy criterion based on mutual information. The maximal correlation minimal redundancy 

criterion makes sure that the selected feature subset contains the most class-discriminative information, 

while in the meantime exhibits the least intra-redundancy. Granulation can help explore the label de- 

pendency. We study the relation of the label granularity and the performance on four data sets, and 

compare the proposed method with other three multi-label feature selection methods. The experimental 

results demonstrate that the proposed method can select compact and specific feature subsets, improve 

the classification performance and performs better than other three methods on the widely-used multi- 

label learning evaluation criteria. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Traditional machine learning algorithms usually aim to find the

most relevant class label l of the unseen instance, which are called

single-label learning algorithms. Unlike the single-label learning,

given a predefined label space L , the task of multi-label learning

algorithms is to predict a set of relevant labels Y of the unseen

instance, where Y ⊆ L and | Y | ≥ 1 [1–4] . 

Multi-label instances exist in various real-world domains. For

example, in the image domain [5] , an image may exhibit multi-

ple semantic classes, such as city and sea . In the text domain [6] ,

a document may belong to several predefined topics simultane-

ously, such as, society and entertainment . In the biology domain [7] ,

a gene could have a set of functions, such as metabolism and tran-

scription . What’s more, the labels usually exhibit some correlations,

for example, an image containing beach has a greater possibility to

contain sea simultaneously than to contain grassland . 
∗ Corresponding author. 
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As in the traditional machine learning algorithm, the classifi-

ation performance of multi-label learning algorithm greatly de-

ends on the quality of available features, and the algorithm is of-

en faced with the curse of dimensionality [8–10] . The data sets

sed for learning usually contain a large number of features, some

f which are irrelevant or redundant for classification purpose. The

rrelevant or redundant features do not only increase the algorithm

omplexity, but also degrade the classification performance [11] .

eature selection is a process of reducing dimensionality of the fea-

ure space, which aims to select a subset of the most relevant fea-

ures without losing class-discriminative information, and remove

rrelevant and redundant features [12] . 

Feature selection is an important problem for pattern classi-

cation systems, and there are a large number of approaches to

eature selection for machine learning, however most of them are

edicated for single-label learning, for example, Peng [13] pro-

osed a min-redundancy and max-relevance criterion (mRMR)

ased on mutual information for feature selection in single-label

earning. Recently, as the multi-label learning has attracted more

ttention, some scholars stressed the relevance of feature dimen-

ion reduction problem in multi-label learning. One commonly en-

http://dx.doi.org/10.1016/j.patcog.2017.02.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.02.025&domain=pdf
mailto:dqmiao@tongji.edu.cn
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Fig. 1. Label correlation. 
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ountered way dealing with the multi-label learning is to trans-

orm the multi-label problem into numerous single-label problems

14,15] , and then the relevant features for each transformed new

ingle label can be easily selected with the aid of any traditional

ingle-label methods [16–18] . However, this way either ignores the

orrelation among labels which may cover very important informa-

ion contained in the multi-label data, or creates too many new la-

els, resulting in the difficulty of the ensuing learning. To solve the

ifficulty arising in this way, some feature selection methods have

een proposed to deal with multi-label data directly by evaluating

he feature in term of dependency with all labels [19–22] . How-

ver, the proposed methods directly handling multi-label learning

sually select features by considering the entire set of labels at a

ime, while there does not always exist a strong correlation be-

ween any pair of labels, especially in data with a large collection

f labels. Thus the selected feature may be very useful for a single

abel, while insignificant or even harmful for another label with

imited dependency, which may make the selected feature subset

oo complicated and degrade the performance. Furthermore, the

omplexity of the algorithm for feature selection and classification

ay be strongly impacted by the number of labels. 

For example, Fig. 1 displays the statistical information about the

abels of the Medical data set. Medical is a multi-label data set

bout medical diagnosis [23] , which has been used in Computa-

ional Medicine Centers 2007 Medical Natural Language Processing

hallenge. It includes a free-text summary of patient clinical his-

ory, impression and their prognosis, labeled with ICD-9-CM codes.

here are 45 possible labels in Medical data set, and each label is

hown as a node of the graph. The node size is in proportion to the

umber of instances belonging to the corresponding label. An edge

f the graph indicates that there exists more than a single instance

imultaneously associated with the two labels linked by the edge,

nd the width of the edge relates to the number of instances. For

 concise structure illustration, any pair of labels simultaneously

ssociated with just one instance is not shown in this figure. As

een, there are four main groups of labels marked with different

olors, and different groups almost do not have any links in Fig. 1 .

he rest of the remaining nodes are independent. 

Therefore, to prudently explore the label correlation, while se-

ect a more relevant and compact feature subset, we propose a

ranular feature selection method for multi-label learning with

 maximal correlation minimal redundancy criterion based on

utual information. Granular computing(GrC) is about processing

omplex information entities called information granules, which
rise in the process of data abstraction and derivation of knowl-

dge from data [24–27] . Information granule is the generic con-

truct of granular computing. Firstly, the labels can be abstracted

nto several information granules according to their correlations.

he relevant labels are placed into the same information granule

y considering the dependency, which doesn’t exhibit a significant

egradation on the classification performance, for labels in the

ame information granule have the largest dependency, while la-

els in different information granules have very little dependency.

hen, for an information granule, an immediate method is to select

eatures having the maximal dependency on this information gran-

le, while having minimal intra-redundancy. However, there are

umerous labels in an information granule, so it is not easy to take

ll label combinations into computing the dependency directly. An

pproximated way is to choose the feature having the largest cor-

elation with each label in the information granule while minimal

orrelation with already selected features, called maximal correla-

ion minimal redundancy criterion. Maximal correlation criterion

uarantees that we pick out the most related features and omit ir-

elevant features, while minimal redundancy criterion makes sure

edundant features are not selected. Finally, a specific feature sub-

et is separately selected for each information granule of labels by

his way, which is more relevant and compact. The method does

ot only consider the correlation among labels, but also selects

ore specific feature subsets for labels to improve the classifica-

ion performance. The main contributions of this study include: 

• We consider a granulation method to granulate labels of the la-

bel space into several information granules to explore the local

dependency among labels and choose a specific and compact

feature subset for each information granule of labels, on which

there are few researches. 
• We propose a feature selection method for multi-label learning

based on mRMR [13] , which does not only maximize the de-

pendency between the feature subset and the target informa-

tion granule, but also minimizes the redundancy in the feature

subset. We also prove that the maximal dependency of the fea-

ture and the target information granule can be approximated by

maximizing the sum of the individual correlation of the feature

and each label in the target information granule. 
• The comprehensive experiments are involved to verify the ef-

fectiveness of the label granularity on the size of the optimal

feature subset and the classification performance on four multi-

label data sets. Furthermore, we compare the proposed method

with other three feature selection methods. The results show

that the proposed method can choose compact and specific fea-

ture subsets, and achieve better performances in comparison

with the performance of the existing methods. 

. Related studies 

Feature dimensionality reduction mechanisms can be mainly di-

ided into feature extraction and feature selection. Recently, fea-

ure extraction technique, including principle component analysis

PCA) [19] and linear discriminant analysis (LDA) [28] , has been

onsidered to reduce feature dimensions in multi-label classifica-

ion. For example, Zhang and Zhou [19] proposed a dimension-

lity reduction method for multi-label naive Bayes classification

MLNB). It firstly eliminated irrelevant and redundant features by

CA. Then, the appropriate subset of features was selected for clas-

ification using a genetic algorithm. 

Among proposed multi-label algorithms, one popular way is to

ransform the multi-label learning task into several single-label

earning tasks, such as binary relevance(BR) [29] , label power-

et(LP) [30] , and Pruned Problem transformation (PPT) [31] , which

s called Problem transformation method [1] , and then the resulting
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problem can be easily solved by single-label learning algorithms

[32–34] . Similarly, some feature selection methods for multi-label

learning transform the multi-label data into single-label data, then

select the relevant features for each label. Binary relevance(BR)

transformation is used to create a binary single-label data set for

each label in [35] , and then feature subset is selected for each

single-label data set with relief and information gain measures.

However, this method may yield poor classification performance

because it handles the labels independently, leading to informa-

tion losses about correlation among labels. The label powerset(LP)

is applied to transform the music multi-label data set Emotions into

a single-label data set in [15] . The most relevant features are then

selected in accordance with the dependency between feature and

label, which is measured by χ2 statistics. Although the LP consid-

ers the correlation among labels, it may create too many new la-

bels, and cause the over-fitting and imbalance problem [36] . 

The problem transformation method usually does not take the

label correlation into account, or create numerous new labels,

which may degrade the classification performance. Therefore, some

feature selection methods are put forward to select features on

multi-label data set directly. In [21] , Lee put forward a feature se-

lection method for multi-label classification based on multivari-

ate mutual information (MUMI). An effective feature subset is se-

lected by maximizing the dependency between selected features

and labels, and label interaction is considered without resorting to

problem transformation. Lin [22] proposed a multi-label learning

feature selection based on max-dependency and min-redundancy

(MDMR). The method chooses feature according to the dependency

between the candidate feature and all labels and the conditional

redundancy between the candidate feature and the selected fea-

tures simultaneously. A fast multi-label feature selection based on

information-theoretic feature ranking algorithm was proposed in

[37] , where features were ranked according to their importance,

and then the top-ranked features were chosen. Almost all methods

directly selecting features from multi-label data set consider the

global dependency among labels, but not all labels greatly depend

on each other. The selected features when taking all labels into

consideration may have very important discriminative information

for one label, while may not exhibit any discriminative value for

another label which has little dependency on the label. Meanwhile,

it is not easy work to compute the dependency between each pair

of labels, especially when data sets have a large number of labels. 

3. Preliminaries 

In this section, we briefly recall the main concepts, which will

be used in further discussion. 

3.1. Mutual information 

The Shannon’s entropy [38,39] is a measure of uncertainty of

random variables. The entropy of a random variable X is defined

as: 

H(X ) = −
∑ 

x ∈ X 
p(x ) log p(x ) , (1)

where p ( x ) is the probability of x . The joint entropy between two

variables X and Y is defined as follows: 

H(X, Y ) = −
∑ 

x ∈ X 

∑ 

y ∈ Y 
p(x, y ) log p(x, y ) , (2)

where the p ( x, y ) is the joint probability of x and y . 

When the variable X is known while Y is not, the conditional

entropy can measure the remaining uncertainty, which is defined

as: 

H(Y | X ) = −
∑ 

x ∈ X 

∑ 

y ∈ Y 
p(x, y ) log p(y | x ) , (3)
here p ( y | x ) is the conditional probability. Here, the conditional

ntropy can be replaced by entropy and joint entropy as follows:

(Y | X ) = H(X, Y ) − H(X ) . (4)

Mutual information is one of the widely used measures of de-

endency of variables. More specifically, it quantifies the obtained

nformation of one random variable, through the other random

ariable. The mutual information between two random variables

s defined as follows: 

I(X ;Y ) = 

∑ 

x ∈ X 

∑ 

y ∈ Y 
p(x, y ) log 

p(x, y ) 

p(x ) p(y ) 
. (5)

f the value of mutual information between two random variables

s high, this means that the two variables are highly dependent. 

emma 1. Mutual information can be represented by the correspond-

ng individual entropies as [40] : 

I(X ;Y ) = H(Y ) − H(Y | X ) = H(X ) − H(X | Y ) 
= H(X ) + H(Y ) − H(X, Y ) . (6)

roof. 

I(X ;Y ) = 

∑ 

x ∈ X 

∑ 

y ∈ Y 
p(x, y ) log 

p(x, y ) 

p(x ) p(y ) 

= 

∑ 

x ∈ X 

∑ 

y ∈ Y 
p(x, y ) log p(x, y ) −

∑ 

x ∈ X 

∑ 

y ∈ Y 
p(x, y ) log p(x ) p(y ) 

= 

∑ 

x ∈ X 

∑ 

y ∈ Y 
p(x, y ) log p(x, y ) −

∑ 

x ∈ X 

∑ 

y ∈ Y 
p(x, y ) log p(x ) 

−
∑ 

x ∈ X 

∑ 

y ∈ Y 
p(x, y ) log p(y ) 

= 

∑ 

x ∈ X 

∑ 

y ∈ Y 
p(x, y ) log p(x, y ) −

∑ 

x ∈ X 
p(x ) log p(x ) 

−
∑ 

y ∈ Y 
p(y ) log p(y ) 

= H(X ) + H(Y ) − H(X, Y ) . 

�

Assuming that we already have variable Z , the mutual informa-

ion between X and Y given the value of variable Z , called condi-

ional mutual information, is defined as follows [40] : 

I(X ;Y | Z) = 

∑ 

x ∈ X 

∑ 

y ∈ Y 

∑ 

z∈ Z 
p(x, y, z) log 

p(x, y | z) 
p(x | z) p(y | z) . (7)

emma 2. There exists a relationship between conditional mutual in-

ormation and mutual information coming in the form [40] : 

I(X ;Y | Z) = MI(X ;Y, Z) − MI(X ; Z) . (8)

roof. 

I(X ;Y | Z) = 

∑ 

x ∈ X 

∑ 

y ∈ Y 

∑ 

z∈ Z 
p(x, y, z) log 

p(x, y | z) 
p(x | z) p(y | z) 

= 

∑ 

x ∈ X 

∑ 

y ∈ Y 

∑ 

z∈ Z 
p(x, y, z) log 

p(z) p(x, y, z) 

p(x, z ) p(y, z ) 

= 

∑ 

x ∈ X 

∑ 

y ∈ Y 

∑ 

z∈ Z 
p(x, y, z) log 

p(x ) p(z) p(x, y, z) 

p(x ) p(x, z) p(y, z) 

= 

∑ 

x ∈ X 

∑ 

y ∈ Y 

∑ 

z∈ Z 
p(x, y, z) log 

p(x, (y, z)) 

p(x ) p(y, z) 

−
∑ 

x ∈ X 

∑ 

z∈ Z 
p(x, z) log 

p(x, z) 

p(x ) p(z) 

= MI(X ;Y, Z) − MI(X ; Z) . 
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Fig. 2. The structure of the proposed algorithm. 
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Algorithm 1 Label granulation. 

Input: Number of information granules n ; Label space L ; Label 

data W ; iterations it; 

Output: n label information granules 

for i = 1 to n do 

//Initialize information granules G i and information granule 

centers g i 
G i ← φ
g i ← randomly selected member of L 

end for 

while it > 0 do 

for each l j ∈ L do 

for k = 1 to n do 

d k j ← distance (l j , g k , W ) 

end for 

end for 

No← | L | 
while No > 0 do 

Find arg min 1 ≤k ≤n,l j ∈ L d k j 

if | G k | ≥ �| L | /n 	 then 

d k j ← ∞ 

else 

Add l j to the information granule G k 

d ∗ j ← ∞ 

N o ← N o − 1 

end if 

end while 

Calculate centers of information granule g 
′ 
k 

if all g 
′ 
k 

== g k then 

break; 

else 

G i ← φ
g k ← g 

′ 
k 

end if 

it ← it − 1 

end while 

Output the label information granules G 1 , G 2 , · · ·, G n ; 

4

 

s  

w  

i  

d  

b  
. Proposed algorithm 

In multi-label learning, let F = R b stand for the b -dimensional

nput feature space, and L = { l 1 , l 2 , · · ·, l q } denote the predefined

abel space. Each instance X i ∈ F can be represented as a b -

imensional feature vector X i = { x i 
1 
, x i 

2 
, · · ·, x i 

b 
} , which is associated

ith a set of labels Y i ⊆L . By learning from a training multi-label

ata set T n = { (X 1 , Y 1 ) , (X 2 , Y 2 ) , . . . , (X a , Y a ) } , the multi-label learn-

ng algorithm assigns the relevant labels to the unseen instance,

hile the algorithm performance is significantly related with the

nput features. 

To improve the algorithm performance, a granular feature se-

ection method is proposed to select the most dependent features.

he proposed feature selection method is independent of classifier

lgorithm. Firstly, the labels in label space L are granulated into

everal information granules G based on their similarity informa-

ion contained in the training data set Tn to select more specific

nd relevant features as discussed in Section 4.1 . For each label in-

ormation granule, we can get a feature subset having the maximal

ependency on the labels with the maximal correlation minimal

edundancy criterion, introduced in Section 4.2 , then train a clas-

ifier model for each pair of feature subset and label information

ranule. For an unseen instance, the output is the combination of

he prediction achieved by each classifier model. The overall struc-

ure of the algorithm is shown in Fig. 2 . 

.1. Granulation 

In granular computing, information granules are collections of

ntities that usually originate at the numeric level and are ar-

anged together due to their similarity, functional or temporal ad-

acency, indistinguishability, coherency or the like. In this paper,

he labels are arranged into information granules G according to

heir similarity. The labels in one information granule are rele-

ant to each other, while labels in different information granules

re irrelevant, so that the label correlation is explored as much as

ossible. The size of G is smaller than the size of the label space

 . Imbalance problem is an inherent property in multi-label data,

nd it is very likely that one information granule contains much

ore labels than another one. To avoid a lack of balance problem

mong labels, the size of each information granule is limited to

venly arrange labels into information granules. For balanced clus-

ering, a balanced k-means method has been proposed in [41] . K-

eans clustering is a popular technique. Here the k-means method

s used to realize granulation refer to Algorithm 1 . Then a feature

ubset S for each label information granule G is selected using the

eature selection technique. 
.2. Maximal correlation minimal redundancy criterion 

The crux of feature selection is to select a feature subset S con-

isting of m features coming from the input feature set F ( m < b ),

hich jointly have the maximal dependency on the target label

nformation granule G . Based on mutual information, the depen-

ency is measured by MI ( S ; G ). To ensure the maximal dependency

etween S and G , every selected feature should exhibit the largest
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Table 1 

Multi-label data sets used in the experiments. 

Name Instance Feature Label Cardinality Density 

Enron 1702 1001 53 3 .378 0 .064 

Medical 978 1449 45 1 .245 0 .028 

Emotions 593 72 6 1 .869 0 .311 

Genbase 662 1185 27 1 .252 0 .046 
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contribution to MI ( S ; G ). Suppose a subset S m −1 with m − 1 fea-

tures has been picked, and the label information granule G con-

tains r labels. The m th feature is the one with the maximal mu-

tual information with label information granule G given the feature

subset S m −1 , which is quantified by conditional mutual information

expressed in the form: 

max MI(G ; x m 

| S m −1 ) = max [ MI(G ; S m −1 ∪ { x m 

} ) − MI(G ; S m −1 )] , 
(9)

where the MI ( G ; S m 

) is calculated as follows: 

MI(S m 

; G ) = 

∑ ∑ 

p(S m 

, G ) log 
p(S m 

, G ) 

p(S m 

) p(G ) 

= 

∑ ∑ ∑ 

p(S m −1 , x m 

, G ) log 
p(S m −1 , x m 

, G ) 

p(S m −1 , x m 

) p(G ) 

= 

∑ 

· · ·
∑ 

p(x 1 , · · ·x m 

, l 1 , · · ·l r ) 

× log 
p(x 1 , · · ·x m 

, l 1 , · · ·l r ) 
p(x 1 , · · ·x m 

, ) p(l 1 , · · ·l r ) . 

(10)

It can be seen that the computing cost increases exponentially

as the number of features and labels increase. Here comes the dif-

ficultly when directly implementing the maximal dependency. A

min-redundancy and max-relevance criterion(mRMR) is proposed

in [13] to solve this problem. Based on mRMR, we consider a fea-

ture selection method for multi-label learning. 

To maintain as much class-discriminative power about the la-

bel information granule G as possible, the selected feature subset

S should be maximally related to G , specifically to all labels in G ,

which is called maximal correlation criterion, a approximation of

the max dependency. The correlation is expressed in terms of mu-

tual information. The selected S satisfies the following condition

with the mean value of mutual information between S and G : 

max D (S, G ) , D = 

1 

| S| 
∑ 

x i ∈ S 
MI(x i ; G ) . (11)

From the above expression, one can guarantee the maximal cor-

relation criterion stating that each new selected feature x i exhibits

the maximal correlation to G , so the condition can be converted

into the following one: 

max D (x i , G ) , D = MI(x i ; G ) . (12)

Unlike traditional classification problem having only a single la-

bel, there are usually multiple labels in the information granula-

tion G . It is hard to implement the above criterion, especially when

the size of G is large. Intuitively, the maximal correlation crite-

rion between feature x i and information granule G shown in Eq.

(12) is approximately equal to the criterion stating that feature x i 
has the maximal correlation with each label l j ∈ G . This fact has

been proved in the appendix. Thus, the condition can be rewritten

as: 

max C(x i , G ) , C = 

1 

| G | 
∑ 

l j ∈ G 
MI(x i ; l j ) . (13)

According to the maximal correlation criterion, it is likely that

the new selected feature may exhibit a significant dependency on

some features of the selected feature subset, thus increasing intra-

redundancy in S . When two features show significant dependency,

the respective class-discriminative power would not increase much

if one of them has been added. Therefore the selected feature

should have the largest correlation to the label information granule

G , while it should exhibit the minimal dependency on the selected

feature subset S . Therefore, the following minimal redundancy con-

dition can be added when selecting a new feature. 

min R (x i , S) , R = 

1 

| S| 
∑ 

x j ∈ S 
MI(x i ; x j ) . (14)
Combining the two constraints specified above, the operator

( C, R ) is defined to combine C and R , and consider the following

impler form to optimize C and R simultaneously: 

ax �(C, R ) , � = C − R. (15)

Given a feature subset S and the label information granule G ,

he task of feature selection is to find the i th feature from the set

 − S when maximizing the �( ·). The �( ·) can be formed by using

13) and (14) as: 

( C, R ) = 

1 

| G | 
∑ 

l j ∈ G 
MI 

(
x i ; l j 

)
− 1 

| S | 
∑ 

x j ∈ S 
MI 

(
x i ; x j 

)
. (16)

he method is realized in the form of Algorithm 2 . 

lgorithm 2 Granular feature selection for multi-label learning. 

Input: 

Feature set F ; The size of feature subset m ; 

Label information granule G ; 

Output: Feature subset S

// Initialize the feature subset 

S = φ; 

for i = 1 to b do 

Compute the mutual information MI(x i ; l j ) between feature x i 
and label l j in G ; 

Compute the mutual information MI(x i ; x j ) between feature x i 
and each feature x j ; 

end for 

repeat 

Find the feature x i ∈ F satisfying Eq. (15) 

S = S ∪ { x i } ; 
F = F \ { x i } ; 

until | S| == m 

Output the selected feature subset S for label information gran-

ule G ; 

emma 3. The label information granule G with a coarser granularity

as a larger size of the best feature subset S. 

roof. If a label l j ∈ L is added to G represented by G 

′ 
, then G 

′ 
is

oarser than G . Suppose S, S j and S 
′ 
are the best feature subsets for

, l j and G 

′ 
respectively, S 

′ = S ∪ S j , therefore | S ′ | ≥ | S| . | S ′ | = | S| if
nd only if S j ⊆S . �

. Experimental studies 

.1. Data sets and experimental setting 

To evaluate the performance of the proposed method, we exper-

ment with four multi-label data sets covering different domains,

s shown in Table 1 [42] . In the table, the ‘name’ is the name of the

ata set and the ‘instance’, the ‘feature’ and the ‘label’ stand for the

nstance number, the feature number, and the label number of the

ata set, separately. The ‘cardinality’ is the label cardinality which

s the average number of labels associated with each instance. The

density’ is the label density which is the average number of labels
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Fig. 3. Classification performance on Enron according to the number of selected features using the proposed method with different numbers (1,9,27,53) of information 

granules: ( A ) Hamming loss; ( B ) One error; ( C ) Coverage; ( D ) Ranking loss; ( E ) Average precision. 
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f instances data set divided by the number of labels in the data

et. 

Enron data set comes from the UC Berkeley Enron Email Anal-

sis Project [43] , and contains 1702 multi-labeled Enron e-mails,

here the e-mails messages are made public from the Enron cor-

oration. There are 53 possible tags in the data, such as Empty

essage, Company Business, and Purely Personal. 

Medical [23] data set contains 978 instances, and each instance

s a radiology text report consisting of the medical history and

ymptom and associated with a subset of 45 ICD-9-CM labels. 

Emotions [15] data set contains 593 instances, each of which is

 song and represented by 8 rhythmic features and 64 timbre fea-

ures. The instances are labeled with 6 possible emotions. 
Genbase [44] data set consists of 662 proteins, and each protein

hain is represented using a 1185 motif sequence vocabulary. The

abels are 27 protein function families, such as a class of receptors,

 class of oxydoreductases, and a class of transferases. 

After selecting features, a classifier is used to produce the out-

ut. Zhang [45] combined the k-nearest neighbors algorithm and

ayesian inference to propose a multi-label lazy learning approach,

.e. multi-label k-nearest neighbors algorithm(ML-KNN). ML-KNN is

 well known multi-label classification scheme for its efficiency.

o produce the output, the ML-KNN method is chosen to com-

lete classification. As recommended in [45] , the number of near-

st neighbors is set to 10, and the smoothing factor equals to 1. To

btain stable results, ten-fold cross-validations evaluation is used in
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Fig. 4. Classification performance on Medical according to the number of selected features using the proposed method with different numbers (1,5,9,45) of information 

granules: ( A ) Hamming loss; ( B ) One error; ( C ) Coverage;( D ) Ranking loss; ( E ) Average precision. 
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the experiment, and the average classification performance is re-

ported. 

5.2. Evaluation criteria 

Different from the single-label learning algorithm, the perfor-

mance evaluation for the multi-label learning algorithm is more

complicated. The following five widely used multi-label evaluation

criteria are used to quantify the performance in this paper, namely

Hamming loss, coverage, one-error, ranking loss and average precision

[46] . Given a test data set T s = { (X 1 , Y 1 ) , (X 2 , Y 2 ) , · · ·, (X t , Y t ) } , the

multi-label learning algorithm predicts a relevant label set Y 
′ 
i 

for

each unseen instance X i , and then the used evaluation criteria are

defined as: 
(1) Hamming Loss : it evaluates the average difference between

he predicted label set Y 
′ 
i 

and the ground-truth label set Y i , i.e, a

redicted label is not actually belonging to the instance or an un-

redicted label is actually belonging to the instance. The perfor-

ance of Hamming Loss is defined as: 

HammingLoss 
= 

1 

tq 

t ∑ 

i =1 

| Y ′ i 

� 

Y i | , (17)

here  represents the difference between two sets, and | ·| stands

or the cardinality of a set. The smaller the value of Hamming loss,

he better the performance. The algorithm achieves the best per-

ormance, when the Hamming loss attains 0. 

(2) Coverage : the measure evaluates how far we need, on aver-

ge, to go down the ranked list of labels in order to cover all the
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Fig. 5. Classification performance on Emotions according to the number of selected features using the proposed method with different numbers (1,2,3,6) of information 

granules: ( A ) Hamming loss; ( B ) One error; ( C ) Coverage; ( D ) Ranking loss; ( E ) Average precision. 
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round-truth labels of the instance. 

Cov ergage 
= 

1 

t 

t ∑ 

i =1 

max 
l∈ Y i 

r i (l) − 1 , (18)

here r i ( l ) is a ranking function, which maps the predicted outputs

or any l ∈ Y i . The labels of each test instance are ranked in de-

cending order according to the associated probability. The smaller

he value of the coverage, the better the performance. 

(3) One-error : it computes how many times the top-ranked la-

el is not in the set of relevant labels of the instance. The smaller

he value of one error, the better the performance. 

Oneerror 
= 

1 

t 

t ∑ 

i =1 

〈 [ arg max 
l∈ L 

r i (l)] / ∈ Y i 〉 . (19) 
4) Ranking Loss : it expresses the number of times that irrelevant

abels are ranked higher than relevant labels. 

RankingLoss 
= 

1 

t 

t ∑ 

i =1 

1 

| Y i || Y i | 
|{ (l a , l b ) : r i (l a ) > r i (l b ) , (l a , l b ) ∈ Y i × Y i }| , 

(20) 

here Y i denotes the complementary set of Y i set which is the

omplement with respect to L . The smaller the value of one error,

he better the performance. 

(5) Average Precision : the criterion evaluates the average frac-

ion of labels ranked above a particular label l ∈ Y i , which actually

re in Y . The bigger the value of average precision, the better the
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Fig. 6. Classification performance on Genbase according to the number of selected features using the proposed method with different numbers (1,3,9,27) of information 

granules: ( A ) Hamming loss; ( B ) One error; ( C ) Coverage; ( D ) Ranking loss; ( E ) Average precision. 
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γ
A v eragePrecision 

= 

1 

t 

t ∑ 

i =1 

1 

| Y i | 
∑ 

l∈ Y i 

|{ l ′ ∈ Y i :r i (l 
′ 
) ≤ r i (l) }| 

r i (l) 
. (21)

5.3. Granulation test 

In this section, the effect of the label granularity is researched.

As shown in Figs. 3 , 4 , 5 and 6 , we involve a base line in each fig-

ure denoting the direct results of the use of the ML-KNN without

any preprocessing of features or labels. Furthermore, in Figs. 3, 4,

5 and 6 , the method with one information granule means no gran-

ulation processing, while the method with the largest number of

information granules converts the label set into numerous single

labels and shows the performance without considering the label

dependency. More specifically, 1, 9, 27, and 53 label information
ranules are considered for Enron , and 1, 5, 9, and 45 label infor-

ation granules are studies in case of Medical , while 1, 2, 3, and

 label information granules for Emotions , and 1, 3, 9, and 27 label

nformation granules for Genbase . Different numbers of features are

hosen, which can demonstrate the relationship between the fea-

ure number and the granularity of the label information granule.

igs. 3, 4, 5 and 6 show the performances obtained for the data set

nron, Medical, Emotions , and Genbase , respectively. 

In Fig. 3 , the feature numbers are selected from 10 to 150 with

 step of 10, and 20 0, 250, 30 0. It can be seen that almost all

ethods with feature selection achieve better results than the base

ethod on all set feature number, except the one with one infor-

ation granule, because the feature number is too small resulting

n a significant loss of information. However, the performance of

he method with one information granule improves quickly with

he increasing of feature number, and performs better than the
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Fig. 7. Classification performance on Enron according to the number of selected features using compared feature selection methods: ( A ) Hamming loss; ( B ) One error; ( C ) 

Coverage; ( D ) Ranking loss; ( E ) Average precision. 
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ase method when the feature number is greater than 120. The

erformance of the method with a single information granule is

nhanced as the feature number increases. However, the perfor-

ances of the four methods endowed with information granula-

ion increase reaching the best performance, and then decrease

radually with the increasing of the number of features. The meth-

ds with granulation perform better than the one without granu-

ation. Furthermore, the method with smaller size of information

ranule earlier reaches the best performance. As shown in Fig. 3 ,

or Enron , the method with 27 information granules results in the

est performance with regard to the Hamming loss criterion and

ne error criterion, and the performance is very close to the best

ne, obtained by using the method with 53 information granules,

n the other three criteria. The label dependency is an important

actor, although the method considering the label dependency does

o better than the method transforming the label set into single la-

els with regard to some criteria because of the loose label depen-

ency observed for the Enron data set. Thus, the feature selection

nd information granulation can improve the performance of the

ethod for this data set. 

With regard to the Medical data set, the size of selected fea-

ure subset ranges from 10 to 150 with a step of 10, with the per-

ormance displayed in Fig. 4 . Compared to the base method, the

erformance shape of Medical is similar to the one of Enron on

amming loss, one error and average precision. Regarding cover-

ge and ranking loss, the base method is worse than the best per-

ormance of the methods taking the label dependency into consid-

ration, namely the method with 1, 5, and 9 information granules.

rom Fig. 4 , it can be seen that the feature number with the best

erformance has a negative correlation with the number of in-

ormation granules, and after obtaining the best performance, the
erformance of each considered method degrades gradually as the

umber of features increases. For Medical , the best performance is

chieved by the method with 9 information granules on one er-

or and average precision, while the method with 5 information

ranules outperforms on the rest of the criteria. Furthermore, the

est performances of the method with 5, 9 information granules

re greater than the performances of the method with 1, 45 infor-

ation granules. Therefore, the proposed method performs well on

edical data set. 

For Emotions data set, all feature numbers are considered, be-

ause it has a small number of features as shown in Table 1 . From

ig. 5 , it can be seen that all feature selection methods firstly

ary forward to the best performance, then change away as the

eature number increases, and finally achieve the same results as

he base method when all of the 72 features are selected. All of

he methods considering feature selection always perform signifi-

antly better than the base method except the beginning and the

nding, because very few features are selected, and the feature

ubset does not have enough class-discriminative information, or

oo many features are selected, and irrelevant features degrade

he performance. The best performances on Emotions are obtained

y the method with 2 information granules on all evaluation cri-

eria beside the coverage. The method with 2 information gran-

les gets the best performance around 37 features and is earlier

han the one with 1 information granule, which reaches the best

round 60 features, namely the best feature subset of the former is

maller than the later, because the label information granules with

 coarser granularity has a larger best feature subset. The method

ith 6 information granules perform not very well, because of ig-

oring label dependency. 
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Fig. 8. Classification performance on Medical according to the number of selected features using compared feature selection methods: ( A ) Hamming loss; ( B ) One error; ( C ) 

Coverage; ( D ) Ranking loss; ( E ) Average precision. 
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As shown in Fig. 6 , all the performances on Genbase are very ex-

cellent versus the feature number which is set from 10 to 150 with

a step of 10, for the Genbase data set has a few labels and very

small label cardinality, while many features. Compared with the

base method, the methods considering feature selection still per-

form better, although the base method obtains very excellent per-

formance. The method with 9 information granules outperforms

among all the methods. The method without granulating achieves

stable results after 50 features. 

From the experiment, the proposed feature selection method

can improve the algorithm performance of ML-KNN, and performs

better than those without granulation or ignoring label depen-

dency. There are two properties summarized about the granular

feature selection in multi-label learning as follows: 

• The size of selected feature subset influences the algorithm per-

formance. For a given label information granule, the selected

feature subset is too small resulting in losing much informa-

tion, not able to stand for the class-discriminative information

contained in the data set. If too great features are selected, the

unnecessary feature do not only increase the computing cost,

but also may degrade classification accuracy. 
• The label granularity affects the size of selected feature subset

achieving the best performance. The label granularity is more

rough, namely more labels are considered in one label infor-

mation granule, less information losing about label dependency.

However, the selected feature subset is large for the label infor-

mation granule with rough granularity, and the selected feature

probably has significant dependency on some labels in the label

information granule, while little, even negative effect on others,
so that the algorithm performance is degraded. r  
Furthermore, there is a drawback on the method without con-

idering the label dependency that the algorithm complexity is

uch higher than others because of training a classification model

or each label information granule. 

.4. Comparative analysis 

To show the quality of the proposed method compared to oth-

rs, we compare the proposed method with multi-label feature se-

ection methods MUMI [21] , MDMR [22] and FIMF [37] which are

ntroduced in Section 2 . The compared results on Genbase are not

isplayed in this section, because it is very easy to classify, and

he results cannot show the differences of the compared methods.

onsidering the results in Section 5.3 , for multi-label data sets En-

on, Medical and Emotions , the number of information granules is

orrespondingly set to be 9, 5 and 2 on the proposed method. The

ompared results are shown in Figs. 7 , 8 and 9 . 

From Figs. 7, 8 and 9 , it is intuitively noticed that for a sin-

le data set, the compared performances in each evaluation cri-

eria has similar variation, so we don’t discuss the individual re-

ult in every evaluation criterion. As shown in Fig. 7 , the proposed

ethod outperforms the others on each considered feature num-

er on Enron . On Medical , it can be seen from Fig. 8 , that the pro-

osed method obtains the best performance on a smaller feature

umber than others, and the obtained best performance is better

han other three. It means that the proposed method is fast and

ffective. For the experiment on Emotions displayed in Fig. 9 , the

roposed method achieves much better results than MUMI. Com-

ared to MDMR and FIMF, the proposed method has a similar vari-

tion as the feature number increases, and even gets a little better

esults on some evaluation criteria. Among the three data sets, the
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Fig. 9. Classification performance on Emotions according to the number of selected features using using compared feature selection methods: ( A ) Hamming loss; ( B ) One 

error; ( C ) Coverage; ( D ) Ranking loss; ( E ) Average precision. 
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motions data set has the smallest label number, and it cannot ex-

rt the advantage of the proposed method very well. Overall, the

roposed method can get a better quality than MUMI, MDMR and

IMF on the used data sets, particularly on data sets with a larger

umber of labels. 

. Conclusions 

In this paper, we have proposed a granular feature selection

ethod for multi-label learning with a maximal correlation and

inimal redundancy criterion, which takes the local label depen-

ency into consideration. The maximal correlation and minimal re-

undancy criterion can approximate the maximal dependency on

eature selection in multi-label learning, where the selected fea-

ures are most relevant to the target label information granule,

eanwhile there is the least redundancy in the feature subset. To

erify the effectiveness, the performance of the proposed method

as been compared with those not reducing the features, not gran-

lating the labels, or not exploring the label dependency. We also

ave compared the proposed method and three well known multi-

abel feature selection methods. The experimental results show

hat the proposed method performs better and can select a com-

act feature subset. Especially, the multi-label feature selection

ould have very significant impact on clinical application, includ-

ng one emerging field named radiomics, where a large number

f quantitative imaging features have been fitted into a compu-

ational model to predict the clinical interested outcomes. Robust

nd meaningful feature selection algorithms can largely improve

he model performance in this field. Therefore, it is necessary to
xplore the label dependency properly with granular computing in

ulti-label feature selection. 

Although the proposed method can reduce the dimensionality

f the feature space, it requires the training of the classifier for ev-

ry label information granulation. This may substantially increase

he algorithm complexity, when the number of information gran-

le is very large. Hence, it is worthwhile to research and develop a

ay of measuring a granularity to guide on how to determine the

est number of information granules. 
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ppendix 

Section 4.2 shows that the maximal correlation of feature x i and

nformation granule G can be approximated by maximizing the de-

endency of x i and each label l j in G . Firstly, considering the max-

mal correlation criterion in Eq. (12) , the mutual information be-

ween feature x i and information granule G can be represented in

erms of entropies through Lemma 1 as follows: 

I(x i ; G ) = H(x i ) + H(G ) − H(x i , G ) . (22)

cience the labels in information granule G are fixed, it can be eas-

ly seen that the entropy of G is a constant. Using Eqs. (12) and

http://dx.doi.org/10.13039/501100001809
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(22) , we have 

max MI(x i ; G ) = max (H(x i ) + H(G ) − H(x i , G )) 

= max (H(x i ) − H(x i , G )) + H(G ) 

∝ max (H(x i ) − H(x i , G )) . 

(23)

Here, we define a quantity �( x i ; G ) representing the term H ( x i )

minus H ( x i , G ). Then, the upper bound of �( x i ; G ) can be formed

as follows: 

�(x i ; G ) = H(x i ) − H(x i , G ) 

= −
∑ 

p(x i ) logp(x i ) + 

∑ 

· · ·
∑ 

p(x i , l 1 , l 2 , · · ·, l r ) 
× logp(x i , l 1 , l 2 , · · ·, l r ) 

= 

∑ 

· · ·
∑ 

p(x i , l 1 , l 2 , · · ·, l r ) log 
p(x i , l 1 , l 2 , · · ·, l r ) 

p(x i ) 

= 

∑ 

· · ·
∑ 

p(x i , l 1 , l 2 , · · ·, l r ) 

× log 
p(l 1 | l 2 , · · ·, l r , x i ) p(l 2 | l 3 , · · ·, l r , x i ) · · · p(l r | x i ) p(x i )

p(x i ) 

= −H(l 1 | l 2 , · · ·, l r , x i ) − H(l 2 | l 3 , . . . , l r , x i ) − · · · − H(l r | x i )
≤ 0 . 

(24)

Obviously, the upper bound of �( x i ; G ) is 0 while it obtains

the maximal value when all variables are maximally dependent. In

Eq. (24) , for labels in G are already given and this means that x

should have the maximal correlation on each label l j in G , i.e. the

condition shown in Eq. (13) . 
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