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a b s t r a c t 

Decision-theoretic rough set model, as a probabilistic generalization of the Pawlak rough set model, is 

an effective method for decision making from vague, uncertain or imprecise data. Attribute reduction 

is one of the most important problems in the decision-theoretic rough set model and several uncer- 

tainty measures for attribute reduction have been presented. However, the monotonicity of the uncer- 

tainty measures does not always hold. In this paper, a novel monotonic uncertainty measure is intro- 

duced for attribute reduction in the decision-theoretic rough set model. More specifically, based on the 

concepts of the maximum inclusion degree and maximum decision, a new uncertainty measure, named 

maximum decision entropy, is first proposed, and the definitions of the positive, boundary and negative 

region preservation reducts are then provided by using the proposed uncertainty measure. Theoretically, 

it is proved that the proposed uncertainty measure is monotonic when adding or deleting the condi- 

tion attributes. Additionally, a heuristic attribute reduction algorithm based on the maximum decision 

entropy is developed, which maximizes the relevance of the reduct to the class attribute and also mini- 

mizes the redundancy of the condition attributes within the reduct. The experimental results on artificial 

as well as real data sets demonstrate the competitive performance of our proposal in comparison with 

the state-of-the-art algorithms. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Since the initial work of Pawlak [1,2] , rough set theory has

itnessed the rapid development of theoretical research and also

een extensively utilized in the fields of machine learning, pattern

ecognition and artificial intelligence [3] . In the Pawlak rough

et model, the lower approximation is defined by all elementary

ranules each of which is fully contained by a concept. However,

his requirement is too strict for some applications in the real

orld, especially the one with noisy data. By incorporating the

robability theory into the Pawlak rough set model, several ex-

ended and generalized rough set models have been proposed

4] . Wong and Ziarko [5] introduced the notion of probabilistic

pproximation, and the lower and upper approximations are well

ormulated in the form of conditional probability. Pawlak et al.
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6] proposed the 0.5 probabilistic rough set model, in which

he lower approximation is defined by the elementary granules

hose conditional probability is greater than 0.5 and the upper

pproximation by the elementary granules whose conditional

robability is equal or greater than 0.5. Ziarko [7] presented the

ariable precision rough set model by introducing certain levels

f errors into the lower approximation. Motivated by Bayesian

isk decision procedure for classification, Yao [8] developed the

ecision-theoretic rough set model, and the threshold parameters

n the probabilistic approximations are thus replaced by the real

ost functions. Slezak and Ziarko [9] put forward the Bayesian

ough set model by using the prior probability rather than the

hreshold parameters or cost functions to define the probabilistic

pproximations. Later, Yao [10] provided a general framework for

he Pawlak rough set model and probabilistic rough set models.

n addition, other probabilistic rough set models [10,11] have also

ttracted much attention and have been studied extensively. 

The decision-theoretic rough set model [12,13] (referred to

s the “DTRS model” hereinafter), as a probabilistic extension of

he Pawlak rough set model, intrinsically simulates the decision
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procedure of human beings under uncertainty and risk. Decision

making within the DTRS model is not only based on the degree

of confidence for making a decision but also the cost caused by

the decision behavior. As a result, the commonly used binary

decisions with the mutually exclusive options “yes” or “no” evolve

into three-way decisions with three alternatives [14,15] , namely

decision with acceptance, rejection and noncommitment. Com-

pared with other probabilistic rough set models, the DTRS model

exhibits the salient characteristic and superiority in probabilistic

reasoning and semantic interpretation [16] . Moreover, the DTRS

model provides a unified and comprehensive framework for rough

set theory, and several rough set models, such as the Pawlak rough

set model, 0.5 probabilistic rough set model and variable precision

rough set model, can be derived directly when the parameters

calculated from the cost functions are set properly [17] . 

Attribute reduction [18–24] is one of the most important ap-

plications of rough set theory. A reduct is a jointly sufficient and

individually necessary subset of condition attributes that has the

same level of performance as the entire set of condition attributes.

In the Pawlak rough set model, the universe is always divided

into two mutually complementary sets, namely the positive and

boundary regions. Therefore, the uncertainty measures that reflect

only one of the two regions, such as the degree of dependence

and quality of classification [2] , are quite enough for attribute

reduction. However, in the DTRS model, owing to the introduction

of the threshold parameters in approximating the concept, all

objects are grouped into the positive, boundary and negative

regions. The uncertainty measures mentioned above are no longer

a good choice for attribute reduction. Actually, the main reason for

this problem is that the monotonicity does not hold when these

uncertainty measures are applied to the DTRS model directly [25] . 

To tackle the aforementioned problem, several uncertainty

measures with different objectives have been suggested. Roughly

speaking, their objectives for attribution reduction can be classified

into criterion preservation and criterion optimization [26] . In the

former case, attribute reduction in the DTRS model can be treated

as a problem of uncertainty measure preservation or improvement.

Li et al. [27] argued that the positive region should be the same or

even larger after attribute reduction, and an uncertainty measure

was developed for the positive region extension reduct. Ma et al.

[28,29] defined the uncertainty measures for the probabilistic

positive, boundary, negative and non-negative region distribution

preservation reducts, and the corresponding heuristic algorithms

were also presented by using conditional information or informa-

tion entropy. The heuristic algorithms with criterion preservation

could quickly yield a reduct, while their reducts may still contain

the redundant attributes. In the latter case, attribute reduction in

the DTRS model can be intercepted as a problem of uncertainty

measure optimization. Yao and Zhao [30] investigated the positive

region, non-negative region, confidence of rules, coverage of rules,

cost of rules and others as the uncertainty measures for attribute

reduction, and a general definition for the optimal reduct was pro-

posed. Zhao et al. [26] introduced the positive decision, positive

region extension and non-negative region-based uncertainty mea-

sures for the optimal reduct and also developed a discernibility

matrix-based approach for constructing the optimal reduct. Zhang

and Miao [31,32] discussed four types of uncertainty measures for

attribute reduction, namely knowledge, consistency, region and

structure targets, and a general reduct and three kinds of the opti-

mal reducts were consequently put forward. From the viewpoint of

decision cost minimization, Jia et al. [33,34] provided a minimum

cost attribute reduction algorithm using the technique of genetic,

simulated annealing or particle swarm. Yu et al. [35] and Bi

et al. [36] incorporated the significance of single attribute or joint

attributes with cost minimization for attribute reduction, and the

optimization algorithms with multi-objectives were thus proposed.
iao et al. [37] examined the problem of attribute reduction with

ecision cost and test cost and presented an attribute reduction

lgorithm to minimize these two kinds of costs. Although the

ttribute reduction algorithms with criterion optimization could

enerate an optimal reduct, their time complexity may be rather

igh. Additionally, under the DTRS model, some researchers also

tudied the problem of attribute reduction in quick method [38] ,

ulti-costs strategy [39] , multigranulation [40–42] , incomplete

ystem [43,44] , neighborhood system [45–47] , etc. 

However, the existing algorithms for attribute reduction still

ave some problems that need to be investigated further. On the

ne hand, some algorithms could obtain an optimal reduct with

heir optimization objectives, but for the inconsistent condition

quivalence class or even the consistent one, its majority decision

hich has the maximum inclusion degree (called the maximum

ecision hereinafter) may be changed after the procedure of at-

ribute reduction. The objective of attribute reduction is to remove

he redundant attributes. The behavior of changing the decision es-

entially violates the principle of attribute reduction. On the other

and, some algorithms could yield an optimal reduct with criterion

reservation, but their reducts, in a sense, still have the redundant

ttributes which could be further removed. A full explanation of

hese problems is given in Section 3 . Usually, human beings mainly

oncern the decision that has the maximum inclusion degree when

acing the problem with multiple uncertain (or indeterministic)

lternatives. For example, the decision with conditional probability

bove 0.5 is usually taken by a decision maker for a binary de-

isions problem. Therefore, the uncertainty measure for attribute

eduction should pay more attention to the information about the

ecision with the maximum inclusion degree. Actually, the reduct

ith preservation of the maximum inclusion degree and maxi-

um decision is not only more consistent with human beings’

ecision procedure but also contains less redundant information. 

To achieve the objective above, this paper proposes a monotonic

ncertainty measure in which the maximum inclusion degree,

aximum decision and cost functions are all taken into consider-

tion. The main contributions of this paper are threefold. First, we

xamine the existing uncertainty measures for attribute reduction

n the DTRS model and illustrate their potential problems by an ar-

ificial data set. Second, we introduce the concept of the maximum

ecision entropy, based on which a novel monotonic uncertainty

easure is designed. Third, we develop a heuristic algorithm with

he principle of maximum relevance and minimum redundancy,

hich could provide more concise, stable and accurate results. 

The remainder of this paper is organized as follows.

ection 2 outlines some concepts related to the Pawlak rough

et model and DTRS model. Section 3 first indicates the problems

f the existing uncertainty measures for attribute reduction using

 toy data set. A novel uncertainty measure is then introduced,

nd its monotonicity is also proved. Finally, a heuristic algo-

ithm is developed for attribute reduction in the DTRS model.

ection 4 shows the results of applying the proposed algorithm to

everal UCI data sets. Section 5 concludes the paper and indicates

he intended directions for further research. 

. Preliminary knowledge 

This section will review some concepts in the Pawlak rough set

odel and DTRS model. A detailed description of the models can

e found in [2,8,30] . 

Formally, an information system [2] is defined as

 = (U, A, V, f ) , where U is a non-empty and finite set of ob-

ects, called the universe, A is a non-empty and finite set of

ttributes, V is the union of the domains of all attributes, i.e.,

 = 

⋃ 

V a , where V a denotes the domain of an attribute a ∈ A , and

 is an information function which associates each attribute of
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Table 1 

Cost functions for different 

actions under the states X 

and X c . 

a P a B a N 

X λPP λBP λNP 

X c λPN λBN λNN 
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n object belonging to U with a unique value. If the attribute

et A can be divided into condition attribute set C and decision

ttribute set D , the information system is also called as a decision

nformation system or simply a decision table. 

For an attribute subset B of A , it determines a binary relation

ND ( B ), which is called the indiscernibility relation and defined as

ollows [2] : 

ND (B ) = {〈 x, y 〉 ∈ U × U|∀ a ∈ B, f (x, a ) = f (y, a ) } . (1) 

The binary relation IND ( B ) is also an equivalence relation which

atisfies reflexivity, symmetry and transitivity. The family of all

quivalence classes of IND ( B ), i.e., a partition of the universe U

etermined by B , is denoted by U / IND ( B ) or simply by U / B . An

quivalence class of IND ( B ), i.e., a block of the partition U / B , is de-

cribed as [ x ] B and referred to as B -elementary set or B -elementary

ranule [2] . 

The Pawlak rough set model is based on two basic notions,

amely the lower and upper approximations of a set. Let X be a

ubset of the universe U , the lower approximation B ( X ) and upper

pproximation B (X ) with respect to the attribute subset B ( B ⊆A )

re defined as [5] : 

 (X ) = { x ∈ U| μB (x ) = 1 } , 
 (X ) = { x ∈ U| μB (x ) > 0 } , (2) 

here μB ( x ) denotes the inclusion degree that an object x belongs

o X with respect to B , i.e., μB (x ) = P (X| [ x ] B ) = | [ x ] B ∩ X| / | [ x ] B | , in
hich the symbol “| · |” denotes the cardinality of a set. 

An object x belongs to B -lower approximation of X if its equiv-

lence class [ x ] B is a subset of X . An object x belongs to B -upper

pproximation of X if its equivalence class [ x ] B has a nonempty

ntersection with X . 

Based on the lower and upper approximations of X , the uni-

erse U can be divided into three mutually disjoint regions with

espect to B , namely the positive region POS B ( X ), boundary region

ND B ( X ) and negative region NEG B ( X ) [2] : 

P OS B (X ) = B (X ) , 

ND B (X ) = B (X ) − B (X ) , 

EG B (X ) = U − B (X ) . (3) 

Let C and D be the sets of condition and decision attributes

n a decision table, U / C and U / D be the partitions induced by the

ttribute sets C and D over U , respectively, the positive, boundary

nd negative regions of D with respect to C are defined as [30] : 

P OS C (D ) = 

⋃ 

X∈ U/D 

C (X ) , 

ND C (D ) = 

⋃ 

X∈ U/D 

C (X ) −
⋃ 

X∈ U/D 

C (X ) , 

EG C (D ) = U − (P OS C (D ) ∪ BND C (D )) = ∅ . (4) 

The positive region is a set of C -elementary granules which

ompletely belong to a block of the partition U / D , and the bound-

ry region is the difference between the C -upper and C -lower

pproximations of all blocks within the partition U / D . A decision

able is consistent if the formula P OS C (D ) = U holds, otherwise it

s inconsistent. 

Decision making in the Pawlak rough set model is only related

o the data itself, not taking into consideration the cost of decision

aking. However, this is not in line with some applications in

he real world. The DTRS model overcomes this limitation by

ntroducing Bayesian decision theory. 

Let � = { X, X c } be a set of states that indicate an object x is

n X or not in X , respectively, and � = { a P , a B , a N } be a set of

ctions that decide the object x to be POS ( X ), BND ( X ) or NEG ( X ),

espectively. The cost functions regarding different actions under

he states X and X 

c can be expressed as Table 1 . 
In the table, λPP , λBP and λNP denote the costs incurred by

aking the actions a P , a B and a N , respectively, when the object x

elongs to X , and λPN , λBN and λNN denote the costs incurred by

aking the same actions when the object x does not belong to X . 

Given an object x , the expected costs of taking different actions

an be described as [30] : 

R (a P | [ x ]) = λPP P (X | [ x ]) + λPN P (X 

c | [ x ]) , 
R (a B | [ x ]) = λBP P (X | [ x ]) + λBN P (X 

c | [ x ]) , 
 (a N | [ x ]) = λNP P (X | [ x ]) + λNN P (X 

c | [ x ]) , (5) 

here P ( X |[ x ]) and P ( X 

c |[ x ]) denote the probability that the

bject x belongs to X and X 

c , respectively, and the formula

 (X| [ x ]) = 1 − P (X c | [ x ]) holds. 

According to Bayesian decision theory, the following minimum-

isk rules can be deduced [30] : 

(P) if R ( a P |[ x ]) ≤ min { R ( a B |[ x ]), R ( a N |[ x ])}, then decide x ∈ POS ( X );

(B) if R ( a B |[ x ]) ≤ min { R ( a P |[ x ]), R ( a N |[ x ])}, then decide x ∈ BND ( X );

(N) if R ( a N |[ x ]) ≤ min { R ( a P |[ x ]), R ( a B |[ x ])}, then decide x ∈ NEG ( X ).

For any object, it takes the action that incurs the minimum cost.

ie-breaking criteria should be added so that each object is classi-

ed into only one region. Intuitionally, the cost for taking the right

ction is less than that for taking an improper one. Therefore, the

ormulae λPP ≤λBP < λNP and λNN ≤λBN < λPN hold. Additionally,

he formula P (X| [ x ]) = 1 − P (X c | [ x ]) holds for any object x under

he states X and X 

c . The decision rules can be simplified as [30] : 

(P) if P ( X |[ x ]) ≥α and P ( X |[ x ]) ≥γ , then decide x ∈ POS ( X ); 

(B) if P ( X |[ x ]) < α and P ( X |[ x ]) > β , then decide x ∈ BND ( X ); 

(N) if P ( X |[ x ]) ≤β and P ( X |[ x ]) ≤γ , then decide x ∈ NEG ( X ), 

here 

α = 

λPN − λBN 

(λPN − λBN ) + (λBP − λPP ) 
, 

β = 

λBN − λNN 

(λBN − λNN ) + (λNP − λBP ) 
, 

= 

λPN − λNN 

(λPN − λNN ) + (λNP − λPP ) 
. (6) 

If the constraint condition (λPN − λBN )(λNP − λBP ) >

(λBP − λPP )(λBN − λNN ) is imposed on the cost functions, we

ave 0 ≤β < γ < α ≤ 1. In this case, the following decision rules

an be obtained [30] : 

(P) if P ( X |[ x ]) ≥α, then decide x ∈ POS ( X ); 

(B) if β < P ( X |[ x ]) < α, then decide x ∈ BND ( X ); 

(N) if P ( X |[ x ]) ≤β , then decide x ∈ NEG ( X ). 

By introducing the parameters α and β , the probabilistic lower

nd upper approximations can be defined by Yao and Zhao [30] : 

 (α,β) (X ) = { x ∈ U| μB (x ) ≥ α} , 
 (α,β) (X ) = { x ∈ U| μB (x ) > β} . (7) 

With different cost functions, the Pawlak rough set model

nd most probabilistic rough set models can be derived from

he DTRS model [30] . For example, we can obtain the Pawlak

ough set model if α = 1 and β = 0 , 0.5 probabilistic rough set
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Table 2 

A decision table. 

a 1 a 2 a 3 a 4 a 5 d 

x 1 0 0 0 0 0 d 1 
x 2 0 0 0 0 1 d 2 
x 3 0 0 0 1 1 d 1 
x 4 0 0 0 1 1 d 2 
x 5 0 0 0 1 1 d 2 
x 6 0 0 0 1 1 d 2 
x 7 0 0 1 1 1 d 2 
x 8 0 0 1 1 1 d 2 
x 9 0 0 1 1 1 d 2 
x 10 0 0 1 1 1 d 3 
x 11 0 1 1 1 1 d 2 
x 12 0 1 1 1 1 d 3 
x 13 1 1 1 1 1 d 1 
x 14 1 1 1 1 1 d 2 
x 15 1 1 1 1 1 d 3 
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model if α = β = 0 . 5 , and variable precision rough set model if

α = 1 − β ≥ 0 . 5 . Based on probabilistic lower and upper approxi-

mations, the probabilistic positive, boundary and negative regions

can be defined as [30] : 

P OS 
(α,β) 
C 

(D ) = { x ∈ U| P (D max ([ x ] C ) | [ x ] C ) ≥ α} , 
BND 

(α,β) 
C 

(D ) = { x ∈ U| β < P (D max ([ x ] C ) | [ x ] C ) < α} , 
NEG 

(α,β) 
C 

(D ) = { x ∈ U| P (D max ([ x ] C ) | [ x ] C ) ≤ β} , (8)

where D max ([ x ] C ) = argmax D i ∈ U/D { P (D i | [ x ] C ) } . 
Under the DTRS model, each object in the universe is classified

into only one of the three regions. Let p C max (x ) be the maximum in-

clusion degree of an object x , namely p C max (x ) = P (D max ([ x ] C ) | [ x ] C ) .
The cost for different kinds of decision rules can be described by

Jia et al. [33] : 

(1) Positive rule: p C max (x ) λPP + (1 − p C max (x )) λPN ; 

(2) Boundary rule: p C max (x ) λBP + (1 − p C max (x )) λBN ; 

(3) Negative rule: p C max (x ) λNP + (1 − p C max (x )) λNN . 

Considering a special case in which the cost for a correct

classification is 0, namely λPP = λNN = 0 , the total decision cost

for all objects in the universe is defined as [33] : 

ost ( 
α,β) 

C ( D ) = 

∑ 

p C max ( x ) ≥α

( 1 − p C max ( x ) ) λPN 

+ 

∑ 

β<p C max ( x ) <α

( p C max ( x ) λBP + ( 1 − p C max ( x ) ) λBN ) 

+ 

∑ 

p C max ( x ) ≤β

p C max ( x ) λNP . (9)

For a decision table, the overall cost consists of three types of

costs caused by the decision rules, namely the cost of the positive

rules, the cost of the boundary rules and the cost of the negative

rules. With this notion, an uncertainty measure for the minimum

cost attribute reduction can be defined [33] . 

3. Maximum decision entropy-based attribute reduction in the 

DTRS model 

In this section, we first illustrate some phenomena in the

process of attribute reduction, and a novel monotonic uncertainty

measure is then introduced for attribute reduction in the DTRS

model. Finally, a heuristic attribute reduction algorithm based on

the proposed uncertainty measure is developed. 

3.1. Attribute reduction uncertainty measures within the DTRS model 

At present, there are several uncertainty measures for attribute

reduction in the DTRS model, which could be roughly classi-

fied into criterion preservation and criterion optimization. Their

definitions can be formally described as follows. 

Definition 1. [30] Let S = (U, A = (C ∪ D ) , V, f ) be a decision table,

and ( α, β) be the parameters induced from the cost functions, a

condition attribute set R ⊆C is a criterion preservation reduct of C

with respect to D if the following two conditions are satisfied: 

(1) MES 
(α,β) 
R 

(D ) 
 MES 
(α,β) 
C 

(D ) ; 

(2) for any attribute a ∈ R , MES 
(α,β) 
R −{ a } (D ) ≺ MES 

(α,β) 
C 

(D ) , 

where the symbol “
” means that A is equal or superior to B ,

and attribute reduction uncertainty measure MES could be classi-

fication quality [7] , region extension [27] , distribution preservation

(or entropy preservation) [28] , etc. 

Definition 2. [30] Let S = (U, A = (C ∪ D ) , V, f ) be a decision table,

and ( α, β) be the parameters induced from the cost functions, a
ondition attribute set R ⊆C is a criterion optimization reduct of C

ith respect to D if the following two conditions are satisfied: 

(1) MES 
(α,β) 
R 

(D ) 
 MES 
(α,β) 
C 

(D ) ; 

(2) for any condition attribute subset R ′ ⊂ R , MES 
(α,β) 

R ′ (D ) ≺
MES 

(α,β) 
C 

(D ) , 

where attribute reduction uncertainty measure MES could be

he minimum cost [33] , optimal region preservation [26] , optimal

istribution preservation [48] , etc. 

In the Pawlak rough set model, an uncertainty measure with

he preservation of the positive region is sufficient for attribute re-

uction because a positive region could implicitly deduce a unique

oundary region. In other words, the positive and boundary re-

ions are complementary to each other. Therefore, the uncertainty

easures, such as the positive region and quality of classification,

re intrinsically monotonic when adding or removing the con-

ition attributes. However, in the DTRS model, this remarkable

haracteristic is not inherited by the uncertainty measures. As a

esult, some undesired phenomena or problems, such as decision

on-monotonicity, confidence fluctuation, region transfer and cost

ias, may happen in the process of attribute reduction [30] . In

hat follows, an example is given to illustrate these problems. 

xample 1. Let S = (U, A = (C ∪ D ) , V, f ) be a decision table shown

n Table 2 , where U = { x 1 , x 2 , . . . , x 15 } , C = { a 1 , a 2 , a 3 , a 4 , a 5 } and

 D = { d 1 , d 2 , d 3 } . 
In the Pawlak rough set model, we have 

U/C = {{ x 1 } , { x 2 } , { x 3 , x 4 , x 5 , x 6 } , { x 7 , x 8 , x 9 , x 10 } , { x 11 , x 12 } , { x 13 , 

 14 , x 15 }} , 
U/D = {{ x 1 , x 3 , x 13 } , { x 2 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 11 , x 14 } , { x 10 , x 12 , 

 15 }} , 
P OS C (D ) = { x 1 , x 2 } , 
BND C (D ) = { x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 , x 11 , x 12 , x 13 , x 14 , x 15 } . 
The decision rules induced by C are as follows: 

{ x 1 } → d 1 (confidence = 

|{ x 1 }| |{ x 1 }| = 

1 
1 = 1), 

{ x 2 } → d 2 (confidence = 

|{ x 2 }| |{ x 2 }| = 

1 
1 = 1), 

{ x 3 , x 4 , x 5 , x 6 } → d 2 (confidence = 

|{ x 4 ,x 5 ,x 6 }| |{ x 3 ,x 4 ,x 5 ,x 6 }| = 

3 
4 = 0.75), 

{ x 7 , x 8 , x 9 , x 10 } → d 2 (confidence = 

|{ x 7 ,x 8 ,x 9 }| |{ x 7 ,x 8 ,x 9 ,x 10 }| = 

3 
4 = 0.75), 

{ x 11 , x 12 } → d 2 or d 3 (confidence = 

|{ x 11 }| |{ x 11 ,x 12 }| = 

1 
2 = 0.50), 

{ x 13 , x 14 , x 15 } → d 1 or d 2 or d 3 (confidence = 

|{ x 13 }| |{ x 13 ,x 14 ,x 15 }| = 

1 
3 =

.33), 

Assume that the parameters α = 0 . 70 and β = 0 . 35 are calcu-

ated from the cost functions in the DTRS model, we have 

P OS (0 . 70 , 0 . 35) 
C 

(D ) = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 } , 
BND 

(0 . 70 , 0 . 35) 
C 

(D ) = { x 11 , x 12 } , 
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(0 . 70 , 0 . 35) 
C 

(D ) = { x 13 , x 14 , x 15 } . 
According to the definition of the positive region preservation

r extension [27] , we have the reduct { a 2 }, and the following

ecision rules could be induced: 

{ x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 } → d 2 (confidence =
|{ x 2 ,x 4 ,x 5 ,x 6 ,x 7 ,x 8 ,x 9 }| |{ x 1 ,x 2 ,x 3 ,x 4 ,x 5 ,x 6 ,x 7 ,x 8 ,x 9 ,x 10 }| = 

7 
10 = 0.70), 

{ x 11 , x 12 , x 13 , x 14 , x 15 } → d 2 or d 3 (confidence = 

|{ x 11 ,x 14 }| |{ x 11 ,x 12 ,x 13 ,x 14 ,x 15 }| 
 

2 
5 = 0.40). 

It is noteworthy that the class of the decision rule relating to

he object x 1 is changed from d 1 to d 2 after attribute reduction.

eanwhile, the confidence of the decision rule relating to the

bject x 1 is decreased from 1 to 0.70. In other words, the certain

ecision rule relating to the object x 1 becomes an uncertain one

fter attribute reduction. In fact, this kind of behavior violates the

rinciple of attribute reduction and inevitably brings a negative

ffect on classification task. 

The set of condition attributes { a 1 , a 3 , a 4 , a 5 } is a reduct of the

ptimal decision preservation that keeps all possible decisions of

ach object unchanged [26] , and the decision rules determined by

he reduct are as follows: 

{ x 1 } → d 1 (confidence = 

|{ x 1 }| |{ x 1 }| = 

1 
1 = 1), 

{ x 2 } → d 2 (confidence = 

|{ x 2 }| |{ x 2 }| = 

1 
1 = 1), 

{ x 3 , x 4 , x 5 , x 6 } → d 2 (confidence = 

|{ x 4 ,x 5 ,x 6 }| |{ x 3 ,x 4 ,x 5 ,x 6 }| = 

3 
4 = 0.75), 

{ x 7 , x 8 , x 9 , x 10 , x 11 , x 12 } → d 2 (confidence = 

|{ x 7 ,x 8 ,x 9 ,x 11 }| |{ x 7 ,x 8 ,x 9 ,x 10 ,x 11 ,x 12 }| =
4 
6 = 0.67), 

{ x 13 , x 14 , x 15 } → d 1 or d 2 or d 3 (confidence = 

|{ x 13 }| |{ x 13 ,x 14 ,x 15 }| = 

1 
3 =

.33). 

However, compared with the original attribute set C , the ob-

ects x 7 , x 8 , x 9 and x 10 under the optimal decision preservation

educt are transferred from the probabilistic positive region to

robabilistic boundary region. 

Assume that the cost functions in the DTRS model are

PP = 0 , λBP = 1 , λNP = 4 , λPN = 5 , λBN = 2 and λNN = 0 , we have

= 0 . 75 and β = 0 . 40 . The probabilistic positive, boundary and

egative regions are as follows: 

P OS (0 . 75 , 0 . 40) 
C 

(D ) = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 } , 
BND 

(0 . 75 , 0 . 40) 
C 

(D ) = { x 11 , x 12 } , 
NEG 

(0 . 75 , 0 . 40) 
C 

(D ) = { x 13 , x 14 , x 15 } . 
For different subsets of all condition attributes, the overall costs

re as follows: 

Cost (0 . 75 , 0 . 40) 
C 

(D ) = 2(1 − 1) λPN + 4(1 − 3 
4 ) λPN + 4(1 − 3 

4 ) λPN + 

( 1 2 λBP + (1 − 1 
2 ) λBN ) + 3( 1 3 λNP ) = 2 λPN + (λBP + λBN ) + λNP = 17 , 

Cost (0 . 75 , 0 . 40) 
C−{ a 2 } (D ) = Cost (0 . 75 , 0 . 40) 

C−{ a 3 } (D ) = Cost (0 . 75 , 0 . 40) 
C−{ a 4 } (D ) = 

ost (0 . 75 , 0 . 40) 
C−{ a 2 ,a 3 } (D ) = Cost (0 . 75 , 0 . 40) 

C−{ a 2 ,a 4 } (D ) = Cost (0 . 75 , 0 . 40) 
C−{ a 3 ,a 4 } (D ) = 17 , 

Cost (0 . 75 , 0 . 40) 
C−{ a 1 } (D ) = Cost (0 . 75 , 0 . 40) 

C−{ a 1 ,a 2 } (D ) = Cost (0 . 75 , 0 . 40) 
C−{ a 1 ,a 3 } (D ) = 

ost (0 . 75 , 0 . 40) 
C−{ a 1 ,a 4 } (D ) = Cost (0 . 75 , 0 . 40) 

C−{ a 1 ,a 2 ,a 3 } (D ) = Cost (0 . 75 , 0 . 40) 
C−{ a 1 ,a 2 ,a 4 } (D ) = 

ost (0 . 75 , 0 . 40) 
C−{ a 1 ,a 3 ,a 4 } (D ) = Cost (0 . 75 , 0 . 40) 

C−{ a 2 ,a 3 ,a 4 } (D ) = 18 , 

Cost (0 . 75 , 0 . 40) 
C−{ a 1 ,a 2 ,a 3 ,a 4 } (D ) = 19 , 

Cost (0 . 75 , 0 . 40) 
C−{ a 5 } (D ) = Cost (0 . 75 , 0 . 40) 

C−{ a 2 ,a 5 } (D ) = Cost (0 . 75 , 0 . 40) 
C−{ a 3 ,a 5 } (D ) = 

ost (0 . 75 , 0 . 40) 
C−{ a 4 ,a 5 } (D ) = Cost (0 . 75 , 0 . 40) 

C−{ a 2 ,a 3 ,a 5 } (D ) = Cost (0 . 75 , 0 . 40) 
C−{ a 2 ,a 4 ,a 5 } (D ) = 

ost (0 . 75 , 0 . 40) 
C−{ a 3 ,a 4 ,a 5 } (D ) = Cost (0 . 75 , 0 . 40) 

C−{ a 2 ,a 3 ,a 4 ,a 5 } (D ) = 20 , 

Cost (0 . 75 , 0 . 40) 
C−{ a 1 ,a 5 } (D ) = Cost (0 . 75 , 0 . 40) 

C−{ a 1 ,a 2 ,a 5 } (D ) = Cost (0 . 75 , 0 . 40) 
C−{ a 1 ,a 3 ,a 5 } (D ) = 

ost (0 . 75 , 0 . 40) 
C−{ a 1 ,a 4 ,a 5 } (D ) = Cost (0 . 75 , 0 . 40) 

C−{ a 1 ,a 2 ,a 3 ,a 5 } (D ) = Cost (0 . 75 , 0 . 40) 
C−{ a 1 ,a 2 ,a 4 ,a 5 } (D ) = 

ost (0 . 75 , 0 . 40) 
C−{ a 1 ,a 3 ,a 4 ,a 5 } (D ) = 21 . 

The attribute subset C − { a 2 , a 3 } is one of the minimum cost

educts, we have the following probabilistic positive, boundary

nd negative regions: 

M

P OS (0 . 75 , 0 . 40) 
C 

(D ) = { x 1 , x 2 } , 
BND 

(0 . 75 , 0 . 40) 
C 

(D ) = { x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 , x 11 , x 12 } , 
NEG 

(0 . 75 , 0 . 40) 
C 

(D ) = { x 13 , x 14 , x 15 } . 
Obviously, the objects x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 and x 10 are

hanged from the probabilistic positive region into the probabilis-

ic boundary region after attribute reduction. In an extreme case,

n object within the probabilistic positive region could jump down

o the probabilistic negative region without increasing the overall

ost as long as the object does not change the maximum inclusion

egree of each equivalence class within the original probabilistic

egative region. In fact, the minimum cost reduct makes the object

end towards the action that incurs less cost. 

As for the distribution preservation reduct [28] , we could only

btain the entire set of condition attributes, namely { a 1 , a 2 , a 3 ,

 4 , a 5 }. That is to say, each condition attribute is necessary for

lassification. 

Intuitively, a reduct should be able to preserve the classification

ower. Not only the maximum inclusion degree (or confidence)

ut also the decision should be consistent after attribute reduc-

ion. Moreover, human beings usually take the decision that has

he maximum inclusion degree. Therefore, in a sense, a reduct

hat keeps the maximum inclusion degree and maximum decision

nchanged is enough for classification. Actually, the set of condi-

ion attributes { a 1 , a 2 , a 4 , a 5 } is a reduct that keeps the maximum

nclusion degree as well the maximum decision unchanged. The

lassification power of this reduct is inherently the same as that

f the whole condition attribute set. 

To this end, we propose a novel uncertainty measure to reflect

he information of the maximum inclusion degree and maximum

ecision. A detailed description of the uncertainty measure will be

resented in the next section. 

.2. Monotonic attribute reduction uncertainty measure using the 

aximum decision entropy 

Information entropy is an effective measure of the uncertainty

f random variable. We first present the related concepts of infor-

ation entropy and then introduce a definition of the maximum

ecision entropy for attribute reduction. 

efinition 3. [6] Let S = (U, A = (C ∪ D ) , V, f ) be a decision table,

nd U/B = { X 1 , X 2 , . . . , X | U/B | } be the partition induced by a condi-

ion attribute subset B of C over U , the entropy of B is defined as: 

(B ) = −
| U/B | ∑ 

i =1 

P ( X i ) log P ( X i ) , (10) 

here P ( X i ) = | X i | / | U| . 
efinition 4. [6] Let S = (U, A = (C ∪ D ) , V, f ) be a decision table,

/C = { C 1 , C 2 , . . . , C | U/C| } and U/D = { D 1 , D 2 , . . . , D | U/D | } be the

artitions induced by the condition attribute set C and decision

ttribute set D over U , the conditional entropy of C with respect

o D is defined as: 

(D | C) = −
| U/C| ∑ 

i =1 

P ( C i ) 

| U/D | ∑ 

j=1 

P ( D j | C i ) log P ( D j | C i ) , (11) 

here P ( C i ) = | C i | / | U| and P ( D j | C i ) = | C i ∩ D j | / | C i | . 
efinition 5. [30] Let S = (U, A = (C ∪ D ) , V, f ) be a decision

able, U/C = { C 1 , C 2 , . . . , C | U/C| } and U/D = { D 1 , D 2 , . . . , D | U/D | } be

he partitions induced by the condition attribute set C and

ecision attribute set D over U , for a condition class C i ∈ U / C ,

ts maximum inclusion degree and maximum decision are de-

oted as MP (D | C i ) = max { P (D 1 | C i ) , P (D 2 | C i ) , . . . , P (D | U/D | | C i ) } and

D (D | C i ) = { f (y, D ) | y ∈ D j ∧ P (D j | C i ) = MP (D | C i ) } , respectively. 
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Table 3 

Another decision table. 

a 1 a 2 a 3 a 4 a 5 d 

x 1 0 0 0 0 0 d 1 
x 2 0 0 0 0 1 d 2 
x 3 0 0 0 1 1 d 2 
x 4 0 0 0 1 1 d 2 
x 5 0 0 0 1 1 d 3 
x 6 0 0 1 1 1 d 2 
x 7 0 0 1 1 1 d 2 
x 8 0 0 1 1 1 d 4 
x 9 0 1 1 1 1 d 2 
x 10 0 1 1 1 1 d 3 
x 11 1 1 1 1 1 d 1 
x 12 1 1 1 1 1 d 4 
x 13 1 1 1 1 1 d 4 
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For a condition class, the decision is unique only when all ob-

jects within the condition class take the same decision. However,

in the case of data with noise, a condition class may have more

than one decision, and its maximum decision may also not be

unique. Tie-breaking information, such as prior knowledge and

class distribution, should be added so that each condition class is

assigned only one maximum decision. Formally, the objects within

each condition class can be further divided into two groups,

namely a set of the objects that take the maximum decision and

the remaining objects. Actually, the maximum inclusion degree

and maximum decision could fully reflect the information of the

two groups. 

Definition 6. Let S = (U, A = (C ∪ D ) , V, f ) be a decision ta-

ble, U/C = { C 1 , C 2 , . . . , C | U/C| } and U/D = { D 1 , D 2 , . . . , D | U/D | } be

the partitions induced by the condition attribute set C and

decision attribute set D over U , the probabilistic distribution

of maximum inclusion degree of C with respect to D is de-

noted as MS(D | C) = ((MP (D | C 1 ) , 1 − MP (D | C 1 )) , (MP (D | C 2 ) , 1 −
MP (D | C 2 )) , . . . , (MP (D | C | U/C| ) , 1 − MP (D | C | U/C| ))) . 

Definition 7. Let S = (U, A = (C ∪ D ) , V, f ) be a decision ta-

ble, MS(D | B ) = ((MP (D | B 1 ) , 1 − M P (D | B 1 )) , (M P (D | B 2 ) , 1 −
MP (D | B 2 )) , . . . , (MP (D | B | U/B | ) , 1 − MP (D | B | U/B | ))) be the proba-

bilistic distribution of maximum inclusion degree of a condition

attribute subset B of C , the maximum decision entropy of a con-

dition class B i ∈ U / B and overall maximum decision entropy of B

with respect to D are denoted as: 

MH(D | B i ) = −P (B i ) 
(

MP (D | B i ) log MP (D | B i ) 

+(m − 1) 
(

1 − MP (D | B i ) 
m − 1 

)
log 

(
1 − MP (D | B i ) 

m − 1 

))
, (12)

MH(D | B ) = 

| U/B | ∑ 

i =1 

MH(D | B i ) , (13)

where m is the number of classes, i.e., m = | U/D | . 
In the definition, the maximum decision entropy degenerates

into conditional entropy when m = 2 and Shannon entropy when

m = 1 . 

Formally, the maximum decision entropy consists of two kinds

of information, namely the certainty of the objects with the

maximum decision and the uncertainty of the remaining objects.

The former reflects the degree of certainty to make a decision.

The higher the degree of certainty is, the lower the maximum

decision entropy is and the better the decision is made. The

latter embodies the degree of uncertainty to make the maximum

decision. In practice, human beings mainly focus on the degree

of uncertainty itself rather than the exact probability distribution.

Therefore, it is reasonable to represent the overall uncertainty by

averaging all decisions except the maximum one. The maximum

decision entropy is minimized to 0 only when the probability

distribution of all data is degenerated, namely each condition class

takes only one decision, and reaches the maxima only when the

probability distribution of all data is uniform (see Fig. 1 ). 

Similar to the definition of the maximum decision entropy, the

positive, boundary and negative maximum decision entropy could

also be given. 

Definition 8. Let S = (U, A = (C ∪ D ) , V, f ) be a decision ta-

ble, ( α, β) be the parameters induced from the cost func-

tions, and MS(D | B ) = ((MP (D | B 1 ) , 1 − M P (D | B 1 )) , (M P (D | B 2 ) , 1 −
MP (D | B 2 )) , . . . , (MP (D | B | U/B | ) , 1 − MP (D | B | U/B | ))) be the proba-

bilistic distribution of maximum inclusion degree of a condition

attribute subset B of C , the ( α, β) positive, boundary and negative

maximum decision entropy of B with respect to D are denoted as 
MH(P OS αβ (D | B )) = 

∑ 

( B i ∈ U/B ) ∧ (MP(D | B i ) ≥α) 

MH(D | B i ) , 

H(BND 

α
β (D | B )) = 

∑ 

( B i ∈ U/B ) ∧ (β<MP(D | B i ) <α) 

MH(D | B i ) , 

MH(NEG 

α
β (D | B )) = 

∑ 

( B i ∈ U/B ) ∧ (MP(D | B i ) ≤β) 

MH(D | B i ) . (14)

The definition of the non-negative maximum decision entropy

ould be defined similarly as MH(¬ NEG 

α
β
(D | B )) , which consists

f the maximum decision entropy of the condition classes whose

aximum inclusion degree is greater than β . 

roposition 1. Let S = (U, A = (C ∪ D ) , V, f ) be a decision table, ( α,

) be the parameters induced from the cost functions, for any two

ttribute subsets P and Q of C, and P ⊆Q, then 

(1) MH(P OS α
β
(D | P )) ≥ MH(P OS α

β
(D | Q )) , 

(2) MH(BND 

α
β
(D | P )) ≥ MH(BND 

α
β
(D | Q )) , 

(3) MH(NEG 

α
β
(D | P )) ≥ MH(NEG 

α
β
(D | Q )) . 

Without loss of generality, we assume that two condition

lasses C i and C j within P OS α
β
(D | Q ) will be merged when a

ondition attribute a is removed from the condition attribute

et Q and P = (Q − { a } ) . The maximum inclusion degrees and

aximum decisions of the condition classes C i and C j are denoted

s MP ( D | C i ), MP ( D | C j ), MD ( D | C i ) and MD ( D | C j ), respectively. While

he maximum inclusion degree and maximum decision of the

erged condition class C i ∪ C j are denoted as MP ( D |( C i ∪ C j )) and

D ( D |( C i ∪ C j )), respectively. For simplicity, the maximum inclusion

egrees MP ( D | C i ), MP ( D | C j ) and MP ( D |( C i ∪ C j )) are replaced by θ i ,

j and θ ij , respectively. In what follows, we first give an example

o demonstrate all cases of condition class mergence after an

ttribute is removed and then present the proof of Proposition 1 . 

xample 2. Let S = (U, A = (C ∪ D ) , V, f ) be a decision table shown

n Table 3 , where U = { x 1 , x 2 , . . . , x 13 } , C = { a 1 , a 2 , a 3 , a 4 , a 5 } and

 D = { d 1 , d 2 , d 3 , d 4 } . 
With all condition attributes, the universe in Example 2 is

ivided into 6 condition classes U/C = { C 1 , C 2 , C 3 , C 4 , C 5 , C 6 } , where

 1 = { x 1 } , C 2 = { x 2 } , C 3 = { x 3 , x 4 , x 5 } , C 4 = { x 6 , x 7 , x 8 } , C 5 = { x 9 , x 10 }
nd C 6 = { x 11 , x 12 , x 13 } , respectively. The maximum inclusion de-

rees of these condition classes are MP (D | C 1 ) = 1 , MP (D | C 2 ) = 1 ,

P (D | C 3 ) = 0 . 67 , MP (D | C 4 ) = 0 . 67 , MP (D | C 5 ) = 0 . 50 and

P (D | C 6 ) = 0 . 67 , respectively. While their maximum decisions are

D (D | C 1 ) = d 1 , MD (D | C 2 ) = d 2 , MD (D | C 3 ) = d 2 , MD (D | C 4 ) = d 2 ,

D (D | C 5 ) = d 2 and MD (D | C 6 ) = d 4 , respectively. When an at-

ribute is removed from the whole condition attribute set, at

east two condition classes in Example 2 will be merged. Table 4

abulates different cases of condition class mergence. 
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Fig. 1. Maximum decision entropy with different numbers of classes m (maxima marked by “∗”). 

Table 4 

Different cases of condition class mergence. 

a C i , C j ( θ i , θ j ) θ ij Generalized case 

a 3 C 3 , C 4 (0.67,0.67) 0.67 θi = θ j θi j = θi = θ j I 

a 5 C 1 , C 2 (1,1) 0.50 θ ij < min ( θ i , θ j ) II 

N/A N/A N/A N/A θ ij > max ( θ i , θ j ) III 

a 4 C 2 , C 3 (1,0.67) 0.75 θ i > θ j θ j < θ ij < θ i I 

a 1 C 6 , C 5 (0.67,0.50) 0.40 θ ij < θ j II 

N/A N/A N/A N/A θ ij > θ i III 

a 2 C 5 , C 4 (0.50,0.67) 0.60 θ i < θ j θ i < θ ij < θ j I 

a 1 C 5 , C 6 (0.50,0.67) 0.40 θ ij < θ i II 

N/A N/A N/A N/A θ ij > θ j III 
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In the table, the attribute to be removed is listed in the first

olumn. The condition classes that will be merged are indicated

n the second column and their maximum inclusion degrees are

iven in the third column. The fourth column shows the maximum

nclusion degree of the merged condition class. In addition, we

lso present the generalized cases for condition class mergence in

he last column. In the table, the symbol “N/A” denotes that this

ituation could not happen in the real world application. 

By observing Table 4 , we could derive three generalized cases:

I) min { θ i , θ j } ≤ θ ij ≤ max { θ i , θ j }; (II) θ ij < min { θ i , θ j }; and (III)

ij > max { θ i , θ j }. The proof for the three cases is presented in the

ppendix . 

Additionally, by enumerating all possible values of the variables

i and θ j , the maximum decision entropy after condition class

ergence is shown in Fig. 2 . 

In Fig. 2 , the left subfigure indicates the maximum deci-

ion entropy of the merged condition class C i ∪ C j (top sur-

ace) and the cumulative maximum decision entropy of the

ondition classes C i and C j (bottom surface). While the right

ubfigure presents the difference of the maximum decision

ntropy before and after condition class mergence, namely

M H = M H(D | (C i ∪ C j )) − (MH(D | C i ) + MH(D | C j )) . It is obvious

hat the maximum decision entropy becomes smaller when the

alues of the variables θ i and θ j are raised. Moreover, the value of

MH becomes larger when the difference between the variables

i and θ j is increased. The maximum decision entropy after
ondition class mergence may not change only when the values of

he variables θ i and θ j are the same. 

Proposition 1 shows that the uncertainty measures of the ( α,

) positive, boundary and negative maximum decision entropy are

onotonic when adding or deleting a condition attribute. 

efinition 9. Let S = (U, A = (C ∪ D ) , V, f ) be a decision table

nd ( α, β) be the parameters induced from the cost functions, a

ondition attribute a ∈ C is indispensable with respect to the ( α, β)

ositive, boundary and negative regions if the following conditions

old, respectively: 

(1) MH(P OS α
β
(D | (C − { a } ))) > MH(P OS α

β
(D | C)) 

(2) MH(BND 

α
β
(D | (C − { a } ))) > MH(BND 

α
β
(D | C)) 

(3) MH(NEG 

α
β
(D | (C − { a } ))) > MH(NEG 

α
β
(D | C)) 

The indispensable attribute is also called the core attribute.

onversely, a condition attribute is dispensable if the overall

aximum decision entropy does not change after the attribute is

emoved. 

efinition 10. Let S = (U, A = (C ∪ D ) , V, f ) be a decision table, ( α,

) be the parameters induced from the cost functions and P ⊆C ,

or any condition attribute a ∈ (C − P ) , its relative significance for

he ( α, β) positive, boundary and negative regions with respect to

 are defined as follows, respectively: 

(1) SIG (a, P, P OS α
β
(D | P )) = MH(P OS α

β
(D | P )) − MH(P OS α

β
(D | (P ∪ 

{ a } ))) 
(2) SIG (a, P, BND 

α
β
(D | P )) = MH(BND 

α
β
(D | P )) − MH(BND 

α
β
(D | (P ∪ 

{ a } ))) 
(3) SIG (a, P, NEG 

α
β
(D | P )) = MH(NEG 

α
β
(D | P )) − MH(NEG 

α
β
(D | (P ∪ 

{ a } ))) 
efinition 11. Let S = (U, A = (C ∪ D ) , V, f ) be a decision table

nd ( α, β) be the parameters induced from the cost functions,

or a condition attribute subset P of C, P is a reduct of the ( α,

) positive, boundary and negative maximum decision entropy

reservation iff: 

(1) MH(P OS α
β
(D | P )) = MH(P OS α

β
(D | C)) 

and ∀ a ∈ P, MH(P OS α
β
(D | (P − { a } ))) > MH(P OS α

β
(D | C)) 
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Fig. 2. Maximum decision entropy after mergence (equal values marked with red).(For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: Maximum decision entropy-based heuristic algo- 

rithm for attribute reduction. 

Input: 

A decision table S = (U, A = (C ∪ D ) , V, f ) ; 

Output: 

An optimal reduct P ; 

1: Partition the universe into a set of condition classes U/C; 

2: Compute the maximum inclusion degree for each condi- 

tion class within U/C and overall maximum decision entropy 

MH(D | C) ; 

3: Find the core attributes Core and put them into the reduct P = 

Core ; 

4: while MH(D | P ) � = MH(D | C) do 

5: For any condition attribute a i within candidate attribute set 

C − P , calculate the relevance of the attribute set P ∪ { a i } to 

D and the redundancy of the attribute a i to P ; 

6: Select an attribute a opt with maximum relevance and mini- 

mum redundancy; 

7: P = P ∪ { a opt } 
8: end while 

9: Remove the superfluous attributes from P ; 

10: return the reduct P . 

b  

l  

a  

v  

w  

b  

m  

r  

d  

t

 

c  

c  

s  

t  

a  

a  
(2) MH(BND 

α
β
(D | P )) = MH(BND 

α
β
(D | C)) 

and ∀ a ∈ P, MH(BND 

α
β
(D | (P − { a } ))) > MH(BND 

α
β
(D | C)) 

(3) MH(NEG 

α
β
(D | P )) = MH(NEG 

α
β
(D | C)) 

and ∀ a ∈ P, MH(NEG 

α
β
(D | (P − { a } ))) > MH(NEG 

α
β
(D | C)) 

Similarly, the ( α, β) non-negative preservation reduct could be

defined by using the non-negative maximum decision entropy. 

3.3. Heuristic algorithm using the maximum decision entropy 

It is well known that finding a minimal reduct of a decision

table is NP-hard. The heuristic algorithm for an optimal reduct

is an alternative way to achieve this goal. Roughly speaking, the

strategies for attribute reduction could be classified into adding,

deleting and add-deleting manners. In this paper, we use the

strategy of adding-deleting with the objective of maximizing the

relevance of the reduct to the class attribute and minimizing the

redundancy of the condition attributes within the reduct [49] . The

process could be depicted by Algorithm 1 . 

In the algorithm, the maximum decision entropy MH ( D | C )

could be replaced by the ( α, β) positive, boundary, negative or

non-negative maximum decision entropy, and the corresponding

reduct is then generated. Algorithm 1 includes three closely inte-

grated stages: (1) Divides all condition attributes into the core and

candidate attribute sets; (2) Recursively adds an optimal attribute

into the reduct until the preset condition is met; and (3) Removes

the redundant attributes from the reduct. At the first stage, from

Step 1 to Step 3, the algorithm first splits the universe into

several condition classes. The maximum decision entropy of each

condition class and overall maximum decision entropy are then

calculated. With the definition of the indispensable attribute (see

Definition 9 ), all core attributes could be separated from the whole

condition attribute set and be treated as an initial attribute set for

the reduct. At the second stage, from Step 4 to Step 8, the algo-

rithm repeatedly chooses an optimal attribute from the candidate

attribute set and puts it into the reduct until the overall maximum

decision entropy of all selected condition attributes is the same as

that of the entire set of condition attributes. The criteria for finding

an optimal attribute a opt are based on two aspects: 1) The attribute

should maximize the information gain of all selected condition

attributes to the decision attribute, namely maximum relevance.

In other words, the value of MH(D | P ) − MH(D | (P ∪ { a opt } )) should
e as large as possible; 2)The attribute should minimize the corre-

ation between the originally selected condition attributes and the

ttribute itself, namely minimum redundancy. That is to say, the

alue of H ({ a opt }| P ) should also be as large as possible. An attribute

ith the highest overall score is preferred by the algorithm. Tie-

reaking information should be added when more than one opti-

al attribute is available. After the loops terminate, an unrefined

educt is generated by the algorithm. At the last stage, a backward

eleting step is performed to further remove the redundant at-

ributes, and an optimal reduct is finally yielded by the algorithm. 

In Algorithm 1 , the time complexity of forming all equivalence

lasses, computing the maximum decision entropy and finding all

ore attributes is at most O (| C | 2 | U |) with the technique of radix

ort. The algorithm takes the time O (| C | 2 | U |) to find an optimal at-

ribute. In the worst case, the set of candidate attributes is empty

fter | C | rounds of selection, thus the time complexity of obtaining

n unrefined reduct is O (| C | 3 | U |). The final stage for removing
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Table 5 

Investigated data sets. 

Data sets Categorical Numeric Objects Classes Missing Consistency 

annealing (anneal) 32 6 798 6 Y (1.0,0.50)-24 

wisconsin breast cancer(breast) 9 0 699 2 Y (1.0,1.0)-0 

credit rating(credit) 9 6 690 2 Y (1.0,0.50)-20 

kr-vs-kp(krvskp) 36 0 3196 2 N (1.0, 1.0)-0 

lung cancer(lung) 56 0 32 3 Y (1.0,1.0)-0 

lymphography(lymph) 15 3 148 4 N (1.0,1.0)-0 

sonar(sonar) 0 60 208 2 N (1.0, 1.0)-0 

table2(table) 5 0 15 3 N (1.0, 0.33)-13 

vehicle silhouettes(vehicle) 0 18 846 4 N (1.0,0.26)-379 

congressional voting(vote) 16 0 435 2 Y (1.0,0.50)-5 
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(  

T  
he redundant attributes takes the time O (| C | 2 | U |). Therefore, the

otal time complexity of Algorithm 1 is O (| C | 3 | U |), and the space

omplexity is O (| C || U |). 

. Empirical analysis 

In the experiments, we consider three attribute reduction

lgorithms, namely the quantitative probabilistic region preser-

ation algorithm (QPRP) presented in [27] , the decision region

istribution preservation algorithm (DRDP) introduced in [28] and

he algorithm proposed in this study (PMDE). The purpose of

he experiments is twofold. One is to verify the validity of our

roposed uncertainty measure, namely the monotonicity of the

aximum decision entropy. The other is to show the performance

f the proposed algorithm compared with the selected algorithms. 

.1. Investigated data sets 

The experimental evaluation is conducted over several data

ets from UCI machine learning repository [50] . Table 5 tabulates

he detailed information of the experimental data sets. 

In the table, the sixth column indicates that whether the

ata set has missing value or not. The last column shows the

onsistency information of the data set, in which the maximum

nd minimum values over all maximum inclusion degrees of the

ondition classes are listed in brackets and the number of the

nconsistent objects within the data set is also presented. Actually,

 data set is consistent only if, in the last column of Table 5 , the

alues in the brackets are all 1.0 and the number followed is 0. 

In the experiments, the missing values (denoted as “?”) within

ome data sets are completed by the mean (or mode) of corre-

ponding attribute [51] . In addition, some data sets contain the

umerical attribute. To increase the uncertainty of the data set,

ll numerical attributes are discretized into the categorical one

sing the principle of equal frequency binning with only two bins

51] . More specifically, all objects are first ranked by their values

n ascending order and then divided into two bins, each of which

as the same number of objects. For simplicity, in what follows,

e use the abbreviation shown in the first column to represent

he data set. 

.2. Experiment design and parameter settings 

For each data set, all objects are used to yield a reduct, and the

onotonicity of the proposed uncertainty measure is analyzed on

hese results. During the procedure of attribute reduction, espe-

ially the data set without the core attribute, there is more than

ne optimal attribute that could be picked up by the algorithm.

he natural attribute order within the data set is employed as tie-

reaking information to select an optimal attribute. For example,

here are three eligible attributes a 5 a 2 and a 3 . The attribute a 2 is

referred to the algorithm because its natural order is minimal. 
To show the performance of the selected algorithms, two differ-

nt classifiers are used as the base classifier, namely Naive Bayes

nd decision rules (PART classifier in Weka [51] ). The performance

valuation is carried out with the technique of 10-fold cross vali-

ation. Specifically, the data set is randomly divided into ten equal

ubsets in which nine subsets of the data set are used as training

ata and one subset is used as testing data. As for the parame-

ers used in the algorithm, they usually depend on the practical

pplication itself. For simplicity, we mainly investigate the positive

egion preservation reduct in our experiments, and the threshold

arameter α is calculated from the data set itself. Specifically, for

ach condition class of the data set, we first compute its maximum

nclusion degree under the entire set of condition attributes and

hen select the minimal one as the threshold parameter, namely

he minimum value in the brackets of Table 5 . As regards the strat-

gy for selecting an optimal attribute, the algorithm first ranks

ll candidate attributes by their relevance to the class attribute

n descending order, and then the attributes with the same value

re sorted again by their redundancy to all selected condition

ttributes in ascending order. Finally, the algorithm picks up the

rst attribute from the sorted queue of all candidate attributes. 

.3. Experimental results and analysis 

.3.1. The monotonicity of the proposed uncertainty measure 

To show the monotonicity of the proposed uncertainty mea-

ure, we analyze the reduct generated by Algorithm 1 in adding

anner. Specifically, an optimal reduct is first yielded by Algorithm

 . Each attribute within the optimal reduct is then one by one

dded into a condition attribute set which is initialized as empty,

nd the maximum decision entropy under the condition attribute

et is recorded. The experimental results are shown in Fig. 3 . 

In Fig. 3 , the x-coordinate denotes the selected condition at-

ributes with ID information in the process of attribute reduction,

nd the y-coordinate indicates the maximum decision entropy

nder a condition attribute set. From all subfigures, it is quite

bvious that the maximum decision entropy is strictly monotonic

ecreasing when adding the condition attributes, which validates

he monotonicity of the proposed uncertainty measure. 

.3.2. The effectiveness of the proposed algorithm for attribute 

eduction 

In the experiments, for each data set, the selected algorithms

rst generate an optimal reduct, based on which a classifier is

hen learned and tested. Table 6 lists the results of attribute

eduction using the selected algorithms. 

In Table 6 , it is apparent that each algorithm achieves the

bjective of attribute reduction by removing some condition

ttributes, but in quite different ways. Compared with other algo-

ithms, the quantitative probabilistic region preservation algorithm

QPRP) obtains a reduct with fewer attributes on most data sets.

he objective of the QPRP algorithm is to keep the number of
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Fig. 3. Analysis of the monotonicity of the proposed uncertainty measure. 
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Table 6 

Cardinality of the optimal reduct generated by the se- 

lected algorithms. 

Data sets Raw data QPRP DRDP PMDE 

anneal 38 1 15 15 

breast 9 4 4 4 

credit 15 1 13 13 

krvskp 36 31 29 29 

lung 56 5 4 5 

lymph 18 7 8 8 

sonar 60 11 10 10 

table 5 1 5 4 

vehicle 18 1 16 15 

vote 16 1 12 12 

avg. 27.1 6.3 11.6 11.5 

Table 7 

Classification accuracy of the selected algorithms using 

Naive Bayes classifier. 

Data sets Raw data QPRP DRDP PMDE 

anneal 0.9065 0.8363 0.9109 0.9154 

breast 0.9728 0.9699 0.9657 0.9657 

credit 0.8348 0.5551 0.8449 0.8449 

krvskp 0.8789 0.8870 0.8827 0.9030 

lung 0.5313 0.6250 0.6563 0.6563 

lymph 0.8581 0.8311 0.8311 0.8513 

sonar 0.7644 0.7308 0.7452 0.7692 

table 0.40 0 0 0.5333 0.40 0 0 0.5333 

vehicle 0.4527 0.2991 0.4929 0.4964 

vote 0.9011 0.6736 0.9310 0.9310 

avg. 0.7501 0.6941 0.7661 0.7867 

t  

u  

s  

s  

a  

s  

d  

a  

i  

a  

p  

b  

t  

m  

w  

t  

i  

e  

c  

p  

o  

b

 

t  

u  

a

 

t  

t  

w  

t  

a  

s

 

s  

Table 8 

Classification accuracy of the selected algorithms using 

PART classifier. 

Data sets Raw data QPRP DRDP PMDE 

anneal 0.9588 0.8363 0.9566 0.9621 

breast 0.9413 0.9371 0.9456 0.9471 

credit 0.8377 0.5551 0.8420 0.8420 

krvskp 0.9906 0.9906 0.9915 0.9912 

lung 0.5625 0.6563 0.5938 0.7813 

lymph 0.7905 0.7838 0.7973 0.7838 

sonar 0.7356 0.7500 0.7500 0.7740 

table 0.4667 0.5333 0.4667 0.4667 

vehicle 0.6513 0.2991 0.6596 0.6652 

vote 0.9540 0.6736 0.9563 0.9563 

avg. 0.7889 0.7015 0.7959 0.8170 
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a  
he positive objects unchanged or even enlarged. However, in the

ncertain situation, the QPRP algorithm always terminates with a

mall set of condition attributes. We could see that, on all incon-

istent data sets, the QPRP algorithm yields a reduct with only one

ttribute. Actually, this small attribute set is not enough for clas-

ification task. In other words, the reduct of the QPRP algorithm

oes not hold the same performance as the entire set of condition

ttributes. This conclusion will be further verified by the follow-

ng experiments. The decision region distribution preservation

lgorithm (DRDP) and probabilistic maximum decision entropy

reservation algorithm (PMDE) generate almost the same results

ut still have little difference. On data set “table”, the reducts of

he DRDP algorithm and our proposed algorithm PMDE are all

ade up of the core attributes, whereas the number of attributes

ithin the reduct of our proposed algorithm PMDE is slightly less

han that of the DRDP algorithm. In other words, the core attribute

n the DRDP algorithm, in a sense, is not a real core attribute or

ven not the relevant attribute. Data set “vehicle” is also a good

ase. These observations show that our proposed algorithm com-

ares favorably with the DRDP algorithm. In short, compared with

ther selected algorithms, our proposed algorithm could yield a

etter result with a reasonable number of condition attributes. 

To fully evaluate the potentials of the proposed algorithm,

wo different base classifiers, namely Naive Bayes and PART, are

tilized in the experiments, and the results are shown in Tables 7

nd 8 , respectively. 

In Tables 7 and 8 we report the classification accuracy of the

wo selected algorithms and our proposed algorithm. Additionally,

he classifier learned from the raw data, namely the performance

ithout the procedure of attribute reduction, is also listed in the

ables for comparison. The highest accuracy among these different

lgorithms is boldfaced, and the average accuracy over all data

ets is also shown in the last row “avg.”. 

By viewing the results, it is quite evident that, on most data

ets, the performance of the QPRP algorithm becomes worse
fter attribute reduction, while the two entropy-based algorithms,

amely the DRDP algorithm and our proposed one, both achieve

etter results. For the QPRP algorithm, its objective of attribute

eduction is to keep or enlarge the number of the positive objects.

ctually, two object sets with the same cardinality do not mean

hat the two sets have the same objects. Therefore, the QPRP

lgorithm could acquire comparable results on the data sets with-

ut any inconsistent object. Nevertheless, on some inconsistent

ata sets, such as “anneal”, “credit”, “vehicle” and “vote”, the

PRP algorithm terminates with only one attribute. As a result,

ts performance is rather poor or even worse than that of the

aw data. Both the DRDP algorithm and our proposed algorithm

ould deal with the inconsistent data. In the process of attribute

eduction, the DRDP algorithm attaches the same importance to

ach inconsistent object, whereas our proposed algorithm classifies

ll inconsistent objects into two groups with different significance,

amely a set of the inconsistent objects with the maximum inclu-

ion degree and a set of the remaining objects. Actually, in the real

orld application, human beings usually take the decision that has

he maximum inclusion degree. Therefore, during the procedure of

ttribute reduction, we should pay more attention to the informa-

ion about the inconsistent objects with the maximum inclusion

egree. Our proposed algorithm employs this idea to design the

euristic information, and its performance, as a result, is much bet-

er than that of the DRDP algorithm. By averaging the performance

ver all data sets, the DRDP algorithm using Naive Bayes and PART

lassifiers obtains an improvement over the raw data by 1.6% and

.7%, respectively, whereas our proposed algorithm achieves an

verall 3.7% and 2.8% improvement, respectively. These experi-

ental results further validate the effectiveness of our proposed

lgorithm for attribute reduction in the context of the DTRS model.

. Conclusions 

The monotonicity is one of the most important properties

or an effective uncertainty measure of attribute reduction. Most

xisting uncertainty measures within the DTRS model, however,

o not have this salient property, and some undesired phenomena,

uch as decision non-monotonicity, confidence fluctuation, region

ransfer and cost bias, may happen in the process of attribute

eduction. In this paper, we develop the concepts of the maximum

nclusion degree and maximum decision for the condition class,

ased on which a novel uncertainty measure called the maximum

ecision entropy is presented. The monotonicity of the proposed

ncertainty measure is not only proved in theory but also verified

hrough the extensive experiments. Furthermore, we design a

aximum decision entropy-based heuristic algorithm to yield

n optimal reduct by using the criteria of maximum relevance

nd minimum redundancy. The experimental results on both

rtificial and UCI data sets demonstrate that the performance of
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our proposed algorithm is better than that of the state-of-the-art

algorithms. Currently, the proposed algorithm could only deal

with the categorical data so that the numerical attribute must be

discretized into the categorical one. In the future, it is desirable

that an algorithm should be able to tackle with the hybrid data

directly [52] . Another interesting research is to introduce our work

to partially labeled data [53] , which could enrich the theory as

well as the application of the DTRS model. 
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Appendix 

Proof of Proposition 1: 

The information gain 	MH in Proposition 1.(1) is discussed as

follows: 

Proof. I.min { θ i , θ j } ≤ θ ij ≤ max { θ i , θ j } 

	MH = MH(P OS αβ (D | P )) − MH(P OS αβ (D | Q )) 

= MH(P OS αβ (D | C i ∪ C j )) − MH(P OS αβ (D | C i )) − MH(P OS αβ (D | C j )) 

= −P 
(
C i ∪ C j 

)(
θi j log θi j + ( m − 1 ) 

(
1 − θi j 

m − 1 

)
log 

(
1 − θi j 

m − 1 

))

+ P ( C i ) 

(
θi log θi + ( m − 1 ) 

(
1 − θi 

m − 1 

)
log 

(
1 − θi 

m − 1 

))

+ P 
(
C j 

)(
θ j log θ j + ( m − 1 ) 

(
1 − θ j 

m − 1 

)
log 

(
1 − θ j 

m − 1 

))
= P ( C i ) θi log θi + P 

(
C j 

)
θ j log θ j − P 

(
C i ∪ C j 

)
θi j log θi j 

+ P ( C i ) ( 1 − θi ) log 

(
1 − θi 

m − 1 

)
+ P 

(
C j 

)(
1 − θ j 

)
log 

(
1 − θ j 

m − 1 

)

−P 
(
C i ∪ C j 

)(
1 − θi j 

)
log 

(
1 − θi j 

m − 1 

)

Let 	M H = 	M H 1 + 	M H 2 , where 

	M H 1 = P ( C i ) θi log θi + P 
(
C j 

)
θ j log θ j − P 

(
C i ∪ C j 

)
θi j log θi j , 

	M H 2 = P ( C i ) ( 1 − θi ) log 

(
1 − θi 

m − 1 

)
+ P 

(
C j 

)(
1 − θ j 

)
log 

(
1 − θ j 

m − 1 

)

−P 
(
C i ∪ C j 

)(
1 − θi j 

)
log 

(
1 − θi j 

m − 1 

)
. 

Actually, in all cases, the certainty of the merged condition class

C i ∪ C j is maximized when the maximum decisions of the condition

classes C i , C j and C i ∪ C j are the same, namely MD (D | (C i ∪ C j )) =
MD (D | C i ) = MD (D | C j ) . Therefore, the information gain (the uncer-

tainty) is minimized when θi j = (| C i | θi + | C j | θ j ) / (| C i | + | C j | ) . 

	M H 1 = 

1 

| U | 
(| C i | θi log θi + 

∣∣C j ∣∣θ j log θ j −
(| C i | θi + 

∣∣C j ∣∣θ j 

)
× log 

( 

| C i | θi + 

∣∣C j ∣∣θ j 

| C i | + 

∣∣C j ∣∣
) ) 

= 

1 

| U | 

( 

| C i | θi 

( 

log θi − log 

( 

| C i | θi + 

∣∣C j ∣∣θ j 

| C i | + 

∣∣C j ∣∣
) ) 
+ 

∣∣C j ∣∣θ j 

( 

log θ j − log 

( 

| C i | θi + 

∣∣C j ∣∣θ j 

| C i | + 

∣∣C j ∣∣
) ) ) 

= 

1 

| U | 

( 

| C i | θi log 

( 

| C i | θi + 

∣∣C j ∣∣θi 

| C i | θi + 

∣∣C j ∣∣θ j 

) 

+ 

∣∣C j ∣∣θ j log 

( 

| C i | θ j + 

∣∣C j ∣∣θ j 

| C i | θi + 

∣∣C j ∣∣θ j 

) ) 

Let | C i | θi = φ and | C j | θ j = ϕ, we have 

MH 1 (φ, ϕ ) = 

1 

| U | 

( 

φ log 

( 

φ + ϕ 

θi 

θ j 

φ + ϕ 

) 

+ ϕ log 

( 

φ
θ j 

θi 
+ ϕ 

φ + ϕ 

) ) 

Let θi / θ j = λ, we have 

MH 1 (φ, ϕ , λ) = 

1 

| U | 
(

φ log 

(
φ + ϕ λ

φ + ϕ 

)
+ ϕ log 

(
φ 1 

λ
+ ϕ 

φ + ϕ 

))
. 

	MH 1 is an explicit function of the variables φ, ϕ and λ. In

act, we are mainly concerned with the interaction between the

arameters θ i and θ j rather than a single parameter. Therefore, we

nly consider the partial derivative of 	MH 1 with respect to the

ariable λ. 

∂ ( 	MH 1 (φ, ϕ , λ) ) 

∂ ( λ) 
= 

log e 

| U | 
(

φϕ 

φ + ϕ 

φ + ϕ λ
− φϕ 

φ + ϕ 

λ( φ + λϕ ) 

)

= 

log e 

| U | 
(

φϕ ( φ + ϕ ) 
( λ − 1 ) 

λ( φ + λϕ ) 

){ 

< 0 , 0 < λ < 1 

= 0 , λ = 1 

> 0 , λ > 1 

The information gain 	MH 1 reaches the minima 0 when λ = 1 ,

amely θi = θ j . Therefore, 	MH 1 ≥ 0 holds for all possible values

f θ i and θ j . 

As for the information gain 	MH 2 , we have 

M H 2 = P ( C i ) ( 1 − θi ) log 

(
1 − θi 

m − 1 

)
+ P 

(
C j 

)(
1 − θ j 

)
log 

(
1 − θ j 

m − 1 

)

−P 
(
C i ∪ C j 

)(
1 − θi j 

)
log 

(
1 − θi j 

m − 1 

)

= 

1 

| U | 
(

| C i | ( 1 − θi ) log 

(
1 − θi 

m − 1 

)
+ 

∣∣C j ∣∣(1 − θ j 

)
log 

(
1 − θ j 

m − 1 

)

−
(| C i | ( 1 − θi ) + 

∣∣C j ∣∣(1 − θ j 

))
log 

( 

| C i | + 

∣∣C j ∣∣ − | C i | θi −
∣∣C j ∣∣θ j (| C i | + 

∣∣C j ∣∣)( m − 1 ) 

) ) 

= 

1 

| U | 

( 

| C i | ( 1 − θi ) log 

( 

| C i | ( 1 − θi ) + 

∣∣C j ∣∣( 1 − θi ) 

| C i | ( 1 − θi ) + 

∣∣C j ∣∣(1 − θ j 

)
) 

+ 

∣∣C j ∣∣(1 − θ j 

)
log 

( 

| C i | 
(
1 − θ j 

)
+ 

∣∣C j ∣∣(1 − θ j 

)
| C i | ( 1 − θi ) + 

∣∣C j ∣∣(1 − θ j 

)
) ) 

. 

Let | C i | (1 − θi ) = φ and | C j | (1 − θ j ) = ϕ, we have 

MH 2 (φ, ϕ ) = 

1 

| U | 

( 

φ log 

( 

φ + ϕ 

1 −θi 

1 −θ j 

φ + ϕ 

) 

+ ϕ log 

( 

φ
1 −θ j 

1 −θi 
+ ϕ 

φ + ϕ 

) ) 

. 

Let (1 − θi ) / (1 − θ j ) = λ, we have 

MH 2 (φ, ϕ , λ) = 

1 

| U | 
(

φ log 

(
φ + ϕ λ

φ + ϕ 

)
+ ϕ log 

(
φ 1 

λ
+ ϕ 

φ + ϕ 

))
. 

We obtain the similar expression as 	MH 1 , thus 	MH 2 ≥ 0 and

M H = 	M H 1 + 	M H 2 ≥ 0 . Additionally, 	MH is minimized to 0

hen θi = θ j = θi j . 

II. θ ij < min { θ i , θ j } 

MH = −P 
(
C i ∪ C j 

)(
θi j log θi j + ( m − 1 ) 

(
1 − θi j 

m − 1 

)
log 

(
1 − θi j 

m − 1 

))

+ P ( C i ) 

(
θi log θi + ( m − 1 ) 

(
1 − θi 

m − 1 

)
log 

(
1 − θi 

m − 1 

))
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+ P 
(
C j 

)(
θ j log θ j + ( m − 1 ) 

(
1 − θ j 

m − 1 

)
log 

(
1 − θ j 

m − 1 

))

= − 1 

| U | 
((| C i | + 

∣∣C j ∣∣)
(

θi j log θi j + 

(
1 − θi j 

)
log 

(
1 − θi j 

m − 1 

))

−| C i | 
(

θi log θi + ( 1 − θi ) log 

(
1 − θi 

m − 1 

))

−
∣∣C j ∣∣

(
θ j log θ j + 

(
1 − θ j 

)
log 

(
1 − θ j 

m − 1 

)))

= − 1 

| U | 
(

| C i | 
((

θi j log θi j + 

(
1 − θi j 

)
log 

(
1 − θi j 

m − 1 

))

−
(

θi log θi + ( 1 − θi ) log 

(
1 − θi 

m − 1 

)))

+ 

∣∣C j ∣∣
((

θi j log θi j + 

(
1 − θi j 

)
log 

(
1 − θi j 

m − 1 

))

−
(

θ j log θ j + 

(
1 − θ j 

)
log 

(
1 − θ j 

m − 1 

))))
. 

The maximum decision entropy MH ( x ) is monotonically de-

reasing within the range [maxima, 1](see Fig. 1 ), while the

onditions θ ij < θ i and θ ij < θ j hold, thus 	MH > 0. 

III. θ ij > max { θ i , θ j } 

This case will not happen. 

In all cases, the information gain is equal or greater than

. Therefore, the maximum decision entropy is monotonically

ncreasing when deleting a condition attribute. 

The proofs of (2) and (3) are similar to that of (1). �
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