
Vol.:(0123456789)1 3

Int. J. Mach. Learn. & Cyber. (2018) 9:1895–1907 
DOI 10.1007/s13042-017-0698-0

ORIGINAL ARTICLE

Relation granulation and algebraic structure based on concept 
lattice in complex information systems

Xiangping Kang1,2 · Duoqian Miao1 · Guoping Lin3 · Yong Liu4 

Received: 19 November 2015 / Accepted: 29 May 2017 / Published online: 7 June 2017 
© Springer-Verlag Berlin Heidelberg 2017

form of lattice structure. In addition, the computing process 
based on concept lattice is often accompanied by high time 
complexity, aiming at the problem, the paper attempts to 
overcome it by introducing granular computing, and further 
converts complex information systems into relatively sim-
ple ones. In general, the paper is a new attempt and explor-
ing to the fusion of rough set and concept lattice, and also 
offers a new idea for the expansion of rough set from the 
perspective of relation granulation.

Keywords Rough set · Concept lattice · General binary 
relations · Granular computing · Relation granulation.

1 Introduction

In the age of information globalization, how to process 
massive data for knowledge acquisition has already become 
one of the research hotspots. In 1982, Pawlak proposed 
rough set [31], which is a mathematical theory developed 
on the basis of predecessors’ research theories like Zadeh’s 
fuzzy set theory [54] and Shafer’s evidence theory [40] for 
processing uncertainty information. Although rough set 
has similarities with theories mentioned above for process-
ing uncertain problems, there are still some differences. 
The most remarkable distinction is that rough set does not 
require offering any priori knowledge, such as fuzzy mem-
bership function in fuzzy set, belief function in evidence 
theory, and the assumption that data should comply with 
some kind of statistical distribution in probability statis-
tics, so rough set is more objective to describe problems. 
It is known that rough set also has its limitation, namely, it 
does not contain the mechanism for processing inaccurate 
or uncertain original data, which means that it should be 
complemented by other theories such as fuzzy set, evidence 

Abstract Normally, there may exist some kind of rela-
tionship among different attribute values such as order 
relationship, similarity relationship or other more compli-
cated relationship hidden in complex information systems. 
In the case, the binary relation on the universe is probably 
a kind of more general binary relation rather than equiva-
lence relation, tolerance relation, order relation, etc. For 
the case, the paper tries to take concept lattice as theoreti-
cal foundation, which is appropriate very well for analyzing 
and processing binary relations, and finally proposes a new 
rough set model from the perspective of sub-relations. In 
the model, one general binary relation can be decomposed 
into several sub-relations, which can be viewed as granules 
to study algebraic structure and offer solutions to problems 
such as reduction, core. The algebraic structure mentioned 
above can organized all of relation granulation results in the 
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theory, and probability theory. After 30 years of develop-
ment, rough set has become a complete and independent 
scientific field, and found wide applications in knowledge 
discovery [15, 16, 58–60].

In the process of exploring the world, people usually 
understand things first perceptually and then conceptually, 
meanwhile, they find out common characteristics of things 
and form final concepts after conclusion and summariza-
tion. Originating from people’s philosophical understand-
ing that “A concept is an idea unit composed of intent and 
extent”, German scholar Wille initiated formal concept 
analysis (FCA) [47] in 1982 on the basis of Brikhoff’s lat-
tice theory [2]. As the core structure of FCA, concept lat-
tice is a kind of concept hierarchical structure established 
on the basis of the binary relation between object set and 
attribute set. Although the hierarchy structure of concept 
lattice is similar to flat structure, there are still some dif-
ferences between them, the most remarkable distinction is 
that concept lattice must be a complete lattice. In recent 
years, the related research has made many achievements 
[1, 4, 57], especially, many scholars have combined con-
cept lattice with theories such as fuzzy set, rough set, neu-
ral network, and probability theory, thus greatly expanding 
the theoretical foundation and application scope of concept 
lattice.

Although rough set and concept lattice are two different 
type of theories, they still share some similarities in terms 
of goal and methodology [14]. Studying their relationship 
and combining them together will definitely help us to ana-
lyze and understand data more efficiently. Research results 
in recent years about the comparison and combination of 
two theories have made great achievements. For instance, 
Oosthuizen discussed the connection between rough set 
and concept lattice [30]; Kent [14] and Yao [51] introduced 
upper and lower approximate ideas into concept lattice, 
expanded the definition of concepts; reduction is one of 
core problems in both concept lattice and rough set [19, 28, 
29, 33, 35, 36, 41], many scholars have paid more attention 
to the fusion of the two theories in terms of reduction, rel-
evant achievements included the relation between concept 
lattice reduction and rough set reduction [3, 45], and reduc-
tion methods for concept lattice based on rough set [25, 
27]. Kang and Miao [12] discussed relation granularity, 
and further proposed a variable precision rough set model 
based on concept lattice, which is a direct expansion of 
Pawlak’s rough set; Qu and Zhai [37] introduced inclusion 
degree into concept lattice to express some basic notions in 
concept lattice. In addition, they also exposed limitations 
of rough set in data analysis, and pointed out that rough 
set could be expanded through the technology in concept 
lattice; Kang et al. [10] proposed a rough set model based 
on concept lattice, which solved the problem of algebraic 
structure in information systems. Tan et  al. [42] studied 

connections between covering-based rough sets and con-
cept lattices from the perspective of reduction, structures 
and approximation operators, and got lots of valuable con-
clusions. Wang and Liu [44] proposed AFS concept lat-
tices, and offered an approach to find AFS formal concepts 
by virtue of rough set. By adopting ideas from FCA, Yao 
[53] presented the notion of RS-definable concepts, and 
found that the family of RS-definable concepts can produce 
an atomic boolean algebra. Li et al. [20] from the view of 
“AND” decision rules, “OR” decision rules, granular rules 
and disjunctive rules to investigate the relationship between 
multigranulation rough sets and concept lattices, and finally 
drew some important conclusions.

Normally, attributes are complicated and varied in com-
plex information systems. In a narrow sense, they can be 
categorized into nominal attributes, order symbolic attrib-
utes, real-valued attributes, etc. The so called “nomi-
nal attribute” actually means an attribute value domain 
composed of several discrete values, and different values 
are independent of each other, such as attributes describ-
ing gender and color; order symbolic attributes refer to an 
attribute value domain composed of several discrete values, 
but different values are not independent of each other, and 
they possess the order characteristic, like some attribute 
describing grade; real-valued attributes refer to an attrib-
ute value domain that is a real number field or a sub-set 
of real number field, such as some attribute describing 
temperature.

It is known that the classical rough set, with equivalence 
relations as the classification basis, forms partitions in the 
universe, and further acquires knowledge from data. Since 
equivalence relation is required to be reflexive, symmetrical 
and transitive strictly, the model can just process informa-
tion systems only containing nominal attributes. Therefore, 
it is not practical due to the limitations in many applica-
tions. In the case, lots of scholars weakened equivalence 
relation to some more general binary relations, it greatly 
widened and extended the intent and extent of classical 
rough set to some extent, and it is of great theoretical and 
practical significance for actual applications of rough set 
theory. With regard to information systems containing real-
valued attributes or order symbolic attributes, scholars have 
further expanded the classical rough set in recent years, and 
following two types of expanded models are the most com-
mon and widely used.

1. Equivalence relation is further expanded into tolerance 
relation (also called similarity relation sometimes) [18, 
39], which meets reflexive and symmetrical properties. 
This kind of rough set models called tolerance rough 
set models (TRSM) have strong robustness and fault 
tolerance. TRSM is effective for processing real-valued 
attributes, that is, it can discover the similarities among 
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attribute values, and can eliminate their minor differ-
ences. For instance, in Fig. 1, the relation graph shown 
in Fig.  1b is a tolerance relation graph, which only 
needs to meet reflexivity and symmetry.

2. Equivalence relation is expanded into dominance rela-
tion [7, 50], which belongs to the scope of order rela-
tion, and meets transitive and reflexive properties. 
This kind of rough set models called dominance-based 
rough sets (DRSA). DRSA can clearly express useful 
information hidden in an information system contain-
ing order symbolic attributes. For instance, in Fig.  1, 
the relation graph shown in Fig. 1a is an order relation 
graph, which only needs to meet reflexivity and transi-
tivity.

Apart from weakening equivalence relations to domi-
nance relations (order relations) and tolerance relations, 
some scholars have also generalized the equivalence rela-
tion on the universe to more general binary relations in 
recent years [5, 8, 43, 52, 61]. Although lots of schol-
ars have made great effort in the expansion of rough set, 
related research results on complex information systems 
are rare, namely, rough set still needs to be further enriched 
and improved.

It is known that information granulation is the cor-
nerstone of rough set, and a good granulation mecha-
nism will be the key to success of rough set modeling. 
In almost all existing granulation models based on rela-
tions, the universe U is usually decomposed into several 
granules such as X1,X2,… ,Xn. If Xi ∩ Xj = ∅, 1 ⩽ i, j ⩽ n, 
X1 ∪ X2 ∪⋯ ∪ Xn = U, then � = {X1,X2,… ,Xn} is a 
partition. If ∃Xi ∩ Xj ≠ ∅, and X1 ∪⋯ ∪ Xn = U, then we 
say � is a cover. This kind of information granulation 
mentioned above are always called universe granulation. 
However, in some complex information system, the rela-
tion on U usually does not meet common mathematical 
properties such as reflexivity, symmetry and transitiv-
ity, therefore, establishing corresponding granulation 

mechanism on the universe will become very difficult and 
complicated, and even granulation results of the universe 
is always actually meaningless.

In view of the above problem, the paper attempts to 
offer another type of information granulation mechanism, 
namely relation granulation rather than universe granula-
tion. The so-called relation granulation means that one 
general binary relation can be decomposed into several 
sub-relations called block-relations, and further, block-
relations can be viewed as granules to get knowledge in 
complex information systems. In comparison with other 
granulation mechanisms, the most remarkable distinction 
is that the one proposed in the paper mainly focuses on 
the granulation of the general binary relation rather than 
the granulation of the universe itself. The advantage of 
relation granulation may be not obvious relative to uni-
verse granulation, but it provides a new way of thinking 
for the related research. In addition, the paper, in virtue 
of the idea of relation granulation, can not only conduce 
to better analyzing and solving problems, but also essen-
tially conform to people’s features in solving complicated 
problems.

In fact, we have discussed the similar topic in [12], but 
classical information systems in [12] have been expended 
to complex information systems, meanwhile, the toler-
ance relation in [12] has also been expended to the more 
general relation. In the case, for the granulation of binary 
relation, our focus is on the more general relation rather 
than tolerance relation. From the point of this angle, the 
relation granulation in [12] is only a special case of the 
one in the paper, and the method proposed in the paper 
can be viewed as a necessary complement to the existing 
method in [12].

Let ℰ be a set, and ℛ be a binary relation on ℰ. If 
X × Y ⊆ ℛ, and there does not exist X1 × Y1 ⊆ ℛ satisfy-
ing X × Y ⊂ X1 × Y1, then X × Y  is called a block-relation. 
The set of all block-relations in ℛ is denoted as �(ℛ).

For instance, Fig. 2 is a general binary relation graph, 
which can be decomposed into several block-relations 
shown in Fig. 3.

Referring to human’s granular cognitive mechanism, 
granular computing (GrC) emerged as a new concept and 

a b

Fig. 1  An order relation graph and a tolerance relation graph

Fig. 2  A general relation graph
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method in the artificial intelligence field in the 1970s, 
which tried to generalize and formalize human’s cogni-
tive way so as to distill a set of systematic methods and 
technologies to simulate their mechanism of analyzing 
and solving problems. At present, there are three typical 
GrC theories, namely fuzzy set [55], rough set [32] and 
quotient space theory [56], which greatly facilitate the 
research and development of GrC. Recently, research on 
GrC and the combination theory of GrC , rough set and 
concept lattice has obtained many findings [9, 11, 13, 22, 
23, 26, 34, 46, 48, 49]. For instance, Wei and Wan [46] 
built relationships between equivalence classes and some 
kinds of concepts, and gave some new judgment theorems 
for join (meet)-irreducible elements of a concept lattice; 
Li et  al. [23] gave an axiomatic approach to describe 
three-way concepts by introducing multi-granularity, and 
built a computing system to find composite three-way 
cognitive concepts. In addition, for learning three-way 
cognitive concepts, they also provided a set approxima-
tion method to simulate the cognitive processes; Xu and 
Li [49] studied information granules based on FCA, and 
further constructed a two-way learning system in fuzzy 
datasets; Li et al. [22], aiming at concept learning, gave 
a new way from the standpoint of cognitive computing 
by introducing GrC. In modeling, they gave a detailed 
description of the cognitive processes, and built a cogni-
tive computing system.

Normally, in the information system (U,  AT,  V,  f), for 
any attribute m ∈ AT , (Vm,Rm) can be understood as a 
directed graph, where Rm is the general binary relation on 
Vm. If Rm is large-scale, and does not meet common math-
ematical properties, then (Vm,Rm) will be a very compli-
cated graph. In the case, it will not only bring high time 
complexity for solving follow-up problems based on con-
cept lattice, but also is not conducive to understand the 
sketch structure of (Vm,Rm). In addition, there exists one 
other problem, that is, the computing process based on con-
cept lattice is often accompanied by high time complexity 
and space complexity. In the case, the paper tries to intro-
duce GrC, which can convert the complicated graph into 
a relatively simple one under some high granularity. For 
instance, on the basis of GrC, we can convert the compli-
cated relation shown in Fig.  4 into the simple one shown 

in Fig.  5, the corresponding granulation process, please 
see Sect.  3. In fact, vertexes in Fig.  4 are granulated into 
A = {v1, v2, v5, v6}, B = {v3, v4}, C = {v7, v8}, and directed 
edges in Fig. 4 are granulated into A × A, B × B, C × C and 
B × C.

Based on the discussion above, the paper brings con-
cept lattice and GrC into complex information systems, 
and proposes a new knowledge acquisition model based on 
concept lattice and GrC. In general, the paper is not only a 

Fig. 3  All block-relations 
graphs in Fig. 2

(a) (b) (c) (d)

Fig. 4  A complicated binary relation graph

Fig. 5  A relatively simple binary relation graph deducted from Fig. 4 
based on GrC
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new attempt and exploration to the knowledge acquisition 
in complex information systems, but also offers a feasible 
idea for the expansion of rough set from the view of con-
cept lattice.

Subsequent chapters of the paper are arranged as fol-
lows: Sect. 2 simply recalls concept lattice theory; Sect. 3 
discusses the granulation of attribute value domain; Sect. 4 
decomposes one general binary relation on universe into 
several block-relations in virtue of granulation idea, and 
on this basis, builds algebraic structure in complex infor-
mation systems based on concept lattice; Sect. 5 discusses 
reduction, core and dependency in complex information 
systems; Sect. 6 is the summary of the paper.

2  Concept lattice theory

The section briefly introduces concept lattice, for details 
please refer to [6].

Normally, a formal context is characterized as a triple, 
that is, (G, M, I), where I ⊆ G ×M, and elements in G and 
M are called objects and attributes separately. If (g,m) ∈ I, 
we say the attribute m belongs to the object g.

Definition 1 Let K = (G,M, I) be a formal context. For 
A ⊆ G,B ⊆ M we define

(A, B) is called a formal concept, if A� = B and B� = A. The 
order relation “≤” between concepts (A1,B1) and (A2,B2) is 
defined as

(ℬ(K),≤) is a lattice, where ℬ(K) is the set of all concepts 
in K.

Proposition 1 In (G,  M,  I), let 
A,A1,A2 ⊆ G,B,B1,B2 ⊆ M, then there always exist fol-
lowing simple conclusions:

3  Complex information systems 
and the granulation of attribute value domain

Normally, an information system is defined as a quadruple 
(U, AT, V, f), where U called universe is a finite nonempty 

A� = {m ∈ M|(g,m) ∈ I,∀g ∈ A}

B� = {g ∈ G|(g,m) ∈ I,∀m ∈ B}

(A1,B1) ≤ (A2,B2) ⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2

(1) A1 ⊆ A2 ⇒ A�
2
⊆ A�

1
(2) B1 ⊆ B2 ⇒ B�

2
⊆ B�

1

(3) A ⊆ A��; B ⊆ B�� (4) A� = A���; B� = B���

set, and the elements in U are called objects; AT is also a 
finite nonempty set, and the elements in AT are called 
attributes; V =

⋃
m∈ATVm and Vm is the domain of attribute 

m; f :U × AT → V  is a function, that is, f (x,m) ∈ Vm for 
any x ∈ U, m ∈ AT .

It is known that the classical rough set does not consider 
the relationship between different attribute values such as 
similarity relationship (values describing attributes are 
similar or dissimilar), order relationship (values describing 
attributes have merits and demerits in reality) or other more 
complicated relationship, so it can not clearly express some 
useful information hidden in information systems. In this 
case, we presents complex information systems.

S = (U,AT ,V , f , �) is a complex information sys-
tem, where � = {�m|m ∈ AT}. As a binary relation on 
Vm, 𝜏m ⊆ Vm × Vm can objectively reflect the certain 
relationship(such as, similarity relationship, order rela-
tionship or other more complicated relationship) existed 
between values in Vm. That is, (v,w) ∈ �m implies there 
exists the certain relationship �m from v ∈ Vm to w ∈ Vm. 
Different attributes may correspond to different relation-
ships. For convenience, S = (U,AT ,V , f , �) is denoted as 
S = (U,AT , �).

For example, if m ∈ AT  is an order symbolic attribute, 
then there may exist order relationship between values in 
Vm; if m ∈ AT  is a real-valued attribute, then there may 
exist similarity relationship between values in Vm. Table 1 
is a typical complex information system, where �b and �c 
are shown in sub-table(a) and (b) separately (if the crossing 
of v ∈ Vm row and w ∈ Vm column is denoted as “×”, then 
it means (v,w) ∈ �m). In addition, for the normal attribute 
a(or d, or e), the corresponding �a(or �d, or �e) is shown in 
Table 2.

Essentially, for any attribute m ∈ AT , we can perceive 
Gm = (Vm, �m) as a digraph, where Vm denotes the set of all 
vertexes, and �m is the set of all directed edges. Obviously, 
a bigger n indicates massive directed edges, meanwhile, 
graph Gm is definitely a huge and complicated digraph. This 
not only brings about the high time complexity and space 
complexity for further computing and solving problems, 
but also makes no contribution to further understanding the 
brief structure of digraph generally. To better understand 
and solve problems, we will convert the complicated graph 
Gm into relatively a simple one under the high granularity.

As a matter of fact, granulation and granularity are 
important parts of GrC. Granulation usually refers to 
decomposing the large-scale complicated information 
into several simple blocks, and each block is regarded 
as a granule; granularity can measure the average size 
of information granules objectively. A familiar example 
is that the time is granulated according to scales such 
as year, month, day, hour, minute, and second. GrC can 
find out a proper granularity to solve problems through 
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granularity analysis, rather than analyze and solve prob-
lems at deeper levels, so it can significantly simplify the 
solving process of complicated problems. Obviously, 
carrying out modeling research on complicated data 
according to human’s granular cognitive mechanism can 
generate new data modeling theories and approaches 
expectedly, which are of the significant theoretical signif-
icance for the development of data mining and knowledge 
discovery, and also of the application value for enhancing 
the processing efficiency of massive information.

Definition 2 Let S = (U,AT , �) be a complex information 
system. For v,w ∈ Vm, if (v,w) ∈ �m, we say v is a prede-
cessor of w, and w is a successor of v. In the case, for any 
z ∈ Vm we define

suc(z) = {x ∈ Vm|(z, x) ∈ �m}

pre(z) = {x ∈ Vm|(x, z) ∈ �m}

we say pre(z) is the predecessor neighborhood of z, and 
suc(z) is the successor neighborhood of z.

Definition 3 Let S = (U,AT , �) be a complex information 
system, v,w ∈ Vm. On the basis of above Definition, the 
similarity model between v and w is defined as

where

sim(v,w) = min{pre_sim(v,w), suc_sim(v,w)}

pre_sim(v,w) =
1

|pre(v) ∪ pre(w)|
× |pre(v) ∩ pre(w)|

suc_sim(v,w) =
1

|suc(v) ∪ suc(w)|
× |suc(v) ∩ suc(w)|

Table 1  A typical complex information system

a b c d e

1 Yes s1 z1 Yes No
2 Yes s2 z2 Yes No
3 Yes s3 z3 No No
4 Yes s4 z4 No No
5 No s5 z5 No No
6 No s6 z6 No No
7 No s7 z7 No Yes
8 No s8 z8 No Yes

(a) The binary relation �
b
 on V

b
(b) The binary relation �

c
 on V

c

s1 s2 s3 s4 s5 s6 s7 s8 z1 z2 z3 z4 z5 z6 z7 z8

s1 × × × × z1 × × × ×

s2 × × × × z2 × × × × × ×

s3 × × × × × z3 × × × × × ×

s4 × × × × × z4 × × × × × ×

s5 × × × × × z5 × ×

s6 × × × × × z6 × × ×

s7 × × z7 × × × ×

s8 × × z8 × × × ×

Table 2  The binary relation �
a
 

on V
a

No Yes

No ×

Yes ×

Fig. 6  A binary relation graph
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For instance, in Fig. 6, we can get pre(x) = {a, b, c, d}, 
pre(y) = {b,c,d,e}, suc(x) = {f,g,h,m,n}, 
suc(y) = {g,h,m,n,p}, and further, pre_sim(x,y)=0.6 
and suc_sim(x,y)=0.667 can be calculated. Obviously, 
sim(x,y)=0.6.

In Definition 3, when suc(v) ∪ suc(w) = ∅, we 
assume suc_sim(v,w) = 0 holds. Similarly, when 
pre(v) ∪ pre(w) = ∅, we assume pre_sim(v,w) = 0 holds.

In Table  1, on the basis of Definition 3, similarities 
between values in Vb are shown in Table 3, and the similari-
ties of values in Vc are shown in Table 4.

In fact, based on the similarity model mentioned above, 
a fuzzy similarity relation matrix can be defined as

where vi, vj ∈ Vm, |Vm| = n. We also know that the granu-
lation analysis is always on the basis of fuzzy equivalence 

Fm = (r̃ij)|n|×|n|, r̃ij = sim(vi, vj)

relation matrix. In the case, for generating fuzzy equiva-
lence relation matrix, we always need to calculate the fuzzy 
transitive closure

There are many ways to calculate the fuzzy transitive clo-
sure, this paper chooses a simple algorithm with low com-
plexity O(n2) [17]. For instance, by using above algorithm, 
F+
b
 shown in Table  5 can be calculated from Table  3, in 

the same way, F+
c
 shown in Table 6 can be calculated from 

Table 4.
And further, by introducing the parameter � ∈ [0, 1], 

we can calculate the equivalence relation matrix �−cut. 
Essentially, F+

m
(�) is an equivalence relation on Vm, and 

V�
m
= Vm∕F

+
m
(�) is a partition. Obviously, the bigger 

� is, the smaller |V�
m
| becomes, and vice versa. In addi-

tion, if v ∈ Qi, then the granule Qi ∈ V�
m

 can also be 

F+
m
= F1

m
∪ F2

m
∪⋯ ∪ Fn−1

m

Table 3  Similarity of values in 
V
b
 based on Definition 3

s1 s2 s3 s4 s5 s6 s7 s8

s1 1.000 0.667 0.000 0.125 0.800 0.800 0.000 0.000
s2 0.667 1.000 0.286 0.125 0.800 0.667 0.000 0.000
s3 0.000 0.286 1.000 0.667 0.167 0.000 0.167 0.167
s4 0.125 0.125 0.667 1.000 0.250 0.167 0.400 0.167
s5 0.800 0.800 0.167 0.250 1.000 0.667 0.000 0.000
s6 0.800 0.667 0.000 0.167 0.667 1.000 0.000 0.143
s7 0.000 0.000 0.167 0.400 0.000 0.000 1.000 0.600
s8 0.000 0.000 0.167 0.167 0.000 0.143 0.600 1.000

Table 4  Similarity of values in 
V
c
 based on Definition 3

z1 z2 z3 z4 z5 z6 z7 z8

z1 1.000 0.667 0.250 0.167 0.333 0.400 0.000 0.000
z2 0.667 1.000 0.500 0.333 0.333 0.286 0.250 0.250
z3 0.250 0.500 1.000 0.714 0.000 0.125 0.667 0.667
z4 0.167 0.333 0.714 1.000 0.125 0.000 0.667 0.667
z5 0.333 0.333 0.000 0.125 1.000 0.667 0.000 0.000
z6 0.400 0.286 0.125 0.000 0.667 1.000 0.125 0.125
z7 0.000 0.250 0.667 0.667 0.000 0.125 1.000 0.667
z8 0.000 0.250 0.667 0.667 0.000 0.125 0.667 1.000

Table 5  The fuzzy transitive 
closure F+

b
 calculated from 

Table 3

s1 s2 s3 s4 s5 s6 s7 s8

s1 1.000 0.800 0.286 0.286 0.800 0.800 0.286 0.286
s2 0.800 1.000 0.286 0.286 0.800 0.800 0.286 0.286
s3 0.286 0.286 1.000 0.667 0.286 0.286 0.400 0.400
s4 0.286 0.286 0.667 1.000 0.286 0.286 0.400 0.400
s5 0.800 0.800 0.286 0.286 1.000 0.800 0.286 0.286
s6 0.800 0.800 0.286 0.286 0.800 1.000 0.286 0.286
s7 0.286 0.286 0.400 0.400 0.286 0.286 1.000 0.600
s8 0.286 0.286 0.400 0.400 0.286 0.286 0.600 1.000
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denoted as [v]� . That is, if v ∈ Qi and Qi is a granule, then 
Qi = [v]� = {w ∈ Vm|(v,w) ∈ F+

m
(�)}.

Definition 4 In S = (U,AT , �), let � ∈ [0, 1], then we say 
��
m

 is a granulation relation of �m, which is defined as

where � = (�,�) and

For example, V�
b
= {[s1], [s3], [s7]} with 

� = 0.6 can be calculated from Table  5, where 
[s1] = {s1, s2, s5, s6}, [s3] = {s3, s4}, [s7] = {s7, s8}; Simi-
larly, V�

c
= {[z1], [z3], [z5]} with � = 0.6 can be calculated 

from Table  6, where [z1] = {z1, z2}, [z3] = {z3, z4, z7, z8}, 
[z5] = {z5, z6}. In the case, the corresponding granulation 
relations ��

b
 and ��

c
 with � = 0.6 are shown in Table 7.

It is obvious that the parameter � can affect |��
m
| to a 

given degree. That is, with � remaining unchanged, the 
bigger � is, the smaller |��

m
| is, and vice versa. Essentially 

speaking, when increase of both � and �, we can simplify 
a complicated and huge digraph (Vm, �m ) into a simple 
one (V�

m
, ��

m
) under the high granularity.

(v,w) ∈ ��
m

⟺ ��(v,w) ⩾ �, for any v,w ∈ Vm

��(v,w) =
1

|[v] × [w]|
× |�m ∩ ([v] × [w])|

4  The algebraic structure in complex information 
systems

Concept lattice and rough set are similar to each other in 
data analysis, so studying their relationship and combining 
them together will definitely help us analyze and under-
stand data more efficiently.

Concept lattice is a kind of concept hierarchical structure 
established on the basis of binary relation between sets G 
and M. As the core data structure of FCA, it is considered 
a powerful data analysis tool for knowledge discovery. The 
section will attempt to bring the outstanding mathematical 
properties of concept lattice into complex information sys-
tems, and emphatically probes into the algebraic structure 
in complex information systems.

In recent years, a good many scholars have discussed 
equivalence relation, dominance relation, similarity rela-
tion, and other complicated relations on the universe. Simi-
larly, for any B ⊆ AT , the paper defines the binary relation 
on the universe U as follows

Definition 5 Let S = (U,AT , �) be a complex information 
system. By the following rule

R�

B
=

{
(x, y) ∈ U × U|∀m ∈ B, (v,w) ∈ ��

m
,

f (x,m) = v, f (y,m) = w

}

((x, y),m) ∈ I� ⟺ (v,w) ∈ ��
m
, v = f (x,m),w = f (y,m)

Table 6  The fuzzy transitive 
closure F+

c
 calculated from 

Table 4

z1 z2 z3 z4 z5 z6 z7 z8

z1 1.000 0.667 0.500 0.500 0.400 0.400 0.500 0.500
z2 0.667 1.000 0.500 0.500 0.400 0.400 0.500 0.500
z3 0.500 0.500 1.000 0.714 0.400 0.400 0.667 0.667
z4 0.500 0.500 0.714 1.000 0.400 0.400 0.667 0.667
z5 0.400 0.400 0.400 0.400 1.000 0.667 0.400 0.400
z6 0.400 0.400 0.400 0.400 0.667 1.000 0.400 0.400
z7 0.500 0.500 0.667 0.667 0.400 0.400 1.000 0.667
z8 0.500 0.500 0.667 0.667 0.400 0.400 0.667 1.000

Table 7  Granulation relations 
��
b

 and ��
c

 with � = 0.6,� = 0.6
s1 s2 s3 s4 s5 s6 s7 s8 z1 z2 z3 z4 z5 z6 z7 z8

s1 × × × × z1 × × × ×

s2 × × × × z2 × × × ×

s3 × × × × z3 × × × ×

s4 × × × × z4 × × × ×

s5 × × × × z5 × ×

s6 × × × × z6 × ×

s7 × × z7 × × × ×

s8 × × z8 × × × ×



1903Int. J. Mach. Learn. & Cyber. (2018) 9:1895–1907 

1 3

S can be transformed to the following one-valued formal 
context

In actual applications, we can indirectly change K�
S

 by 
changing parameters � and �. For instance, Table 8 shows the 
one-valued formal context derived from Table 1.

Theorem  1 Let K�
S

 be the derived context of 
S = (U,AT , �), B ⊆ AT . By means of operators in Defini-
tion 1, we can easily obtain the conclusion

Proof The conclusion can be obtained from Definitions 1 
and 5 immediately.

In fact, the relation R�
B

 is a kind of extremely complicated 
binary relation. In the case, the paper, in virtue of granula-
tion idea in GrC, decomposes R�

B
 into several block-relations, 

which can not only generally conduce to better analyzing and 
solving problems, but also essentially conform to people’s 
features in solving complicated problems.

Following the definition of block-relations(see the Intro-
duction Section), let ℛ1 and ℛ2 be binary relations on ℰ, for 
any X1 × Y1 ∈ �(ℛ1), if there exists X2 × Y2 ∈ �(ℛ2) satis-
fying X1 × Y1 ⊆ X2 × Y2, then we say �(ℛ2) is coarser than 
�(ℛ1), which is denoted by �(ℛ1) ⋞ �(ℛ2).

Proposition 2 From above discussions, there are follow-
ing conclusions

• �(ℛ) is a cover of ℛ, that is, ℛ = ∪{X × Y|X × Y ∈

�(ℛ)};
• ℛ1 ⊆ ℛ2, if and only if �(ℛ1) ⋞ �(ℛ2).

Essentially, in the formal context K�
S
, operators in Defini-

tion 1 can be described as: for the set R ⊆ U × U,

K�

S
= (U × U,AT , I�)

B� = R�

B

R� = {m ∈ AT|((x, y),m) ∈ I� ,∀(x, y) ∈ R}

Correspondingly, for the set B ⊆ AT ,

If R� = B and B� = R, then we say (�(R),B) is a block-rela-
tion concept. The set of all block-relation concept in K�

S
 is 

denoted as ℬ(S�). Let (�(R1),B1) and (�(R2),B2) be block-
relation concepts, we define

It is not hard to see that (ℬ(S�),≤) is a lattice structure, 
which is called block-relation lattice. Meanwhile, it is 
not hard to see the following conclusion can be inferred 
immediately

Obviously, (ℬ(S�),≤) can organize all granulation results 
{𝜅(R𝜛

B
) |B ⊆ AT} in the form of lattice structure. Therefore, 

(ℬ(S�),≤) can be viewed as the core data structure of the 
whole information system S. In addition, it is known that 
concept lattice is very suitable for discovering IF-THEN 
rules, so (ℬ(S�),≤) also can be used to acquire rules in 
complex information systems.

Theorem 2 If (�(R),B) ∈ ℬ(S�), then R = R�
B
.

Proof If (�(R),B) ∈ ℬ(S�), then R = B�. In addition, 
B� = R�

B
 can be inferred from Theorem 1. Hence, the con-

clusion R = R�
B

 is true.

Theorem 3 Let K = (ℰ,ℰ,ℛ) be a formal context. If ℛ 
is a binary relation on the set ℰ, then

Obviously, in S = (U,AT , �), for any B ⊆ AT , the cor-
responding �(R�

B
) can be calculated in virtue of the fol-

lowing conclusion

• �(R�
B
) = {X × Y|(X, Y) ∈ ℬ(K)}, where K = (U,U,R�

B
)

For instance, let B = {b, c, d}, � = 0.6 and � = 0.6, then 
we can get the formal context shown in Table 9, it is obvi-
ous that (12, 12), (56, 56), (34, 3456) and (3478, 78) are 
corresponding concepts. And further, we cam obtain all 
block-relations of R�

B
, that is, 12 × 12, 56 × 56, 34 × 3456 

and 3478 × 78.

Based on above discussions, block-relation lattices 
shown in Figs.  7 and 8 can be deduced from Table  1. 
In Figs. 7 and 8, only intents of concepts are given. The 
extents of concepts in Fig. 7 are shown in Table 10. The 
extents of concepts in Fig.  8 will not be detailed here 
again. In addition, for the block-relations U × ∅ and 
∅ × U, there is not any practical significance, so U × ∅ 
and ∅ × U will not be taken into account.

B� = {(x, y) ∈ U × U|((x, y),m) ∈ I� ,∀m ∈ B}

(𝜅(R1),B1) ≤ (𝜅(R2),B2) ⇔ 𝜅(R1) ⋞ 𝜅(R2) ⇔ B2 ⊆ B1

(R,B) ∈ ℬ(K�

S
) ⟺ (�(R),B) ∈ ℬ(S�)

X × Y ∈ �(ℛ) ⇔ (X, Y) ∈ ℬ(K)

Table 8  An one-valued formal 
context derived from Table 1 
with � = 0.6, � = 0.6

a b c d e

(1, 1) × × × × ×

(1, 2) × × × × ×

(1, 3) × ×

(1, 4) × ×

(1, 5) × × ×

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

(8, 6) × ×

(8, 7) × × × × ×

(8, 8) × × × × ×
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5  Reduction, core and dependency in complicated 
information systems

In S = (U,AT , �), let B ⊆ AT , m ∈ B, if RD ≠ R�
D−m

, then 
we say that m is indispensable in B; If B ⊆ D is the mini-
mal subset satisfying R�

B
= R�

D
, then we say that B is a 

reduction of D; core(B) consisted of all indispensable 
attributes in B ⊆ AT  is called the core of B.

Theorem  4 Let B ⊆ AT , m ∈ B. If �(R�
B−m

) ≠ �(R�
B
) or 

(B − m)� ≠ B�, then m ∈ core(B).

Theorem 5 Let C ⊆ B. If C is a minimal subset satisfying 
�(R�

B
) = �(R�

C
) or B� = C�, then C is a reduction of B.

As a kind of important rule-based knowledge, depend-
ency is close to human’s natural thinking, and can be 
understood easily. Normally, function dependency and 
order dependency are the most common types, which are 
described as follows: for any (x, y) ∈ U × U, if

then B → D is called a function dependency; for any 
(x, y) ∈ U × U, if

B → D is called an order dependency. In the paper, function 
dependency and order dependency are further expanded to 
the more general dependency defined as follows: for any 
(x, y) ∈ U × U, if

where v1 = f (x,m),w1 = f (y,m), v2 = f (x, n),w2 = f (y, n), 
then we say D depends on B completely, which is denoted 
as B → D. In the case, we also say B → D is a complex 
dependency. In essence, a complex dependency is an impli-
cation of K�

S
, as defined by Ganter and Wille [6]. For more 

researches on implications, refer to [21, 24, 38].
From above the definition of complex dependency, we 

can easily proof the following conclusions

(∀m ∈ B, f (x,m) = f (y,m)) ⇒ (∀n ∈ D, f (x, n) = f (y, n))

(∀m ∈ B, f (x,m) ≼ f (y,m)) ⇒ (∀n ∈ D, f (x, n) ≼ f (y, n))

(∀m ∈ B, (v1,w1) ∈ R�

m
)⇒(∀n ∈ D, (v2,w2) ∈ R�

n
)

Table 9  A formal context 1 2 3 4 5 6 7 8

1 × ×

2 × ×

3 × × × ×

4 × × × ×

5 × ×

6 × ×

7 × ×

8 × ×

Fig. 7  A block-relation lattice with � = 0.6 and � = 0.6

Fig. 8  A block-relation lattice with � = 0.5 and � = 0.6
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• R𝜛
B
⊆ R𝜛

D
 or B′ ⊆ D′,   if and only if B → D is a com-

plex dependency.
• 𝜅(R𝜛

B
) ⊆ 𝜅(R𝜛

D
),   if and only if B → D is a complex 

dependency.

However, D does not completely depend on B in many 
cases. In the case, we say D partially depends on B, and 
the corresponding dependency degree is defined as:

where

For example, in Table 1, let � = 0.6,� = 0.6, B = {d,e} and 
D = {b,c}, then

�(R�
B
) = {12 × 12, 78 × 78, 3456 × 3456}

�(R�
D
) = {12 × 1256, 34 × 3478 1256 × 56, 3478 × 78}

And then we can obtain

Obviously, D partially depends on B, the corresponding 
dependency degree is 0.33.

An information system usually contains massive 
dependencies, some of which are valuable, and some are 
valueless and redundant. In the paper, we define redun-
dant dependencies as follows: Let B → D,B1 → D1, 
if B ⊆ B1 and D1 ⊆ D, then we say B1 → D1 is a redun-
dant dependency relative to B → D, that is, B1 → D1 is 

��(B∕D) =
|pos�(B∕D)|

|R�
B
| ,

pos𝜛(B∕D) =
⋃

X×Y∈𝜅(R𝜛
D
)

⋃

H×N∈𝜅(R𝜛
B
)

{H × N|H × N ⊆ X × Y}
.

��(B∕D) =
1

24
× |(12 × 12) ∪ (78 × 78)| = 1

24
× 8 = 0.33.

redundant relatively; Let D ⊆ B, then we say B → D is 
redundant absolutely.

By removing all all redundant dependencies, we can 
further get a smaller dependency set. For instance, when 
� = (0.6, 0.6) and � = (0.5, 0.6), the corresponding 
dependency sets in Table 1 are shown in Tables 11 and 12 
separately. In above tables, for any B → D, which is simpli-
fied as B → D∕B.

6  Summary and outlook

In recent years, concept lattice and rough set find wide appli-
cations in a variety of fields successfully. They are two dif-
ferent type of theories, but they share many similarities. 
So studying the combination theory between concept lat-
tice and rough set will surely help us better understand and 
analyze complicated problems. Therefore, the paper brings 
concept lattice into rough set, and presents a now rough set 
model based on concept lattice. In the model, one general 
binary relation on universe can be decomposed into several 
block-relations, which can be viewed as granules to study 
algebraic structure and offer solutions to problems such as 
reduction and core in complex information systems. The 
so-called algebraic structure refers to the block-relation lat-
tice, namely (ℬ(S�),≤), which can organize all granulation 
results {𝜅(R𝜛

B
) |B ⊆ AT} in the form of lattice structure. It is 

known that concept lattice is very suitable for discovering IF-
THEN rules, so (ℬ(S�),≤) also can be used to acquire rules 
in complex information systems. In addition, in some compli-
cated and large-scale data, the computing process based on 
lattice concept is often accompanied by high time and space 
complexity, aiming at the problem, the paper overcomes it by 
introducing the granularity of attribute domain, and further 
convert complex information systems into relatively simple 
ones.

In short, the paper gives the definition of relation granula-
tion, and further offers an reasonable idea for the expansion 
of rough set by introducing concept lattice and GrC. Mean-
while, it also helps to the deep combination of concept lattice 
and rough set. The focus of our research in the next step will 

Table 10  Extents of block-relation concepts in Fig. 7

Intents Extents

a 1234 × 1234, 5678 × 5678

b 1256 × 1256, 34 × 3478, 3478 × 78

c 12 × 1256, 3478 × 3478, 1256 × 56

d 12 × 12, 345678 × 345678

e 123456 × 123456, 78 × 78

ad 12 × 12, 34 × 34, 5678 × 5678

ae 1234 × 1234, 56 × 56, 78 × 78

bc 12 × 1256, 34 × 3478 1256 × 56, 3478 × 78

be 1256 × 1256, 34 × 34, 78 × 78

cd 12 × 12, 56 × 56, 3478 × 3478

de 12 × 12, 78 × 78, 3456 × 3456

bcd 12 × 12, 56 × 56, 34 × 3478, 3478 × 78

bce 34 × 34, 78 × 78, 12 × 1256, 1256 × 56

∅ 12345678 × 12345678

abcde 12 × 12, 34 × 34, 56 × 56, 78 × 78

Table 11  A dependency set in Table 1 with � = (0.6, 0.6)

bd → c ce → b ab → cde ac → bde

ade → bc cde → ab bde → ac

Table 12  A dependency set in Table 1 with � = (0.5, 0.6)

bc → d bd → c ac → e ae → c

ce → a ab → cde acd → be ade → bc

bce → ad bde → ac cde → ab
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be how to apply GrC to further overcoming the high time and 
space complexities in large-scale data.
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