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The robust structural feature extraction and similarity measure play critical roles in person re-
identification. This paper presents a novel algorithm named Multiple Metric Learning based on Bar-shape
Descriptor (MMLBD) for person re-identification. Specifically, we first propose a new Multiple Bar-shape
Descriptor that can take full account of the spatial correlation between the center points and their ad-
jacent points on different directions. It captures further histogram features based on a novel color dif-
ference weight factors with an overlapping sliding window, which can depict the local variations and
consistency in the whole image. The similarity and dissimilarity of samples are used to train the weight
factor of features and an optimal subspace could be obtained at the same time. Next, we provide an ef-
fective multiple metric learning method fusing two-channel bar-shape structural features via the optimal
similarity pairwise measure obtained by a dissimilarity matrix. This measure can fully mine the discrim-
inative information and eliminate redundancy in the similar features, which make the MMLBD simple
and effective. Finally, evaluation experiments on the i_LIDS, CAVIAR4REID and WARD data-sets are car-
ried out, which compare the proposed MMLBD with the corresponding methods. Experimental results
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demonstrate that the MMLBD is more effective and robust against visual appearance variations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Person re-identification (Re-ID) is described for matching same
pedestrians across disjoint camera views in a multi-camera system,
and is increasingly receiving attention as a key component of video
surveillance [1]. The task of person Re-ID is to recognize the occur-
rence of a target pedestrian captured by one camera from a gallery
of labeled subject. Recently, various descriptors based on pedes-
trian’s appearance have been developed. However, it is still difficult
to extract robust and discriminative features from the appearance
of pedestrians, due to complexity of the environment that is af-
fected by the changes of illumination, pose, viewpoint, occlusion,
image resolution and camera setting in the non-overlapping cam-
era systems [2]. At present, the state-of-the-art approaches for per-
son Re-ID are mainly divided into two groups: (1) the appearance-
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based approach which designs distinctive and effective descriptors
to represent a person’s appearance; (2) the metric learning ap-
proach which learns a suitable measure to minimize the similar-
ity between the same people and maximize the similarity between
the different people. The main developments of person Re-ID are
shown in Table 1.

Over the past few years, low-level features such as color [3-
5] and texture [6,7], have been widely applied to appearance-based
representation. Furthermore, some studies including bag-of-words
model [8], local maximal occurrence (LOMO) [9], hierarchical Gaus-
sian descriptor [10], recurrent feature aggregation network (RFA-
Net) [11], and hash feature [12, 43], etc., have attempted to in-
tegrate them to capture more robust and reliable features. Apart
from these methods, the deep learning [13-15] is especially note-
worthy model which has exhibited an excellent performance in
learning representation for person Re-ID. Unfortunately, it is still
extremely difficult to extract a stable feature representation which
can effectively adapt to severe changes and misalignment across
disjoint views. Besides, neither color nor texture features are able
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Table 1
Main developments of person Re-ID.
Authors Year Approaches Structural information =~ Remark
Gray and Tao[47]. 2008 ELF No Appearance
Farenzena et al. [6] 2010 SDALF Yes Appearance Metric learning
Avraham et al. [49] 2012 Transfer Yes Transfer learning
Zheng et al. [22] 2013 RDC No Appearance + Metric learning
Zhao et al. [18] 2013 Salience Yes Appearance + Matching
Pedagadi et al. [23] 2013 LFDA No Metric learning
Xiong et al. [24] 2014 Kernel Yes Metric learning
Yang et al. [3] 2014 Color Name No Appearance
Ma et al [26] 2014 Multiple tasks No Metric learning
Shen et al. [20] 2015 Structure Yes Structure learning
Lisanti et al. [27] 2015 Sparse Rank No Rank learning
Ahmed et al. [29] 2015 Deep Yes Appearance + Metric learning
Liao et al. [9] 2015 LOMO Yes Appearance + Metric learning
Matsukawa et al. [10] 2016 GOG Yes Appearance
Tao et al. [32] 2016 DR-KISS No Metric learning
Zheng et al. [33] 2016 Transfer Yes Transfer learning

to describe the structural shape characteristics of pedestrians ex-
actly.

Different from color and texture features, the structural features
captured the local shape information from images, as they focus on
the spatial correlation between points retaining the color and tex-
ture information [16]. M. Farenzena, et al. [6] designed symmetry-
driven accumulation of local features (SDALF) to capture multiple
varieties of information from three stable parts of human body
based on the maximally stable color regions (MSER) [17]. By con-
trast, R. Zhao, et al. [18] learned human salience in an unsuper-
vised manner to find reliable and discriminative matched patches
for person Re-ID and S. lodice, et al. [19] utilized symmetry prin-
ciples, as well as structural relations among salient features to ob-
tain structure information via a graph matching method. Besides,
Y. Shen, et al. [20] integrated a global matching constraint over the
learned correspondence structure to exclude cross-view misalign-
ments during the image patch matching process. Metric learning is
another interesting aspect of the person Re-ID. Generally, the ex-
isting metric models could be divided roughly into two categories:
non-learning and learning methods. Many of the models simply
choose a standard distance such as [; ,-norm [21]. However, they
treat all features equally instead of discarding bad features selec-
tively. Thus the matching results are always undesirable. On the
contrary, the metric learning based measurement approaches, in-
cluding Relative Distance Comparison (RDC) [22], Local Fisher Dis-
criminant Analysis (LFDA) [23] Kernel-Based Metric [24], Maha-
lanobis Distance Learning [25], Multi-task Distance Metric Learn-
ing [26], Iterative Re-Weighted Sparse Ranking [27], Multiple Met-
ric Learning [28], Deep Metric Learning [29], Cross-view Quadratic
Discriminant Analysis (XQDA) [9], Tensor Learning [30], Saliency
Learning Model [31], Dual-Regularized KISS (DR-KISS) [32] and
Transfer Learning Model [33, 49], etc., learn typically a discrimina-
tive similarity between the same and different persons across cam-
era pairs. Although these metric learning methods outperform the
existing person Re-ID benchmarks, they are still limited by some
classical problems, such as robust feature representation and small
sample size (SSS) for model learning.

To address this problem, we put forward a Multiple Bar-shape
Descriptor (MBD) which takes advantage of a hybrid encoding
strategy combining the color granularity and local binary encod-
ing form bar-shape structures, shown in Fig. 2, to capture the
robust structural information. Differently, we apply Color Differ-
ence Weight, Overlapping Slide Window and Max-pooling Oper-
ator to consider more visual information and ensure more local
structural information. Meanwhile, local encoding histograms are
captured from two channels with multiple orientations to ensure
the low dimensionality of feature descriptor and the robustness

of the changes of illumination. Then, the discriminant weight sub-
space learning are utilized for the Canberra distance. Furthermore,
we propose a novel relative distance fusing algorithm to integrate
multi-orientation bar-shape structural features. Instead of learn-
ing a metric over hand-crafted features, we utilize the similarity
of metric to extract optimal pairwise distance, based on dissimi-
larity matrix, and fuse multiple distances for person Re-ID. It can
avoid complex model learning effectively. The main contributions
are highlighted as follows:

(1) We design a novel Multiple Bar-shape Descriptor (MBD) which
applies a hybrid encoding strategy to extract bar-shape struc-
tural features, integrating multi-channel local binary pattern
and color granularity encoding.

(2) We present a new metric learning method based on the simi-
larity of distances and fuse multiple metrics via optimal relative
distance pairs to learn a robust distance function dealing with
the complex matching fusion problem. Meanwhile, we put for-
ward an effective color difference weight factor based on the
similarity and dissimilarity of samples to characterize different
important attributes of different features.

Experimental results show the proposed method of MMLBD is

more effective and robust against visual appearance variations,

achieving superior performance on three public person Re-ID
data-sets in most cases.

—
w
~—

The remainder of this paper is organized as follows. We review
the related works and introduce the theory of the proposed ap-
proach in Section 2 and Section 3, respectively. Then, we carry out
the comparative experiments on three public person Re-ID data-
sets and give the detailed discussions based on the experimental
results in Section 4. Finally, conclusions are made in Section 5.

2. Related work

This paper aims to seek an effective method for person Re-
ID based on multi-channel feature extraction. Firstly, we present
an overview of the relevant works, i.e., Census Transform Pyramid
[34,35] and binary interaction mechanism [35].

2.1. Census transform pyramid

A representative of structural image descriptors is Local Binary
Pattern (LBP) proposed firstly by Ojala et al. [36] as a gray-scale
invariant texture descriptor. The LBP code is obtained by its circu-
larly symmetric n-neighbors in a circle of radius r with the pixel
value of the central point and arranging the results as a binary
string. It is robust for the changes of illumination. Based on this,
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Fig. 1. Census transform pyramid.

many variants are proposed, such as CLBP [37], CBP [38], LDP [39],
LTP [40], LQP [41], CS-LBP [42], et al. However, these approaches
cannot address the curse of dimensionality with the increase of
points being encoded. In mCENTRIST [35], Y. Xiao, et al. utilize
the Census Transform (CT) pyramid to reduce the dimensionality,
achieving higher accuracy rate for scene categorization. The Census
Transform pyramid is shown in Fig. 1 and comprised of three levels
in which level 0 is standard CT that represents a center point with
binary coding by its 8-adjacency points from top-right to bottom-
left. Compared with the center point, a value greater than the pixel
value is defined as 1, otherwise 0. Then we can obtain the binary
coding:

CT; = (10110101), (1)

However, the CT; only represents the binary code of one chan-
nel. For color images encoded by level 0, it should be described as
follows:

-
MCTiepeto = (CTiCT,, ..., CTy) (2)

n—channels

CT1,CT, and CT3 describe the binary coding with three channels
of color images respectively. It could also include four channels
which consist of three color channels and one Sobel operator. For
level 1 and 2, the level 0 is divided into two or four sub-mCTs
on center directions. The approach of binary coding is the same as
level 0. For level 1, two binary coding with two directions can be
obtained:

CT! = (1100), (3)
and
CT? = (0111), (4)

Similarly, to capture multi-channel information of color images,
the multiple sub-mCT value with different directions is defined as
follows:

CT! ., = (CT!,CT} CT} 5

m leuell_( 1>%%20--» n) ()
n—channels

and

CT? . = (CT!,CT} CT! 6
m leuell_( 1>t n) (6)

n—channels

Lk IF
CIN01%)

Fig. 2. Bar-shape structures with four direction-senses about 0°, 45°, 90° and 135°.

In this way, compared with level 0, the dimensionality of fea-
ture vector is reduced from 28%" to m x 2K * ™" where n is the
number of channels, m is the number of directions and k is the
length of binary coding on different directions.

2.2. Binary interaction mechanism

For real application, the feature descriptor extracted via sub-
mCT is also impractical if n is higher. To address this problem,
the binary interaction mechanism is proposed [35] and it would
consider a group of two-channel sub-mCT histograms rather than
all channels directly to avoid prohibitively huge dimensionality. Let
C={cq,cy,c3,¢c4}) be a four-channel color image and six channel
pairs could be derived based on binary interaction mechanism, de-
fined as ¢} = {c1. 2}, & ={c1. 3}, ¢ ={c1.ca}, ¢ ={cr. 3}, ¢ =
{c2. ¢}, g = {c3. c4}. Then, two-channel sub-mCT histogram pairs
will be extracted from each c] respectively and defined as C' =
{c}. ). c5. c). ct. cg}. Through the binary interaction mechanism,
the dimensionality of feature descriptor is reduced form m x 2k x n

to (g) x m x 2k%2 where n is the number of channels, m is the

number of directions and k is the length of local binary coding on
different directions. And it achieves a balance between computa-
tional efficiency and discriminative power.

3. The proposed algorithm (MMLBD)

It is a well-known fact that person Re-ID is a challenging prob-
lem because of big intra-class variations in illumination, pose,
viewpoint, and occlusion. However, the appearance of a person
is usually rich in stable bar-shape structures, as shown in Fig. 2,
which have significant direction-senses about 0°, 45°, 90° and 135°,
respectively in human vision system. These bar-shape structures
are concerned about the spatial correlation of adjacent points.
Moreover, they are robust for the changes of illumination, rotation
and translation. In addition, Sobel operator can be used to find the
approximate absolute gradient magnitude at each point in an input
image [35].

In this paper, we take advantage of a novel hybrid encod-
ing strategy which consists of color difference weight histograms
based on Census Transform Pyramid and color granularity encod-
ing with four color channels (L*a*b* and Sobel). Color, texture,
color difference and spatial structure information are all consid-
ered in our approach. To ensure lower dimensionality, we apply
binary interaction mechanism to capture multiple two-channel de-
scriptors with four orientations. Furthermore, we project descrip-
tors into an optimal subspace and take advantage of an over-
lapping sliding window to extract feature histogram from local
contrast-normalized cells, eliminating the local variations and en-
hancing the adaptability to illumination variations, shadowing and
small shift in images. Meanwhile, we make full use of the sim-
ilarity of dissimilar samples to evaluate the qualities of different
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features by statistical learning and fuse more discrimination infor-
mation to improve the matching rates of person Re-ID. . N-1 ;
After the process of feature extraction, we can obtain mul- BSCy (A) = Z(kc) nge,i (8)
tiple bar-shape features. Considering the similarity of same per- i=0
son, we make full use of the comparison of relative distances to
learn multiple optimal distance pairs based on dissimilarity matrix s(x) = 1,x=0 9)
and fuse them with their credibility defined as the weight factor 0.x<0

to achieve a more effective performance. The process of our pro-
posed approach is shown in Fig. 3 and be introduced in detail as
follows.

3.1. Multiple Bar-Shape Descriptor

In order to capture more useful information, we focus on mul-
tiple channels of a color image, rather than a gray image. Based on
some existing studies, the color space of L*a*b* is more suitable for
perception of color in human vision system [44]. Hence, the color
space of L*a*b* is adapted to person Re-ID. Meanwhile, we design
a multiple bar-shape descriptor (MBD) which takes advantage of
a hybrid encoding strategy with the consideration of the color dif-
ference weight, Census Transform pyramid, color granularity en-
coding and binary interaction mechanism. It can capture effectively
the bar-shape structures on person’s appearance. Then, we take ad-
vantage of an overlapping sliding window to extract the histogram
based on hybrid encoding and color difference weight. Consider-
ing the salient features, we capture local histogram by Max-pooling
operator on the horizontal direction. The process of multiple bar-
shape descriptor is shown in Fig. 4.

(A). Hybrid encoding strategy

In our approach, the hybrid encoding strategy consists of sub-
mCT and color granularity encoding with multiple channels and
multiple orientations, as shown in Fig. 5. For sub-mCT, we denote
the local binary encoding of pixel A with different channels and
orientations as BSL§ (A). For color granularity encoding, we granu-
lar the color space of L*a*b* into 4, 4, 4 bins and the Sobel chan-
nel into 9 bins, and denote it as BSCj(A). Then, the BSL{ (A) and
BSC§ (A) are defined as follows:

N-1

BSLg @ = Zs(gcé,i _gienter) x 2! (7)

i=0

where g€, is the pixel value of point A in channel-c, N is the
number of the neighbor points of center point A on direction-6,
ggyi is the pixel value of point A’s i-th neighbor on the direction-6,
kc is the number of bins in channel-c, c is one of the L*, a*, b*, sobel
and 6 is the direction (0°, 45° 90° and 135°). Considering level
two for sub-CTs on center directions (More details can be found in
Section 2.1), the value of N is 2.

Furthermore, we utilize binary interaction mechanism [35] and
choose two-channel pairs from L*, a*, b* and Sobel to obtain two-
channel bar-shape structures on different directions, defined as

BSL (A) = BSLi) (A) x 2" + BSL), (A) (10)

BSC}/(A) = BSC} (A) x k;j + BSC} (A) (11)

where i, j represent two different channels, BSL;‘j (A) is two-
channel local binary encoding on direction-6, N is the number of
neighbors on direction-6, BSC;J(A) is two-channel granularity en-
coding with direction-6, k; is the number of bins with channel-j. In
our approach, for a four-channel image, 6 two-channel pairs can be

derived by binary interaction on different directions and defined as

BLy = {BSL;“. BSL;®, BSL;*™', BSLZ", BSLY***' BSLp*™'}  (12)
and
BCy = {BSC}. BSC;”, BSC;****', BSC3*, BSCy***, BSCp**!}  (13)

For different directions, we can obtain two sets of mul-
tiple bar-shape feature images, denoted as BL={BLy}, 0 ¢
{0°,45°,90°,135°} and BC = {BCy}, 0 < {0°,45,90",135}.

By using binary interactions, the dimensionality of feature

is only (g) x (Dim(BSLg) + Dim(BSC§)) x m described in Section

2.1 for n-channel images and it avoids prohibitively huge features,
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Fig. 5. The processing of sub-mCT and color granularity encoding with single-channel and single-orientation (c =L and 6 =0").

where n is the number of channels, m is the number of directions
and we let n, m to 4 empirically in our approach.

(B). Color difference weight

Meanwhile, in order to fuse the color difference information,
we obtain the color difference weight of CDW;;(A) for each original
pixel A(x,y) with single channel. It is more invariant to monotonic
changes of illumination and defined as follows:

N-1
CDWOC(A) = Z |g50' _ggen[er| (14)
i=0

Considering that the center point is more important than the
surrounding points in a person image [44], we define the weight
map (w(A)) for each point and the color difference weight with

two-channel bar-shape structure as CDW,"*% (A):

CDWQC"CZ (A) =w(A) x \/CDWGC‘ (A)2 + CDWQC2 (A)2 (15)
_ xmup? _-my)?

wA)=e v xe (16)

where c¢;, c;denote the different channels, ux=Lyx/2, wy=

Ly/2, ox =Ly/4 and oy = Ly/4 . In Eq. (16), x denotes the row num-
ber of the image matrix and y denotes the column number of the
image matrix. Ly and L, denote the image height and width, re-

spectively.
For a four-channel person image, we can obtain six
two-channel color difference weight maps, defined as

L Lb L.sobel b sobel b.sobel
Wy = {CDW 4, CDW,", CDW,, sobe ,CDWél ,CDWOH sobe , CDW, sobety,
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(C). Histogram extraction with overlapping slide window

In order to further enhance the robustness to illumination, we
capture statistical histogram features to describe the characteris-
tics of multiple bar-shape feature images from two-channel hybrid
encoding maps including BLy(A) and BCy(A) with an overlapping
sliding window with size of n x n, and the weight is obtained by
Wy(A). For a point A = (x,Y), its two-channel local binary encoding
is BSng (A) and color granularity encoding is BSC;’j (A). Besides, the
color difference weight of point A is defined as CDWQ’"j(A). Then,

the BSLfg'j (A)-th value of the histogram HL;'j is computed as fol-
lows:

HL (BSL, (A)) = > CDW, (A) (17)
AeR

and the BSC(;‘j(A)—th value of the histogram HC;‘j is computed as
follows:

HC'(BSC,/ (A)) = Y CDW, 7 (A) (18)
AeR

where R is the region of the sliding window in an image, 6 is
the orientation and i, j represent two different channels. In order
to better characterize invariance to illumination, shadowing, etc.,
we contrast-normalize the local histograms captured from regions
of the overlapping sliding window. Then, we can obtain the
multiple two-channel bar-shape structural histograms, defined as
H;j = [HL;!, HC!, HL:g .\ chéq , HL;(’) . Hc;éu , HL'l'; 5 HC;';SU i, je
{L, a, b, sobel}. Moreover, we take advantage of max-pooling to cap-
ture the multi-scale bar-shape structural feature from multi-scale
person image [9].

The bar-shape structural color difference weight histogram
fuses the color, color difference, texture information and the spatial
correlation of points with multiple channels and orientations. It
can represent effectively the structural appearance of a person and
make full use of contrast-normalization to enhance the adaptability
to illumination variations, shadow, etc. Hence, these descriptors are
relatively suitable to represent the appearance of human in person
Re-ID.

3.2. Multiple optimal distance pairs metric learning

(A). Discriminant weight subspace distance

Owing to the strategy of overlapping, the descriptor of MBD is
high-dimensional, redundant and sparse. Therefore, we apply sub-
space projection to seek a low-dimensional feature subspace in-
stead of the original feature. This problem is solved by local fisher
discriminant analysis (LFDA) which is required to solve a general-
ized eigenvalue problem of very large scatter d x d matrices [23].
Meanwhile, in order to reduce the bad features negative effects on
the metric, we utilize a discriminant weight factor to evaluate the
quality of feature. Intuitively, it hopes the distance to be closer for
intra-class feature pairs, and further for inter-class pairs. Thus, we
define intra-class and inter-class distances (Eq. 19-21) to estimate
the similarity of same person and dissimilarity of different person
respectively. Then, we capture inherent discriminant information
to describe the importance of feature. In detail, the discriminant
weight of feature is computed by

Wf = 829725 (19)

Yo=> Iog|x,-—xj| (20)

D X;.xjeD

Yo=> log|x,-—xj| (21)

S X;.Xj€S

where Xs, Xp denote the distance vectors for similar pairs and
dissimilar pairs respectively and x;, x; represent two different sam-
ples. Then, for different two-channel bar-shape descriptors, the dis-
criminant weight of feature waz can be learned easily from the
training samples, where cq, ¢, € {L, a, b, sobel} represent different
channels. Then, we apply Canberra distance [44], combining with
the weights of features to measure the similarity between different
two-channel descriptors Hc(?,Cz and HC({?CZ obtained from different
samples respectively. It is shown as Eq. (22).

Dg{.cz (HC(:)Cz ’ HC(1]1)02>

ik j. k
M ‘Hc(llcl - Hc(ljc(z)‘
= W}‘ x / / (22)
1.6 i j
el HUG + e+ [HES + g
M e
pe =Y HyO/M (23)
k=1
M o
T (24)
k=1

where M is the dimensionality of feature vectors, i, jrepresent two

different samples, HC(IIE)Z and HC(]”C‘; are the k-th feature value of

HC(?CZ and Hc(f?Cz, ue and pg are utilized to avoid the denomina-
tor to be zero. Then, we can compute multiple weight Canberra
distances for multiple two-channel bar-shape descriptors, defined
as D ={Dc, ,}.¢1.¢2 €{L, a,b,sobel} and ¢; # cy.

(B). Multiple optimal distance pairs

Inspired by the voting theory [45], the relative distances based
on these features pairs are not easy to make mistakes simulta-
neously and the relative distance of the optimal feature pairwise
is minimal. In other words, the joint distance based on the opti-
mal feature pairwise has a positive effect on person Re-ID. Higher
similarity of the optimal distance pairs means lower relative dis-
tance and usually obtains lower risk of misrecognition. Based on
this idea, we propose a novel metric learning method based on
multiple optimal distance pairs via comparison of relative distance.

To capture multiple optimal distance pairs, we firstly normalize
the distances to the range [0, 1]. Then, we construct dissimilarity
matrix (DM) with different metrics to capture the multiple pairs of
relative distance via weight Canberra distance as follows:

DM,‘J' = elDiiDjl
DG = e|D,-¢—D,-| (25)
D,’, D] eD

where DM,; ; is the value of dissimilarity matrix at i-row and j-col,
DC; ; is the value of matrix combining two-distance pairs and D;,
D; € D are two different weight Canberra distances obtained by
Section 3.2(A). In our approach, we consider 4 channels and obtain
6 two-channel bar-shape structural features. Thus the DM and DC
are symmetric matrices with 6 x 6. Finally, we fuse the n optimal
pairs of distance with minimal dissimilarity and their credibility,
defined as:
n DCk
DMwmopr = o
g DMﬁp

where 1/DM¥, is defined as the credibility, DMY), is the k-th ele-
ment of the sorted upper triangular matrix of DM with ascending,
DCﬁp is the k-th element of the sorted upper triangular matrix of
DC associated with DM.

In general, the overall process of our algorithm (MMLBD) which
integrates the two separate steps of feature representation and dis-
tance metric, is shown as follows.

(26)
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Algorithm: the proposed method of MMLBD
Input: the dataset X e R'28 x 48 T,G,P.
Output: the rank of matching rates.

Begin:

(1) Obtain the channels of L*a*b* and Sobel space.

(2) Obtain single-channel bar-shape structural encoding, (BSL; (A), BSC§ (A)) by
Eqs.7-8.

(3) Obtain two-channel bar-shape structural encoding, (BSL;'j (A), BSng (A)) by
Eqgs. 10-11.

(4) Obtain the color difference weights (W) by Eqs. 14-16.

(5) Extract bar-shape structural Weight Color Difference Histogram and obtain
the features:

H;j = [HLy, HCy HLL ,HCZ;MHL;{],,HC” HL'I;S Hc;;s l.i,j € {L, a, b, sobel}.

(6) Divide X into training set (X;) and test set which is made of a gallery set
(Xg) and a probe set (X,): X;(t).t ={1,2,..., T}, X;(2).g=1{1.2,...,G} and
Xp(p).p=1{1.2,.... P}.

(7) Learn the weight of feature Wy ., by Eqs. 19-21.

(8) Obtain weight Canberra distance D, ., by Eqs. 22-24.

(9) Construct dissimilarity matrix (DM) and two-distance pairs combining
matrix (DC) by Eq. 25.

(10) Join distance metric via optimal distance pairs to compute the final
distance Dyopp by Eq. 26.

(11) Obtain the matching rates with the theory of nearest neighbor.

End

3.3. Complexity analysis

In our approach, we consider the hybrid encoding strategy with
multiple orientations and binary interaction mechanism, integrat-
ing multi-channel features. Compared with the original local bi-
nary pattern, the dimensionality of feature vector is reduced from

V8xn to (g) x m x V2x2 where n is the number of channels, m

is the number of orientations and V is the maximum value of
adjacent points with encoding or granularity. To be precise, the
value of V for local binary encoding with 2-channels and mul-
tiple orientations is 2. Therefore, the dimensionality of HL;'"? is
2% X 2 — 4, Besides, for the color granularity encoding, the dimen-
sionality of HC;'"? is ke, x ke, € {16,36}. Furthermore, the value
of m is 4 and we can obtain that the dimensionality of H; ; is
Y g Dim(HL;"2) + 3" Dim(HCg"?) . Meanwhile, we take advan-
tage of overlapping slide window with size of 16 x 16 to capture
contrast-normalized local histogram and apply Max-pooling oper-
ator to fuse these local histograms on the horizontal direction. The
step of slide window is denoted as 8. Thus, we can obtain that the
final dimensionality of feature vector is 15 x Dim(H,,) from a
person image with the size of 128 x 48. In addition, for our metric
learning, we construct the optimal distance pairs to fuse multiple
two-channel features and the complexity of time is 0;(n%) x 0,(d)
where d is the dimensionality of feature vector with subspace pro-
jection.

» Bl

$ 3
x 3ERA

Fig. 6. Examples of person Re-ID on the i-LIDS MCTS dataset.

4. Experiments
4.1. Parameter and evaluation

We evaluate the proposed method of MMLBD on three-person
Re-ID benchmark datasets, including i-LIDS Multiple-Camera Track-
ing Scenario (MCTS) [22], CAVIAR4REID [49] and Wide Area Re-
Identification Dataset (WARD) [50]. Among them, the i-LIDS MCTS
dataset evaluates the performance over variations of lighting il-
lumination, obstacle, etc.; the CAVIAR4REID dataset focuses on
the changes of resolution, pose as well as occlusions; the WARD
dataset is concerned about a huge illumination variation apart
from resolution and pose changes. Meanwhile, we resize each im-
age in the datasets to 128 x 48 pixels to facilitate the evaluation
with the common parameters of the descriptor. Besides, we chose
the images of p persons (classes) to set up the training set, and the
rest for testing. Each test set includes a gallery set and a probe set.
The gallery set consists of one image (single shot) for each person
and the remaining images are used as the probe set. This proce-
dure is repeated 10 times.

We compare the proposed MMLBD with LOMO+XQDA[9], MFA
[24], KLFDA [24], eSDC [18], PRICOLBP [48], sub-mCT histogram
[35], ELF [47], LBP [36] and HOG [46] on three person Re-ID
datasets. Besides, we extract the MBD descriptor from local over-
lapping slide windows with the size of 16 x 16 and the step is 8 x 8
on horizontal and vertical directions. Thus, for the horizontal direc-
tion, we can capture — 1 =5 local histograms. Furthermore, we
can obtain a local max1mal occurrence representation with max-
pooling operator on horizontal direction. Besides, we can capture
% —1 =15 local histograms on vertical direction. To be fair, we
also set the same parameters of local path with the local descrip-
tors of HOG, LBP, sub-mCT histogram and PRICoLBP. It is worth not-
ing that we capture the LOMO descriptor from local path with the
size of 10 x 10 and step of 5 x 5. It is basically optimal parameter
setting, citing the original published paper. For the other method,
we also ensure the optimal parameters based on the published pa-
pers. And they pay more attention to the metric learning method.

We utilize the standard performance measurements to evaluate
our proposed MMLBD, also known as Cumulative Matching Char-
acteristic (CMC) curve and Synthetic Disambiguation /Reacquisition
Rate [51]. The CMC curve represents the expectation of the probe
image correct match at rank r against the p gallery images. And
rank-1 matching rate is thus the correct matching recognition rate.
However, the SD/RR curve measures the probability that any of the
m best matches is correct. In practice, a high rank-1 matching rate
is significant, meanwhile, the top r ranked matching rates with a
small value are also critical because the top matched images will
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Fig. 7. The rank 1, 5, 10, 20 matching rates (%) with different cell scales on the i-LIDS MCTS dataset.
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Fig. 8. The rank-1 accuracies, CMC and SD/RR curves of our approach with different color spaces (RGB, HSV and L+a*b*) on the i-LIDS MCTS dataset.

normally be verified by a human operator. The detailed results of
experiments on person Re-ID are reported and analyzed below.

4.2. Experiments on i-LIDS multiple-camera tracking scenario (MCTS)
dataset

In the i-LIDS MCTS dataset, in which the images are captured
at an airport arrival hall during a busy period in a multi-camera
CCTV network, there are a total of 119 persons and 476 images, as
shown in Fig. 6. Firstly, experiments on i-LIDS MCTS dataset are
carried out to evaluate the performance of the proposed method
over the variations of lighting illumination, obstacle, and etc. Then
we verified different impacts on performance over variations of cell
scales, color spaces and two channel features respectively. Finally,

we validated the performance of different feature descriptor and
metric learning strategy.

(A). Impact of different cell scales

In this section, we present the details and results of com-
parative experiments and further analyze the effects on per-
formance under different cell scales, defined as the overlap-
ping sliding windows by varying widths (w =8, 16, 24, 32) and
heights (h =8, 16, 24, 32). The matching rates at rank-1, 5, 10,
20 with different scales of cell are reported in Fig. 7. It can be
seen that the matching rates with the cell of 16 x 16 are higher
than other cell scales at rank-1, 5, 10, 20 and it can achieve the
best performance compared with other cells. Taking into account
the dimensionality and matching rates as a whole, we empirically
chose the size of cell as 16 x 16 in our experiments to ensure lower
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Fig. 10. The rank-1 accuracies, CMC curves of our approach, different descriptors and metric learning methods on the i-LIDS MCTS dataset.

dimensionality of feature vectors and the overlapping of different
cells.

In addition, we will testify the performance of the proposed ap-
proach of MMLBD in different color spaces of RGB, HSV and L*a*b*,
and the details are presented in the following section.

(B). Impact of different color spaces

The performance of our approach is evaluated on different color
spaces RGB, HSV and L+*a*b*, and the results are shown in Fig. 8. In
general, our proposed MMLBD demonstrates relatively robust per-
formance in different color spaces, particularly in the color space
of L*a*b*. We can achieve the best matching rate of 50.67% and
a 3.23% performance gain can be obtained for the rank-1 accu-
racy with p =50 since the L*a*b* color space is a kind of color
systems based on human visual physiological characteristics. In

terms of person Re-ID, the color space of L*a*b* is more suitable
to reduce intra-class variations when comparing with the color
spaces of RGB and HSV. Therefore, we apply our presented method
of MMLBD in the L*a*b* color space for person Re-ID. To fur-
ther demonstrate the effectiveness of the proposed algorithm of
MMLBD, evaluation of different two-channel features is conducted
and the results will be reported in the following section.

(C). Comparative experiments under different two-channel
features

Comparative experiments under different two-channel features
are presented. Fig. 9 reports the CMC curves and SD/RR curves and
we can see that the proposed approach based on optimal distance
pairs strategy can do better than other two-channel features, out-
performing the second best one (a+b channel) by 1.95%. It indi-
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Fig. 11. The rank-1 accuracies, CMC and SD/RR curves on the i-LIDS MCTS dataset.
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Fig. 12. Examples of person re-identification on the CAVIAR4REID dataset.

Table 2

The rank 1, 5, 10, 20 matching rates (%) with our approach, LOMO+XQDA, MFA, kLFDA, eSDC, PRICOLBP, sub-mCT histogram, ELF, LBP

and HOG on the i-LIDS MCTS dataset.

Methods p=30 p=50 p=280

r=1 r=>5 r=10 r=20 r=>5 r=10 r=10 r=20 r=1 r=>5 r=10 r=20
MMLBD 54.76  84.52 92.86 95.24 50.67 80 85.33 94.67 3942 6390 8134 87.24
LOMO+ XQDA  53.57 82.14 90.48 97.61 4733 72 84.67 93.33 35.68 6183 75.93 87.13
MFA 4048  68.27 82.92 96.07 3646  58.16 70.65 86.22 2250 46.68 57.78 72.58
KLFDA 46.67 76.96  90.12 97.62 36.12 62.76 76.46 90.71 25.84 4990 62.23 75.88
eSDC 39.33 66.35 78.85 93.08 36.77 61.56 66.78 77.79 37.94 57.43 66.78 67.92
ELF 3343 5829  70.71 90.43 30 55.25 67.03 82.20 25 43.9 55.08 68.67
PRICOLBP 2214 51 67.57 86.43 15.59 37.88 52.88 75.59 13 28.38 4083 58.08
sub-mCT 17.86 51.43 73.29 90.71 15.25 39.75 53.8 73.90 1113 28.17 40.50 59.08
LBP 23.86 56.43 71 88.29 17.80 43.56 60.08 76.69 15.13 3329 45 60.63
HOG 29.43 50.71 66 88.29 2449 4576 58.56 73.73 2246  39.08 49.08 61.58

cates that the proposed optimal distance pair strategy can cap-
ture more discrimination information via multiple optimal distance
pairs which are relative distance obtained by dissimilarity matrix,
and joint distance metric based on voting theory.

(D). Evaluation of different descriptor and metric learning

The proposed descriptor (MBD) and metric learning method
(MMLBD) is compared with other descriptors (LOMO, LBP,
HOG) and metric learning method (MBD + Mean, MBD + XQDA,
MBD + KLFDA). For the different descriptors, the [;-norm is utilized
to measure the similarities between samples. Fig. 10 reports the
CMC curves and the comparison shows that our proposed descrip-
tor is obviously more robust than other descriptors and achieves
the best matching rate of 50.67% at rank-1 with p =50, over 3.23%
improvement than other descriptors, owing to the ensemble of
color, texture and spatial structural information. Meanwhile, our
proposed metric learning method also performs better than other
metric learning methods, because of the consideration of discrim-
ination information of multiple distance pairs. This indicates our
proposed method of MMLBD designing a robust descriptor and op-
timal distance metric helps to reduce intra-class variations, so that
the same person can be recognized at a higher rank.

(E). Comparison to the state of the art methods

In this section, all images (consisting of p =30, 50, 80 per-
sons) are chosen to test the performance of the proposed MMLBD,
compared with that of LOMO + XQDA, MFA, KLFDA, eSDC, PRI-
CoLBP, sub-mCT histogram, ELF, LBP and HOG . The match-
ing rates are shown in Fig. 11(al, a2, a3) and Table 2. Com-
pared with other approaches, our method achieves rank-1 match-
ing rates of 54.76%, 50.67%, 39.42% with p = 30, 50, 80, and out-
performs the best result obtained by LOMO + XQDA, which can
only achieve a rank-1 matching rates of 53.57%, 47.33%, 35.68%,
respectively. Furthermore, the advantage of our approach is ob-
viously demonstrated at rank-5, 10, 20 with p =30, 50, 80. Be-

sides, from the SD/RR curves in Fig. 11(b1, b2, b3), the perfor-
mance of our method is also superior to that of others. The better
performance of the proposed method indicates the following con-
clusions: (1) the proposed descriptor of MBD considers bar-shape
structures with multi-orientation, and combines the spatial rela-
tion between points and their adjacent points. As a result, it can
accurately capture more robust structural features underlying the
pedestrian images. (2) The proposed descriptor of MBD integrates
color difference information and eliminates the contrast between
different blocks via overlapping strategy, which can improve the
adaptability over the variance of illumination and shadowing. (3)
The proposed descriptor of MBD capturing features from multiple
scales is more robust to the changes of pose and camera views.

4.3. Experiments on CAVIAR4REID dataset

The CAVIAR4REID dataset which is extracted from the well-
known CAVIAR dataset has been widely used to evaluate the per-
formance of person Re-ID with resolution changes, light conditions,
occlusions and pose changes. There are 72 pedestrians and 1220
images which consist of 50 persons captured from two different
cameras in an indoor shopping center in Lisbon and 22 persons
captured from only one camera and normalized to different sizes
varying from 17 x 39 pixels to 72 x 144 pixels. Example images are
shown in Fig. 12.

In this experiment, we chose all images consisting of p=
36, 50 persons from this dataset and compare the rank-1, 2, 5, 10
matching rates of the proposed MMLBD with several state-of-the-
art and correlative approaches (LOMO+XQDA, MFA, KLFDA, eSDC,
PRICOLBP, sub-mCT histogram, ELF, LBP and HOG) in Table 3. It
can be seen that our approach has an obvious advantage at rank-
1, achieving the matching rates of 44.33% and 35.26% with p =
36, 50, which are much higher than the best results of 34.92%
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Fig. 13. The rank-1 accuracies, CMC and SD/RR curves on the CAVIAR4REID dataset.
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Table 3

The rank 1, 2, 5, 10 matching rates (%) with our approach, LOMO+XQDA, MFA, KLFDA, eSDC, PRI-
CoLBP, sub-mCT histogram, ELF, LBP and HOG on the CAVIAR4REID dataset.

Methods p=36 p=>50
r=1 r=>5 r=10 r=20 r=1 r=>5 r=10 r=20

MMLBD 4433  65.07 78.72 92.02 3526 64.28 78.21 93.08
LOMO+ XQDA  34.92 64.18 78.36 94.50 3115 57.31 75.77 90.90
MFA 35.15 64.18 79.56 94.56 3382 5731 78.97 93.15
KLFDA 31.01 63.98 72.81 92.29 3293 6338 74.67 91.91
eSDC 2406  47.60 58.41 78.92 2330 4225 53.50 69.21
ELF 32.16 54.96 67.87 85.12 26.88  46.44 59.74 59.35
PRICoLBP 11.74 28.87 41.58 64.82 8.62 22.50 33.39 50.74
sub-mCT 11.79 32.36 48.10 71.88 8.09 24.79 38.94 76.26
LBP 24.88 45.23 61.19 82.16 20.61 39.10 52.35 69.09
HOG 3355  47.96 59.63 78.42 29.28 4311 52.99 66.89

10
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Fig. 14. Examples of person Re-ID on the WARD dataset: (A) the examples person acquired by camera A; (B) the examples person acquired by camera B; (C) the examples

person acquired by camera C.

Table 4

The rank 1, 5, 10 matching rates (%) with our approach, LOMO+XQDA, MFA, KLFDA, eSDC, PRICOLBP, sub-mCT

histogram, ELF, LBP and HOG on the WARD dataset.

Methods Camera 1-2 Camera 1-3 Camera 2-3
r=1 r=>5 r=10 r=1 r=>5 r=10 r=1 r=>5 r=10

MMLBD 67.89 89.98 95.98 63.67 85.95 94.10 76.89 92.35 95.93
LOMO+ XQDA  58.65 84.93 94.35 48.38 77.89 89.36 61.26 86.70 93.93
MFA 47.84 66.63 79.38 42.57 61.42 73.69 53.03 71.94 79.81
KLFDA 4515 53.44 57.72 42.95 51.78 57.52 49.54 64.27 72.16
eSDC 45.27 52.52 54.93 40.90 49.30 50.93 47.03 53.44 56.31
ELF 52.50 77.21 86.95 47.49 66.20 77.68 73.35 86.49 91.48
PRICOLBP 14.45 31.83 43.68 14.73 34.06 46.10 25.49 45.33 56.28
sub-mCT 24.99 48.12 62.29 23.16 42.70 53.95 28.13 52.58 65.30
LBP 33.34 59.21 7117 34.12 54.53 67.71 58.56 78.63 86.59
HOG 43.76 59.75 67.62 4813 65.36 7411 51.13 67.39 75.77

and 33.82% obtained by the approach of MFA. In few cases, such
as rank = 10, 20, the performance of our approach is slightly lower
that of MFA. However, in practice, the top r(r < 10) ranked match-
ing rates are more critical because the top matched images will
normally be verified by a human operator. Obviously, in the case
of rankr(r < 10), it can be observed that MMLBD consistently per-
forms the best. Therefore, in general, the proposed MMLBD outper-
forms existing state of the art methods. From Fig. 13, we can see
that the performance of MMLBD is superior to that of others in
most cases. In other words, the proposed MMLBD is robust to light
conditions, occlusion, resolution and pose changes, etc. The reason
is that the novel weight of features helps to capture more sufficient
discrimination information and the proposed metric learning strat-
egy selects the optimal distance pairs, which is effective to repre-
sent the appearance of person with occlusion, pose changes, etc.

4.4. Experiments on wide area re-identification dataset (WARD)
dataset

The WARD dataset consists of 70 different pedestrians and 4786
images which are acquired by three non-overlapping cameras in a
real surveillance scenario. This dataset is interesting owing to hav-
ing a huge illumination variation apart from resolution and pose
changes, as shown in Fig. 14. The dataset has three different cam-
eras and we conduct the experiments for all different camera pairs,
denoted as camera pairs 1-2, 1-3 and 2-3. The 70 pedestrians in
this dataset are divided into training set and test set containing 60
and 10 persons respectively.

In this experiment, we compare the proposed MMLBD with
other methods (LOMO+XQDA, MFA, KLFDA, eSDC, PRICoLBP, sub-
mCT histogram, ELF, LBP and HOG). Experimental results are
shown in Fig. 15 and Table 4. It can be seen that the MMLBD
obviously outperforms other methods. For camera pairs 1-2, 1-3
and 2-3, the best rank-1 matching rates of MMLBD with p = 60
are 67.89%, 63.67% and 76.89%, increased by 11.24%, 15.29% and
15.63%, respectively. Meanwhile, the SD/RR curve also shows that
the performance of MMLBD is superior to that of others.

From the analysis of all the reported results, we can con-
clude that, in general, our method has superior performance than
state-of-the-art approaches. This is supported by the fact that we
achieve the best overall performance in CMC and SD/RR curves for
all the three considered datasets.

5. Conclusions

In this paper, we design a novel person Re-ID algorithm
(MMLBD) inspired by relative distance comparison and multi-
channel visual features. The proposed method is proved to demon-
strate an outstanding performance for the representation of per-
son’s appearance. In our approach, we capture the intrinsic struc-
ture information hidden in different person images through mul-
tiple bar-shape descriptor that make full use of spatial correla-
tion between center points and their neighbors. Also, we propose
a new color difference weight for fusion of color information and
apply an overlapping strategy to reduce the local contrast prob-
lem in images. Considering the human visual mechanism, we gran-
ulate and encode the multi-channel color information into more
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Fig. 15. The rank-1 accuracies, CMC and SD/RR curves on the WARD dataset.
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rough blocks with the color space L*a*b* and Sobel channel, in-
stead of gray-values. Thus, it can do better to represent the appear-
ance of person with the changes of illumination, rotation, trans-
lation and perspective for person Re-ID. Meanwhile, we present
a novel multiple metric learning method based on the similar-
ity and dissimilarity of different samples. For bar-shape structural
descriptors with multiple orientations, we make use of minimum
relative distance and dissimilarity matrix to learn the most suit-
able combination for final distance metric and obtain the weight
based on the comparison of relative distance. Thus, the influence
of the noise or outliers can be diminished. On the whole, the pro-
posed MMLBD is simple but effective. Finally, the experimental re-
sults have demonstrated that the proposed MMLBD outperforms
the LOMO+XQDA, MFA, KLFDA, eSDC, ELF, PRICoLBP, sub-mCT,
LBP and HOG.
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