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A B S T R A C T

The management of uncertain information in a data set is crucial for clustering models. In this study, we present
a rough possibilistic C-means clustering approach based on multigranulation approximation regions and sha-
dowed sets, which can handle the uncertainties implicated in data and generated by the model parameters
simultaneously. In particular, all patterns are first partitioned into three approximation regions with respect to a
fixed cluster according to their possibilistic membership degrees based on shadowed set theory, which can help
capture the natural topology of the data, especially when dealing with outliers and noisy data. The multi-
granulation approximation regions of each cluster can then be formed under a series of fuzzifier values, where
the uncertainty caused by a specific fuzzifier value can be detected based on variations in the approximation
regions with different levels of granularity. We also introduce a framework for updating prototypes based on
ensemble strategies to attenuate the distortions due to iteration during clustering procedures. Finally, an
adaptive mechanism is developed for dynamically adjusting scale parameters based on the notion of the maximal
compatible regions of clusters. By integrating various granular computing techniques, i.e., rough sets, fuzzy sets,
shadowed sets, and the notion of multigranulation, the uncertainties implicated in data and produced by model
parameters can be adequately addressed, and the possibilistic membership values involved make the method
sufficiently robust to deal with noisy environments. The improved performance of the proposed approach was
demonstrated in experiments based on the comparisons with other available fuzzy and possibilistic clustering
methods.

1. Introduction

Clustering is a data analysis method for finding natural groups im-
plicated in data, which has been successfully applied in fields such as
medical sciences, image segmentation, text mining, and network se-
curity [1]. The main task in clustering involves dividing an unlabeled
data set …x x x{ , , , },N1 2 xj∈ℜM, into C(1< C<N) subgroups

…G G G{ , , , }C1 2 such that high intra-cluster similarities and low inter-
cluster similarities can be obtained. The structural topology of the data
is not available; thus, one of the main challenges that affect clustering
techniques is their capacity to deal with uncertain information in data,
such as overlapping partitions, outliers, noisy data, uncertain data
distributions, and the uncertainties caused by model parameters.

Fuzzy clustering, especially fuzzy C-means (FCM) [2], utilizes a
partition matrix =U μ{ }ij to evaluate the relative degree of each pattern

belonging to each cluster, so the overlapping partitions can be effec-
tively described. The main drawback of FCM is the sensitivities to noisy
patterns that may contaminate the calculations of the corresponding
prototypes and membership degrees. However, it is indeed true that the
techniques used in engineering and scientific application scenarios need
to be robust, namely have the ability to tolerate noises and outliers [3].

Possibilistic approaches to clustering, especially possibilistic C-
means (PCM) [4], have been proposed to address the problems asso-
ciated with the constraints on membership degrees used in FCM. PCM
uses a possibilistic partition to measure the absolute degree of typicality
for each pattern in each cluster. The patterns far from the prototypes
belong to clusters with very small possibilistic memberships, so PCM is
more robust than FCM when handling data in noisy environments. The
objective function of PCM can be considered as a collection of C-in-
dependent sub-objective functions. If the initializations of the iteration
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implementations are not adequate, the performance of PCM tends to-
ward coincidental clusters [5]. To overcome this problem, Pal et al. [6]
proposed a possibilistic-fuzzy C-means model (PFCM) that integrates
both the typicality values and fuzzy membership degrees in clustering
processes. Zhang et al. [7] presented an improved PCM algorithm that
also involves both possibilistic and fuzzy memberships. Xenaki et al.
[8,9] introduced sparse PCM to deal with closely located clusters. Yu
et al. [10] proposed cutset-type possibilistic clustering (CPCM) where a
cluster core can be generated from a β-cutset for each cluster. By in-
tegrating the advantages of rough set theory [11] and the notion of
typicality, Maji et al. [12] developed rough-fuzzy PCM where whole
patterns are divided into three approximation regions with respect to a
fixed cluster, and the calculations of the prototypes are only related to
the core and boundary regions of clusters instead of all data. Some new
parameters are employed in these methods and the performance of the
corresponding models is directly influenced by these new parameters.
However, the uncertainty caused by the model parameters was rarely
discussed in previous studies.

There are two important types of parameters in PCM, i.e., the scale
parameters {γi} and the fuzzifier value m. Krishnapuram and Keller [5]
explained the significance of these two parameters in detail. In most
previous studies, the scale parameters {γi} were considered equal for all
clusters and they were kept unchanged when updating the typicality
values during iterations. Using this method, the ability of PCM will
drastically decrease when dealing with closely located clusters that
have significantly different variances or different sizes. Xenaki et al.
[13] presented a novel adaptive possibilistic clustering algorithm where
the scale parameters {γi} are adapted as the algorithm evolves and
expressed in terms of the mean absolute deviation from the mean for
the patterns that are most compatible with the clusters. It was de-
monstrated that the adaptive adjustment of the scale parameters is
more suitable for determining cluster structures with different sizes and
densities during the execution of the algorithm.

The value of the fuzzifier m has a major impact on the prototype and
partition matrix calculations in FCM and in PCM. A predefined value of
m is often used in possibilistic clustering methods [14,15]. However, it
is difficult to express the uncertain notion of fuzziness in a given data
set using only one fuzzifier value. Thus, to manage the uncertainty
generated by the fuzzifier m, Hwang and Rhee [16] proposed interval
type-2 FCM, which extends a pattern set to interval type-2 fuzzy sets
using a pair of fuzzifier values, m1 and m2, which creates a footprint of
uncertainty caused by the fuzzifier parameter. Rubio et al. [17] ex-
tended PCM algorithms by using type-2 fuzzy logic techniques. How-
ever, the values of m1 and m2 depend mainly on subjective selection or
enumeration in previously proposed methods [18,19] and the results
obtained require further interpretation.

Granular computing is an emerging computing paradigm for in-
formation processing, which aims to solve computational intelligence
problems by simulating human cognitive behaviors [20–22]. In parti-
cular, the notion of multigranulation [23–28] in granular computing is
often employed for solving human-centric problems. Truong et al. [29]
described a PCM algorithm based on granular computing. Li et al. [30]
presented a hierarchical cluster ensemble model based on knowledge
granulation, which can handle cluster ensemble problems by applying
ensemble learning for knowledge granulation. Fujita et al. [31] in-
troduced the first method to systematically integrate state of the art
solutions of granular computing into different phases of resilience
analysis for critical infrastructures, where they proposed a challenging
real domain to contextualize some recent granular computing results.
Jing et al. [32] developed an incremental feature selection method with
a multi-granulation view to process large-scale data sets, where the
knowledge granularity can be formed based on sub-decision systems
from the perspective of multigranulation. Xu et al. [33] proposed two
types of generalized multigranulation double-quantitative decision-
theoretic rough sets, which provide the theoretical foundation for
making decisions and extending generalized multigranulation rough set

models. The multigranulation method can interpret the results obtained
from the perspective of multiple levels of granularity, thereby providing
new insights by analyzing the uncertainty generated by the fuzzifier
parameter.

In this study, we focus mainly on rough set-based possibilistic
clustering approaches. In particular, we consider how to address the
uncertainties implicated in data and generated by model parameters,
including the threshold for partitioning approximation regions, the
fuzzifier m, and scale parameters, with the current techniques of
granular computing. The main objectives of this study are: 1) to opti-
mize the partition threshold for each cluster based on shadowed sets
[34] according to possibilistic membership degrees, which are used as
the basis for establishing the multi-levels of granularity for approx-
imation regions and to make the proposed approach sufficiently robust
to deal with noisy environments; 2) to capture the uncertainty gener-
ated by the fuzzifier m in possibilistic clustering methods by detecting
the variations in multigranulation approximation regions formed with
multiple values of the fuzzifier parameter using a partially ordered
relation, rather than at a single level of granularity for a specific fuz-
zifier value; and 3) to automatically adjust the scale parameters {γi}
according to the maximal compatible regions of clusters obtained based
on shadowed sets, which can reflect the zone of influence for each
cluster well. After rationally resolving the model parameters in the
rough set-based possibilistic clustering method, the prototypes can be
obtained using ensemble strategies by combining the candidate results
produced at the different levels of the granularity. In this manner, the
prototypes calculated at a single level can be modified and they tend
toward their natural positions.

The main contributions of this study are as follows. 1) The ad-
vantages of several granular computing techniques are integrated, in-
cluding fuzzy sets, rough sets, and shadowed sets, so the uncertain in-
formation in the data, such as overlapping partitions, the vagueness
arising in boundary regions, and the uncertainties produced by model
parameters, can be handled adequately. 2) The proposed method is
sufficiently robust to deal with noisy environments due to the typicality
values associated with possibilistic clustering techniques. Our experi-
mental results obtained using synthetic and real-world data demon-
strated the superior performance of the proposed approach based on the
comparisons with other available fuzzy and possibilistic clustering
methods.

The remainder of this paper is organized as follows. In Section 2, we
provide brief descriptions of FCM and PCM, as well as reviewing some
rough set-based partitive clustering methods. In Section 3, we establish
a generalized framework for the shadowed set-based rough possibilistic
clustering approach. In Section 4, we discuss the uncertainty generated
by the fuzzifier m in detail. Furthermore, multigranulation approx-
imation regions are formed, which are used as the basis for introducing
and analyzing a novel rough PCM method. The results of comparative
experiments are presented in Section 5. We give our conclusions in
Section 6.

2. Preliminaries

In this section, we review some partitive clustering algorithms, in-
cluding FCM [2], PCM [4,5], and rough-fuzzy C-means (RFCM)
[12,35,36]. More detailed information about rough sets can be found in
previous studies [11,37,38].

2.1. FCM

Suppose that N patterns …x x x{ , , , },N1 2 defined over an M-dimen-
sional feature space, i.e., ∈ = …j Nx ( 1, 2, , ),j

MR are grouped into C
clusters …G G G, , , C1 2 . The corresponding prototypes for each cluster are
denoted as …v v v, , , ,C1 2 ∈ = …i Cv ( 1, 2, , )i

MR . In the FCM method, the
following objective function is minimized.
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Fig. 1. Dataset D12 and prototypes obtained by FCM.

Fig. 2. Approximation partitions for D12 based on shadowed sets according to
fuzzy memberships.

Fig. 3. Possibilistic membership degrees under different fuzzifier values.

Fig. 4. The approximation region distributions between different fuzzifier va-
lues with respect to a fixed cluster according to possibilistic membership de-
grees.

Fig. 5. The variation of approximation regions for a fixed cluster based on
different possibilistic fuzzifier values. (a) The approximation region partitions
for a fixed cluster under fuzzifier mp1. (b) The approximation region partitions
for a fixed cluster under fuzzifier mp1 and mp2 according to the same partition
threshold obtained under mp1.

Fig. 6. The construction of multigranulation approximation regions of cluster
Gi.
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μij is a fuzzy membership value that measures the degree to which
pattern xj belongs to the cluster Gi. mf(mf>1) denotes the fuzzifier in
FCM, which controls the shape of membership degrees, i.e., when the
value is close to 1, this implies the Boolean nature of one cluster. In
addition, it will yield spike-like membership functions when the value
increases. dij denotes the distance between the pattern xj and the cluster
with the prototype vi. In this study, we employ the weighted Euclidean
distance in Eq. (4) to eliminate the influence of significantly different
ranges of individual features. δk is the deviation of the kth feature.
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The approximate optimization of JFCM using the FCM method is
based on iteration and it satisfies the following necessary conditions:
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If =d 0,ij assign =u 1ij and =u 0kj for ∀k≠ i. FCM is a very useful
clustering approach, but it is sensitive to noisy environments. The noise
or outliers may have higher membership degrees because relative dis-
tances are involved in constraint (3).

2.2. PCM

To overcome the limitations of FCM, Krishnapuram and Keller [4]

Fig. 7. The prototype calculations based on multigranulation approximation
regions for cluster Gi .

Fig. 8. The diagram of computing prototypes with two fuzzifier values.

Fig. 9. The obtained prototypes as increasing the fuzzifier value (a) PCM; (b) MSPCM, fixing =m 2p2 .
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relaxed constraint (3) in FCM, and proposed a PCM model. The objec-
tive function of PCM that needs to be minimized is described as follows:

∑ ∑ ∑ ∑= + −
= = = =

J U V u d γ u( , ) (1 ) ;PCM
i

C

j

N

ij
m

ij
i

C

i
j

N

ij
m

1 1

2

1 1

p p

(7)

∑∈ < <

= …

=
s t u for all i j and u N for all i

C

. . [0, 1] , , 0

1, 2, , ;

ij
j

N

ij
1

(8)

> = …u for all j Nmax( ) 0 1, 2, , ,
i

ij (9)

where dij has the same meaning as that in FCM, uij is the possibilistic
membership value that measures the typicality for pattern xj in cluster
Gi, mp(mp>1) is the fuzzifier in PCM, and γi is a scale parameter re-
presenting the zone of influence or the size of the −i th cluster. The
approximate optimization of JPCM using the PCM method is also based

Fig. 10. The partitions of approximation regions obtained by MSPCM. (a) under =m 1.2p1 ; (b) under =m 2p2 ; (c) The variations of approximation regions with
respect to the Cluster 1; (d) The variations of approximation regions with respect to the Cluster 2. The pink squares denote the obtained prototypes.

Fig. 11. Synthetic dataset I.
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Fig. 12. Synthetic dataset I and clustering results. The black circles and pink squares mean the ground centroids of clusters and obtained prototypes, respectively. The
patterns with color red and blue denote that patterns are classified into Clusters 1 and 2, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

J. Zhou et al. Knowledge-Based Systems 160 (2018) 144–166

149



on iteration strategies and it satisfies the following necessary condi-
tions:
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The scale parameters = …γ i C{ }( 1, 2, , )i are suggested by the following
computation:
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The value of κ is a constant and it is kept as one.
= … = …μ i C j N{ }( 1, 2, , , 1, 2, , )ij are the terminal results obtained by

FCM. Relative distances are involved in the computation of the fuzzy
membership degrees in FCM, whereas the calculation of the possibilistic
membership degree or typicality for a pattern in a cluster is only as-
sociated with the absolute distance dij in PCM. Thus, a pattern with a
greater distance to a cluster will have a lower typicality with respect to
this cluster. By contrast, a pattern with a closer distance to a cluster will
have a higher typicality with respect to this cluster. In this manner, the

noise or outliers will be assigned very lower typicality values, so they
will make almost no contribution to the updating of prototypes during
the iteration procedures.

Fig. 12. (continued)

Fig. 13. The partitions of approximation regions generated by MSPCM, where
“core1/1.2” and “boundary1/1.2” mean the borderline of core region and
boundary region of Cluster 1 obtained under fuzzifier value 1.2, respectively.
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2.3. RFCM

In FCM and PCM, the prototype calculations are related to all pat-
terns. Intuitively, the patterns around a prototype are more important
for updating this prototype and the patterns far away from this proto-
type will make no contribution or even the opposite contribution to the
evolution of the prototype. Lingras et al. [39] extended the concept of
rough sets to develop a clustering algorithm called rough C-means
(RCM) where all the patterns can be divided into three approximation
regions with respect to a fixed cluster, i.e., core, boundary, and exclu-
sion regions. The new prototype calculations are only related to the
core and boundary regions, and not all patterns, as found in FCM or
PCM. Thus, the useless information can be filtered out and the number
of numeric computations can be reduced. By incorporating the fuzzy
membership degrees, Mitra et al. [35] proposed the notion of RFCM,
where the absolute distances {dij} are replaced by fuzzy membership
degrees {μij} when dividing patterns into approximation regions. This
adjustment enhances the robustness of the clustering method when
dealing with overlapping situations.

In rough set-based clustering methods, the patterns in the core re-
gion will certainly belong to this cluster. The patterns in the boundary
region may possibly belong to this cluster, i.e., with vagueness and
uncertainty. Other patterns in the exclusion region will definitely not
belong to this cluster. The contribution of each approximation region to

the iterative updating of the prototype is greater diversity.
According to the notion of RFCM, the prototypes …v v v, , , ,C1 2

vi∈ℜM, are renewed based on the following principles:
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the contributions from the fuzzy core region and fuzzy boundary re-
gion, respectively. = −R G R G R Gb

m
i

m
i

m
i

( ) ( ) ( )f f f denotes the boundary
region of cluster Gi with respect to the feature set R according to the
fuzzy membership degrees. R Gm

i
( )f and R Gm

i
( )f are the lower and upper

approximations of cluster Gi under the fuzzifier value mf, respectively.
The lower approximation R Gm

i
( )f is also considered as the core region of

cluster Gi. wl(0.5<wl≤ 1) and = −w w1b l are the weighted values
that measure the contributions of the core region and boundary region,
respectively. {μij} are calculated in the same manner as those in FCM.

Fig. 14. The possibilistic membership degrees under different fuzzifier values
for synthetic data set I .

Fig. 15. ACC index for synthetic dataset I. (a) ACC index with respect to different values of mp1 and mp2; (b) The local profile of ACC index.

Fig. 16. Synthetic dataset II.
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To determine the core and boundary regions of each cluster, the fol-
lowing principles are utilized.

If − ≤μ μ Δ,pj qj then ∈ R Gxj
m

p
( )f and ∈ R Gxj

m
q

( )f . In this case, xj
cannot be partitioned into the core region of any clusters; otherwise,

∈ R Gxj
m

p
( )f . μpj is the maximum of xj over all clusters and μqj is next to

the maximum.
The threshold Δ is crucial for determining the approximation re-

gions of each cluster. More objects will be divided into the core regions
when the threshold is smaller. By contrast, more objects will belong to
the boundary regions when the threshold is larger. An unreasonable
threshold will yield inaccurate approximation regions and then guide
the prototype updating process incorrectly.

3. General framework for rough PCM based on shadowed sets

In this section, we introduce a framework for rough PCM clustering
based on shadowed sets, where the advantages of rough set-based
clustering methods and PCM are integrated. More detailed descriptions
of shadowed sets can be found in previous studies [40–42].

3.1. Limitations of shadowed set-based rough-fuzzy clustering approaches

In rough set-based clustering approaches, i.e., RCM and RFCM, the
threshold Δ that determines the approximation regions directly affects
the prototype updating process. This value is often selected by sub-
jective tuning and kept as a constant for all clusters during all iterations,
which fails to determine the data structures well, especially for clusters
with different sizes and densities. Zhou and Pedrycz [43] integrated
shadowed set theory and rough set-based clustering approaches to de-
velop an improved rough-fuzzy C-means method called SRFCM where
the determination of the approximation regions for each cluster is
transformed into an optimization process so they can be detected au-
tomatically during the clustering processes. The principles for de-
termining the approximation regions of each cluster based on shadowed
sets in SRFCM are described as follows.

Step 1: Compute the fuzzy membership values {μij} with Eq. (5).
Step 2: Based on the shadowed sets, compute the optimal threshold

αi
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ij
. In Steps 1–3, the approxima-

tion region partition threshold of each cluster is not defined in advance
by the user, but instead it can be adjusted automatically in the clus-
tering processes and optimized for each cluster independently.

The shadowed set-based rough fuzzy clustering method performs
better than FCM, RCM, and RFCM [43], but it also has a limitation
when dealing with noisy environments. According to Eq. (15), each
pattern will be divided into the core region or boundary region of at

least one cluster due to constraint (3) in FCM. For the shadowed sets
induced from an available fuzzy set, according to Eqs. (14) and (15), if
the membership degree of a pattern belonging to a cluster is 0.5, this
pattern will inevitably belong to the boundary region of this cluster.
However, outliers and some noisy patterns should not be divided into
any core region and boundary region over all clusters. Thus, they
should belong to the exclusion region over all clusters, which is called
the absolute exclusion region. This concept is illustrated with the data
set used in [6] and shown in Table 1.

The prototypes obtained by FCM are shown in Fig. 1 and the cor-
responding membership degrees are presented in Table 1 (columns 4
and 5). Patterns x11 and x12 have membership degrees of 0.5 with re-
spect to each cluster because both are equidistant from the prototypes,
although the pattern x12 is far away from the prototypes, which can be
attributed to constraint (3) in FCM, i.e., relative distances are involved.
According to (15), the approximation region partition of each cluster is
presented in Table 1 (columns 6 and 7) and shown in Fig. 2. The values
of 1, 0, and −1 in column 6 (column 7) denote belonging to the core,
boundary, and exclusive regions of Cluster 1 (Cluster 2), respectively.
Pattern x12 belongs to the boundary region of each cluster and it con-
tributes to the computation of the prototypes, which results in un-
desired prototypes, as shown in Fig. 2. Intuitively, pattern x12 should be
partitioned into the absolute exclusion region over all clusters. Thus,
this implies that pattern x12 should not be partitioned into the core
regions and boundary regions of any clusters. In addition, it is better to
partition pattern x11 into the boundary region of each cluster to some
extent.

3.2. Generalized framework for rough PCM based on shadowed sets

PCM is more robust than FCM when dealing with noisy environ-
ments. The objective function of PCM can be considered as a collection
of C-independent sub-objective functions. The possibilistic membership
degrees (typicality values) of patterns with respect to a fixed cluster can
be considered as an independent solution. Thus, according to the sha-
dowed set optimization mechanism, the possibilistic membership de-
grees of all patterns obtained for a fixed cluster can be divided into
three levels, i.e., sufficiently high, sufficiently low, and the shadows,
based on which three approximation regions can be formed with re-
spect to this cluster. By integrating the notions of shadowed sets and
PCM, we present a generalized framework for rough PCM based on
shadowed sets in Algorithm 1.

In contrast to the SRFCM algorithm reviewed in Section 3.1, the
possibilistic membership degrees {uij} are utilized instead of the fuzzy
membership degrees {μij} in Algorithm 1. The generalized framework of
rough PCM based on shadowed sets integrates the advantages of PCM,
rough sets, and shadowed sets. The typicality values make the algo-
rithm sufficiently robust to deal with noisy environments, the approx-
imation regions deduced by rough set theory allow the algorithm to
capture the topologies of the data, and the shadowed sets provide an
optimal separate threshold for dividing approximation regions based on
global observations of the data.

Pedrycz’s optimization model with formula (16) is a specific method
used for determining the partition threshold based on the mechanism of
uncertainty invariance, i.e., uncertainty relocation. Other optimization
principles can be specified in different ways within the framework of
three-way decision theory [44,45], such as the principle of minimum
distance and the principle of least cost [42,46]. The principle selected
should consider the characteristics of practical applications, which can
be analyzed based on the three-way decisions method. The selection of
different optimization principles for constructing shadowed sets is not
the major focus of this study, but instead we employ Pedrycz’s opti-
mization strategy for designing a symmetrical partition threshold.
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Fig. 17. Synthetic dataset II and clustering results. The black circles denote the means of Gaussian distributions. The pink squares denote the obtained prototypes.
The patterns with color green, blue and red denote that patterns are classified to Clusters 1–3, respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

J. Zhou et al. Knowledge-Based Systems 160 (2018) 144–166

153



Two issues need to be addressed in Algorithm 1 before its execution:
selecting the fuzzifier value mp and determining the scale parameters
{γi}. We discuss the potential problems caused by these issues and their
solutions in the following section.

4. Rough possibilistic clustering approach based on
multigranulation approximation regions and shadowed sets

4.1. Uncertainty generated by the fuzzifier mp

The fuzzifier mp determines the rate of decay for the possibilistic
membership values. The relationships between memberships and the
normalized squared distance (dij2/γi) are shown in Fig. 3. As the value
of mp increases, the possibilistic memberships will tend toward 0.5. In
this case, irrespective of the distance between a pattern and a cluster,
the membership values over all clusters tend to be the same because no
restrictions need to be satisfied, such as constraint (3) in FCM.

As shown by Hwang and Rhee in [16], type-1 fuzzy sets cannot
adequately manage the uncertainty generated by a single fuzzifier
value, and thus type-2 fuzzy sets are employed to capture the un-
certainty caused by a specific fuzzifier value in FCM. Similarly, two
different fuzzifier values m p1 and m p2 ( < <m m1 ,p p1 2 is assumed in the
rest of this study) form a footprint of uncertainty for possibilistic
memberships from the vertical direction in Fig. 3, i.e., the variations in
memberships associated with the same normalized squared distance.
The description of the uncertainty generated by the fuzzifier values can

also be drawn from the horizontal direction in Fig. 3, i.e., the variations
in the normalized squared distances of patterns under a fixed possibi-
listic membership value. An important proposition can be made as
follows.

Proposition 1. Set =x ,
d

γ
ij

i

2
=

+ −
f x m( , )PCM

x

1

1 m
1

1
. If we suppose that

< <m m1 p p1 2 and =f x m f x m( , ) ( , ),PCM p PCM p1 21 2 then we have the
following:

1) If 0< x1, x2< 1, then x2< x1;
2) If x1, x2> 1, then x1< x2.

The detailed proofs can be found in Appendix.

Proposition I reflects the influence generated by different fuzzifier
values with respect to the normalized squared distances of patterns. It
can be found that patterns with the same possibilistic membership
degree with respect to a cluster may be different distances from this
cluster due to the different fuzzifier values.

Suppose a data set with two clusters G1 and G2, if we take G1 as an
example, then G2 can be explained in a similar manner. When giving a
specific fuzzifier value =m mp p1 (such as =m 1.2p1 ), the optimal
threshold α m

1
( )p1 for cluster G1 under m p1 can be obtained by formula

(16) based on the scheme of shadowed sets according to the possibilistic
membership degrees, such as =α αm

1
( )p1 . The boundary region of cluster

G1 comprises the patterns with membership degrees between α m
1

( )p1 and
− α1 m

1
( )p1 according to formula (17). In this case, their normalized

Fig. 17. (continued)
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Fig. 18. The partitions of approximation regions obtained by MSPCM, where “core1/1.2” and “boundary1/1.2” mean the borderline of core region and boundary
region of Cluster 1 obtained under fuzzifier value 1.2, respectively. (a) The partitions of approximation regions of Cluster 1; (b) The partitions of approximation
regions of Cluster 2; (c) The partitions of approximation regions of Cluster 3; (d) The partitions of approximation regions for three clusters.

Fig. 19. The variations of possibilistic membership degrees under different
fuzzifier values in MSPCM.

Table 1
Synthetic dataset D12.

Data FCM Approximation region

x y μ1j μ2j Cluster 1 Cluster 2

x1 −5.00 0.00 0.93486 0.065136 1 −1
x2 −3.34 1.67 0.96239 0.037611 1 −1
x3 −3.34 0.00 0.98781 0.012191 1 −1
x4 −3.34 −1.67 0.88377 0.11623 1 −1
x5 −1.67 0.00 0.91375 0.086247 1 −1
x6 1.67 0.00 0.086245 0.91375 −1 1
x7 3.34 1.67 0.037612 0.96239 −1 1
x8 3.34 0.00 0.012191 0.98781 −1 1
x9 3.34 −1.67 0.11623 0.88377 −1 1
x10 5.00 0.00 0.065136 0.93486 −1 1
x11 0.00 0.00 0.5 0.5 0 0
x12 0.00 10.00 0.5 0.5 0 0
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squared distances with respect to the prototype of G1 are in the interval
(L1, R1), as illustrated in Fig. 4. The core region and the exclusion region
of cluster G1 comprise the patterns with normalized squared distances
in the intervals [0, L1] and +∞R[ , ),1 respectively. The approximation
region partitions for cluster G1 are represented schematically in
Fig. 5(a).

If the fuzzifier value mp increases from m p1 to m p2 (such as =m 2p2 ),
and the partition threshold for cluster G1 under m p2 equals the value
obtained under m ,p1 i.e., set = =α α α,m m

1
( )

1
( )p p2 1 then the core region

and the exclusion region of cluster G1 change into patterns with nor-
malized squared distances in the intervals [0, L2] and +∞R[ , ),2 re-
spectively. In addition, the boundary region of cluster G1 will cover the
patterns with normalized squared distances in the interval (L2, R2).
According to Proposition I, we have (L1, R1)⊂ (L2, R2), which means
that the core region of G1 under the fuzzifier value m p1 (the green re-
gion in Fig. 5(a)) is contracted relative to the fuzzifier value m p2 using
the same partition threshold (the yellow region in Fig. 5(b)). The var-
iation in the exclusion region has the same tendency to contract.
Moreover, the boundary region of G1 is extended (as shown in Fig. 5,
from the blue region in (a) to the union of the green, blue, and gray
regions in (b)). In this case, some patterns in the core region under m p1
that are definitely partitioned into cluster G1 will be partitioned into the
boundary region of cluster G1 under m ,p2 as shown by the green region
in Fig. 5(b).

On the other hand, if the fuzzifier value is tuned from m p2 to m ,p1 the

core region of G1 will be extended from the patterns with normalized
squared distances in the interval [0, L2] to patterns with normalized
squared distances in the interval [0, L1], and the boundary region will
become narrow. The patterns that change from the core region to the
boundary region ( →m mp p1 2) or that change from the boundary region
to the core region ( →m mp p2 1) with respect to a fixed cluster reflect the
uncertainty generated by a single value of the fuzzifier mp. In this
manner, the uncertainty related to the fuzzifier mp in the possibilistic
clustering processes can be captured quantitatively based on the var-
iations in the approximation regions, which can form an embedded
structure according to Proposition I.

4.2. Construction of multigranulation approximation regions in rough
possibilistic clustering

As shown in Fig. 4, the core region of each cluster is contracted
gradually as the value of the fuzzifier mp increases under the same
partition threshold for this cluster. If we assume that a series of fuzzifier
values satisfy < < < …< < …<m m m m1 ,p p p pk1 2 max then the core re-
gions obtained under the smaller fuzzifier values can be decomposed
further, which is similar to the multigranulation approximation regions
formed based on fuzzy membership degrees in [24], as shown in Fig. 6.

In Fig. 6, there are four important types of patterns that are formed
in the approximation region decomposition processes, which can be
described as follows:

Fig. 20. ACC index for synthetic dataset II. (a) ACC index with respect to different values of mp1 and mp2; (b) The local profile of ACC index.

Fig. 21. ACC index for Iris. (a) ACC index with respect to different values of mp1 and mp2; (b) The local profile of ACC index.
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Fig. 22. ACC index for Wine. (a) ACC index with respect to different values of mp1 and mp2; (b) The local profile of ACC index.

Fig. 23. The partitions of approximation regions obtained by MSPCM for Iris based on the features petal length and petal width. (a) The partitions of approximation
regions of Cluster 1; (b) The partitions of approximation regions of Cluster 2; (c) The partitions of approximation regions of Cluster 3.
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(1) Coreik denotes the core region of cluster Gi under the value of m pk;
(2) Bndik denotes the boundary region of cluster Gi under the value of

m pk;
(3) Bndik denotes the patterns that belong to the core region of cluster

Gi under the value of −m p k( 1) and that also belong to the boundary
region of this cluster under the value of m ,pk such as the green re-
gion in Fig. 5(b);

(4) Excik denotes the patterns that belong to the exclusive region of
cluster Gi under the value of −m p k( 1) and that also belong to the
boundary region of this cluster under m ,pk such as the gray region in
Fig. 5(b).

When the fuzzifier value tends to become larger, a new boundary
region of the cluster is formed with three parts, i.e., Bndik, −Bnd ,i k( 1) and
Excik. The core region −Corei k( 1) at a higher level is also decomposed
into a new one, Coreik, with Bndik at the adjacent level below.

The approximation regions at the higher levels in Fig. 6 can be
considered as coarser partitions, which may involve some noisy data or
overlapping patterns in the core regions. In this case, the prototype
calculations may be distorted at a single level of granularity. By de-
composing the core region of each cluster from a higher level to a lower
level, some uncertain patterns in the core region at the higher level will
be eliminated from the newly formed core region at the lower level.

The construction of multigranulation approximation regions by in-
creasing the fuzzifier value mp can be considered as a coarse to fine
mechanism. In this case, the core region of each cluster is contracted
gradually and it tends toward the natural centroid of each cluster. By
contrast, the construction of multigranulation approximation regions
by decreasing the fuzzifier value can be considered as a fine to coarse
mechanism, i.e., the core region of each cluster will be extended gra-
dually.

4.3. Ensemble strategy for updating prototypes based on multigranulation
approximation regions

According to the multigranulation core regions formed for each
cluster, the corresponding prototypes can be computed independently
at different levels of granularity and the final prototypes can be opti-
mized using these candidate results. The prototype of one cluster
computed at a lower level can be considered as a modification of that
obtained at a higher level. This process is illustrated in Fig. 7, where
vi

m( )pk is the candidate prototype obtained for the −i th cluster Gi

under the fuzzifier value m pk.
In Fig. 7, only some of the patterns in the boundary region at a lower

level (such as =m m pk) are selected for computing the prototype rather
than all patterns in the boundary region at this level because the pat-
terns in −Bndi k( 1) are employed for computing the prototype at the
upper level ( = −m m p k( 1)) and the patterns in Excik make almost no
contribution to this cluster. vi

m( )pk can be considered as the correction

for
⎜ ⎟
⎛
⎝

⎞
⎠

−vi
m p k( 1) because some uncertain patterns may be involved in
−Corei k( 1). A generalized method for calculating the prototypes vi

( = …i C1, 2, , ) with ensemble strategies based on multigranulation
approximation regions in rough-possibilistic clustering processes is
described as follows:

∑=
=

φv v ,i
k

k

k i
m

1

( )pk
max

(19)

where φk∈ [0, 1] ( = …k k1, 2, , max ) are weighted values, ∑ == φ 1,k
k

k1
max

and {φk} measure the importance of the candidate results obtained at
different levels of granularity. If the values of φk are equal for all k, then
the candidate results obtained at each level of granularity make the
same contribution to the updating of the prototype vi.

We have introduced a generalized multigranulation framework for
calculating prototypes, but we focus on a specific case with two fuzzi-
fier values m p1 and m ,p2 such that the uncertainty caused by a single

fuzzifier value can be captured well and the number of iterative com-
putations is not greatly increased. The corresponding diagram for
computing the prototypes is illustrated in Fig. 8.

The process with denoted by ‘✩’ in Fig. 8 is very import for com-
puting prototypes with ensemble strategies because without this pro-
cess, Proposition 1 will not be satisfied and the multigranulation ap-
proximation regions of each cluster cannot be formed.

In particular, given two fuzzifier values m p1 and m p2
( < <m m1 p p1 2), the prototypes under m p1 are computed as follows:
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. A3 and

B3 can be considered as the contributions by the possibilistic core re-
gion and possibilistic boundary region, respectively. uij

m( )p1 denotes the
possibilistic membership degree of pattern xj belonging to the cluster
with prototype vi under the fuzzifier value m p1.

Similarly, the prototypes under m p2 are obtained as follows:
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denotes the possibilistic membership degree of pattern xj belonging to
the cluster with prototype vi under the fuzzifier value m p2.

= − = ∈ ∧ ∈∼R G R G R G R G R Gx x x{ }b
m

i
m

i
m

i j j
m

i j b
m

i
( ) ( ) ( ) ( ) ( )p p p p p2 1 2 1 2 (i.e.,

Bndi2 in Figs. 6 and 7), denotes the patterns that belong to the core
region of Gi under m p1 and that also belong to the boundary region of G2

under m p2 based on the same partition threshold. According to Propo-
sition I, ⊆R G R G ,m

i
m

i
( ) ( )p p2 1 which means that some uncertain patterns

partitioned into the core region of Gi under m p1 can be captured in
∼R Gb

m
i

( )p2 and their importance for the computation of the prototype of
cluster Gi needs to be reduced.

The prototype of each cluster can be combined by the following
principle:

= +φ φv v v ,i i
m

i
m

1
( )

2
( )p p1 2 (22)

where vi
m( )p2 can be considered as the modification of vi

m( )p1 . The con-
tributions of the patterns in the core regions under both m p1 and m p2
will be enhanced (the yellow region in Fig. 5(b)), and the contributions
of the patterns that are removed from the core region under m p1 to the
boundary region under m p2 will be reduced (the green region in
Fig. 5(b)). The weighted values φ1 and φ2 measure the importance of
the candidate results obtained under m p1 and m ,p2 respectively. Clearly,
the functions in the original PCM, PFCM, and RFCM are performed at a
single level, which differs from the proposed clustering method based
on multi-levels of granularity.

4.4. Adaptive adjustment of scale parameters {γi}

The scale parameters {γi} determine the distances at which the
membership degrees become 0.5, i.e., they determine the influence
zone of each cluster. A pattern xj will have more (little) influence on the
prototype calculation for cluster Gi if the distance dij

2 is small (large)
compared with γi. Xenaki et al. [13] observed that the fixed scale
parameters cannot reflect the diversities among all clusters, especially
closely located clusters with significantly different variances, which
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may lead the algorithm to generate coincident clusters. Therefore, the
scale parameters need to be dynamically adapted based on the prop-
erties of clusters during the iteration procedures, including the size and
density of each cluster. The computation of the scale parameter for a
specific cluster only needs to consider the patterns that are relevant to
this cluster, i.e., those that possibly belong to this cluster to the greatest
extent, instead of the whole data set because irrelevant patterns may
distort the computation of this scale parameter.

Based on the shadowed sets, the scale parameters can be obtained as
follows:
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where R Gm
i

( )f and R Gb
m

i
( )f are the core region and boundary region of

cluster Gi, respectively, which are calculated with Eq. (15). The union of
R Gm

i
( )f and R G ,b

m
i

( )f i.e., the upper approximation of cluster Gi, can be
considered as the maximal compatible region of cluster Gi where the
patterns possibly belong to this cluster. As mentioned earlier, the fuzzy
membership degrees are involved in the partitions of the approximation
regions and the calculations of the scale parameters in Eq. (23), but not
the possibilistic membership degrees because more patterns would be
considered relevant to the fixed cluster to the maximum extent. In this
manner, the influence zone of each cluster can be controlled to the
greatest extent according to the structural properties of data.

4.5. Rough PCM based on multigranulation approximation regions and
shadowed sets (MSPCM)

According to the solutions proposed for dealing with the partition
threshold, fuzzifier value, and scale parameters, the MSPCM is sum-
marized in Algorithm 2.

In Algorithm 2, Steps 3–5 correspond to the adaptive adjustment of
the scale parameters. Steps 6–10 implement the ensemble strategy for
updating prototypes where multigranulation approximation regions are
formed based on two fuzzifier values.

If we consider the data set D12 as an example, the prototypes ob-
tained by PCM and the proposed MSPCM algorithm are shown in
Table 2, and their deviations from the ground centroids [−3.34, 0] and
[3.34, 0] are also given. To illustrate the influence of the uncertainties
generated by the fuzzifier values, the fuzzifier mp is increased in steps of
0.1 from 1.1 to 2 for PCM, and the fuzzifier =m 2p2 is fixed as the value
of the fuzzifier m p1 increases by adding 0.1 for MSPCM.

Table 2 shows that the prototypes obtained by PCM tend toward
coincidental clusters as the fuzzifier value increases from 1.1 to 2. The
deviations of the prototypes obtained are also large compared with the
ground centroids. The prototypes obtained by MSPCM are more stable
compared with those produced by PCM. All prototypes obtained by
MSPCM are located close to the ground centroids and the average de-
viation is far lower than that obtained by PCM. The variations in the
prototype locations are shown in Fig. 9.

According to the results obtained by MSPCM shown in Table 2,
given =m 1.2p1 and =m 2,p2 the prototypes obtained are almost equal
to the ground centroids. The approximation region partitions obtained
under fuzzifier values of m p1 and m p2 are shown in Figs. 10(a) and (b),
respectively. According to the same partition threshold obtained under
m ,p1 the data pattern x12 is divided into the absolute exclusion region
for clusters under both m p1 and m p2. This situation is more reasonable
compared with the results in Fig. 2 because the distances between x12
and Cluster 1 or Cluster 2 are further away than those for the other
patterns. Thus, pattern x12 can be considered as an outlier and it makes
no contribution to the renewal of the prototypes according to equations
(20)–(22). For a fixed cluster, the core region under m p2 according to
the same partition threshold optimized under m p1 is contracted toward
the natural centroid of this cluster. Moreover, the corresponding
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boundary region under m p2 is extended compared with that obtained
under m ,p1 as shown in Figs. 10(c) and (d).

Furthermore, the boundary region is extended under larger fuzzifier
values, and more patterns that are partitioned into an exclusion region
under a lower fuzzifier value will be partitioned into the boundary region
under a larger fuzzifier value. However, their contributions will not be
considered when updating the prototypes according to equations (20) and
(21), such as x6, x7, x8, and x9 for Cluster 1. Only the contributions of
patterns in the core region partitioned under m p1 are subdivided into two
parts under m p2. In particular, the contributions of patterns in the core
region under m p1 and in the core region under m p2 will be enhanced, such
as x3 for Cluster 1. The contributions of patterns in the core region under
m p1 and in the boundary region under m p2 will be reduced, such as x1, x2,
x4, and x5 for Cluster 1. The variations in the approximation regions of
Cluster 2 can be explained in a similar manner.

4.6. Time complexity analysis

The proposed algorithm MSPCM clearly has greater complexity than
original PCM because of the computation time required to select the
optimal partition threshold for each cluster. We assume that the
number of clusters is C, the number of patterns is N, the number of
features for each pattern is M, the number of iterations is I, and the
number of candidate partition threshold values is S.

The time complexity for computing the fuzzy partition matrix in
step 3 is O(C2NM) and that for computing the optimal partition
threshold in step 4 is O(SCN). Thus, the time complexity for computing
the scale parameters in step 5 is summarized as +O C NM SCN( )2 . A pair
of fuzzifier values are involved so the asymptotical time complexity for
computing the possibilistic partition matrix in step 6 is O(2CNM). The
time complexity of the computation for selecting partition thresholds
with respect to m p1 in step 7 is O(SCN). The time complexity for par-
titioning the approximation regions in steps 7 and 8 is O(CN), and that
for computing the prototypes in step 9 is O(2CN). Thus, the time

complexity of the proposed method can be summarized as
+ + + + +O I C NM SCN CNM SCN CN CN( ( 2 2 )),2 asymptotically,
+ +O I C NM S M CN( ( ( ) ))2 . In general, N≫ C, so the asymptotical time

complexity of the proposed method approaches +O I S M N( ( 2 ) ). No
closed-form solution can be proposed for optimizing the partition
thresholds, and thus enumeration methods are often exploited. For a
practical problem with a large data set, if N≫ S, then the time com-
plexity becomes O(INM).

5. Experimental studies

We used two synthetic data sets, each of which was assigned with
some noisy data, and data sets from the UCI repository [47] to compare
the performance of various fuzzy clustering methods, i.e., FCM [2],
Type2 FCM [16], and SRFCM [43], and possibilistic clustering algo-
rithms, i.e., PCM [4], PFCM [6], rRFCM [14,36], APCM [13], CPCM
[10], sparse PCM [9], and the proposed MSPCM method.

The fuzzification coefficient for the fuzzy clustering methods was set
as =m 2,f as generally used in most previous studies. According to the
experimental performance of the selected methods, the fuzzifier para-
meter values for possibilistic clustering methods were set as =m 1.2,p

=m 1.2,p1 and =m 2p2 . Details regarding the reasons for selecting m p1
and m p2 are given in the following. The results obtained by running
FCM, including obtaining the prototypes and corresponding member-
ship degrees, were employed as the initial configurations for the im-
plementation of the selected methods. The weighted value used to
evaluate the importance of core regions was set as =w 0.95,l and it was
kept as a constant for all the data sets and iterative runs. The maximum
iteration number was set as 100 and the convergence condition satisfied

+ − <t tv v( 1) ( ) ɛ,i i where t is an iterative step, and ε was set as
0.001 for all the algorithms.

The properties of the selected methods are summarized in Table 3,
where the notations “Y, “N, and “/ denote yes, no, and not applicable,
respectively.

Table 2
The prototypes obtained by PCM and MSPCM for D12.

m m(p p1) PCM MSPCM( =m 2p2 )

Prototypes Deviation Prototypes Deviation

1.1 [−3.1335 0][3.1335 0] 0.4130 [−3.339 0][3.339 0] 0.002
1.2 [−3.076 0][3.076 0] 0.5280 [−3.3387 0][3.3387 0.000006] 0.0026
1.3 [−3.03 0.000024][3.03 0.000024] 0.6200 [−3.3389 0.000003][3.3389 0.000003] 0.0022
1.4 [−2.9379 0.000251][2.9379 0.000251] 0.8042 [−2.8529 0][2.8529 0] 0.9742
1.5 [−2.8013 0.001081][2.8013 0.001081] 1.0774 [−2.8362 0.000001][2.8362 0.000001] 1.0076
1.6 [−2.6266 0.002935][2.6266 0.002935] 1.4268 [−2.948 0.26492][2.948 0.26492] 0.9462
1.7 [−2.4115 0.006072][2.4115 0.006072] 1.8570 [−2.9404 0.26787][2.9404 0.26787] 0.9622
1.8 [−2.106 0.010870][2.106 0.010870] 2.4681 [−3.2116 0.22197][3.2116 0.22197] 0.5129
1.9 [−0.01933 0.040750][0.01933 0.040750] 6.6418 [−3.0026 0.41687][3.0026 0.41687] 1.0726
2 [−0.00061 0.048706][0.000613 0.048706] 6.6795 [−3.0003 0.41326][3.0003 0.41326] 1.0699
AVG / 2.2516 / 0.65524

Table 3
The properties of selected clustering methods.

Fuzzy memberships Possibilistic memberships Involving approximation region
partitions

Adaptive adjustment of scale
parameters

Involving multiple fuzzifier
values

FCM Y N N / N
SRFCM Y N Y / N
Type2 FCM Y N N / Y
PCM N Y N N N
PFCM Y Y N N N
rRFCM Y Y Y N N
APCM N Y N Y N
CPCM N Y Y Y N
Sparse PCM Y Y N N N
MSPCM Y Y Y Y Y
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Five strategies can be employed in fuzzy or possibilistic clustering
methods. Only one strategy or a combination of only some strategies
are involved in the previous clustering studies, such as only one strategy
is employed in FCM or PCM. Different strategies can handle the dif-
ferent types of uncertain factors when clustering data. To handle the
uncertain information adequately, more strategies need to be in-
tegrated. Clearly, all the five strategies are used in MSPCM which make
the proposed method robust to uncertain environments.

5.1. Synthetic data set I

This synthetic data set contained 50 patterns with five noisy items,
and two clusters with 10 and 40 data items. The sizes of the two clusters
differed greatly, as shown in Fig. 11. The prototypes and final classifi-
cation results obtained by each clustering method are shown in Fig. 12.

According to Fig. 12, the PCM method obtained coincident clusters,
i.e., the independent sub-objective functions for two clusters were op-
timized at the same point. However, the PCM method could not sepa-
rate the data set as well as other methods. Rough set-based clustering
methods, i.e., SRFCM, rRFCM, and MSPCM, produced better prototypes
because the approximation region partitions could capture the topology
of the data based on a global observation associated with a fixed cluster.

The methods based on the adaptive adjustment of scale parameters,
i.e., APCM and MSPCM, achieve better performance in terms of ACC
because dynamic adjustments of the scale parameters are better at re-
flecting the characteristics of clusters. In addition, the shadowed set-
based clustering approaches, i.e., SRFCM and MSPCM, obtained better
prototypes and ACC results. Only one pattern was misclassified by
MSPCM, and the corresponding prototypes obtained had the best lo-
cations, especially for the small cluster.

The partitions of the approximation regions obtained by the pro-
posed MSPCM method are shown in Fig. 13, and the possibilistic
membership degrees in Fig. 14. The core region (boundary region)
under =m 2p2 was contracted (extended) compared with the core re-
gion (boundary region) under =m 1.2p1 according to the same
threshold, which is guaranteed by Proposition I. The patterns divided
into core regions under m p1 and those divided into boundary regions
under m p2 reflected the uncertainty generated by a specific fuzzifier
value. Thus, the uncertainty generated by a specific fuzzifier value
could be captured by detecting the variations in the approximation
regions. Furthermore, we found that the approximation region parti-
tions for two clusters were not approximately symmetrical, i.e., the
borderline of the boundary region for one cluster was not the borderline
of the core region for the other cluster, in a similar manner to the results
shown in Fig. 2. This difference was attributable to the dynamic
changes in the scale parameters and their corresponding effects on the
possibilistic membership calculations.

Validity indices were employed to compare the selected methods,
i.e., the normalized mutual information (NMI) [48,49], rand index (RI)
[50], ACC [48], and the difference between the prototypes obtained
and the ground centroids of clusters (MD). The clustering methods were
better when the values of NMI, ACC, and RI were higher, or when the
value of MD was lower.

The validity indices were influenced by different values of m p1 and
m p2. When m p1 was assigned a larger value, the possibilistic member-
ships were around 0.5, as shown in Fig. 3. In this case, most of the
patterns, including the patterns in the overlapping areas, noisy data, or
outliers, were partitioned into the boundary regions of the clusters. The
corresponding core regions of the clusters could be empty and the core
regions had no representative capabilities, and then they were not
beneficial for updating the prototypes. Thus, m p1 should be set at a
relatively low value. In addition, as the value of m p2 increased, the core
region of each cluster contracted according to Proposition I, and the
core regions of some clusters were inevitably empty with a larger value
of m p2; thus, the representative capabilities of these core regions were
eliminated. Therefore, the value of m p2 could not be increased greatly

with respect to a fixed value of m p1.
Next, we consider the ACC index as an example, where the results in

terms of the NMI index and RI index were similar. The values of the
ACC index with different values of m p1 and m p2 are presented in Fig. 15.
The ACC index was assigned a value of 0 when the value of m p2 ex-
ceeded m ,p1 and a value of –1 if the core regions of at least one cluster
became empty as the values of m p1 or m p2 increased. We found that the
ACC index tended to –1 with larger values of m ,p1 or for larger values of
m p2 with respect to a fixed value of m p1. Values around =m 1.2p1 and

=m 2p2 achieved the best performance, as shown in Fig. 15(b).
The validity indices obtained using the selected methods and syn-

thetic data set I are given in Table 4.
Table 4 demonstrates that the proposed MSPCM method performed

far better than PCM. MSPCM performed better than the other fuzzy
clustering methods and possibilistic clustering methods because of the
approximation region partition mechanism based on shadowed sets and
the adaptive adjustment of the scale parameters involved in the clus-
tering procedures.

5.2. Synthetic data set II

The synthetic data set employed with a mixture of Gaussian dis-
tributions is shown in Fig. 16. Synthetic data set II comprised three
clusters with 200, 500, and 700 data items, where the means of the
three clusters were = −υ [30, 10],1 =υ [0, 0],2 and =υ [40, 40],3 re-
spectively. The standard deviations of these three clusters were 2, 12
and 12, respectively. The data set contained 100 noisy data with a
Gaussian distribution, where the mean and standard deviation were
−[ 20, 60] and 25, respectively. Clearly, Cluster 1 was very close to
Cluster 2, and Cluster 1 was far smaller than Clusters 2 and 3. Some
patterns in Clusters 2 and 3 also overlapped. Thus, it was difficult to
separate the patterns in synthetic data set II with partitive clustering
methods, especially in a noisy environment.

The prototypes and classification labels obtained using the fuzzy
clustering and possibilistic clustering methods are shown in Fig. 17.

According to Fig. 17, the proposed MSPCM method performed
better compared with the other fuzzy and possibilistic clustering ap-
proaches in terms of the prototype locations and final classification
labels. The shadowed set-based method SRFCM performed better with
synthetic data set I, but it obtained poor results with synthetic data set
II. As shown in Table 3, different techniques (strategies) are employed
in different clustering methods. It is not suitable to use only one
strategy or a combination of only some strategies when analyzing a
complex data set, such as the data in Fig. 16. The proposed MSPCM
method performed far better than other clustering methods with syn-
thetic data set II because it integrates multiple techniques.

The partitions of the approximation regions for each cluster under
the MSPCM schema are shown in Fig. 18.

According to Fig. 18, most of the noisy patterns were assigned to the
absolute exclusion region for all the clusters. Thus, their effects on the
calculation of the prototypes were eliminated, which was the biggest

Table 4
Comparative validity indices for synthetic dataset I.

NMI ACC RI MD

FCM 0.43871 0.84 0.72571 0.0891
SRFCM 0.67063 0.94 0.8849 0.049291
Type2FCM 0.51221 0.88 0.78449 0.0759
PCM 0.15695 0.52 0.49061 0.2287
PFCM 0.43871 0.84 0.72571 0.0727
rRFCM 0.51221 0.88 0.78449 0.0391
APCM 0.67063 0.94 0.8849 0.051064
CPCM 0.380332 0.8 0.673469 0.1046
Sparse PCM 0.608927 0.92 0.849796 0.2675
MSPCM 0.84372 0.98 0.96 0.031189
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difference compared with the fuzzy clustering methods and possibilistic
clustering methods. For Cluster 1, as the fuzzifier value increased from
m p1 to m ,p2 some of the patterns assigned to the boundary region or core
region of Cluster 2 under m p1 were assigned to the boundary region of
Cluster 1 under m p2. However, these patterns made no contribution to
the calculation of the prototype for Cluster 1 according to Eq. (21)
because they did not belong to the core region of Cluster 1 under m p1.
By contrast, the core region of Cluster 1 under m p2 contracted toward
the mean of the distribution for Cluster 1, and the contributions of these
patterns were enhanced. The same situations also occurred for Clusters
2 and 3. The variations in the membership degrees under different
fuzzifier values with MSPCM are shown in Fig. 19. We found that the
possibilistic membership degrees associated with Cluster 1 decreased
dramatically with respect to the normalized squared distances when the
fuzzifier value increased from m p1 to m ,p2 thereby indicating that the
influence zone or the size of Cluster 1 was clearly smaller than that of
the other two clusters.

The ACC indices obtained with different values of m p1 and m p2 are
shown in Fig. 20. For synthetic data set II, all core regions of the three
clusters were not empty under all combinations of m p1 and m p2 when
varied from 1–5. Thus, the ACC index values could not be assigned to
–1. However, the best performance was achieved with the smaller va-
lues of m ,p1 where they were located in the interval (1,1,5], as shown in
Fig. 20(b).

The validity indices obtained using different methods for synthetic
data set II are given in Table 5.

Table 5 demonstrates that the proposed MSPCM method had the
best performance in terms of the validity indices, with the highest ACC
and differences between the prototypes obtained, and the natural
means of the distributions were the smallest.

5.3. UCI data sets

Twelve benchmark data sets from the UCI repository [47] were
selected for our experiments. The details of these data sets are given in
Table 6.

The performance of the proposed approach is influenced by dif-
ferent combinations of the values of m p1 and m ,p2 so we tested each data
set using different values of m p1 and m ,p2 where both varied from 1–5
with a step size of 0.1. We employed the ACC index to assess the results.
In addition to the results shown in Figs. 15 and 20, two other typical
situations for the test results are presented in Figs. 21 and 22, where
were obtained based on the Iris data set and the Wine data set, re-
spectively. We found that these two situations were very different. For
the Iris data set, the ACC index values were equal to –1 with larger
values of m p1. However, the ACC index could be obtained normally only
at the two ends of the distributions for the combinations of the values of
m p1 and m p2 for the Wine data set. After integrating the results obtained
based on all the data sets, as shown in Figs. 15 and 20–22, the rea-
sonable values for m p1 and m p2 were determined in intervals of (1,2]
and [1.5,3], respectively. According to the performance of the proposed

algorithm, m p1 was assigned as 1.2 and m p2 as 2 for all the data sets in
the following comparative experiments. The natural centroids of the
data distributions were not available, so it would have been mean-
ingless to compare the MD index. The other indices for the experimental
results are presented in Tables 7–12.

According to Tables 7–12, the proposed MSPCM method performed
better than the other fuzzy and possibilistic clustering methods in terms
of most of the validity indices. MSPCM performed best in terms of the
ACC values with all the selected data sets. In particular, MSPCM ob-
tained significant improvements in terms of the ACC index with the
Balance, Fertility, ILPD, and Flowmeter data sets because the following
techniques are employed in the proposed method.

(1) By integrating rough set theory, all patterns obtained in the pro-
posed approach are partitioned into three approximation regions
based on the shadowed sets, which helps to capture the natural
topology of the data. For a specific cluster, the approximation re-
gion partitions are completed based on global observations of the
data set, rather than depending on the absolute distances or
membership degrees of individual patterns, and thus the data dis-
tribution structures are reflected well. The importance of the pat-
terns in the core regions is enhanced and the contributions of the
patterns in the exclusion regions are eliminated when updating the
prototypes. More importantly, the possibilistic membership values
are very small for noisy data or outliers, so they are partitioned into
the absolute exclusion region for all clusters to the greatest extent.
Thus, they make no contributions to the updating of the prototypes.
If we consider the Iris data set as an example, the approximation
region partitions for each cluster are as shown in Fig. 23. All pat-
terns in Cluster 1 were partitioned into the core region of this
cluster under fuzzifier values of 1.2 and 2, as shown in Fig. 23(a).
The contributions of the patterns obtained from other clusters were
eliminated when computing the prototype for Cluster 1, which is
the main difference compared with the FCM and PCM methods.

Table 6
The information of selected datasets from UCI repository.

No. Name Patterns Features Clusters

1 Iris 150 4 3
2 Wine 178 13 3
3 Balance 625 4 3
4 Liver 345 6 2
5 Fertility 100 9 2
6 ILPD 583 10 2
7 Flowmeter A 87 37 2
8 Flowmeter B 92 52 3
9 Flowmeter C 181 44 4
10 Magic 19,020 10 2
11 Connect-4 67,557 42 3
12 Healthy Order 22,646 8 4

Table 7
The comparative validity results of Iris and Wine.

Iris Wine

NMI ACC RI NMI ACC RI

FCM 0.66593 0.84 0.83678 0.87589 0.96629 0.95429
SRFCM 0.65949 0.83333 0.83221 0.89202 0.97191 0.96134
Type2FCM 0.65949 0.83333 0.83221 0.87589 0.96629 0.95429
PCM 0.67284 0.84667 0.84152 0.61954 0.82022 0.79471
PFCM 0.65884 0.83333 0.83221 0.82078 0.94944 0.93182
rRFCM 0.66593 0.84 0.83678 0.43401 0.7191 0.72812
APCM 0.72207 0.84 0.83678 0.31216 0.66292 0.68539
CPCM 0.67284 0.84667 0.84152 0.89259 0.97191 0.96204
Sparse PCM 0.58790 0.63333 0.71141 0.61902 0.84831 0.81375
MSPCM 0.7037 0.86667 0.85682 0.90876 0.97753 0.96915

Table 5
Comparative validity indices for synthetic dataset II.

NMI ACC RI MD

FCM 0.76308 0.89929 0.90771 18.409
SRFCM 0.79768 0.92786 0.92855 11.0992
Type2 FCM 0.72796 0.84571 0.88054 27.6731
PCM 0.74746 0.88857 0.89856 19.4941
PFCM 0.80845 0.93643 0.93508 10.5097
rRFCM 0.85449 0.95857 0.95567 4.8792
APCM 0.84364 0.95643 0.95202 8.0528
CPCM 0.775118 0.921429 0.91849 7.7452
Sparse PCM 0.573384 0.688571 0.796155 32.0046
MSPCM 0.9269 0.98429 0.97954 1.7865
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Similarly, the patterns belonging to Cluster 1 made no contributions
to the computation of the prototypes for Clusters 2 and 3. In ad-
dition, most of the patterns in the overlapping areas between
Clusters 2 and 3 were partitioned into the boundary regions of these
two clusters with a fuzzifier value of 1.2. Thus, these overlapping
patterns made smaller contributions to the computation of the
prototypes for Clusters 2 and 3.

(2) Multiple fuzzifier parameter values are considered in the proposed
method, which can adequately capture the uncertainty generated
by a single fuzzifier value. Using this method, the variations in the
membership degrees under different fuzzifier values can be de-
tected. After increasing the fuzzifier value to a larger one, the multi-
granularities of the core region and boundary region can effectively
deal with the vagueness and uncertainty implicated in data from
coarse to fine levels, especially for the uncertain patterns that be-
long to the core region of a cluster at higher levels of granularity

and those that belong to the boundary region of this cluster at lower
levels of granularity.
For the two overlapping clusters in the Iris data set, such as Cluster
3, five patterns that belonged to Cluster 2 were partitioned into the
core region of Cluster 3 under a fuzzifier value of 1.2. The prototype
computed for Cluster 3 was distorted by these five patterns when
only a single fuzzifier value of 1.2 was used. After increasing the
fuzzifier value to 2, the number of misclassified patterns in the core
region of Cluster 3 was reduced, as shown in Fig. 23(b), where only
one pattern that belonged to Cluster 2 was partitioned into the core
region of Cluster 3. Using this method, the uncertainty caused by
the incorrectly partitioned patterns could be detected and their
influence on the computation of the prototypes was reduced. A si-
milar situation based on the analysis of Cluster 2 is shown in
Fig. 23(c).

(3) Dynamic adjustment of the scale parameters is employed in both
the APCM and MSPCM methods, but the performance of the APCM
algorithm is sensitive to the model parameters selected, and thus it
could not generate the true number of clusters for all data sets
considered, such as the Balance, Fertility, ILPD, and Healthy Order
data sets. This limitation does not affect the proposed method
MSPCM, where adaptive adjustments of the scale parameters are
executed based on the maximal compatible region of each cluster.
Thus, MSPCM is more stable when dealing with real-world data.

6. Conclusions

The performance of a model developed for data analysis is influ-
enced directly by uncertain information, such as overlapping patterns,
noise, or outliers, as well as the uncertainties generated by the model
parameters. In this study, by integrating several granular computing
techniques, including rough sets, fuzzy sets, and shadowed sets, we
proposed a novel MSPCM algorithm, which considers the potential

Table 8
The comparative validity results of Balance and Liver.

Balance Liver

NMI ACC RI NMI ACC RI

FCM 0.11516 0.5264 0.59251 0.008072 0.48696 0.49889
SRFCM 0.14952 0.5952 0.65914 8.45E-04 0.55072 0.50371
Type2 FCM 0.1077 0.504 0.58417 4.19E-07 0.55362 0.50431
PCM 0.008835 0.4624 0.43262 0.007112 0.48116 0.49926
PFCM 0.008835 0.4624 0.43262 5.04E-04 0.51014 0.49875
rRFCM 0.056842 0.4624 0.55637 3.56E-05 0.51884 0.49926
APCM N/A N/A N/A 0.01407 0.57101 0.50866
CPCM 0.06919 0.47200 0.56353 0.000626 0.518841 0.499259
Sparse PCM 0.00712 0.46240 0.50012 6.77E-16 0.5757576 0.509828
MSPCM 0.15895 0.696 0.60997 6.79E-16 0.57971 0.51129

Notes: “N/A” means the number of prototypes obtained by APCM is less than the number of clusters given in the dataset.

Table 9
The comparative validity results of fertility and ILPD.

Fertility ILPD

NMI ACC RI NMI ACC RI

FCM 0.011321 0.52 0.49576 0.025447 0.58491 0.51358
SRFCM 0.008519 0.5 0.49495 0.022738 0.58491 0.51358
Type2 FCM 0.011321 0.52 0.49576 0.03396 0.58834 0.51477
PCM 0.028427 0.54 0.49818 0.009592 0.5506 0.50427
PFCM 0.03548 0.51 0.49515 0.015628 0.57976 0.51189
rRFCM 0.005061 0.53 0.49677 0.018804 0.5952 0.5173
APCM N/A N/A N/A N/A N/A N/A
CPCM 0.02 0.50 0.49495 0.01221 0.56947 0.50881
Sparse PCM 0.00737 0.58 0.50788 0.00775 0.67865 0.56285
MSPCM 0.026422 0.65 0.5404 0.001115 0.71355 0.59051

Notes: “N/A” means the number of prototypes obtained by APCM is less than
the number of clusters given in the dataset.

Table 10
The comparative validity results of Flowmeters A and B.

Flowmeter A Flowmeter B

NMI ACC RI NMI ACC RI

FCM 0.001337 0.528736 0.495857 0.381074 0.576087 0.680841
SRFCM 0.002799 0.540230 0.497461 0.264730 0.456522 0.490683
Type2FCM 0.001337 0.528736 0.495857 0.279688 0.467391 0.501672
PCM 0.000448 0.528736 0.495857 0.295398 0.554348 0.523172
PFCM 0.000448 0.528736 0.495857 0.308401 0.565217 0.534878
rRFCM 0.000448 0.528736 0.495857 0.481331 0.576087 0.716197
APCM 6.85E-16 0.597701 0.513499 4.56E-16 0.532609 0.387721
CPCM 2.19E-05 0.517241 0.494787 0.408615 0.663043 0.688963
Sparse PCM 0.001359 0.505747 0.494253 0.119643 0.413043 0.400860
MSPCM 0.006722 0.597701 0.513499 0.504121 0.717391 0.678691
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problems caused by the three key parameters and obtains the corre-
sponding solutions. The threshold for partitioning approximation re-
gions is optimized according to global observations of the data based on
shadowed sets, which can capture the structural topology well. Multiple
fuzzifier values can produce a multigranulation structure for approx-
imation regions and quantitatively detect the uncertainty generated by
a single fuzzifier value. Dynamically adjusting the scale parameters
based on the maximal compatible region of each cluster can reflect the
characteristics of clusters adaptively, such as the sizes and densities of
the clusters. Moreover, the typicality values can deal with noisy en-
vironments effectively. The improvements obtained by the proposed
method were demonstrated in terms of several validity indices based on
comparisons with other fuzzy and possibilistic clustering methods. A
specific case with two fuzzifier values was only considered in this study,
and thus the statistical properties of models using multiple (more than
two) fuzzifier values require further study. In addition, the effectiveness
of using different optimization principles to form shadowed sets in the
proposed approach will be investigated in our future research.
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Appendix

The proofs of Proposition I

Proof. Since = >f x m f x m( , ) ( , ) 0,PCM p PCM p1 21 2 it has =− −x x1 2m p m p
1
1 1

1
2 1 .

By using a logarithmic function, it has: ⎛
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⎞
⎠

= ⎛
⎝
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− −x xlog log1 2m p m p
1
1 1

1
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Further, it has: =− −x xlog( ) log( )m m
1

( 1) 1
1

( 1) 2p p1 2
. So the signs of log (x1)

and log (x2) must be the same.
(1) Since − >m 1 0,p1 − >m 1 0p2 and 0< x1, x2< 1, it has

<− xlog( ) 0m
1

( 1) 1p1
and <− xlog( ) 0m

1
( 1) 2p2

. Due to > >− − 0,m m
1

1
1

1p p1 2
such that log (x2)< log (x1)< 0, viz, x2< x1.

(2) Since − >m 1 0,p1 − >m 1 0p2 and x1, x2> 1, it has
>− xlog( ) 0m

1
( 1) 1p1

and >− xlog( ) 0m
1

( 1) 2p2
. Due to > >− − 0,m m

1
1

1
1p p1 2

such that 0< log (x1)< log (x2), viz, x1< x2. □
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