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a b s t r a c t 

The robust structural feature extraction and similarity measure play critical roles in person re- 

identification. This paper presents a novel algorithm named Multiple Metric Learning based on Bar-shape 

Descriptor ( MMLBD ) for person re-identification. Specifically, we first propose a new Multiple Bar-shape 

Descriptor that can take full account of the spatial correlation between the center points and their ad- 

jacent points on different directions. It captures further histogram features based on a novel color dif- 

ference weight factors with an overlapping sliding window, which can depict the local variations and 

consistency in the whole image. The similarity and dissimilarity of samples are used to train the weight 

factor of features and an optimal subspace could be obtained at the same time. Next, we provide an ef- 

fective multiple metric learning method fusing two-channel bar-shape structural features via the optimal 

similarity pairwise measure obtained by a dissimilarity matrix. This measure can fully mine the discrim- 

inative information and eliminate redundancy in the similar features, which make the MMLBD simple 

and effective. Finally, evaluation experiments on the i_LIDS, CAVIAR4REID and WARD data-sets are car- 

ried out, which compare the proposed MMLBD with the corresponding methods. Experimental results 

demonstrate that the MMLBD is more effective and robust against visual appearance variations. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Person re-identification ( Re-ID ) is described for matching same

pedestrians across disjoint camera views in a multi-camera system,

and is increasingly receiving attention as a key component of video

surveillance [1] . The task of person Re-ID is to recognize the occur-

rence of a target pedestrian captured by one camera from a gallery

of labeled subject. Recently, various descriptors based on pedes-

trian’s appearance have been developed. However, it is still difficult

to extract robust and discriminative features from the appearance

of pedestrians, due to complexity of the environment that is af-

fected by the changes of illumination, pose, viewpoint, occlusion,

image resolution and camera setting in the non-overlapping cam-

era systems [2] . At present, the state-of-the-art approaches for per-

son Re-ID are mainly divided into two groups: ( 1 ) the appearance-
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ased approach which designs distinctive and effective descriptors

o represent a person’s appearance; ( 2 ) the metric learning ap-

roach which learns a suitable measure to minimize the similar-

ty between the same people and maximize the similarity between

he different people. The main developments of person Re-ID are

hown in Table 1 . 

Over the past few years, low-level features such as color [3–

] and texture [6,7] , have been widely applied to appearance-based

epresentation. Furthermore, some studies including bag-of-words

odel [8] , local maximal occurrence (LOMO) [9] , hierarchical Gaus-

ian descriptor [10] , recurrent feature aggregation network (RFA-

et) [11] , and hash feature [12, 43] , etc., have attempted to in-

egrate them to capture more robust and reliable features. Apart

rom these methods, the deep learning [13–15] is especially note-

orthy model which has exhibited an excellent performance in

earning representation for person Re-ID. Unfortunately, it is still

xtremely difficult to extract a stable feature representation which

an effectively adapt to severe changes and misalignment across

isjoint views. Besides, neither color nor texture features are able

http://dx.doi.org/10.1016/j.patcog.2017.06.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Table 1 

Main developments of person Re-ID. 

Authors Year Approaches Structural information Remark 

Gray and Tao [47] . 2008 ELF No Appearance 

Farenzena et al. [6] 2010 SDALF Yes Appearance Metric learning 

Avraham et al. [49] 2012 Transfer Yes Transfer learning 

Zheng et al. [22] 2013 RDC No Appearance + Metric learning 

Zhao et al. [18] 2013 Salience Yes Appearance + Matching 

Pedagadi et al. [23] 2013 LFDA No Metric learning 

Xiong et al. [24] 2014 Kernel Yes Metric learning 

Yang et al. [3] 2014 Color Name No Appearance 

Ma et al [26] 2014 Multiple tasks No Metric learning 

Shen et al. [20] 2015 Structure Yes Structure learning 

Lisanti et al. [27] 2015 Sparse Rank No Rank learning 

Ahmed et al. [29] 2015 Deep Yes Appearance + Metric learning 

Liao et al. [9] 2015 LOMO Yes Appearance + Metric learning 

Matsukawa et al. [10] 2016 GOG Yes Appearance 

Tao et al. [32] 2016 DR-KISS No Metric learning 

Zheng et al. [33] 2016 Transfer Yes Transfer learning 
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o describe the structural shape characteristics of pedestrians ex-

ctly. 

Different from color and texture features, the structural features

aptured the local shape information from images, as they focus on

he spatial correlation between points retaining the color and tex-

ure information [16] . M. Farenzena, et al. [6] designed symmetry-

riven accumulation of local features ( SDALF ) to capture multiple

arieties of information from three stable parts of human body

ased on the maximally stable color regions ( MSER ) [17] . By con-

rast, R. Zhao, et al. [18] learned human salience in an unsuper-

ised manner to find reliable and discriminative matched patches

or person Re-ID and S. Iodice, et al. [19] utilized symmetry prin-

iples, as well as structural relations among salient features to ob-

ain structure information via a graph matching method. Besides,

. Shen, et al. [20] integrated a global matching constraint over the

earned correspondence structure to exclude cross-view misalign-

ents during the image patch matching process. Metric learning is

nother interesting aspect of the person Re-ID. Generally, the ex-

sting metric models could be divided roughly into two categories:

on-learning and learning methods. Many of the models simply

hoose a standard distance such as l 1, 2 –norm [21] . However, they

reat all features equally instead of discarding bad features selec-

ively. Thus the matching results are always undesirable. On the

ontrary, the metric learning based measurement approaches, in-

luding Relative Distance Comparison (RDC) [22] , Local Fisher Dis-

riminant Analysis (LFDA) [23] Kernel-Based Metric [24] , Maha-

anobis Distance Learning [25] , Multi-task Distance Metric Learn-

ng [26] , Iterative Re-Weighted Sparse Ranking [27] , Multiple Met-

ic Learning [28] , Deep Metric Learning [29] , Cross-view Quadratic

iscriminant Analysis (XQDA) [9] , Tensor Learning [30] , Saliency

earning Model [31] , Dual-Regularized KISS (DR-KISS) [32] and

ransfer Learning Model [33, 49] , etc., learn typically a discrimina-

ive similarity between the same and different persons across cam-

ra pairs. Although these metric learning methods outperform the

xisting person Re-ID benchmarks, they are still limited by some

lassical problems, such as robust feature representation and small

ample size ( SSS ) for model learning. 

To address this problem, we put forward a Multiple Bar-shape

escriptor ( MBD ) which takes advantage of a hybrid encoding

trategy combining the color granularity and local binary encod-

ng form bar-shape structures, shown in Fig. 2 , to capture the

obust structural information. Differently, we apply Color Differ-

nce Weight, Overlapping Slide Window and Max-pooling Oper-

tor to consider more visual information and ensure more local

tructural information. Meanwhile, local encoding histograms are

aptured from two channels with multiple orientations to ensure

he low dimensionality of feature descriptor and the robustness
 s  
f the changes of illumination. Then, the discriminant weight sub-

pace learning are utilized for the Canberra distance. Furthermore,

e propose a novel relative distance fusing algorithm to integrate

ulti-orientation bar-shape structural features. Instead of learn-

ng a metric over hand-crafted features, we utilize the similarity

f metric to extract optimal pairwise distance, based on dissimi-

arity matrix, and fuse multiple distances for person Re-ID. It can

void complex model learning effectively. The main contributions

re highlighted as follows: 

1) We design a novel Multiple Bar-shape Descriptor (MBD) which

applies a hybrid encoding strategy to extract bar-shape struc-

tural features, integrating multi-channel local binary pattern

and color granularity encoding. 

2) We present a new metric learning method based on the simi-

larity of distances and fuse multiple metrics via optimal relative

distance pairs to learn a robust distance function dealing with

the complex matching fusion problem. Meanwhile, we put for-

ward an effective color difference weight factor based on the

similarity and dissimilarity of samples to characterize different

important attributes of different features. 

3) Experimental results show the proposed method of MMLBD is

more effective and robust against visual appearance variations,

achieving superior performance on three public person Re-ID

data-sets in most cases. 

The remainder of this paper is organized as follows. We review

he related works and introduce the theory of the proposed ap-

roach in Section 2 and Section 3 , respectively. Then, we carry out

he comparative experiments on three public person Re-ID data-

ets and give the detailed discussions based on the experimental

esults in Section 4 . Finally, conclusions are made in Section 5 . 

. Related work 

This paper aims to seek an effective method for person Re-

D based on multi-channel feature extraction. Firstly, we present

n overview of the relevant works, i.e., Census Transform Pyramid

34,35] and binary interaction mechanism [35] . 

.1. Census transform pyramid 

A representative of structural image descriptors is Local Binary

attern (LBP) proposed firstly by Ojala et al. [36] as a gray-scale

nvariant texture descriptor. The LBP code is obtained by its circu-

arly symmetric n -neighbors in a circle of radius r with the pixel

alue of the central point and arranging the results as a binary

tring. It is robust for the changes of illumination. Based on this,
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Fig. 1. Census transform pyramid. 
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Fig. 2. Bar-shape structures with four direction-senses about 0 °, 45 °, 90 ° and 135 °. 
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many variants are proposed, such as CLBP [37] , CBP [38] , LDP [39] ,

LTP [40] , LQP [41] , CS-LBP [42] , et al. However, these approaches

cannot address the curse of dimensionality with the increase of

points being encoded. In mCENTRIST [35] , Y. Xiao, et al. utilize

the Census Transform (CT) pyramid to reduce the dimensionality,

achieving higher accuracy rate for scene categorization. The Census

Transform pyramid is shown in Fig. 1 and comprised of three levels

in which level 0 is standard CT that represents a center point with

binary coding by its 8-adjacency points from top-right to bottom-

left. Compared with the center point, a value greater than the pixel

value is defined as 1, otherwise 0. Then we can obtain the binary

coding: 

 T 1 = ( 10110101 ) 2 (1)

However, the CT 1 only represents the binary code of one chan-

nel. For color images encoded by level 0, it should be described as

follows: 
−−−−−→ 

mC T l e v el 0 = ( C T 1 C T 2 , . . . , C T n ) ︸ ︷︷ ︸ 
n −channels 

(2)

CT 1 , CT 2 and CT 3 describe the binary coding with three channels

of color images respectively. It could also include four channels

which consist of three color channels and one Sobel operator. For

level 1 and 2, the level 0 is divided into two or four sub-mCTs

on center directions. The approach of binary coding is the same as

level 0. For level 1, two binary coding with two directions can be

obtained: 

T 1 1 = ( 1100 ) 2 (3)

and 

T 2 1 = ( 0111 ) 2 (4)

Similarly, to capture multi-channel information of color images,

the multiple sub-mCT value with different directions is defined as

follows: 
−−−−−→ 

mCT 1 l e v el 1 = 

(
C T 1 1 , C T 

1 
2 , . . . , C T 

1 
n 

)
︸ ︷︷ ︸ 

n −channels 

(5)

and 

−−−−−→ 

mCT 2 l e v el 1 = 

(
C T 1 1 , C T 

1 
2 , . . . , C T 

1 
n 

)
︸ ︷︷ ︸ 

n −channels 

(6)
In this way, compared with level 0, the dimensionality of fea-

ure vector is reduced from 2 8 × n to m × 2 k × n wher e n is the

umber of channels, m is the number of directions and k is the

ength of binary coding on different directions. 

.2. Binary interaction mechanism 

For real application, the feature descriptor extracted via sub-

CT is also impractical if n is higher. To address this problem,

he binary interaction mechanism is proposed [35] and it would

onsider a group of two-channel sub-mCT histograms rather than

ll channels directly to avoid prohibitively huge dimensionality. Let

 = { c 1 , c 2 , c 3 , c 4 } be a four-channel color image and six channel

airs could be derived based on binary interaction mechanism, de-

ned as c ′ 
1 

= { c 1 , c 2 } , c ′ 
2 

= { c 1 , c 3 } , c ′ 
3 

= { c 1 , c 4 } , c ′ 
4 

= { c 2 , c 3 } , c ′ 
5 

=
 c 2 , c 4 } , c ′ 

6 
= { c 3 , c 4 } . Then, two-channel sub-mCT histogram pairs

ill be extracted from each c ′ 
i 

respectively and defined as C ′ =
 c ′ 

1 
, c ′ 

2 
, c ′ 

3 
, c ′ 

4 
, c ′ 

5 
, c ′ 

6 
} . Through the binary interaction mechanism,

he dimensionality of feature descriptor is reduced form m × 2 k × n 

o ( 
n 

2 
) × m × 2 k ×2 where n is the number of channels, m is the

umber of directions and k is the length of local binary coding on

ifferent directions. And it achieves a balance between computa-

ional efficiency and discriminative power. 

. The proposed algorithm (MMLBD) 

It is a well-known fact that person Re-ID is a challenging prob-

em because of big intra-class variations in illumination, pose,

iewpoint, and occlusion. However, the appearance of a person

s usually rich in stable bar-shape structures, as shown in Fig. 2 ,

hich have significant direction-senses about 0 °, 45 °, 90 ° and 135 °,
espectively in human vision system. These bar-shape structures

re concerned about the spatial correlation of adjacent points.

oreover, they are robust for the changes of illumination, rotation

nd translation. In addition, Sobel operator can be used to find the

pproximate absolute gradient magnitude at each point in an input

mage [35] . 

In this paper, we take advantage of a novel hybrid encod-

ng strategy which consists of color difference weight histograms

ased on Census Transform Pyramid and color granularity encod-

ng with four color channels ( L ∗a ∗b ∗ and Sobel ). Color, texture,

olor difference and spatial structure information are all consid-

red in our approach. To ensure lower dimensionality, we apply

inary interaction mechanism to capture multiple two-channel de-

criptors with four orientations. Furthermore, we project descrip-

ors into an optimal subspace and take advantage of an over-

apping sliding window to extract feature histogram from local

ontrast-normalized cells, eliminating the local variations and en-

ancing the adaptability to illumination variations, shadowing and

mall shift in images. Meanwhile, we make full use of the sim-

larity of dissimilar samples to evaluate the qualities of different
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Fig. 3. The process of the proposed approach. 
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2  
eatures by statistical learning and fuse more discrimination infor-

ation to improve the matching rates of person Re-ID. 

After the process of feature extraction, we can obtain mul-

iple bar-shape features. Considering the similarity of same per-

on, we make full use of the comparison of relative distances to

earn multiple optimal distance pairs based on dissimilarity matrix

nd fuse them with their credibility defined as the weight factor

o achieve a more effective performance. The process of our pro-

osed approach is shown in Fig. 3 and be introduced in detail as

ollows. 

.1. Multiple Bar-Shape Descriptor 

In order to capture more useful information, we focus on mul-

iple channels of a color image, rather than a gray image. Based on

ome existing studies, the color space of L ∗a ∗b ∗ is more suitable for

erception of color in human vision system [44] . Hence, the color

pace of L ∗a ∗b ∗ is adapted to person Re-ID. Meanwhile, we design

 multiple bar-shape descriptor (MBD) which takes advantage of

 hybrid encoding strategy with the consideration of the color dif-

erence weight, Census Transform pyramid, color granularity en-

oding and binary interaction mechanism. It can capture effectively

he bar-shape structures on person’s appearance. Then, we take ad-

antage of an overlapping sliding window to extract the histogram

ased on hybrid encoding and color difference weight. Consider-

ng the salient features, we capture local histogram by Max-pooling

perator on the horizontal direction. The process of multiple bar-

hape descriptor is shown in Fig. 4 . 

(A). Hybrid encoding strategy 

In our approach, the hybrid encoding strategy consists of sub-

CT and color granularity encoding with multiple channels and

ultiple orientations, as shown in Fig. 5 . For sub-mCT, we denote

he local binary encoding of pixel A with different channels and

rientations as BSL c 
θ
(A ) . For color granularity encoding, we granu-

ar the color space of L ∗a ∗b ∗ into 4, 4, 4 bins and the Sobel chan-

el into 9 bins, and denote it as BSC c 
θ
(A ) . Then, the BSL c 

θ
(A ) and

SC c 
θ
(A ) are defined as follows: 

SL c θ ( A ) = 

N−1 ∑ 

i =0 

s 
(
g c θ,i − g c center 

)
× 2 

i (7) 
SC c θ ( A ) = 

N−1 ∑ 

i =0 

( k c ) 
i × g c θ,i (8) 

 ( x ) = 

{
1 , x ≥ 0 

0 , x < 0 

(9) 

here g c center is the pixel value of point A in channel- c, N is the

umber of the neighbor points of center point A on direction- θ ,

 

c 
θ,i 

is the pixel value of point A ’s i -th neighbor on the direction- θ ,

 c is the number of bins in channel- c, c is one of the L ∗, a ∗, b ∗, sobel

nd θ is the direction (0 °, 45 °, 90 ° and 135 °). Considering level

wo for sub-CTs on center directions (More details can be found in

ection 2.1 ), the value of N is 2. 

Furthermore, we utilize binary interaction mechanism [35] and

hoose two-channel pairs from L ∗, a ∗, b ∗ and Sobel to obtain two-

hannel bar-shape structures on different directions, defined as 

SL i, j 

θ ( A ) = BSL i θ ( A ) × 2 

N + BSL j 
θ ( A ) (10)

SC i, j 

θ ( A ) = BSC i θ ( A ) × k j + BSC j 
θ ( A ) (11)

here i, j represent two different channels, BSL 
i, j 

θ
(A ) is two-

hannel local binary encoding on direction- θ , N is the number of

eighbors on direction- θ , BSC 
i, j 

θ
(A ) is two-channel granularity en-

oding with direction- θ , k j is the number of bins with channel- j . In

ur approach, for a four-channel image, 6 two-channel pairs can be

erived by binary interaction on different directions and defined as

 L θ = 

{
BSL L,a 

θ
, BSL L,a 

θ
, BSL L,sobel 

θ
, BSL a,b 

θ
, BSL a,sobel 

θ
, BSL b,sobel 

θ

}
(12) 

nd 

 C θ = 

{
BSC L,a 

θ
, BSC L,b 

θ
, BSC L,sobel 

θ
, BSC a,b 

θ
, BSC a,sobel 

θ
, BSC b,sobel 

θ

}
(13) 

For different directions, we can obtain two sets of mul-

iple bar-shape feature images, denoted as BL = { B L θ } , θ ∈
 0 

◦
, 45 

◦
, 90 

◦
, 135 

◦ } and BC = { B C θ } , θ ∈ { 0 ◦ , 45 
◦
, 90 

◦
, 135 

◦ } . 
By using binary interactions, the dimensionality of feature

s only ( 
n 

2 
) × ( Dim ( BSL c 

θ
) + Dim ( BSC c 

θ
) ) × m described in Section

.1 for n -channel images and it avoids prohibitively huge features,
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Fig. 4. The process of multiple bar-shape descriptor. 

Fig. 5. The processing of sub-mCT and color granularity encoding with single-channel and single-orientation ( c = L and θ = 0 
◦
). 
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where n is the number of channels, m is the number of directions

and we let n, m to 4 empirically in our approach. 

(B). Color difference weight 

Meanwhile, in order to fuse the color difference information,

we obtain the color difference weight of CDW 

c 
θ
(A ) for each original

pixel A ( x,y ) with single channel. It is more invariant to monotonic

changes of illumination and defined as follows: 

DW 

c 
θ ( A ) = 

N−1 ∑ 

i =0 

∣∣g c θ,i − g c center 

∣∣ (14)

Considering that the center point is more important than the

surrounding points in a person image [44] , we define the weight

map ( w ( A )) for each point and the color difference weight with
wo-channel bar-shape structure as CDW 

c 1 , c 2 
θ

(A ) : 

 DW 

c 1 , c 2 
θ ( A ) = w ( A ) ×

√ 

C DW 

c 1 
θ ( A ) 

2 + C DW 

c 2 
θ ( A ) 

2 (15)

 ( A ) = e −
( x −μx ) 

2 

2 σx × e 
− ( y −μy ) 

2 

2 σy (16)

here c 1 , c 2 denote the different channels, μx = L x / 2 , μy =
 y / 2 , σx = L x / 4 and σy = L y / 4 . In Eq. (16) , x denotes the row num-

er of the image matrix and y denotes the column number of the

mage matrix. L x and L y denote the image height and width, re-

pectively. 

For a four-channel person image, we can obtain six

wo-channel color difference weight maps, defined as

 θ = { C DW 

L,a 
θ

, C DW 

L,b 
θ

, C DW 

L,sobel 
θ

, C DW 

a,b 
θ

, C DW 

a,sobel 
θ

, C DW 

b,sobel 
θ

} . 



C. Zhao et al. / Pattern Recognition 71 (2017) 218–234 223 

 

c  

t  

e  

s  

W  

i  

c  

t  

l

H

a  

f

H

w  

t  

t  

w  

o  

m  

H

{  

t  

p

 

f  

c  

c  

m  

t  

r  

R

3

 

h  

s  

s  

d  

i  

M  

t  

q  

i  

d  

t  

r  

t  

w

W

∑

∑

w  

d  

p  

c  

t  

c  

t  

t  

s

D

μ

μ

w  

d  

H  

t  

d  

a

 

o  

n  

i  

m  

s  

t  

t  

m  

 

t  

m  

r⎧⎪⎨
⎪⎩
w  

D  

D  

S  

6  

a  

p  

d

D

w  

m  

D  

D

 

i  

t

(C). Histogram extraction with overlapping slide window 

In order to further enhance the robustness to illumination, we

apture statistical histogram features to describe the characteris-

ics of multiple bar-shape feature images from two-channel hybrid

ncoding maps including BL θ ( A ) and BC θ ( A ) with an overlapping

liding window with size of n × n , and the weight is obtained by

 θ ( A ). For a point A = ( x, y ) , its two-channel local binary encoding

s BSL 
i, j 

θ
(A ) and color granularity encoding is BSC 

i, j 

θ
(A ) . Besides, the

olor difference weight of point A is defined as CDW 

i, j 

θ
(A ) . Then,

he BSL 
i, j 

θ
(A ) -th value of the histogram HL 

i, j 

θ
is computed as fol-

ows: 

L i, j 

θ

(
BSL i, j 

θ ( A ) 
)

= 

∑ 

A ∈ R 
CDW 

i, j 

θ ( A ) (17) 

nd the BSC 
i, j 

θ
(A ) -th value of the histogram HC 

i, j 

θ
is computed as

ollows: 

C i, j 

θ

(
BSC i, j 

θ ( A ) 
)

= 

∑ 

A ∈ R 
CDW 

i, j 

θ ( A ) (18) 

here R is the region of the sliding window in an image, θ is

he orientation and i, j represent two different channels. In order

o better characterize invariance to illumination, shadowing, etc.,

e contrast-normalize the local histograms captured from regions

f the overlapping sliding window. Then, we can obtain the

ultiple two-channel bar-shape structural histograms, defined as

 i, j = [ H L 
i, j 

0 
◦ , H C 

i, j 

0 
◦ , H L 

i, j 

45 
◦ , H C 

i, j 

45 
◦ , H L 

i, j 

90 
◦ , H C 

i, j 

90 
◦ , H L 

i, j 

135 
◦ , H C 

i, j 

135 
◦ ] , i, j ∈ 

 L, a, b, sobel } . Moreover, we take advantage of max-pooling to cap-

ure the multi-scale bar-shape structural feature from multi-scale

erson image [9] . 

The bar-shape structural color difference weight histogram

uses the color, color difference, texture information and the spatial

orrelation of points with multiple channels and orientations. It

an represent effectively the structural appearance of a person and

ake full use of contrast-normalization to enhance the adaptability

o illumination variations, shadow, etc. Hence, these descriptors are

elatively suitable to represent the appearance of human in person

e-ID. 

.2. Multiple optimal distance pairs metric learning 

(A). Discriminant weight subspace distance 

Owing to the strategy of overlapping, the descriptor of MBD is

igh-dimensional, redundant and sparse. Therefore, we apply sub-

pace projection to seek a low-dimensional feature subspace in-

tead of the original feature. This problem is solved by local fisher

iscriminant analysis ( LFDA ) which is required to solve a general-

zed eigenvalue problem of very large scatter d × d matrices [23] .

eanwhile, in order to reduce the bad features negative effects on

he metric, we utilize a discriminant weight factor to evaluate the

uality of feature. Intuitively, it hopes the distance to be closer for

ntra-class feature pairs, and further for inter-class pairs. Thus, we

efine intra-class and inter-class distances ( Eq. 19–21 ) to estimate

he similarity of same person and dissimilarity of different person

espectively. Then, we capture inherent discriminant information

o describe the importance of feature. In detail, the discriminant

eight of feature is computed by 

 f = e 
∑ 

D −
∑ 

S (19) 

 

D 

= 

∑ 

x i , x j ∈ D 
log 

∣∣x i − x j 
∣∣ (20) 

 

S 

= 

∑ 

x i , x j ∈ S 
log 

∣∣x i − x j 
∣∣ (21) 
here �S , �D denote the distance vectors for similar pairs and

issimilar pairs respectively and x i , x j represent two different sam-

les. Then, for different two-channel bar-shape descriptors, the dis-

riminant weight of feature W f c 1 , c 2 
can be learned easily from the

raining samples, where c 1 , c 2 ∈ { L, a, b, sobel } represent different

hannels. Then, we apply Canberra distance [44] , combining with

he weights of features to measure the similarity between different

wo-channel descriptors H 

(i ) 
c 1 , c 2 

and H 

( j) 
c 1 , c 2 

obtained from different

amples respectively. It is shown as Eq. (22) . 

 

i, j 
c 1 , c 2 

(
H 

( i ) 
c 1 , c 2 

, H 

( j ) 
c 1 , c 2 

)

= 

M ∑ 

k =1 

⎛ 

⎝ W 

k 
f c 1 , c 2 

×

⎛ 

⎝ 

∣∣∣H 

( i,k ) 
c 1 , c 2 

− H 

( j,k ) 
c 1 , c 2 

∣∣∣∣∣∣H 

( i,k ) 
c 1 , c 2 

+ μt 

∣∣∣ + 

∣∣∣H 

( j,k ) 
c 1 , c 2 

+ μq 

∣∣∣
⎞ 

⎠ 

⎞ 

⎠ (22) 

t = 

M ∑ 

k =1 

H 

( i,k ) 
c 1 , c 2 

/M (23) 

q = 

M ∑ 

k =1 

H 

( j,k ) 
c 1 , c 2 

/M (24) 

here M is the dimensionality of feature vectors, i, j represent two

ifferent sam ples, H 

( i,k ) 
c 1 , c 2 

and H 

( j,k ) 
c 1 , c 2 

are the k -th feature value of

 

(i ) 
c 1 , c 2 

and H 

( j) 
c 1 , c 2 

, μt and μq are utilized to avoid the denomina-

or to be zero. Then, we can compute multiple weight Canberra

istances for multiple two-channel bar-shape descriptors, defined

s D = { D c 1 , c 2 } , c 1 , c 2 ∈ { L, a, b, sobel } and c 1 � = c 2 . 

(B). Multiple optimal distance pairs 

Inspired by the voting theory [45] , the relative distances based

n these features pairs are not easy to make mistakes simulta-

eously and the relative distance of the optimal feature pairwise

s minimal. In other words, the joint distance based on the opti-

al feature pairwise has a positive effect on person Re-ID. Higher

imilarity of the optimal distance pairs means lower relative dis-

ance and usually obtains lower risk of misrecognition. Based on

his idea, we propose a novel metric learning method based on

ultiple optimal distance pairs via comparison of relative distance.

To capture multiple optimal distance pairs, we firstly normalize

he distances to the range [0, 1]. Then, we construct dissimilarity

atrix ( DM ) with different metrics to capture the multiple pairs of

elative distance via weight Canberra distance as follows: 
 

 

 

 

 

DM i, j = e | D i −D j | 
DC i, j = e | D i + D j | 
D i , D j ∈ D 

(25) 

here DM i, j is the value of dissimilarity matrix at i -row and j -col,

C i, j is the value of matrix combining two-distance pairs and D i ,

 j ∈ D are two different weight Canberra distances obtained by

ection 3.2 (A). In our approach, we consider 4 channels and obtain

 two-channel bar-shape structural features. Thus the DM and DC

re symmetric matrices with 6 × 6. Finally, we fuse the n optimal

airs of distance with minimal dissimilarity and their credibility,

efined as: 

 M MODR = 

n ∑ 

k =1 

DC k up 

DM 

k 
up 

(26) 

here 1 /DM 

k 
up is defined as the credibility, DM 

k 
up is the k-th ele-

ent of the sorted upper triangular matrix of DM with ascending,

C k up is the k-th element of the sorted upper triangular matrix of

C associated with DM . 

In general, the overall process of our algorithm ( MMLBD ) which

ntegrates the two separate steps of feature representation and dis-

ance metric, is shown as follows. 
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Fig. 6. Examples of person Re-ID on the i-LIDS MCTS dataset. 
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Algorithm: the proposed method of MMLBD 

Input: the dataset X ∈ R 128 × 48 , T, G, P. 

Output: the rank of matching rates. 

Begin: 

(1) Obtain the channels of L ∗a ∗b ∗ and Sobel space. 

(2) Obtain single-channel bar-shape structural encoding, ( BSL c 
θ
(A ) , BSC c 

θ
(A ) ) by 

Eqs.7–8 . 

(3) Obtain two-channel bar-shape structural encoding, ( BSL i, j 

θ
(A ) , BSC i, j 

θ
(A ) ) by 

Eqs. 10–11 . 

(4) Obtain the color difference weights ( W θ ) by Eqs. 14–16 . 

(5) Extract bar-shape structural Weight Color Difference Histogram and obtain 

the features: 

H i, j = [ H L i, j 

0 ◦ , H C i, j 

0 ◦ , H L i, j 

45 
◦ , H C i, j 

45 
◦ , H L i, j 

90 
◦ , H C i, j 

90 
◦ , H L i, j 

135 
◦ , H C i, j 

135 
◦ ] , i, j ∈ { L, a, b, sobel } . 

(6) Divide X into training set ( X t ) and test set which is made of a gallery set 

( X g ) and a probe set ( X p ): X t (t) , t = { 1 , 2 , . . . , T } , X g (g) , g = { 1 , 2 , . . . , G } and 

X p (p) , p = { 1 , 2 , . . . , P } . 
(7) Learn the weight of feature W f c 1 , c 2 

by Eqs. 19–21 . 

(8) Obtain weight Canberra distance D c 1 , c 2 by Eqs. 22–24 . 

(9) Construct dissimilarity matrix (DM) and two-distance pairs combining 

matrix (DC) by Eq. 25 . 

(10) Join distance metric via optimal distance pairs to compute the final 

distance D MODP by Eq. 26 . 

(11) Obtain the matching rates with the theory of nearest neighbor. 

End 

3.3. Complexity analysis 

In our approach, we consider the hybrid encoding strategy with

multiple orientations and binary interaction mechanism, integrat-

ing multi-channel features. Compared with the original local bi-

nary pattern, the dimensionality of feature vector is reduced from

V 

8 × n to ( 
n 

2 
) × m × V 2 ×2 , where n is the number of channels, m

is the number of orientations and V is the maximum value of

adjacent points with encoding or granularity. To be precise, the

value of V for local binary encoding with 2-channels and mul-

tiple orientations is 2. Therefore, the dimensionality of HL 
c 1 , c 2 
θ

is

2 2 × 2 = 4 . Besides, for the color granularity encoding, the dimen-

sionality of HC 
c 1 , c 2 
θ

is k c 1 × k c 2 ∈ { 16 , 36 } . Furthermore, the value

of m is 4 and we can obtain that the dimensionality of H i, j is∑ 

θ Dim ( HL 
c 1 , c 2 
θ

) + 

∑ 

θ Dim ( HC 
c 1 , c 2 
θ

) . Meanwhile, we take advan-

tage of overlapping slide window with size of 16 × 16 to capture

contrast-normalized local histogram and apply Max-pooling oper-

ator to fuse these local histograms on the horizontal direction. The

step of slide window is denoted as 8. Thus, we can obtain that the

final dimensionality of feature vector is 15 × Dim ( H c 1 , c 2 ) from a

person image with the size of 128 × 48. In addition, for our metric

learning, we construct the optimal distance pairs to fuse multiple

two-channel features and the complexity of time is O 1 ( n 
4 ) × O 2 ( d )

where d is the dimensionality of feature vector with subspace pro-

jection. 
. Experiments 

.1. Parameter and evaluation 

We evaluate the proposed method of MMLBD on three-person

e-ID benchmark datasets, including i-LIDS Multiple-Camera Track-

ng Scenario (MCTS) [22] , CAVIAR4REID [49] and Wide Area Re-

dentification Dataset (WARD) [50] . Among them, the i-LIDS MCTS

ataset evaluates the performance over variations of lighting il-

umination, obstacle, etc.; the CAVIAR4REID dataset focuses on

he changes of resolution, pose as well as occlusions; the WARD

ataset is concerned about a huge illumination variation apart

rom resolution and pose changes. Meanwhile, we resize each im-

ge in the datasets to 128 × 48 pixels to facilitate the evaluation

ith the common parameters of the descriptor. Besides, we chose

he images of p persons (classes) to set up the training set, and the

est for testing. Each test set includes a gallery set and a probe set.

he gallery set consists of one image ( single shot ) for each person

nd the remaining images are used as the probe set. This proce-

ure is repeated 10 times. 

We compare the proposed MMLBD with LOMO + XQDA[9], MFA

 24 ], kLFDA [ 24 ], eSDC [ 18 ], PRICoLBP [ 48 ], sub-mCT histogram

 35 ], ELF [ 47 ], LBP [ 36 ] and HOG [ 46 ] on three person Re-ID

atasets. Besides, we extract the MBD descriptor from local over-

apping slide windows with the size of 16 × 16 and the step is 8 × 8

n horizontal and vertical directions. Thus, for the horizontal direc-

ion, we can capture 48 
8 − 1 = 5 local histograms. Furthermore, we

an obtain a local maximal occurrence representation with max-

ooling operator on horizontal direction. Besides, we can capture
128 

8 − 1 = 15 local histograms on vertical direction. To be fair, we

lso set the same parameters of local path with the local descrip-

ors of HOG, LBP, sub-mCT histogram and PRICoLBP. It is worth not-

ng that we capture the LOMO descriptor from local path with the

ize of 10 × 10 and step of 5 × 5. It is basically optimal parameter

etting, citing the original published paper. For the other method,

e also ensure the optimal parameters based on the published pa-

ers. And they pay more attention to the metric learning method. 

We utilize the standard performance measurements to evaluate

ur proposed MMLBD , also known as Cumulative Matching Char-

cteristic (CMC) curve and Synthetic Disambiguation /Reacquisition

ate [51] . The CMC curve represents the expectation of the probe

mage correct match at rank r against the p gallery images. And

ank-1 matching rate is thus the correct matching recognition rate.

owever, the SD/RR curve measures the probability that any of the

 best matches is correct. In practice, a high rank-1 matching rate

s significant, meanwhile, the top r ranked matching rates with a

mall value are also critical because the top matched images will
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Fig. 7. The rank 1, 5, 10, 20 matching rates (%) with different cell scales on the i-LIDS MCTS dataset. 

Fig. 8. The rank-1 accuracies, CMC and SD/RR curves of our approach with different color spaces ( RGB , HSV and L ∗a ∗b ∗) on the i-LIDS MCTS dataset. 
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ormally be verified by a human operator. The detailed results of

xperiments on person Re -ID are reported and analyzed below. 

.2. Experiments on i-LIDS multiple-camera tracking scenario (MCTS) 

ataset 

In the i-LIDS MCTS dataset, in which the images are captured

t an airport arrival hall during a busy period in a multi-camera

CTV network, there are a total of 119 persons and 476 images, as

hown in Fig. 6 . Firstly, experiments on i-LIDS MCTS dataset are

arried out to evaluate the performance of the proposed method

ver the variations of lighting illumination, obstacle, and etc. Then

e verified different impacts on performance over variations of cell

cales, color spaces and two channel features respectively. Finally,
e validated the performance of different feature descriptor and

etric learning strategy. 

(A). Impact of different cell scales 

In this section, we present the details and results of com-

arative experiments and further analyze the effects on per-

ormance under different cell scales, defined as the overlap-

ing sliding windows by varying widths ( w = 8 , 16 , 24 , 32 ) and

eights ( h = 8 , 16 , 24 , 32 ) . The matching rates at rank-1, 5, 10,

0 with different scales of cell are reported in Fig. 7 . It can be

een that the matching rates with the cell of 16 × 16 are higher

han other cell scales at rank-1, 5, 10, 20 and it can achieve the

est performance compared with other cells. Taking into account

he dimensionality and matching rates as a whole, we empirically

hose the size of cell as 16 × 16 in our experiments to ensure lower
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Fig. 9. The rank-1 accuracies, CMC and SD/RR curves of our approach and different bar-shape structural descriptors on the i-LIDS MCTS dataset. 

Fig. 10. The rank-1 accuracies, CMC curves of our approach, different descriptors and metric learning methods on the i-LIDS MCTS dataset. 
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dimensionality of feature vectors and the overlapping of different

cells. 

In addition, we will testify the performance of the proposed ap-

proach of MMLBD in different color spaces of RGB , HSV and L ∗a 

∗b ∗,

and the details are presented in the following section. 

(B). Impact of different color spaces 

The performance of our approach is evaluated on different color

spaces RGB , HSV and L ∗a 

∗b ∗, and the results are shown in Fig. 8 . In

general, our proposed MMLBD demonstrates relatively robust per-

formance in different color spaces, particularly in the color space

of L ∗a 

∗b ∗. We can achieve the best matching rate of 50.67% and

a 3.23% performance gain can be obtained for the rank-1 accu-

racy with p = 50 since the L ∗a 

∗b ∗ color space is a kind of color

systems based on human visual physiological characteristics. In
erms of person Re-ID, the color space of L ∗a 

∗b ∗ is more suitable

o reduce intra-class variations when comparing with the color

paces of RGB and HSV . Therefore, we apply our presented method

f MMLBD in the L ∗a 

∗b ∗ color space for person Re-ID. To fur-

her demonstrate the effectiveness of the proposed algorithm of

MLBD , evaluation of different two-channel features is conducted

nd the results will be reported in the following section. 

(C). Comparative experiments under different two-channel

eatures 

Comparative experiments under different two-channel features

re presented. Fig. 9 reports the CMC curves and SD/RR curves and

e can see that the proposed approach based on optimal distance

airs strategy can do better than other two-channel features, out-

erforming the second best one ( a + b channel) by 1.95%. It indi-
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Fig. 11. The rank-1 accuracies, CMC and SD/RR curves on the i-LIDS MCTS dataset. 
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Fig. 12. Examples of person re-identification on the CAVIAR4REID dataset. 

Table 2 

The rank 1, 5, 10, 20 matching rates (%) with our approach, LOMO + XQDA , MFA , kLFDA , eSDC, PRICoLBP, sub-mCT histogram, ELF, LBP 

and HOG on the i-LIDS MCTS dataset. 

Methods p = 30 p = 50 p = 80 

r = 1 r = 5 r = 10 r = 20 r = 5 r = 10 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 

MMLBD 54.76 84.52 92.86 95.24 50.67 80 85.33 94.67 39.42 63.90 81.34 87.24 

LOMO + XQDA 53.57 82.14 90.48 97.61 47.33 72 84.67 93.33 35.68 61.83 75.93 87.13 

MFA 40.48 68.27 82.92 96.07 36.46 58.16 70.65 86.22 22.50 46.68 57.78 72.58 

kLFDA 46.67 76.96 90.12 97.62 36.12 62.76 76.46 90.71 25.84 49.90 62.23 75.88 

eSDC 39.33 66.35 78.85 93.08 36.77 61.56 66.78 77.79 37.94 57.43 66.78 67.92 

ELF 33.43 58.29 70.71 90.43 30 55.25 67.03 82.20 25 43.9 55.08 68.67 

PRICoLBP 22.14 51 67.57 86.43 15.59 37.88 52.88 75.59 13 28.38 40.83 58.08 

sub-mCT 17.86 51.43 73.29 90.71 15.25 39.75 53.8 73.90 11.13 28.17 40.50 59.08 

LBP 23.86 56.43 71 88.29 17.80 43.56 60.08 76.69 15.13 33.29 45 60.63 

HOG 29.43 50.71 66 88.29 24.49 45.76 58.56 73.73 22.46 39.08 49.08 61.58 
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1  
cates that the proposed optimal distance pair strategy can cap-

ture more discrimination information via multiple optimal distance

pairs which are relative distance obtained by dissimilarity matrix,

and joint distance metric based on voting theory. 

(D). Evaluation of different descriptor and metric learning 

The proposed descriptor ( MBD ) and metric learning method

( MMLBD ) is compared with other descriptors ( LOMO, LBP,

HOG ) and metric learning method (MBD + Mean, MBD + XQDA,

MBD + kLFDA ). For the different descriptors, the l 1 -norm is utilized

to measure the similarities between samples. Fig. 10 reports the

CMC curves and the comparison shows that our proposed descrip-

tor is obviously more robust than other descriptors and achieves

the best matching rate of 50.67% at rank-1 with p = 50 , over 3.23%

improvement than other descriptors, owing to the ensemble of

color, texture and spatial structural information. Meanwhile, our

proposed metric learning method also performs better than other

metric learning methods, because of the consideration of discrim-

ination information of multiple distance pairs. This indicates our

proposed method of MMLBD designing a robust descriptor and op-

timal distance metric helps to reduce intra-class variations, so that

the same person can be recognized at a higher rank. 

(E). Comparison to the state of the art methods 

In this section, all images (consisting of p = 30 , 50 , 80 per-

sons) are chosen to test the performance of the proposed MMLBD ,

compared with that of LOMO + XQDA , MFA , kLFDA , eSDC, PRI-

CoLBP, sub-mCT histogram, ELF, LBP and HOG . The match-

ing rates are shown in Fig. 11 (a1, a2, a3) and Table 2 . Com-

pared with other approaches, our method achieves rank-1 match-

ing rates of 54.76%, 50.67%, 39.42% with p = 30 , 50 , 80 , and out-

performs the best result obtained by LOMO + XQDA , which can

only achieve a rank-1 matching rates of 53.57%, 47.33%, 35.68% ,

respectively. Furthermore, the advantage of our approach is ob-

viously demonstrated at rank-5, 10, 20 with p = 30 , 50 , 80 . Be-

3  
ides, from the SD/RR curves in Fig. 11 (b1, b2, b3), the perfor-

ance of our method is also superior to that of others. The better

erformance of the proposed method indicates the following con-

lusions: ( 1 ) the proposed descriptor of MBD considers bar-shape

tructures with multi-orientation, and combines the spatial rela-

ion between points and their adjacent points. As a result, it can

ccurately capture more robust structural features underlying the

edestrian images. ( 2 ) The proposed descriptor of MBD integrates

olor difference information and eliminates the contrast between

ifferent blocks via overlapping strategy, which can improve the

daptability over the variance of illumination and shadowing. ( 3 )

he proposed descriptor of MBD capturing features from multiple

cales is more robust to the changes of pose and camera views. 

.3. Experiments on CAVIAR4REID dataset 

The CAVIAR4REID dataset which is extracted from the well-

nown CAVIAR dataset has been widely used to evaluate the per-

ormance of person Re-ID with resolution changes, light conditions,

cclusions and pose changes. There are 72 pedestrians and 1220

mages which consist of 50 persons captured from two different

ameras in an indoor shopping center in Lisbon and 22 persons

aptured from only one camera and normalized to different sizes

arying from 17 × 39 pixels to 72 × 144 pixels. Example images are

hown in Fig. 12 . 

In this experiment, we chose all images consisting of p =
6 , 50 persons from this dataset and compare the rank-1, 2, 5, 10

atching rates of the proposed MMLBD with several state-of-the-

rt and correlative approaches ( LOMO + XQDA , MFA , kLFDA , eSDC,

RICoLBP, sub-mCT histogram, ELF, LBP and HOG ) in Table 3 . It

an be seen that our approach has an obvious advantage at rank-

, achieving the matching rates of 44.33% and 35.26% with p =
6 , 50 , which are much higher than the best results of 34.92%
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Fig. 13. The rank-1 accuracies, CMC and SD/RR curves on the CAVIAR4REID dataset. 

Table 3 

The rank 1, 2, 5, 10 matching rates (%) with our approach, LOMO + XQDA, MFA, kLFDA, eSDC, PRI- 

CoLBP, sub-mCT histogram, ELF, LBP and HOG on the CAVIAR4REID dataset. 

Methods p = 36 p = 50 

r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 

MMLBD 44.33 65.07 78.72 92.02 35.26 64.28 78.21 93.08 

LOMO + XQDA 34.92 64.18 78.36 94.50 31.15 57.31 75.77 90.90 

MFA 35.15 64.18 79.56 94.56 33.82 57.31 78.97 93.15 

kLFDA 31.01 63.98 72.81 92.29 32.93 63.38 74.67 91.91 

eSDC 24.06 47.60 58.41 78.92 23.30 42.25 53.50 69.21 

ELF 32.16 54.96 67.87 85.12 26.88 46.44 59.74 59.35 

PRICoLBP 11.74 28.87 41.58 64.82 8.62 22.50 33.39 50.74 

sub-mCT 11.79 32.36 48.10 71.88 8.09 24.79 38.94 76.26 

LBP 24.88 45.23 61.19 82.16 20.61 39.10 52.35 69.09 

HOG 33.55 47.96 59.63 78.42 29.28 43.11 52.99 66.89 
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Fig. 14. Examples of person Re-ID on the WARD dataset: (A) the examples person acquired by camera A; (B) the examples person acquired by camera B; (C) the examples 

person acquired by camera C. 

Table 4 

The rank 1, 5, 10 matching rates (%) with our approach, LOMO + XQDA, MFA, kLFDA, eSDC, PRICoLBP, sub-mCT 

histogram, ELF, LBP and HOG on the WARD dataset. 

Methods Camera 1–2 Camera 1–3 Camera 2–3 

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 

MMLBD 67.89 89.98 95.98 63.67 85.95 94.10 76.89 92.35 95.93 

LOMO + XQDA 58.65 84.93 94.35 48.38 77.89 89.36 61.26 86.70 93.93 

MFA 47.84 66.63 79.38 42.57 61.42 73.69 53.03 71.94 79.81 

kLFDA 45.15 53.44 57.72 42.95 51.78 57.52 49.54 64.27 72.16 

eSDC 45.27 52.52 54.93 40.90 49.30 50.93 47.03 53.44 56.31 

ELF 52.50 77.21 86.95 47.49 66.20 77.68 73.35 86.49 91.48 

PRICoLBP 14.45 31.83 43.68 14.73 34.06 46.10 25.49 45.33 56.28 

sub-mCT 24.99 48.12 62.29 23.16 42.70 53.95 28.13 52.58 65.30 

LBP 33.34 59.21 71.17 34.12 54.53 67.71 58.56 78.63 86.59 

HOG 43.76 59.75 67.62 48.13 65.36 74.11 51.13 67.39 75.77 
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and 33.82% obtained by the approach of MFA . In few cases, such

as rank = 10, 20, the performance of our approach is slightly lower

that of MFA . However, in practice, the top r ( r ≤ 10) ranked match-

ing rates are more critical because the top matched images will

normally be verified by a human operator. Obviously, in the case

of rank r ( r ≤ 10), it can be observed that MMLBD consistently per-

forms the best. Therefore, in general, the proposed MMLBD outper-

forms existing state of the art methods. From Fig. 13 , we can see

that the performance of MMLBD is superior to that of others in

most cases. In other words, the proposed MMLBD is robust to light

conditions, occlusion, resolution and pose changes, etc. The reason

is that the novel weight of features helps to capture more sufficient

discrimination information and the proposed metric learning strat-

egy selects the optimal distance pairs, which is effective to repre-

sent the appearance of person with occlusion, pose changes, etc. 

4.4. Experiments on wide area re-identification dataset (WARD) 

dataset 

The WARD dataset consists of 70 different pedestrians and 4786

images which are acquired by three non-overlapping cameras in a

real surveillance scenario. This dataset is interesting owing to hav-

ing a huge illumination variation apart from resolution and pose

changes, as shown in Fig. 14 . The dataset has three different cam-

eras and we conduct the experiments for all different camera pairs,

denoted as camera pairs 1–2, 1–3 and 2–3. The 70 pedestrians in

this dataset are divided into training set and test set containing 60

and 10 persons respectively. 
In this experiment, we compare the proposed MMLBD with

ther methods ( LOMO + XQDA, MFA, kLFDA, eSDC, PRICoLBP, sub-

CT histogram, ELF, LBP and HOG ). Experimental results are

hown in Fig. 15 and Table 4 . It can be seen that the MMLBD

bviously outperforms other methods. For camera pairs 1–2, 1–3

nd 2–3, the best rank-1 matching rates of MMLBD with p = 60

re 67.89%, 63.67% and 76.89%, increased by 11.24%, 15.29% and

5.63%, respectively. Meanwhile, the SD/RR curve also shows that

he performance of MMLBD is superior to that of others. 

From the analysis of all the reported results, we can con-

lude that, in general, our method has superior performance than

tate-of-the-art approaches. This is supported by the fact that we

chieve the best overall performance in CMC and SD/RR curves for

ll the three considered datasets. 

. Conclusions 

In this paper, we design a novel person Re-ID algorithm

 MMLBD ) inspired by relative distance comparison and multi-

hannel visual features. The proposed method is proved to demon-

trate an outstanding performance for the representation of per-

on’s appearance. In our approach, we capture the intrinsic struc-

ure information hidden in different person images through mul-

iple bar-shape descriptor that make full use of spatial correla-

ion between center points and their neighbors. Also, we propose

 new color difference weight for fusion of color information and

pply an overlapping strategy to reduce the local contrast prob-

em in images. Considering the human visual mechanism, we gran-

late and encode the multi-channel color information into more
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Fig. 15. The rank-1 accuracies, CMC and SD/RR curves on the WARD dataset. 
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rough blocks with the color space L ∗a 

∗b ∗ and Sobel channel, in-

stead of gray-values. Thus, it can do better to represent the appear-

ance of person with the changes of illumination, rotation, trans-

lation and perspective for person Re-ID. Meanwhile, we present

a novel multiple metric learning method based on the similar-

ity and dissimilarity of different samples. For bar-shape structural

descriptors with multiple orientations, we make use of minimum

relative distance and dissimilarity matrix to learn the most suit-

able combination for final distance metric and obtain the weight

based on the comparison of relative distance. Thus, the influence

of the noise or outliers can be diminished. On the whole, the pro-

posed MMLBD is simple but effective. Finally, the experimental re-

sults have demonstrated that the proposed MMLBD outperforms

the LOMO + XQDA , MFA , kLFDA , eSDC, ELF, PRICoLBP, sub-mCT,

LBP and HOG . 
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