
International Journal of Approximate Reasoning 103 (2018) 394–413
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

A three-way selective ensemble model for multi-label 
classification ✩

Yuanjian Zhang a,b, Duoqian Miao a,b, Zhifei Zhang b,c,∗, Jianfeng Xu a,b,d, 
Sheng Luo a,b

a Department of Computer Science and Technology, Tongji University, Shanghai, 201804, China
b Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, 201804, China
c State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China
d Software College, Nanchang University, Jiangxi, 330047, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 March 2018
Received in revised form 9 September 2018
Accepted 10 October 2018
Available online 17 October 2018

Keywords:
Multi-label classification
Three-way decisions
Selective ensemble
Uncertainty
Probabilistic rough set

Label ambiguity and data complexity are widely recognized as major challenges in multi-
label classification. Existing studies strive to find approximate representations concerning 
label semantics, however, most of them are predefined, neglecting the personality of 
instance-label pair. To circumvent this drawback, this paper proposes a three-way selective 
ensemble (TSEN) model. In this model, three-way decisions is responsible for minimizing 
uncertainty, whereas ensemble learning is in charge of optimizing label associations. Both 
label ambiguity and data complexity are firstly reduced, which is realized by a modified 
probabilistic rough set. For reductions with shared attributes, we further promote the 
prediction performance by an ensemble strategy. The components in base classifiers are 
label-specific, and the voting results of instance-based level are utilized for tri-partition. 
Positive and negative decisions are determined directly, whereas the deferment region is 
determined by label-specific reduction. Empirical studies on a collection of benchmarks 
demonstrate that TSEN achieves competitive performance against state-of-the-art multi-
label classification algorithms.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Multi-label classification has been prevailing in past decades. Unlike traditional single-label learning paradigm whose 
label semantics is unique, instances may be associated with multiple labels. To name a few, in sentiment analysis, emotions 
of a person may be both delighted and peaceful; In music information retrieval, a piece of waltz contains the semantics of 
Chopin, Austria, and piano. The number of labels per instance differs across the instances, leading to the problem of label 
sparsity. The goal of multi-label classification is to predict labels for unseen instances with maximal accuracy (or minimal 
loss).

Performing multi-label classification requires much more efforts on complicated data characteristics. Even for the sim-
plest case, i.e., perfect information of binary labels is available, the complexity from high dimensional small-sample-size 
requires delicate operations. To date, multi-label classification algorithms can be roughly summarized into two categories 
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[1,2]: algorithm adaptation methods, and problem transformation methods. The algorithm adaptation methods extends spe-
cific algorithms developed in single-label scenario directly, such as ML-kNN [3], ML-Forest [4] and ML-TSVM [5]. Major 
limitation of these methods is that they are tailored from particular classifiers, and lack generality. In contrast, the problem 
transformation methods, which are the focus of this paper, transform learning task to fit single-label learning paradigm. 
The robustness can be enhanced if label correlations can be well considered. With regard to the label co-occurrence phe-
nomenon, there are generally three strategies. The simplest kind is binary relevance (BR) [6,7], which is criticized for the 
absent considerations of label correlations. However, it is quite intuitive and interpretable, and inspires the researches on 
label-specific methods [8,9]. Recently, label-specific feature [10,11] is considered to reflect the specific characteristic on la-
bel level. To leverage label correlation, second-order and high-order strategies are subsequently proposed. The second-order 
strategy claims that label correlation only exists in pair-wise style. The comparison of pair-wise relevance flourishes the 
study of ranking-based solutions [12–14]. The high-order strategy is promised to approximate complicated label correlation 
at the expense of considerable computation [15]. A new direction is hybridization. For example, random k-labelset [16–18]
ensembles an assemble of high-order classifiers to generate a more robust result without significantly improving complexity. 
The data complexity is gradually resolved as the tasks in each layer are simplified [19,20].

Selective ensemble [21], prunes the unnecessary base classifiers and achieves more accurate performance in some cases. 
A hybrid approach which integrates two types of selective ensemble techniques for multi-label classification is proposed 
[22], where the label-level selection criterion is composed of majority voting error and interrater agreement. Randomness of 
subset in random k-labelset is reduced by considering selective criterion, and subset selection is formulated as a minimum 
set covering problem [23]. In addition to performance improvements, problems of uncovered label and imbalanced label 
coverage are greatly alleviated. The selective ensemble mechanism on classifier chain (ECC) [14] is employed to minimize 
coverage loss and solves the problem with an efficient stochastic optimization.

The quality of feature is another vital factor that greatly determines the performance of classifier, especially for the 
high-dimensionality of multi-label data. Currently, there are two different solutions in algorithm implementation. The first 
solution behaves much similar as the idea algorithm adaptation. A pioneer work [24] is the extension from mutual infor-
mation to multivariate mutual information, in which the potential useful features are generated incrementally. To cope with 
hybrid data, neighborhood relation is extended to multi-label scenario [25]. By introducing the concept complementary de-
cision reduct, a rough-set based approach [26] is presented by emphasizing inclusion relation of equivalent class to positive 
label. Fuzzy rough set FRS-LIFT [10] is demonstrated to be applicable in multi-label classification after lifting the features 
from original space. An alternative solution is multi-objective optimization based. Criterion combining label dependency, 
feature redundancy and label-feature relevance is studied in a single-label view [27]. Mutual information is further ex-
tended to measure both the dependency with feature-label and conditional redundancy within feature subset [28]. Feature 
selection is explained as finding a feature subset which maximizes the correlation within label space [29]. Local refinement 
on chromosome-level (feature subset) is performed iteratively so that fitness value (defined by feature-label mutual infor-
mation) can be gradually optimized. A novel score evaluation [30] on feature subset is presented, which is supposed to 
alleviate the imbalanced effects on assessing redundancy and relative. More recently, feature selection is combined with a 
granulation strategy on label side [31] and both relevance and redundancy are considered.

Although aforementioned solutions seem to be effective, an indisputable fact is that the uncertainty in multi-label classi-
fication is much more sophisticated [32]. For example, in Pascal Visual Object Classes (VOC2007) [33], a person is difficult to 
be recognized when he is getting off a bus in a foggy day. Obviously, either learning or predicting such labels is a non-trivial 
task. Label distribution learning [34,35] can reflect the relative importance of label, but the roughness of concept boundary 
is not involved. Such kind of uncertainty can be realized via Rough Set [36,37]. With the aid of approximation operators, 
a concept can be approximated by two crisp sets. The semantics of lower approximation set refers to instance assembles 
which are totally affiliated to the concept, whereas the upper approximation set indicates the instances which are partially 
associated to the concept. Rough set, as well as its variants, has been studied for multi-label classification [26,38–40], where 
both approximations and reductions are extended. However, rough set is still not adequate for this issue. On one hand, 
studying the concept approximation only cannot reflect the semantic differences of different labels comprehensively; on 
the other hand, merely addressing label-specific reduction is easily affected by the distribution of example set. Therefore, it 
seems more rationale to balance the label-specific and high-order. Unfortunately, it is beyond the scope of rough set theory.

Three-way Decisions (3WD) [41,42] is an emerging methodology which simulates the way human behave with uncer-
tainty. Under the trisecting-and-acting framework, a number of interesting conclusions are subsequently reported. Hu [43]
introduced two novel three-way decisions from the axiomatized three-way decision spaces. Qian [44] demonstrated that 
performing attribute reduction sequentially can accelerate the problem solving. Li [45] extended the three-way decisions for 
set-based analysis. Sun [46] claimed that decision-theoretic rough fuzzy set is capable of dealing with uncertain linguistic 
description. Currently, the semantics of 3WD is not confined to rough set, learning mechanisms which stratify uncertainty 
are also included. For example, predictions of labels are initially determined by a collection of LP classifiers with smaller 
subsets, and is corrected by majority voting [16]. Similar idea is also held in [47], except that the motivation is to replen-
ish outcome deduced from classifier chain. It should be noticed that these results may be non-monotonic, i.e. instances of 
arbitrary label may be changed from relevant to irrelevant, and vice versa. In [48], uncertainty in multi-label classification 
is interpreted as label co-occurrence, conditional relevance and label-condition redundancy respectively. Three two-stage 
algorithms named as Two-stage Voting System (TSVM), Two-stage Classifier Chain Method (TSCCM) and Two-stage Pruned 
Classifier Chain Method (TSPCCM) are presented. Imbalanced distribution of labels is exclusively addressed in [49], in which 
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a two-stage multi-label hypernetwork is constructed. A recent work [50] identifies the Chinese text sentiment analysis by 
evaluating orientations from sentiment lexicon to sentence topic, in which the deferred sentences are further assessed by 
combinations of affective characteristics of words. Our primary motivation is to find a label-specific low-dimensional rep-
resentation to reduce the label vagueness, and refine the label classification by comprehensively utilizing the voting results 
from a collection of simple classifiers. We assume that concealed label correlation can be optimized by ensemble learning, 
and label-specific ensemble can be synthesized for classification under the framework of three-way decisions. Based on this 
assumption, this paper aims at solving multi-label classification problem with a three-way selective ensemble (TSEN) model. 
Our contributions are as follows:

• We provide a new tri-partition solution for multi-label classification. By selectively integrate the label-specific reduct, 
we extract the positive and negative regions from low-level boundary region. Empirical experiments demonstrate that 
our model is superior than a collection of state-of-the-art methods. It is worth noting that decision-making process is 
non-parametric.

• A novel view for construction of base classifier is proposed. By concentrating on label-specific reduction with shared 
attributes, relevant features are selected. The process for the generation of base classifier is also non-parametric.

• Probabilistic rough set is initially considered as both the tie-breaking classifier and reduction generator. A novel three-
way attribute reduction algorithm is designed to ensure that reducts are both compact and relevant. Proposed attribute 
reduction algorithm can be regarded as a supplementary of reduct theory.

The rest of paper is organized as follows. Section 2 outlines preliminary knowledge of proposed method. Section 3
elaborates the details of presented model. Experiments and analyses are described in Section 4. Finally, we conclude our 
proposal in Section 5.

2. Preliminary

The basic notions and concepts for three-way decisions [41,51] defined in single-label learning paradigm. Corresponding 
definitions can be extended to multi-label learning paradigm, which are reviewed in next section.

Definition 1. [37] An information system is defined by a quadruple tuple: I S = (U , A, V , f ) where U is a finite non-empty 
set of data objects called universe. A = C

⋃
D is a finite non-empty set of attributes, where C is a set of condition attribute, 

D is a set of decision attribute. V is a non-empty set of values of a ∈ A, and f is an information function from U to V, 
denoted as f : U × A → V .

The hidden structure of information, or information granular, represents the similarity/dissimilarity relations among in-
stances. Equivalence relation is regarded as the fundamental criterion to discern objects.

Definition 2. [37] Given a subset of attributes B ⊆ A in IS, the I N D(B) denotes an equivalence relation, which can be 
defined as follows:

I N D(B) = {(x, y) ∈ U × U |∀a ∈ B, f (x,a) = f (y,a)}. (1)

It can be easily shown that attributes B partition U into a number of non-overlapped sets. The affiliation of objects 
to class can be determined by adopting maximum inclusion degree of information granular among all classes, and the 
decisions should suffice the requirement of thresholds meanwhile. In real practice, applicable rules can be extracted given 
the thresholds located in the interval [0,1]. The conditional probability can be regarded as a kind of inclusion degree.

Definition 3. [37] Given a subset D j ⊆ U , the conditional probability of an object belonging to D j given that the object 
belongs to [x]. This probability may be simply estimated as follows:

Pr
(

[x]D j

∣∣[x]C

)
=

∣∣∣[x]D j
∩ [x]C

∣∣∣∣∣[x]C

∣∣ , (2)

where |•| denotes the cardinality of a set.

The result of conditional probability divides the whole universe into three regions named as positive region (POS), bound-
ary region (BND) and negative region (NEG) respectively. Details of three regions are described as follows.

Definition 4. [52] Given a pair of thresholds α and β with 0 ≤ β < α ≤ 1, the positive, boundary and negative regions are 
defined as follows:
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P O S(α,•)([x]D j
) = {x ∈ U‖Pr([x]D j

|[x]C ) ≥ α};
BN D(α,β)([x]D j

) = {x ∈ U |β < Pr([x]D j
|[x]C ) < α};

N EG(•,β)([x]D j
) = {x ∈ U |Pr([x]D j

|[x]C ) ≤ β},
(3)

where apr
C
(D j) = P O S(α,•)([x]D j

); aprC (D j) = BN D(α,β)([x]D j
) 
⋃

apr
C
(D j).

Definition 5. [52] According to the three probabilistic regions, one can make three-way decisions of acceptance, deferment 
and rejection, respectively.

D E S Accept([x]C → [x]D j
), for[x]C ⊆ P O S(α,•)([x]D j

);
D E S Def er([x]C → [x]D j

), for[x]C ⊆ BN D(α,β)([x]D j
);

D E S Reject([x]C → [x]D j
), for[x]C ⊆ N EG(•,β)([x]D j

).

(4)

Uncertainty in rough set can be measured from a number of numerical features. Approximation accuracy and roughness 
are frequently considered to characterize the concept uncertainty.

Definition 6. [37] Given an information system I S = (U , A, V , f ), A = C
⋃

D , B ⊆ C , accuracy of Di with respect to R is 
defined as follows:

α
(α,β)
B (Di) =

∣∣∣apr
B
(Di)

∣∣∣∣∣aprB(Di)
∣∣ . (5)

The roughness of Di with respect to R is defined as follows:

ρ
(α,β)
B (Di) = 1 − αB(Di). (6)

However, accuracy and roughness do not distinguish partitions with different granularity, making the measuring result 
flawed. Granularity follows the monotonic decreasing property as partitions are refined, and one famous definition of gran-
ularity is as follows:

Definition 7. [37] Given an information system I S = (U , A, V , f ), A = C
⋃

D, B ⊆ C , and U/B = {X1, X2, · · · , Xk} knowledge 
granulation of R is defined as follows:

G K (B) = 1

|U |2
k∑

i=1

|Xi |2 . (7)

Consequently, α(α,β)
B (Di), ρ(α,β)

B (Di) is redefined as follows: AccuracyB (Di) = 1 − ρ
(α,β)
B (Di)G K (B), RoughnessB(Di) =

ρ
(α,β)
B (Di)G K (B). The modified version of accuracy approximation can be used for constructing reduction principle. Re-

duction is a crux issue in Rough Set theory which aims at finding a subset of attributes with certain predefined property 
preserved. The selected attributes are jointly sufficient and individually necessary. Taking α(α,β)

B (U/D) for example, reduc-
tion principle can be written as follows:

(1) α(α,β)
B (U/D) = α

(α,β)
C (U/D)

(2) α(α,β)

B−{b}(U/D) �= α
(α,β)
B (U/D), for ∀b ∈ B

Although the reduct of an information system may be multiple, the core set is indispensable. Given α(α,β)(U/D), the core 
of an information system are the intersections of all related reducts (R E Dα(α,β)(U/D)(C)), denoted as: Coreα(α,β)(U/D)(C) =⋂

R E Dα(α,β)(U/D)(C).

3. The TSEN model

One crucial issue is to find a suitable set of feature representations for each label. The optimized feature representations 
should not only reflect differences of label semantics, but should also consider differences of instances. There are two 
questions to be clarified:

(1) How to find label-specific features which can tolerant certain degree of uncertainty?
(2) How to utilize label correlations automatically to approximate semantics of label?
Fortunately, the probabilistic rough set and selective ensemble can answer the questions satisfactorily. As illustrated 

in Fig. 1, the problem is resolved in two stages. In the first stage, we employ probabilistic rough set for label-specific 
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Fig. 1. Framework of TSEN.

Table 1
A summary of frequently used notations.

Notation Meaning

Li The i-th label

xi The feature vector of the i-th instance

Ri The reduct regarding label Li

xRi
j The projection of instance x j on attributes of reduct regarding label Li

P j
i The assemble of instances which shows positive on label Li and is similar to instance x j

N j
i The assemble of instances which shows negative on label Li and is similar to instance x j

f i(·) The integrated binary function which predicts the information of an instance belonging to label Li

gi(·) The primary binary function which predicts the information of an instance belonging to label Li determined by Ri

(α+, β+) Pair-wise parameter for positive class of an arbitrary label

(α−, β−) Pair-wise parameter for negative class of an arbitrary label

Lh( j)
i The j-th relevant label of Li

Ch(k)
(i, j) The projections of instance xi on the k-th intersected reduct of label j(
g j

p , Ri

)
The j-th granular structure with the positive labelling of Li determined by attribute included in Ri(

g j
n, Ri

)
The j-th granular structure with the negative labelling of Li determined by attribute included in Ri

learning. The fault tolerance can be reflected from parameter (α, β), but some necessary revisions are required, which 
will be discussed in section 3.1. Reducts regarding each label are learned independently. In the second stage, we consider 
a selective ensemble strategy based on a collection of label-specific reducts. Different from rough ensemble proposed in 
[53], we resort to reducts that are correlated within labels, and the size of ensemble is also label-specific. To distinguish 
the reduct of label itself and the non-trivial intersected reducts, solid arrow and dotted arrow are marked respectively. 
As illustrated in Fig. 1, reduct information w.r.t. different labels is not fully connected. For example, reducts of Li is not 
considered for ensemble learning regarding label L1, but is associated with ensemble learning regarding label Li+1. The 
result w.r.t. an arbitrary label Li is determined by the choice of label-specific selective ensemble and testing data, and the 
details will be elaborated later. Table 1 summarizes the frequently used notations.
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3.1. Stage 1: label-specific reduct with probabilistic rough set

Compared to single-label learning, the complexity of information system embodies on the multiple labels and multiple 
mapping, and is thus extended as follows:

Definition 8. An multi-label information system (MLIS) is defined by a quadruple tuple: I S = (U , A, V , f ) where U is a finite 
non-empty set of data objects called universe. A = C

⋃
L is a finite non-empty set of attributes, where C = {c1, c2, · · · , cn}

is a set of condition attribute, L = {L1, L2, · · · , Lm} is a set of labels. V is a non-empty set of values of a ∈ A, and f is an 
information function from U to V, denoted as f : U × A → V .

Attribute reduction conducted in multi-label is an adaptation of single-label. Generally speaking, there are three cate-
gories of attribute reduction algorithms [51], i.e., deletion-based, addition–deletion based and addition-based. The core idea 
of addition–deletion based approach is to search a subset which preserves a property of information system measured by 
attribute importance γ initially, and then shrink the sets until the cardinal reaches minimum. The critical components in 
reduct computing are two folds: a) definition of preserved goal; b) selection of γ . In our model, the preserved property 
is defined as the probability approximation accuracy so that basic prediction concerning label is available. The addition–
deletion reduct algorithm cost a complexity of max(O(|U ||C |), O(|U/(C − R)||C − R|2), O(|U/R||R|2)), where U denotes the 
universe, C refers to the condition attributes and R signifies the reduct.

As suggested by [54], the attribute importance can be computed as follows:

γ
(α,β)
B (U/D,m(·)) = EGm(π1) − (1 − α

(α,β)
B (U/D))EGm(U/B), (8)

where α(α,β)
B (U/D) =

∑
Yi∈U/D |apr

B
(apr(α,β)

C (Yi))|∑
Yi∈U/D |aprB (apr(α,β)

C (Yi))|
and π1 = {U } denotes the coarsest partition. Symbol m(·) represents a mea-

sure of granularity of subsets regarding U .
However, the imbalanced distribution of labels are not well studied in Eq. (8), which is quite ubiquitous in multi-label 

learning. The number of label combinations grows exponentially as the increment of labels, resulting in the limited number 
of positive relevant instances in an individual label. As positive label attracts more attentions, we make the following 
adjustments of (α, β):

(α,β) → {(α+, β+), (α−, β−)}, (9)

where (α+, β+) and (α−, β−) are considered as tri-partition for positive concept and negative concept respectively. Intu-
itively, the performance of positive class can be enhanced by setting a more strict acceptance for negative class.

By stipulating particular (α+, β+) as well as (α−, β−), negative labelling of label Li is penalized. The proportion of 
positive class in generated reduct is lifted, compared to that of negative class.

In retrospect of addition–deletion method, the syntax of deletion should be more profound. Traditionally, deletion is 
equivalent to remove attribute that is proved to be redundant one-by-one. However, the complementary view should also 
be considered. Inspired by the work in [55], an alternative solution to implement the idea of deletion is investigated. To 
explain the idea clearly, we define strategy-independent label-dependent core and strategy-independent label-independent 
core.

Definition 9. Given a MLI S = (U , A = C
⋃

L, V , f ) and a reduct principle θ(α,β)
C (U/Li), an arbitrary attribute b (b ∈ B 

⋂
B ⊆ C ) is called strategy-independent label-dependent core of an information system if the following two conditions are 
satisfied:

(1) θ(α,β)
B (U/Li) = θ

(α,β)
C (U/Li);

(2) θ(α,β)

B−{b}(U/Li) �= θ
(α,β)
C (U/Li).

Definition 10. Given a MLI S = (U , A = C
⋃

L, V , f ) and a reduct principle θ(α,β)
C (U/Li), an arbitrary attribute b (b ∈ B ∩

B ⊆ C ) is called strategy-dependent label-dependent core of an information system if the following two conditions are 
satisfied:

(1) θ(α,β)
B (U/Li) = θ

(α,β)
C (U/Li);

(2) b is the last element confirmed by addition method of reduction.

The strategy-independent label-dependent in multi-label learning is an extension of core attribute, whereas the strategy-
dependent label-dependent is not intensively considered. It is evident that strategy-independent label-dependent is indis-
pensable in representing positive/negative class regarding label Li since it is independent of attribute searching strategy, 
However, the strategy-dependent label-dependent is associated with the process of attribute addition. We will demonstrate 
the necessity of strategy-dependent label-dependent by the following lemma.
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Algorithm 1 The revised addition–deletion method based probabilistic reduct of an information system.

Input: A multi-label information system MLI S = (U , C
⋃

L, V , f ), threshold pair {(α+, β+), (α−, β−)}, preserving property θ = P O S

Output: A collection of (α,β) Reducts of IS, denoted as R , a label-specific classifier g, g(L) = {g1(·), g2(·), · · · , gm(·)}
Step 1: Compute core attributes, denoted as Coreθ (U/Li)

Step 1.1: Initialize Coreθ (U/Li) = ∅
Step 1.2: Calculate P O Sc(U/Li),∀c ∈ C

Step 1.3: Coreθ (U/Li) = Coreθ (U/Li)
⋃{c} iff θ

(α,β)
C−{c}(U/Li) �= θ

(α,β)
C (U/Li)

Step 1.4: Loop step 1.2 and 1.3 until all attributes are visited.

Step 2: Add attributes one-by-one to generate a super-reduct Ri

Step 2.1: Initialize Ri = Coreθ (U/Li), C Ai = C − Ri

Step 2.2: Select attribute with maximal discernibility regarding U/Li , set Ri = Ri
⋃

arg max
c∈C−Ri

γ
{(α+,β+),(α−,β−)}
Ri

⋃{c} (U/Li) and update the candidate set

C Ai as C Ai = C Ai − {c}
Step 2.3: Loop 2.2 until θ

(α,β)
Ri

(U/Li) = θ
(α,β)
C (U/Li), store the last appended attribute b

Step 3: Select relative-core attribute to generate final reduct Ri

Step 3.1: Initialize C Bi = C Ti = Coreθ (U/Li)
⋃{a}, C Si = Ri − {a}

Step 3.2: Select attribute b from C Si , let C Ti = C Ti
⋃

arg max
b∈Ri−C Ti

γ
{(α+,β+),(α−,β−)}
Ri

⋃{b} (U/Li),

Step 3.3: Loop step 3.2 until θ
(α,β)
C Ti

(U/Li) = θ
(α,β)
C (U/Li), store the last appended attribute b,

Step 3.4 C Bi = C Bi ∪ {b}, C Si = C Ti , C Ti = C Bi

Step 3.5: Loop from step 3.2 to 3.4 until θ
(α,β)
C Bi

(U/Li) = θ
(α,β)
C (U/Li) and construct a classifier gi(·) which maps from C to Li

Step 3.6: Ri = C Bi

Step 4: Loop from Step 1 to Step 4 until all Li in L are examined

Lemma 1. Given a MLI S = (U , A, V , f ) and a reduct R which preserve the property defined by θ(α,β)
C , b ∈ R holds if b is a strategy-

dependent label-dependent core of MLIS.

Proof. According to Definition 10, attribute b (b ∈ B) and θ(α,β)
B (U/Li) = θ

(α,β)
C (U/Li) holds. The process of addition process 

in reduction can be referred to Algorithm 1, which signifies that the last selected attribute is indispensable in reduct. The 
reasons are two folds: firstly, the iteration will not be terminated until such b is selected, i.e. θ(α,β)

B (U/Li) = θ
(α,β)
C (U/Li), 

and secondly, property preserving does not hold in B − {b}, which implies θ(α,β)

B−{b}(U/Li) �= θ
(α,β)
C (U/Li). �

The multiple reduct can be regarded as different combinations of cores and marginal [55]. Obviously, the relative-core is 
an element of marginal set. The uncertainty for the components of reduct is reduced yet possibly not removed after selecting 
a strategy-dependent label-dependent core. A more refined reduct composing of both strategy-dependent label-independent 
cores and strategy-dependent label-dependent cores is generated. It suggests a promising direction for computing a reduct, 
as shown in following theorem.

Theorem 1. Given a MLI S = (U , A, V , f ) and a reduct R which is derived from addition process of Algorithm 1, the final reduct RED 
can be calculated by iteratively select strategy-dependent label-dependent from R until marginal set reaches empty.

Proof. It is apparent that core is indispensable in constituting a reduct. Thus, the theorem can be demonstrated if we 
can prove that attribute sets derived from Theorem 1 are the assemble of cores, regardless of strategy-independent label-
dependent or strategy-dependent label-dependent.

Firstly, we will prove that marginal set is strictly monotonously decreasing in calculating reduct. The cardinal of marginal 
is at least one less than the original marginal set, as an attribute b is selected as strategy-dependent label-dependent 
and transfer to the core set, that is C O R E S = C O R E S

⋃{b}. It may be more condensed since the combination of original 
cores and newly obtained core may gain a more powerful representation, i.e. M ARG I N AL = M ARG I N AL − NS, where 
N S denotes the redundant attributes. The redundant attributes, NS are moved to the non-useful set, i.e. N O N_U S E F U L =
N O N_U S E F U L 

⋃
NS. The renewed C O R E S may still be flawed in preserving property, as there may still be multiple choices 

in combinations of cores and marginal. The non-useful set, however, can be safely discarded in determining reducts. For 
similar operations in the coming iteration, it is not exceptional that marginal set becomes smaller on condition that both 
cores and non-useful set keeps increasing.

Secondly, we will prove that the operations are finite. As suggested above, the selection of strategy-dependent label-
dependent continues until marginal set is empty. It is naturally that within finite rounds (at most |M ARG I N AL|), we can 
identify the eligibility of attribute as strategy-dependent label-dependent core.

Finally, we will prove that derived set is minimal as reduct. Obviously, the cardinal cannot be smaller since all attributes 
in derived set serve as core, and cores cannot be removed from reduct. As for the representation power, it remains un-
changed since in every iteration step it is preserved (i.e. θ(α,β)

(U/Li) = θ
(α,β)

(U/Li)). �
C O R E S C
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Fig. 2. Details of selective ensemble for label Li .

Given positive region preserving (θ = P O S), the label-specific learning of multi-label on the basis of addition–deletion 
reduct is explained in Algorithm 1.

3.2. Stage 2: label-based selective ensemble with reducts

Although label-based knowledge is generated, label of instance may be replenished by correlations which may support 
or oppose the label-specific decision. In other words, there should be some potential relations for the probability of infor-
mation granular co-occurrence. However, it is time-consuming if we assume each label is associated with the rest. Thus, 
one rationale hypothesis is that label correlation is limited to a particular set of conditions in a style of ensemble pair-wise, 
which is formally defined as follows:

Definition 11. Given a MLI S = (U , A = C
⋃

L, V , f ) with L = {L1, L2, · · · , Lm}, set P W RL = {P W RL1, P W RL2, · · · , P W RLm}
is defined as pair-wise related label assembles. It represents the projections of Ci on related instances regarding Li, i =
1, 2, · · · , m, with P W RLi ⊆ C be the correlated label set of Li and include the information concerning l, where l ⊆ {L − Li}.

The generation of P W RL is label-specific, and techniques which are employed in first-stage should be well integrated. 
Different from single-label learning which an attribute is either included or excluded for a reduct, the same attribute 
may occur in more than one reduct regarding label. Accordingly, we simulate the local correlation from those intersected 
granulars. Let ck belong to the reduct of Li and L j meanwhile, we believe there are some special connections of reduct 
representing Li and L j . In other words, reduct of Li is potentially beneficial to alleviate uncertainty of L j and vice versa. 
How to calculate P W RLi will be discussed later.

The uncertainty of multi-label classification is reduced yet still remained after generating basic predictions. In other 
words, although preliminary prediction is better than random guess, it is still possible for a seemingly positive to be nega-
tive, and vice versa. For simplicity, we will discuss the prediction of an arbitrary label Li and the remaining are analogous. 
For the prediction of Li , there are four questions to be answered, as shown in Fig. 2.

Q1: How to measure the similarity of an unseen instance x j with positive granular structure (g p(i)
p , Ri ) or negative 

granular structure (gn(i)
n , Ri ) which is determined by stage 1?

Q2: Which group of labels Lh(k)
i are relevant to the considered label Li ?

Q3: What are the associated attributes (denoted as Ch(k)
(i, j)) regarding label L j

i , which are the j-th associated attributes of 
Li ?

Q4: What are the constraints between projection of unseen instance x j on reducts regarding Li (denoted as x
R

Lh(k)
i

j ) and 

associated instances of instances on pertinent label L j
i (denoted as Ch(k)

(i, j))?
For the first question (Q1), we refer to the Jaccard similarity which are frequently considered in measuring similarity 

between sets. Concretely, let xRi
j , Rk

i be the attributes included in reduct of label Li of j-th instance and k-th of granular 
structure, similarity can be computed as:
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Sim(R j
i , Rk

i ) = |xRi
j ∩ Rk

i |
|xRi

j ∪ Rk
i |

. (10)

In multi-label classification, similarity defined in equation can be further customized by introducing polarity of granular 
structure. The basic aim is to generate two mutually disjoint sets which represent most relevant positive (P j

i ) and most 
relevant negative (N j

i ) respectively in consideration of imbalanced class distribution.

Definition 12. Given a MLI S = (U , A, V , f ), A = C ∪ L, L = {L1, L2, · · · , Li, · · · , Lm}, Rk
i → {P , N} represents the possibly 

positive result (abbreviated as P) of the k-th reduct regarding label Li . For an unseen instance x j , the positive related sets 
of instances P j

i are denoted as:

P j
i =

⋃
Rk

i

arg max
Rk

i

�
Rk

i → P
� �

Sim(xRi
j , Rk

i ) > 0.5
�

. (11)

Definition 13. Given a MLI S = (U , A, V , f ), A = C ∪ L, L = {L1, L2, · · · , Li, · · · , Lm}, Rk
i → {P , N} represents the possibly 

negative result (abbreviated as N) of the k-th reduct regarding label Li . For an unseen instance x j , the negative related sets 
of instances N j

i are denoted as:

N j
i =

⋃
Rk

i

arg max
Rk

i

�
Rk

i → N
� �

Sim(xRi
j , Rk

i ) > 0.5
�

. (12)

For the second question (Q2), we explain the detailed semantic of pair-wise related labels as follows:

P W RLi =
⋃

{L j|Ri

⋂
R j �= ∅},∀ j �= i. (13)

We have the following properties regarding P W RL.

Property 1.

1. |P W RL| = |L|;
2. 0 ≤ |P W RLi | ≤ |L| − 1, ∀i
3. Lk ∈ P W RL j if Lk ∈ P W RLi ∧ P W RLi = ⋃{L j |Ri

⋂
R j �= ∅}.

Proof. The cardinal of P W RL should be |L| because of the arbitrariness of label Li .
The cardinal of P W RLi , however, achieve its minimal 0 if label-dependent reduct has no intersections with the remain-

ing. Since itself is excluded, the maximal of P W RLi should be |L| − 1.
The third property is straightforward since the set intersection operation is exchangeable. �
It can be observed that no additional parameters are required, and thus is exempted from parameter optimization.
For the third question (Q3), we solve it by referring to the projections of instances (acquired in Q1) on reducts 

regarding selected attributes (granular structure obtained in Q2) in the style of label-by-label. It is worth noting that 
C ·

(i, j) = {P S ·
(i, j), N S ·

(i, j)}, where P S ·
(i, j) corresponds to the assemble of projections whose reduct (P j

i ) is pertinent to posi-

tive class for j-th relevant label regarding Li , and N S ·
(i, j) corresponds to the assemble of projections whose reduct (N j

i ) is 
pertinent to negative class for j-th relevant label regarding Li .

For the last question (Q4), the primary goal is to utilize the polarity information of reduct to improve the classification 
result regarding Li . To elaborate our idea more clearly, we firstly present a definition.

Definition 14. Given a MLI S = (U , A, V , f ), A = C
⋃

L, ∀Li ∈ L, positive label correlation degree lcp j
i is defined as the pro-

portion of the count of projection of x j on Ri are totally affiliated to positive related sets of instances P j
i in cardinal of 

related labels of Li .

lcp j
i =

∑
k

�
x

RLi
h(k)

j ⊆ Ch(k)
(i, j)

�

|P W RLi| , ∀Lk ∈ P W RLi → g(xRi
j ) = 1. (14)

Dually, we have the definition of negative label correlation degree lcn j as follows:
i
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Definition 15. Given a MLI S = (U , A, V , f ), A = C
⋃

L, ∀li ∈ L, negative label correlation degree lcn j
i is defined as the pro-

portion of the count of projection of x j on Ri are totally affiliated to negative related sets of instances N j
i in cardinal of 

related labels of Li .

lcn j
i =

∑
k

�
x

RLi
h(k)

j ⊆ Ch(k)
(i, j)

�

|P W RLi| , ∀Lk ∈ P W RLi → g(xRi
j ) = 0. (15)

Some properties on lcp j
i and lcn j

i are discussed as follows:

Property 2.

1. non-negativity: lcp j
i ≥ 0, lcn j

i ≥ 0 if |P W RLi | �= 0;

2. boundness: lcp j
i ≤ 1, lcn j

i ≤ 1 if |P W RLi | �= 0;

Proof. We will prove the non-negativity and boundness of lcp j
i first. Let Lk be an arbitrary label whose label-dependent 

reduct Rk are intersected with Ri , the expression 
�

x
R Li

h(k)

j ⊆ Ch(k)
(i, j)

�
×

�
g(xRi

j ) = 1
�

∈ {0, 1} is obviously held. According 

to Eq. (13), Lk ∈ P W RLi holds, thus the local result on Lk is either 0
1 or 1

1 . The non-negativity of lcpi is straightforward, 
since it is the sum of all labels like Lk , whose local result is always non-negative. As the maximal result reaches 1 if all �

x
R Li

h(k)

j ⊆ Ch(k)
(i, j)

�
×

�
g(xRi

j ) = 1
�

, we get the property of boundness concerning lcpi . The proof of lcn j
i is similar to that of 

lcp j
i . �
Based on Definition 14 and Definition 15, the association of an instance x j w.r.t Li is defined as:

f i(x j) =

⎧⎪⎪⎨
⎪⎪⎩

1 lcp j
i > lcn j

i ;
0 lcp j

i < lcn j
i ;

gi(x j) otherwise,

(16)

where gi(x j) represents the corresponding result of Ri derived in stage 1. We concatenate results on each label as the final 
prediction for test set, i.e. f = { f1(·), f2(·), · · · , fm(·)}.

Remark 1. Although Eq. (16) is trilateral in form, the results obtained cannot be guaranteed to be consistent when the 
positive label correlation degree lcpi and negative label correlation degree lcni cannot be distinguished or the two degrees 
are unavailable. This is because the function gi(x j) has three possible outcomes. The fusion of stage 1 and stage 2 can be 
regarded as optimistic for stage 2 and pessimistic for stage 1.

To summarize the work in stage 2, we present Algorithm 2. It is worth noting that execution of Q2 has no relations 
to the rest yet the label relevance can be shared for construction of classifiers in selective ensemble. Consequently, steps 
illustrated in Fig. 2 are performed in sequence of Q2, Q1, Q3, Q4.

3.3. Algorithm complexity

The computational complexity of proposed model is reflected in Algorithm 1 and Algorithm 2. The complexity of first 
two stages of Algorithm 1 are increased to O(|U ||C ||L|) and O(|U/(C − R)||C − R|2|L|) respectively. These steps can be 
accelerated by introducing parallel computing paradigm, since the sequence in label selection makes no difference. For the 
third step of Algorithm 1, the complexity is O(|U/R||R|2|L|) since only marginal attributes are to be selected. Although 
comparable computing expenditure is required for an individual label Li , the speed in deleting attributes can be faster if 
there are a wealth of redundancy in marginal attributes. This lies on the fact that |U/Core| ≤ |U/R|.

Analysis for Algorithm 2 is as follows. Let |U | and |U ′| be the instances count for training and testing respectively, we 
will discuss the time required for classification of a single instance x j on an arbitrary label Li . In step 1, the effort to search 
relevant labels requires O(|L|). Similarity measurement in step 2 requires O(|U ′||U/Ri ||Ri |). Step 3 is the construction for 
base classifier for selective ensemble, and it occupies O (1). For step 4, it requires O(k|C Rk|), where k represents the classifier 
count and |C Rk| represents the average number of attributes which are considered. In most cases, k � |L|, |C Rk| � |C |. 
Consequently, the worst case of computational complexity for Algorithm 2 is O(|L|2) + O(|U ′||U/R||R||L|) + O(|L||C ||U ′||L|), 
which signifies that selective ensemble is non-trivial for all labels.
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Algorithm 2 The selective ensemble of reduct for multi-label classification.

Input: A multi-label information system which are partitioned into training set MLI ST R and testing set MLI ST E

Reduct Ri of Li , i = 1,2, · · · ,m, label-specific function gi(·)
Output: {xLi

j },∀x j ∈ MLI ST E , i = 1,2, · · · ,m

Step 1: Find relevant labels ∀Li to construct base classifier for selective ensemble
Step 1.1: Calculate P W RLi according to Eq. (13).
Step 1.2: Loop Step 1.1 until information of P W RLi are available ∀Li .

Step 2: Compute similarity of x j with Ri

Step 2.1: Find positive relevant granular P j
i for Li according to Eq. (11).

Step 2.2: Find negative relevant granular N j
i for Li according to Eq. (12).

Step 2.3: Loop Step 2.1 and Step 2.2 until all Li are visited.
Step 3: Find projections of related granular on relevant labels for selective ensemble

Step 3.1: Find Ch(k)
(i, j) , ∀Li ;

Step 4: Selective ensemble for classification of x j

Step 4.1: Compute lcp j
i based on Eq. (14);

Step 4.2: Compute lcn j
i based on Eq. (15);

Step 4.3: Determining Li classification of x j according to Eq. (16).
Step 4.4: Loop Step 4.1 to Step 4.3 until all Li of x j is determined.

Step 5: Loop from Step 2 to Step 4 until all x j ∈ MLI ST E are visited.

Table 2
Description of data sets.

Data set # Instances # Features # Labels # Cardinality Domain

Genbase 662 1185 27 1.252 Biology
Medical 978 1449 45 1.245 Text
Enron 1702 1001 53 3.39 Text
Slashdot 3782 1079 22 1.18 Text
LangLog 1460 1004 75 1.18 Text
Bibtex 7395 1836 159 2.402 Text

Although we cannot accurately point out which step dominates the complexity, we can anticipate that Algorithm 1
requires more calculations than Algorithm 2. This is due to the fact that normally the label count is smaller than attribute 
count.

4. Results and discussions

In this section, we conduct extensive experiments to verify the performance of TSEN. Altogether three groups of com-
parisons are considered. The first experiment seeks to explore the sensitivity of α+ on TSEN given α− = 1, β+ = β− = 0. 
The second experiment manages to testify the superiority performance over a collection of state-of-art methods from ten 
measures defined in section 3.2. The third experiment, however, makes a further investigation by introducing Friedman test 
[56] to examine whether statistical discrepancy exists. All experiments are implemented in Matlab 2017b and performed on 
a computer with Intel (R) Core(TM) i7-8550U CPU with memory equipped by 8 GB RAM. For each considered algorithms, 
we repeatedly run each comparing methods five times on six sets of randomly partitioned training (80 percent) and testing 
(20 percent) data.

4.1. Datasets

We conduct experiments on six multi-label benchmark data sets, and the details of which are summarized in Table 2. 
To circumvent information loss, attributes type of benchmark are all nominal. The term “cardinality” is abbreviated for label 
cardinality representing the average labels count regarding instances. They can be downloaded from the websites of Mulan1

[57] and Meka2 [58].
Genbase data set is composed of 662 proteins, and each protein chain is represented by a 1185 motif sequence. There 

are 27 protein function families, including oxydoreductases, isomerases and transferases.
Medical data set contains 978 clinical free text from Cincinnati Children’s Hospital Medical Center Department of Radiol-

ogy. For each radiology text report, 45 candidates labels are inspected independently by coding staffs and coding companies 
and observe the corpus recommended by ICD-9-CM.

Enron data set is prepared by the CALO Project (cognitive assistant that learns and organizers) containing 1702 emails of 
senior management of Enron. Altogether 53 labels, provided by UC Berkeley Enron Email Analysis Project, are categorized 
into four groups, including coarse genre, included/forwarded information, primary topics and emotional tone.

1 http://mulan .sourceforge .net /datasets .html.
2 http://meka .sourceforge .net/.

http://mulan.sourceforge.net/datasets.html
http://meka.sourceforge.net/
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Table 3
Characteristics of comparing algorithms.

Algorithm Order of correlations Categories of algorithms

First-order Second-order High-order Problem transformation Algorithm adaptation

ML-KNN
√ √

ML-LOC
√ √

LIFT
√ √

FRS-SS-LIFT
√ √

fRAkEL
√ √

CDR
√ √

LLSF
√ √

LPLC
√ √

MIMLK
√ √

TSEN
√ √

Slashdot data set consists of 3782 titles and partial blurbs published on website of Slashdot.org, and each instance is 
associated with at most 22 labels. Possible tags include entertainment, hardware and politics.

LangLog data set is a collection of blogs launched by Mark Liberman and Geoffrey Pullum. The accumulated 1460 articles 
are associated with at most 75 labels. Possible tags include ethics, pragmatics and humor.

Bibtex data set contains metadata for bibtex items such as author, organization, journal volume. For 7395 records, the 
dimension of candidate tag space is 159.

4.2. Comparing methods

We compare our proposed method TSEN with six state-of-the-art multi-label classification algorithms. Parameter setting 
for each comparing methods are presented as follows:

ML-kNN3 [3] Multi-Label k-Nearest Neighbor. It learns a classifier which takes an action of maximum a posteriori prin-
ciple on the neighbor of training instances. As recommended in [3], the number of neighbors is set to 10 and euclidean 
metric is employed to generate neighborhood.

ML-LOC4 [14] Multi-Label LOcal Correlation. It exploits local label correlations by assuming that instances with similar 
features are with similar codes represented in LOcall Correlation (LOC for short) code space. Default settings of ML-LOC are 
utilized, such as m=15, λ1 = 1, λ2 = 100. The maximal iteration is set as 1000.

LIFT5 [8] Label specIfic FeaTures. It constructs label-specific classifier by rewriting instances as distance to the clustered 
centroid. Setting for the number of clusters retained for positive and negative classes r is set to be 0.1.

FRS-SS-LIFT [10] Fuzzy Rough Set Sample Selection LIFT. It derives a label-specific reduct assemble on the basis of LIFT 
and accelerated by adopting sample selection strategy. Setting for the number of clusters retained for positive and negative 
classes r is set to be 0.2.

fRAkEL6 [59] fast RAkEL. It speeds up algorithm RAkEL by shrinking the samples with irrelevant labels on subset. The size 
of feature subset is fixed as 3, whereas the number of base classifier is twice the number of label cardinality.

CDR [26] Complementary Decision Reduct. It emphasizes the preservation toward vague concept positive class distribu-
tion of label with more compacted representation. No additional parameters are required.

LLSF7 [11] Learning Label-Specific Features. It constructs a collection of label-specific classifier which consider both the 
sparsity and sharing of attributes in representing label information. Parameter α, β are tuned in {2−10, 2−9, · · · , 210}.

LPLC8 [13] Local Pairwise Label Correlation. It analyzes both positive and negative pairwise label correlation locally by 
weighing result from most positive relevant and more negative relevant. Parameter k is searched in {3, 5, · · · , 21}, and α is 
tuned in {0.6, 0.7, 0.8, 0.9, 1.0}.

MIMLK [31] Mutual Information Multi-Label with K-nearest neighborhood. It aims at finding compact representations of 
label granular which are with maximal correlation and minimal redundancy simultaneously. The feature number is empiri-
cally determined as 10, whereas k is fixed as 10.

The characteristics for comparing algorithms are summarized in Table 3.

4.3. Evaluation metrics

The evaluation measures for multi-label classification is roughly classified into two taxonomies, i.e. example-based metrics 
and label-based metrics. The first category of metrics evaluate prediction performance on each example separately, and 

3 Source code: http://lamda .nju .edu .cn /code _MLkNN.ashx.
4 Source code: http://lamda .nju .edu .cn /code _MLLOC .ashx.
5 Source code: http://cse .seu .edu .cn /PersonalPage /zhangml /files /LIFT.rar/.
6 Source code: http://github .com /KKimura360 /fast _RAkEL _matlab.
7 Source code: http://www.escience .cn /people /huangjun /index .html.
8 Source code: http://www.escience .cn /people /huangjun /index .html.

http://lamda.nju.edu.cn/code_MLkNN.ashx
http://lamda.nju.edu.cn/code_MLLOC.ashx
http://cse.seu.edu.cn/PersonalPage/zhangml/files/LIFT.rar/
http://github.com/KKimura360/fast_RAkEL_matlab
http://www.escience.cn/people/huangjun/index.html
http://www.escience.cn/people/huangjun/index.html
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Fig. 3. Sensitivity analysis of α+ regarding label-based measures.

Fig. 4. Sensitivity analysis of α+ regarding example-based measures.

returns the mean value across the test set. The second category of metrics evaluate prediction performance on each label 
separately, and returns the mean value across all labels. As TSEN focuses on discriminating the relevance of label w.r.t. 
instance, we take the view of information retrieval and consider the following metrics: Label-based Precision [60], Label-based 
Recall [60], Label-based Accuracy [60], Macro F1 [60], Example-based Precision [61], Example-based Recall [61], Example-based F1
[61], Hamming-Loss [62], Micro F1 [62].

We notice that some other evaluation metrics, such as one-error, coverage, ranking loss and average precision [63], are 
also frequently referred. It suggests that multi-label classification can also be realized by determining pair-wise relative 
relevance degree. However, the premise is that a real-valued function f (·, ·) must be defined. TSEN, instead, determines the 
relevant labels in a qualitative solution (see Eq. (16)). Therefore, they are not applicable in our approach.

4.4. Experimental evaluation

Since positive class usually occupies a small proportion of instances, we permit some mistakes for the approximation 
of positive concept, whereas the negative concept should be approximated more accurately meanwhile. To examine the 
sensitivity of α+ , we tune α+ from 0.7 to 1.0 with a step of 0.05 and conduct five-fold cross validation on six datasets 
referred in section 4.1. Fig. 3 and Fig. 4 illustrate the experimental results of TSEN in terms of label-based and example-based 
criterion respectively. The horizontal axis of each sub-figure indicates different selections regarding α+ , whereas the vertical 
axis represents the performance of evaluation criteria over six benchmarks.

It can be shown from Fig. 3 that different selections of α+ have limited influence on label-based evaluations. The fluc-
tuations are not so dramatic, especially for Label-based Accuracy. The absolute performance for considered dataset, however, 
exhibits significant differences and the relative ranking with regard to data sets are not incongruous. Concretely, the perfor-
mance of Enron and Bibtex on Label-based Precision are comparative, whereas the performance of Enron regarding Label-based 
Accuracy dominates the other. Additionally, performance can be enhanced when the α+ varies, which may imply that intro-
ducing uncertainty on positive class can be beneficial for robustness of classifier.

It can be observed from Fig. 4 that fluctuations of example-based evaluation on selected datasets are generally neg-
ligible, especially for the cases in Genbase and LangLog. However, results such as Example-based F1 are not so stable for 
dataset Bibtex. Similar to performance displayed in Fig. 3, rankings of datasets on example-based evaluations are inconsis-
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tent. For example, Slashdot outperforms Enron in terms of Hamming Loss, whereas results are degenerated with respect to 
Example-based Recall.

Combining Fig. 3 and Fig. 4, it can be concluded that proposed TSEN is rather steady for a wide range of α+ . To validate 
the effectiveness of TSEN more comprehensively, results of average results as well as standard derivations against comparing 
algorithms are reported subsequently from Tables 4 to 13. For each evaluation, best results are highlighted in bold, and eval-
uations except for Hamming Loss are more desirable if the value is bigger, which is indicated by symbol (↑) and otherwise 
(↓). Relative performance across algorithms are also considered and recorded in the style of ranking. For ten methods on 
each data set, their ranks are marked by 1–10 in the brackets. The average rank, as well as the overall performance ranking 
are listed in the last two rows.

Based on aforementioned results, we claim that the superiority of TSEN over other algorithms are both data-relevant and 
metric-relevant. For dataset Enron, TSEN is more likely to acquire a dominant position. The possibility of ranking first is as 
high as 8/10. As for dataset Slashdot, the overall performance is much more degraded (2/10 possibility of ranking first). For 
metrics such as Label-based Precision and Hamming Loss, TSEN achieves an overwhelming position since the probability of 
ranking first are 6/6 and 4/6 respectively. However, the result is a bit frustrated when it comes to Macro F1, Example-based 
Accuracy, and Example-based F1. The underlying reason is that a mechanism of weighing relative importance of relevant label 
is lacked. It is also worthy mentioning that performance on precision is much encouraging than recall, which reflects that 
TSEN is more sensitive for misclassification on negative classes. It makes sense since the possibility for inclusion is more 
likely to be effective on negative classes. For all 60 predictive performance results (6 data sets × 10 evaluation metrics), 
TSEN ranks in first place among the ten comparing algorithms at 36.7% cases, in second place at 28.3% cases, in third 
place at 10% cases, and only 8.33% cases locate in the second half. Thus, TSEN is generally more powerful than all selected 
methods.

Friedman test is employed to conduct performance analysis among the comparing algorithms. It is recommended in 
examining whether there is statistically superiority among multiple algorithms over a collection of data sets. Given k com-
paring algorithms and N data sets, Let Rank2

j = 1
N

∑
i Rank j

i be the average rank for the j-th algorithm, and Rank j
i be the 

rank of the j-th algorithm on the i-th data set. The Friedman statistic F F is distributed according to the F-distribution with 
(k-1) numerator degrees of freedom and (k-1)(N-1) degrees of freedom as denominator, denoted as:

F F = (N − 1)χ2
F

N(k − 1) − χ2
F

(17)

where χ2
F = 12N

k(k+1)

[∑
j Rank2

j − k(k+1)2

4

]
.

Table 14 provides the Friedman statistics F F and the corresponding critical value in terms of each evaluation metric. As 
shown in Table 14, at significance level α = 0.05, the null hypothesis that all the comparing algorithms perform equivalently 
is clearly rejected in terms of most evaluation measures. Consequently, we can proceed with a post-hoc test to analyze the 
relative performance among the comparing algorithms except for Example-Based Recall. The Nemnyi test is employed to test 
whether our proposed method TSEN achieves a competitive performance against the comparing algorithm. The performance 
between two classifiers will be significantly different if the corresponding average ranks differ at least the critical difference 
CD.

C D = qα

√
k(k + 1)

6N
(18)

For Nemenyi test qα = 3.164 at significance level α = 0.05, and thus CD = 5.531(k = 10, N = 6).
It can be inferred from Fig. 5 that TSEN receives statistically superior performance against MIMLK in terms of Label-based 

Precision, Label-based Accuracy, Macro F1, Example-based Precision and Micro F1. For metric Example-based Accuracy, Hamming 
Loss and Micro F1, performance of TSEN gains a statistically superiority than fRAkEL in terms of Hamming Loss, and better 
than CDR in terms of Label-based Precision. Thus, TSEN is a very competitive algorithm for multi-label classification.

4.5. Discussions

The presented TSEN achieves an encouraging performance on selected multi-label benchmarks. This section intends to 
discuss more characteristics of TSEN. The first issue is that the robustness performance for different selections of α+ does 
not necessary imply that the extension {(α+, β+), (α−, β−)} is meaningless. One possible reason is that the ensemble based 
decision is qualitative rather than quantitative. In other words, TSEN cannot distinguish the relative relevancy of two labels if 

both of them receive more than half effective votes. Here effectiveness refers to the votes that satisfy 
�

x
R Li

h(k)

j ⊆ Ch(k)
(i, j)

�
=1. 

The second issue concerns about the computation complexity. Due to the exponential increasing combinations and a greedy-
based searching policy, it is widely recognized as a drawback of rough set based approach. It may be suffered for large 
dataset and is expected to be accelerated. Despite this bottleneck, one shall not ignore that feature selection can remove 
irrelevant features and generates a low-dimensional representation.
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Table 4

LPLC MIMLK TSEN

0.6426 ± 0.0232(7) 0.5270 ± 0.0607(10) 0.9780 ± 0.0250(1)

0.2660 ± 0.0196(5) 0.1910 ± 0.0429(10) 0.9209 ± 0.0320(1)

0.1569 ± 0.0143(6) 0.0703 ± 0.0391(10) 0.7372 ± 0.0315(1)

0.1344 ± 0.0332(4) 0.0499 ± 0.0119(9) 0.3635 ± 0.0861(1)

0.4266 ± 0.0079(2) 0.0835 ± 0.0046(7) 0.5794 ± 0.0305(1)

0.3319 ± 0.0114(5) 0.1463 ± 0.0100(8) 0.7793 ± 0.0075(1)

4.833(5) 9(10) 1(1)

LPLC MIMLK TSEN

0.6825 ± 0.0143(7) 0.5852 ± 0.0511(8) 0.9687 ± 0.0317(1)

0.2213 ± 0.0135(7) 0.2360 ± 0.0658(6) 0.6585 ± 0.0627(1)

0.1004 ± 0.0057(7) 0.1137 ± 0.0277(6) 0.4323 ± 0.0410(2)

0.0561 ± 0.0068(8) 0.1015 ± 0.0755(7) 0.1110 ± 0.0252(6)

0.4714 ± 0.0061(1) 0.0216 ± 0.0151(10) 0.2821 ± 0.0075(3)

0.1405 ± 0.0023(7) 0.1625 ± 0.0192(6) 0.1813 ± 0.0184(5)

6.167(6) 7.167(7) 3(1.5)

LPLC MIMLK TSEN

0.6362 ± 0.0257(7) 0.5242 ± 0.0573(10) 0.9467 ± 0.0211(1)

0.1883 ± 0.0150(6) 0.1700 ± 0.0524(7) 0.5903 ± 0.0479(1)

0.0734 ± 0.0046(7) 0.0537 ± 0.0143(10) 0.3649 ± 0.0506(1)

0.0501 ± 0.0066(7) 0.0433 ± 0.0113(8) 0.1109 ± 0.0252(4)

0.2981 ± 0.0024(1) 0.0045 ± 0.0038(10) 0.2509 ± 0.0072(2)

0.1155 ± 0.0018(6) 0.0666 ± 0.0077(8) 0.1778 ± 0.0056(3)

5.667(5) 8.833(10) 2(1)

LPLC MIMLK TSEN

0.6554 ± 0.0198(7) 0.5477 ± 0.0538(9) 0.9529 ± 0.0215(2)

0.2320 ± 0.0148(6) 0.2011 ± 0.0503(7) 0.6308 ± 0.0493(2)

0.1052 ± 0.0055(7) 0.0764 ± 0.0182(10) 0.4694 ± 0.0564(1)

0.0639 ± 0.0088(7) 0.0536 ± 0.0175(8) 0.1507 ± 0.0356(3)

0.4146 ± 0.0048(1) 0.0078 ± 0.0066(10) 0.3593 ± 0.0103(2)

0.1634 ± 0.0028(6) 0.0910 ± 0.0098(7) 0.2700 ± 0.0083(3)

5.667(5) 8.5(10) 2.167 (1.5)
Experimental results of each comparing algorithm (mean ± std) in terms of Label-based Precision.

Data set Label-based Precision (↑)

ML-KNN ML-LOC LIFT FRS-SS-LIFT fRAkEL CDR LLSF

Genbase 0.5671 ± 0.0151(8) 0.7277 ± 0.0318(5) 0.6593 ± 0.0423(6) 0.7280 ± 0.0446(4) 0.7639 ± 0.0188(2) 0.5617 ± 0.0464(9) 0.7407 ± 0.7037(3)

Medical 0.2551 ± 0.0245(6) 0.2025 ± 0.0190(9) 0.2516 ± 0.0336(7) 0.3003 ± 0.0363(4) 0.3234 ± 0.0489(3) 0.2129 ± 0.0423(8) 0.3944 ± 0.3559(2)

Enron 0.1501 ± 0.0309(7) 0.2194 ± 0.0182(4) 0.1231 ± 0.0177(9) 0.2638 ± 0.0262(2) 0.1865 ± 0.0348(5) 0.1384 ± 0.0266(8) 0.2260 ± 0.0224(3)

Slashdot 0.2682 ± 0.0113(2) 0.0628 ± 0.0226(7) 0.0659 ± 0.0117(8) 0.1305 ± 0.0388(5) 0.1621 ± 0.0262(3) 0.0428 ± 0.0184(10) 0.1233 ± 0.1614(6)

LangLog 0.1400 ± 0.0095(5) 0.1223 ± 0.0028(6) 0.0294 ± 0.0050(10) 0.1842 ± 0.0227(4) 0.0523 ± 0.0156(9) 0.2390 ± 0.0221(3) 0.0610 ± 0.0782(8)

Bibtex 0.1683 ± 0.0129(6) 0.1268 ± 0.0995(10) 0.1648 ± 0.0123(7) 0.4592 ± 0.0127(2) 0.3712 ± 0.0847(4) 0.1462 ± 0.0203(9) 0.4091 ± 0.0107(3)

Avg. rank 5.667(6) 6.833(7) 7.833(8.5) 3.5(2) 4.333(4) 7.833(8.5) 4.167(3)
Total order: TSEN � FRS-SS-LIFT � LLSF � fRAkEL � LPLC � ML-KNN � ML-LOC � LIFT/CDR � MIMLK

Table 5
Experimental results of each comparing algorithm (mean ± std) in terms of Label-based Recall.

Data set Label-based Recall (↑)

ML-KNN ML-LOC LIFT FRS-SS-LIFT fRAkEL CDR LLSF

Genbase 0.5286 ± 0.0334(10) 0.6935 ± 0.0328(6) 0.6956 ± 0.0475(5) 0.7401 ± 0.0046(4) 0.7745 ± 0.0197(2) 0.5605 ± 0.0710(9) 0.7407 ± 0.7037(3)

Medical 0.1733 ± 0.0120(9) 0.1147 ± 0.0190(10) 0.3183 ± 0.0294(5) 0.3472 ± 0.0579(4) 0.4448 ± 0.0470(2) 0.1889 ± 0.0163(8) 0.4033 ± 0.3370(3)

Enron 0.0749 ± 0.0071(10) 0.0885 ± 0.0109(9) 0.2366 ± 0.0531(4) 0.5206 ± 0.0247(1) 0.2573 ± 0.0933(3) 0.0903 ± 0.0097(8) 0.2145 ± 0.1266(5)

Slashdot 0.2016 ± 0.0092(2) 0.0436 ± 0.0010(9) 0.1450 ± 0.0291(4) 0.2293 ± 0.0686(1) 0.1695 ± 0.0300(3) 0.0427 ± 0.0014(10) 0.1156 ± 0.0730(5)

LangLog 0.0760 ± 0.0063(8) 0.1455 ± 0.0059(6) 0.0937 ± 0.0104(7) 0.2931 ± 0.0341(2) 0.1672 ± 0.0880(5) 0.2069 ± 0.0126(4) 0.0598 ± 0.0232(9)

Bibtex 0.0495 ± 0.0018(9) 0.0087 ± 0.0326(10) 0.4585 ± 0.0276(1) 0.3178 ± 0.0080(4) 0.3853 ± 0.0964(3) 0.0137 ± 0.0019(8) 0.3992 ± 0.0092(1)

Avg. rank 8(9) 8.333(10) 4.333(3.5) 5.333(5) 3(1.5) 7.833(8) 4.333(3.5)
Total order: fRAkEL/TSEN � LIFT/LLSF � FRS-SS-LIFT � LPLC � MIMLK � CDR � ML-KNN � ML-LOC

Table 6
Experimental results of each comparing algorithm (mean ± std) in terms of Label-based Accuracy.

Data set Label-based Accuracy (↑)

ML-KNN ML-LOC LIFT FRS-SS-LIFT fRAkEL CDR LLSF

Genbase 0.5255 ± 0.0297(9) 0.6913 ± 0.0322(5) 0.6586 ± 0.0410(6) 0.7274 ± 0.0453(4) 0.7614 ± 0.0200(2) 0.5314 ± 0.0699(8) 0.7407 ± 0.9624(3)

Medical 0.1518 ± 0.0126(9) 0.1106 ± 0.0189(10) 0.2307 ± 0.0266(5) 0.2819 ± 0.0382(4) 0.2964 ± 0.0340(3) 0.1637 ± 0.0155(8) 0.3422 ± 0.3079(2)

Enron 0.0610 ± 0.0061(9) 0.0746 ± 0.0111(6) 0.1041 ± 0.0143(5) 0.1256 ± 0.0240(3) 0.1233 ± 0.0096(4) 0.0696 ± 0.0095(8) 0.1416 ± 0.0985(2)

Slashdot 0.1785 ± 0.0134(1) 0.0389 ± 0.0011(9) 0.0589 ± 0.0107(6) 0.1245 ± 0.0394(2) 0.1134 ± 0.0097(3) 0.0363 ± 0.0016(10) 0.0856 ± 0.0675(5)

LangLog 0.0612 ± 0.0046(6) 0.1055 ± 0.0031(5) 0.0264 ± 0.0048(9) 0.1832 ± 0.0228(3) 0.0368 ± 0.0080(8) 0.1639 ± 0.0109(4) 0.0387 ± 0.0196(7)

Bibtex 0.0458 ± 0.0020(9) 0.0086 ± 0.0296(7) 0.1506 ± 0.0108(5) 0.1545 ± 0.0060(4) 0.2256 ± 0.0186(2) 0.0130 ± 0.0018(10) 0.2495 ± 0.0047(1)

Avg. rank 7.167(8) 7(7) 6(6) 3.333(2) 3.667(3.5) 8(9) 3.667(3.5)
Total order: TSEN � FRS-SS-LIFT � fRAkEL/LLSF � LPLC � LIFT � ML-LOC � ML-KNN � CDR � MIMLK

Table 7
Experimental results of each comparing algorithm (mean ± std) in terms of Macro F1.

Data set Macro F1 Measure (↑)

ML-KNN ML-LOC LIFT FRS-SS-LIFT fRAkEL CDR LLSF

Genbase 0.5424 ± 0.0254(10) 0.7052 ± 0.0313(5) 0.6722 ± 0.0399(6) 0.9857 ± 0.0454(1) 0.7676 ± 0.0192(3) 0.5530 ± 0.0634(8) 0.7407 ± 0.7037(4)

Medical 0.1937 ± 0.0146(8) 0.1394 ± 0.0203(10) 0.2705 ± 0.0268(5) 0.7378 ± 0.0396(1) 0.3530 ± 0.0272(4) 0.1925 ± 0.0197(9) 0.3914 ± 0.3425(3)

Enron 0.0876 ± 0.0089(9) 0.1060 ± 0.0101(6) 0.1465 ± 0.0206(5) 0.4138 ± 0.0058(2) 0.1854 ± 0.0130(4) 0.0973 ± 0.0118(8) 0.2038 ± 0.1362(3)

Slashdot 0.2196 ± 0.0089(2) 0.0431 ± 0.0019(9) 0.0770 ± 0.0162(6) 0.5850 ± 0.0429(1) 0.1499 ± 0.0098(4) 0.0411 ± 0.0024(10) 0.1138 ± 0.0840(5)

LangLog 0.0885 ± 0.0068(6) 0.1270 ± 0.0040(5) 0.0426 ± 0.0072(9) 0.1406 ± 0.0264(4) 0.0618 ± 0.0113(7) 0.2188 ± 0.0132(3) 0.0568 ± 0.0331(8)

Bibtex 0.0664 ± 0.0033(8) 0.0157 ± 0.0407(10) 0.2183 ± 0.0156(5) 0.2698 ± 0.0071(4) 0.3289 ± 0.0245(2) 0.0229 ± 0.0029(9) 0.3589 ± 0.0076(1)

Avg. rank 7.167(7) 7.5(8) 6(6) 2.167(1.5) 4(3.5) 7.833(9) 4(3.5)
Total order: FRS-SS-LIFT/TSEN � fRAkEL/LLSF � LPLC � LIFT � ML-KNN � ML-LOC � CDR � MIMLK
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Table 8
Experimental results of each comparing algorithm (mean ± std) in terms of Example-based Precision.

LPLC MIMLK TSEN

0.9846 ± 0.0094(5) 0.9458 ± 0.0239(10) 0.9972 ± 0.0025(2)

0.6824 ± 0.0180(5) 0.6250 ± 0.0965(8) 0.9784 ± 0.0066(1)

0.6437 ± 0.0185(3) 0.3500 ± 0.1544(10) 0.8759 ± 0.0049(1)

0.6144 ± 0.0120(4) 0.5511 ± 0.1208(10) 0.5646 ± 0.0155(7)

0.5197 ± 0.0208(5) 0.0233 ± 0.0037(10) 0.7855 ± 0.0065(1)

0.4027 ± 0.0116(5) 0.1964 ± 0.0241(8) 0.4506 ± 0.0107(2)

4.5(3) 9.333(10) 2.333(1)

LPLC MIMLK TSEN

0.9871 ± 0.0039(6) 0.9723 ± 0.0398(8) 0.9972 ± 0.0064(1)

0.6676 ± 0.0321(6) 0.6417 ± 0.0908(7) 0.6714 ± 0.0329(5)

0.4541 ± 0.0238(8) 0.5559 ± 0.1698(3) 0.5465 ± 0.0207(4)

0.5520 ± 0.0123(9) 0.6124 ± 0.1237(3) 0.5138 ± 0.0131(10)

0.6131 ± 0.0140(1) 0.0289 ± 0.0155(10) 0.4458 ± 0.0104(2)

0.2746 ± 0.0069(6) 0.3416 ± 0.0313(4) 0.2729 ± 0.0033(7)

5.667 (6) 5.833(7) 4.833(4.5)

PLC MIMLK TSEN

.9734 ± 0.0087(6) 0.9442 ± 0.0238(10) 0.9876 ± 0.0051(2)

.6199 ± 0.0274(7) 0.5921 ± 0.0905(8) 0.6621 ± 0.0320(3)

.3964 ± 0.0134(4) 0.3013 ± 0.1237(10) 0.5007 ± 0.0154(1)

.5502 ± 0.0117(7) 0.5498 ± 0.1185(8) 0.5138 ± 0.0131(10)

.4325 ± 0.0188(1) 0.0233 ± 0.0037(10) 0.4113 ± 0.0107(2)

.2531 ± 0.0061(6) 0.1911 ± 0.0232(7) 0.2683 ± 0.0028(5)

.167(4) 8.833(10) 3.833(2)

LPLC MIMLK TSEN

0.9821 ± 0.0069(6) 0.9539 ± 0.0285(9) 0.9912 ± 0.0043(2.5)

0.6563 ± 0.0247(6) 0.6199 ± 0.0931(8) 0.6838 ± 0.0324(4)

0.5045 ± 0.0166(4) 0.4054 ± 0.1543(9) 0.6025 ± 0.0154(1)

0.5716 ± 0.0120(8) 0.5705 ± 0.1210(9) 0.5303 ± 0.0138(10)

0.5481 ± 0.0170(1) 0.0250 ± 0.0056(10) 0.5227 ± 0.0100(2)

0.3005 ± 0.0068(6) 0.2313 ± 0.0266(7) 0.3186 ± 0.0043(4)

5.167(5) 8.667(10) 3.917(3)
Data set Example-based Precision (↑)

ML-KNN ML-LOC LIFT FRS-SS-LIFT fRAkEL CDR LLSF

Genbase 0.9709 ± 0.0075(9) 0.9911 ± 0.0078(4) 0.9712 ± 0.0120(8) 0.9836 ± 0.0153(6) 0.9938 ± 0.0021(3) 0.9773 ± 0.0351(7) 0.9989 ± 1.0000(1)

Medical 0.5857 ± 0.0137(9) 0.4336 ± 0.0717(10) 0.6621 ± 0.0304(7) 0.7378 ± 0.0467(3) 0.6734 ± 0.0667(6) 0.6862 ± 0.0149(4) 0.7500 ± 0.8001(2)

Enron 0.5396 ± 0.0255(6) 0.6408 ± 0.0236(4) 0.4730 ± 0.0145(8) 0.6941 ± 0.0058(2) 0.4451 ± 0.0878(9) 0.6261 ± 0.0188(5) 0.5302 ± 0.7031(7)

Slashdot 0.6345 ± 0.0259(2) 0.6390 ± 0.0181(1) 0.5626 ± 0.0186(9) 0.5649 ± 0.0149(8) 0.5875 ± 0.0358(6) 0.6344 ± 0.0149(3) 0.6089 ± 0.6287(5)

LangLog 0.5580 ± 0.0148(4) 0.6616 ± 0.0136(2) 0.1021 ± 0.0150(8) 0.1289 ± 0.0255(7) 0.0980 ± 0.0269(9) 0.6187 ± 0.0084(3) 0.1309 ± 0.0896(6)

Bibtex 0.2505 ± 0.0062(7) 0.0201 ± 0.2266(9) 0.2850 ± 0.0118(6) 0.4441 ± 0.0089(3) 0.4328 ± 0.0757(4) 0.0152 ± 0.0018(10) 0.4587 ± 0.0048(1)

Avg. rank 6.167(7.5) 5(5) 7.667(9) 4.833(4) 6.167(7.5) 5.333 (6) 3.667 (2)
Total order TSEN � LLSF � LPLC � FRS-SS-LIFT � ML-LOC � CDR � ML-KNN/fRAkEL � LIFT � CDR

Table 9
Experimental results of each comparing algorithm (mean ± std) in terms of Example-based Recall.

Data set Example-based Recall (↑)

ML-KNN ML-LOC LIFT FRS-SS-LIFT fRAkEL CDR LLSF

Genbase 0.9461 ± 0.0208(10) 0.9831 ± 0.0046(7) 0.9889 ± 0.0049(4) 0.9905 ± 0.0138(3) 0.9950 ± 0.0028(2) 0.9673 ± 0.0298(9) 0.9874 ± 0.9824(5)

Medical 0.5401 ± 0.0182(9) 0.3943 ± 0.0594(10) 0.6917 ± 0.0359(4) 0.7588 ± 0.0388(3) 0.8714 ± 0.0365(1) 0.6335 ± 0.0130(8) 0.8384 ± 0.8120(2)

Enron 0.3543 ± 0.0234(10) 0.3955 ± 0.0102(9) 0.6757 ± 0.0243(1) 0.5206 ± 0.0093(5) 0.5994 ± 0.1031(2) 0.4560 ± 0.0199(7) 0.5133 ± 0.4989(6)

Slashdot 0.6073 ± 0.0201(4) 0.5762 ± 0.0195(7) 0.6226 ± 0.0186(2) 0.6280 ± 0.0187(1) 0.6047 ± 0.0105(5) 0.5726 ± 0.0101(8) 0.5962 ± 0.5684(6)

LangLog 0.3626 ± 0.0184(5) 0.4084 ± 0.0186(4) 0.1186 ± 0.0172(9) 0.1705 ± 0.0344(7) 0.3274 ± 0.1170(6) 0.4155 ± 0.0069(3) 0.1456 ± 0.0701(8)

Bibtex 0.1296 ± 0.0043(8) 0.0129 ± 0.1036(9) 0.4234 ± 0.0183(3) 0.3178 ± 0.0079(5) 0.5066 ± 0.0814(1) 0.0150 ± 0.0015(10) 0.4970 ± 0.0157(2)

Avg. rank 7.167(8.5) 7.167(8.5) 3.833(2) 4(3) 2.833(1) 7.5(10) 4.833(4.5)
Total order: fRAkEL � LIFT � FRS-SS-LIFT � LLSF/TSEN � LPLC � MIMLK � ML-KNN/ML-LOC � CDR

Table 10
Experimental results of each comparing algorithm (mean ± std) in terms of Example-based Accuracy.

Data set Example-based Accuracy (↑)

ML-KNN ML-LOC LIFT FRS-SS-LIFT fRAkEL CDR LLSF

Genbase 0.9450 ± 0.0203(9) 0.9822 ± 0.0041(5) 0.9707 ± 0.0120(7) 0.9831 ± 0.0157(4) 0.9901 ± 0.0024(1) 0.9622 ± 0.0306(8) 0.9874 ± 0.9824(3)

Medical 0.5253 ± 0.0113(9) 0.3899 ± 0.0602(10) 0.6429 ± 0.0325(5) 0.7162 ± 0.0496(2) 0.6543 ± 0.0594(4) 0.6310 ± 0.0133(6) 0.7234 ± 0.7619(1)

Enron 0.3066 ± 0.0201(9) 0.3434 ± 0.0146(8) 0.4196 ± 0.0135(3) 0.4553 ± 0.0058(2) 0.3477 ± 0.0381(7) 0.3881 ± 0.0171(5) 0.3758 ± 0.4406(6)

Slashdot 0.5829 ± 0.0232(1) 0.5760 ± 0.0193(2) 0.5601 ± 0.0181(5) 0.5639 ± 0.0148(4) 0.5372 ± 0.0296(9) 0.5726 ± 0.0101(3) 0.5573 ± 0.5658(6)

LangLog 0.3145 ± 0.0104(5) 0.3551 ± 0.0180(4) 0.0973 ± 0.0156(8) 0.1277 ± 0.0251(6) 0.0871 ± 0.0196(9) 0.3652 ± 0.0061(3) 0.1072 ± 0.0682(7)

Bibtex 0.1257 ± 0.0041(8) 0.0121 ± 0.1022(10) 0.2707 ± 0.0113(4) 0.2771 ± 0.0075(3) 0.3331 ± 0.0391(2) 0.0126 ± 0.0017(9) 0.3626 ± 0.0054(1)

Avg. rank 6.833(9) 6.5(8) 5.333(5.5) 3.5(1) 5.333(5.5) 5.667(7) 4(3)
Total order: FRS-SS-LIFT � TSEN � LLSF � LPLC � LIFT/fRAkEL � CDR � ML-LOC � ML-KNN � MIMLK

Table 11
Experimental results of each comparing algorithm (mean ± std) in terms of Example-based F1.

Data set Example-based F1 Measure (↑)

ML-KNN ML-LOC LIFT FRS-SS-LIFT fRAkEL CDR LLSF

Genbase 0.9536 ± 0.0165(10) 0.9854 ± 0.0042(5) 0.9769 ± 0.0094(7) 0.9857 ± 0.0150(4) 0.9932 ± 0.0017(1) 0.9703 ± 0.0318(8) 0.9912 ± 0.9882(2.5)

Medical 0.5505 ± 0.0180(9) 0.4057 ± 0.0634(10) 0.6657 ± 0.0328(5) 0.7378 ± 0.0451(2) 0.7239 ± 0.0436(3) 0.6512 ± 0.0136(7) 0.7702 ± 0.7908(1)

Enron 0.4026 ± 0.0208(10) 0.4593 ± 0.0151(8) 0.5265 ± 0.0137(3) 0.5507 ± 0.0056(2) 0.4632 ± 0.0367(7) 0.5023 ± 0.0187(5) 0.4917 ± 0.5583(6)

Slashdot 0.6085 ± 0.0223(1) 0.5966 ± 0.0190(2) 0.5812 ± 0.0183(6) 0.5850 ± 0.0155(5) 0.5758 ± 0.0196(7) 0.5926 ± 0.0117(3) 0.5878 ± 0.5869(4)

LangLog 0.4122 ± 0.0115(5) 0.4732 ± 0.0162(4) 0.1054 ± 0.0156(9) 0.1406 ± 0.0271(6) 0.1280 ± 0.0185(8) 0.4746 ± 0.0070(3) 0.1283 ± 0.0755(7)

Bibtex 0.1581 ± 0.0047(8) 0.0144 ± 0.1322(9) 0.3181 ± 0.0133(5) 0.3682 ± 0.0079(3) 0.4158 ± 0.0308(2) 0.0140 ± 0.0016(10) 0.4390 ± 0.0066(1)

Avg. rank 7.167(9) 6.333(8) 5.833(6) 3.667(2) 4.667(4) 6(7) 3.583(1)
Total order: LLSF � FRS-SS-LIFT � TSEN � fRAkEL � LPLC � LIFT � CDR � ML-LOC � ML-KNN � MIMLK
L

0
0
0
0
0
0
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PLC MIMLK TSEN

.0035 ± 0.0013(8) 0.0045 ± 0.0014(9) 0.0010 ± 0.0004(2)

.0171 ± 0.0016(8) 0.0144 ± 0.0039(6) 0.0102 ± 0.0008(1.5)

.0512 ± 0.0010(5) 0.0539 ± 0.0135(8) 0.0362 ± 0.0011(1)

.0180 ± 0.0003(7) 0.0188 ± 0.0036(8) 0.0143 ± 0.0003(1)

.1867 ± 0.0056(10) 0.0157 ± 0.0010(2) 0.1461 ± 0.0032(7)

.0127 ± 0.0002(4) 0.0132 ± 0.0002(5) 0.0114 ± 0.0001(1)

(9) 6.333(6.5) 2.25(1)

LPLC MIMLK TSEN

0.9628 ± 0.0137(7) 0.9486 ± 0.0190(9) 0.9885 ± 0.0041(2)

0.6753 ± 0.0257(8) 0.7023 ± 0.0870(6) 0.7850 ± 0.0217(2)

0.5100 ± 0.0164(5) 0.4611 ± 0.0991(9) 0.6529 ± 0.0156(1)

0.7566 ± 0.0055(7) 0.7481 ± 0.0509(7) 0.7842 ± 0.0080(2)

0.6079 ± 0.0045(1) 0.0465 ± 0.0153(10) 0.5557 ± 0.0093(2)

0.3616 ± 0.0068(5) 0.2755 ± 0.0217(6) 0.3971 ± 0.0108(3)

5.5(5.5) 7.833(9.5) 2(1)
Table 12
Experimental results of each comparing algorithm (mean ± std) in terms of Hamming Loss.

Data set Hamming Loss (↓)

ML-KNN ML-LOC LIFT FRS-SS-LIFT fRAkEL CDR LLSF L

Genbase 0.0046 ± 0.0019(10) 0.0014 ± 0.0004(5) 0.0022 ± 0.0010(6) 0.0012 ± 0.0009(4) 0.0009 ± 0.0003(1) 0.0033 ± 0.0009(7) 0.0011 ± 0.0167(3) 0
Medical 0.0166 ± 0.0010(7) 0.0177 ± 0.0015(9) 0.0126 ± 0.0010(3) 0.0102 ± 0.0019(1.5) 0.0231 ± 0.0104(10) 0.0133 ± 0.0007(4) 0.0131 ± 0.0098(4) 0
Enron 0.0523 ± 0.0010(6) 0.0529 ± 0.0012(7) 0.0462 ± 0.0017(3) 0.0454 ± 0.0055(2) 0.0940 ± 0.0404(10) 0.0511 ± 0.0019(4) 0.0653 ± 0.0468(9) 0
Slashdot 0.0153 ± 0.0007(2) 0.0159 ± 0.0010(3) 0.0166 ± 0.0008(5) 0.0160 ± 0.0007(4) 0.0261 ± 0.0074(10) 0.0178 ± 0.0009(6) 0.0217 ± 0.0159(9) 0
LangLog 0.0537 ± 0.0018(5) 0.1738 ± 0.0058(9) 0.0154 ± 0.0002(3) 0.0135 ± 0.0009(1) 0.0770 ± 0.0471(6) 0.1604 ± 0.0007(8) 0.0231 ± 0.0149(4) 0
Bibtex 0.0136 ± 0.0001(6) 0.0152 ± 0.0002(8) 0.0124 ± 0.0002(3) 0.0121 ± 0.0062(2) 0.0201 ± 0.0090(10) 0.0139 ± 0.0001(7) 0.0153 ± 0.0003(9) 0

Avg. rank 6(4.5) 6.833 (8) 3.833(3) 2.583(2) 7.833(10) 6(4.5) 6.333(6.5) 7
Total order: TSEN � FRS-SS-LIFT � LIFT � ML-KNN/CDR � LLSF/MIMLC � ML-LOC � LPLC � fRAkEL

Table 13
Experimental results of each comparing algorithm (mean ± std) in terms of Micro F1.

Data set Micro F1 Measure (↑)

ML-KNN ML-LOC LIFT FRS-SS-LIFT fRAkEL CDR LLSF

Genbase 0.9481 ± 0.0209(10) 0.9847 ± 0.0046(5) 0.9755 ± 0.0098(6) 0.9876 ± 0.0589(3) 0.9899 ± 0.0032(1) 0.9617 ± 0.0294(8) 0.9875 ± 0.7037(4)

Medical 0.6369 ± 0.0138(9) 0.5429 ± 0.0531(10) 0.7403 ± 0.0154(4) 0.7973 ± 0.0856(1) 0.6865 ± 0.0789(7) 0.7208 ± 0.0187(5) 0.7716 ± 0.8121(3)

Enron 0.4712 ± 0.0152(7) 0.4682 ± 0.0162(8) 0.5533 ± 0.0149(2) 0.5392 ± 0.0100(3) 0.4514 ± 0.0515(10) 0.5221 ± 0.0258(4) 0.4972 ± 0.5714(6)

Slashdot 0.6768 ± 0.0163(10) 0.7846 ± 0.0138(1) 0.7756 ± 0.0132(4) 0.7820 ± 0.0090(3) 0.7102 ± 0.0512(9) 0.7646 ± 0.0084(5) 0.7380 ± 0.7836(8)

LangLog 0.4631 ± 0.0150(4) 0.4510 ± 0.0092(5) 0.1802 ± 0.0209(8) 0.2625 ± 0.0319(6) 0.1480 ± 0.0298(9) 0.5155 ± 0.0078(3) 0.1812 ± 0.1462(7)

Bibtex 0.2094 ± 0.0045(7) 0.0237 ± 0.0029(9) 0.3737 ± 0.0163(4) 0.0127 ± 0.0036(10) 0.4329 ± 0.0517(2) 0.0245 ± 0.0031(8) 0.4877 ± 0.0061(1)

Avg. rank 7.833(9.5) 6.333(7.5) 4.667(3) 4.333(2) 6.333(7.5) 5.5(5.5) 4.833(4)
Total order: TSEN � FRS-SS-LIFT � LIFT � LLSF � CDR/LPLC � ML-LOC/fRAkEL � ML-KNN/MIMLK
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Table 14
Summary of the Friedman Statistics F F (k = 10, N = 6) and the critical 
value in terms of each evaluation measure (k:# comparing algorithms; 
N: # data sets).

Measure F F Critical value (α = 0.05)

Label-based Precision 34.5359 5.531
Label-based Recall 42.9927
Label-based Accuracy 32.7308
Macro F1 31.5677
Example-based Precision 23.1644
Example-based Recall 5.2718
Example-based Accuracy 15.1189
Example-based F1 15.8531
Hamming Loss 21.7216
Micro F1 18.8766

Fig. 5. Comparison of TSEN (control algorithm) against other comparing algorithms with the Nemenyi test regarding label-based measures. Groups of 
classifiers that are not significantly different from TSEN (at p = 0.05) are connected.

Attribute reduction is an indispensable procedure in TSEN. It is worthy mentioning that unlike LLSF, CDR, FRS-SS-LIFT, 
features generated in TSEN should be treated as a label-specific feature repository. There are three reasons accounting for 
this argument. Firstly, information from referred label served as constraint rather than ordinary feature set. Secondly, some 
of the attributes can be considered more than once. Last but not the least, the voting result on referred label can be trivial 
if neither Eq. (14) nor Eq. (15) holds. Thus, it is not suitable to apply TSEN on evaluation of the reduct effects on classifiers 
for multi-label classification. Nevertheless, the overall advantages against LPLC demonstrates that selecting some attributes 
is avail to multi-label classification.

Herein, we will further elaborate why TSEN is more effective than other methods for dealing with multi-label clas-
sifications. The most appealing feature of TSEN is that it considers the high-order label correlation in an approximate 
second-order complexity. Unlike LPLC or LLSF which limits the discussion within second-order, TSEN simulates the way 
that human behaves when there are some related concepts. The decision mechanism for TSEN can be described via the 
following example: suppose we intend to determine whether a picture has the semantics of the sea, the probability of 
being positive class for sea label is higher if we detect the features describing boat and harbor. On one hand, it works 
much alike as second-order, since the basic step of ensemble is selectively performed in a pair-wise style. On the other 
hand, it does not rely on a particular label (which is considered in LPLC), and enables the robustness for unknown data. 
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Although the advantages of TSEN over FRS-SS-LIFT and LIFT is not very impressive, one should admit that TSEN makes pre-
diction in its original space. In other words, the benefit from feature mapping is comparable to optimization on attribute 
distribution. The relative robustness against MIMLK and fRAkEL suggests that introduction of new parameter does not nec-
essarily improve performance. What is more, a significant superiority over CDR suggests that rough set is more preferable 
for multi-label classification after incorporating with selective ensemble.

To summarize, the proposed model TSEN achieves a competitive advantage against a group of multi-label classification 
methods. Considering that TSEN is realized in its original feature space and no nonlinear operations are introduced, the 
overall performance for TSEN against FRS-SS-LIFT should be more promising.

5. Conclusion

In this paper, we have employed a novel model for multi-label classification called TSEN. The data complexity is well 
decomposed and label ambiguity is gradually reduced. We have demonstrated that three-way decisions can be more ef-
fective if ensemble learning is well integrated. The contributions are two-folds. For the promotion of three-way decisions, 
we believe that the judgment results with different degrees of uncertainty can be used to refine the existing three-way 
structure, and the decision-making results in areas with insufficient information should be allowed to have a certain degree 
of uncertainty. For ensemble learning, we suggest that ensemble strategy can be effective if the intrinsic characterizations 
of base classifier are considered, given that base classifier itself is capable in representing related concepts. Finally, the per-
formance on publicly available benchmarks demonstrate that proposed model is statistically superior or at least comparable 
than some state-of-the-art methods.

Much more efforts still remain to be made. Firstly, the data category of multi-label can be numeric, and information loss 
is inevitable if equivalent relation is directly applied. Secondly, the computational complexity is still flawed, which means 
it is not applicable if the label space is enormous. For this issue, we intend to integrate with the distributed computing 
technique. Last but not the least, the assumptions for quality of label side are perfect, and constraints will be softened in 
future.
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