
Neural Process Lett
https://doi.org/10.1007/s11063-018-9820-x

QRKISS: A Two-Stage Metric Learning via
QR-Decomposition and KISS for Person Re-Identification

Cairong Zhao1,2 · Yipeng Chen1 · Zhihua Wei1 ·
Duoqian Miao1 · Xinjian Gu3

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Person re-identification is a challenging task in the field of intelligent video surveil-
lance because there are wide variations between pedestrian images. As a classical metric
learning method, Keep It Simple and Straightforward (KISS) has shown good performance
for person re-identification. However, when the dimension of data is high, the KISS method
may perform poorly because of small sample size problem. A common solution to this prob-
lem is to apply dimensionality reduction technologies to original data before the KISSmetric
learning, such as Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA). In this paper, to learn a discriminant and robust metric, we propose a novel two-
stage metric learning via QR-Decomposition and KISS, named QRKISS. The first stage of
QRKISS is to project original data into a lower dimensional space by QR decomposition.
In this lower dimensional space, the trace of the covariance matrix of interpersonal differ-
ences can reach maximum. Based on KISS method, the second stage of QRKISS obtains
a Mahalanobis matrix in the low-dimension space. We conduct thorough validation experi-
ments on the VIPeR, PRID 450S and CUHK01 datasets, which demonstrate that QRKISS
method is better than other KISS-basedmetric learningmethods and achieves state-of-the-art
performance.
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1 Introduction

In recent years, person re-identification has received growing attention in the field of intel-
ligent video surveillance [1–3]. Re-identification can be simply defined as “To re-identify a
particular, then, is to identify it as (numerically) the same particular as one encountered on a
previous occasion” [4]. In video surveillance, when being presented with a person-of-interest
(query), person re-identification tells whether this person has been observed in another place
(time) by another camera. It’s a challenging task because there are some appearance changes
between two pedestrian images, such as lighting, pose, and viewpoint, etc. Given its research
and application significance, the re-ID community is fast growing. The main research of per-
son re-identification can be divided into two categories: feature extraction [5–10] and metric
learning [11–18].

Most of exciting studies of feature extraction focus on extracting robust and discriminant
features from pedestrian images directly. The extracted features include various hand-crafted
color, shape, texture features [5, 6, 8, 9], and some deeply learned features [7, 19, 20]. Regard-
ing feature extraction for image representation, dimension reduction is critical to retain the
most effective features for subsequent matching, since most of features are high-dimensional
and redundant which would cause high computation complexity and low discriminability.
Over the past decade, classical linear dimension reduction algorithm, and the emerging man-
ifold learning algorithms, have enriched our choices for feature selection. The commonly
used dimension reduction technologies include Principal Component Analysis (PCA) [21]
and Linear Discriminant Analysis (LDA) [22]. PCA is a classical linear algorithm and LDA
aims to separate samples drawn from different classes. In person re-identification, the pro-
cedure of dimension reduction is often merged into the procedure of metric learning.

As the second stage of person re-identification, metric learning plays an important role in
performance improvement which aims to learn a discriminant distance function among the
data. A comprehensive survey of the metric learning methods can be accessed in [15]. The
metric learning methods can be categorized w.r.t supervised learning versus unsupervised
learning, global learning versus local learning, etc. In person re-identification, the majority
of works fall into the scope of supervised global distance metric learning. The metric learn-
ing algorithms can also be categorized according to their basic theories. For example, based
on the theory of Fisher Discriminant Analysis (FDA), some metric learning methods such
as, Local Fisher Discriminant Analysis (LFDA) [13], Marginal Fisher Analysis (MFA) [23]
and Cross-view Quadratic Discriminant Analysis (XQDA) [6], were proposed. They tried to
project descriptors into a more discriminatory subspace based on an eigenvalue resolution.
By adding special constraints to the distance functions, some methods like Pairwise Con-
strained Component Analysis (PCCA) [24], Large Margin Nearest Neighbor (LMNN) [11]
and Locally-Adaptive Decision Functions (LADF) [25] were proposed. Different constraints
show different performances when they are applied to get a discriminatory metric distance
function. In addition, some kernel-based metric learning methods also have been proposed
to improve the identification ability of features [23, 26–30].

As a representative classical metric learning algorithm, Keep It Simple and Straightfor-
ward (KISS) method [12] was proposed based on maximum likelihood (ML) estimation. The
KISS metric learning method is effective by considering a log likelihood ratio of two Gaus-
sian distributions as the distance between a feature pair. The metric matrix of Mahalanobis
distance is simply obtained by computing the difference between two inverse of covariance
matrices. Thus, it is critical to estimate the covariance matrices accurately to improve the
performance of KISS method. However, the estimated covariance matrices are inaccuracy
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when the dimension of data is much larger than the number of samples, which we call it
small sample size (SSS) problem. It also arises in several covariance estimations-based met-
ric learning algorithms, such as LFDA [13] and Null Foley-Sammon Transfer (NFST) [26],
causing degradation of the performance. Moreover, when the dimension of data is high, the
computation complexity of those covariance estimation-based methods would be high too.
To overcome those problem, people always apply dimension reduction technique to map
the original high-dimensional data into a low-dimensional space. For instance, there are
two extensions of classical KISS method, PCA+KISS [12] and Cross-view Quadratic Dis-
criminant Analysis (XQDA) [6], which combines the dimension reduction technique with
classical KISS method. PCA+KISS utilized PCA to reduce the dimension of data before
computing the covariance matrix. However, in the procedure of PCA, some discriminative
information may be discarded. XQDA, by contrast, utilized LDA to reduce the dimension
of data before KISS method, but the calculated transformation matrix of LDA is inaccuracy
since the number of intrapersonal samples is much less than the interpersonal samples in
person re-identification. Considering the estimation error of the small eigenvalues of the
covariance matrices which arose through the SSS problem, researchers also proposed some
extensions of classical KISS method based on regularization technique, such as Regularized
Smoothing KISS (RS-KISS) [31] and Dual-regularized KISS (DR-KISS) [32], etc. RS-KISS
seamlessly integrated smoothing and regularization techniques to estimate covariance matri-
ces. DR-KISS simply regularized the covariance matrices by adding a multiple of identity
matrix. However, all the regularization-based methods share a disadvantage that it is difficult
to determine an optimal weight of regularization.

In this paper, focusing on metric learning and SSS problem, we propose a two-stage
KISS extension, namely QRKISS. Similar to PCA+KISS and XQDA, we want to find an
optimal transformation matrix that maps the high-dimensional data into a discriminant low-
dimensional space. Instead of the dimension reduction technologies (PCA, LDA) used in
PCA+KISS andXQDA, the first stage of QRKISSmaps original data into a low-dimensional
space viaQRdecomposition,which is simple and timesaving. In this lower dimensional space,
the trace of the covariance matrix of interpersonal differences can reach maximum. Then, in
the second stage of QRKISS, the difference between two inverse of covariance matrices is
calculated to obtain a robust Mahalanobis matrix in the novel space.

Experiments with four kinds of features on different datasets show that our proposed
QRKISSmetric learning algorithm can improve the identification accuracy obviously and get
better performance than other KISS-based metric learning methods in most of experiments,
especially with the lack of training samples.

The main contributions of our work are summarized as the following three points:

1. A novel metric learning method called QRKISS is proposed for person re-identification,
which combines the QR decomposition and KISS method.

2. We prove that utilizing the QR decomposition to reduce the dimension of training data
can maximize the trace of covariance matrix of interpersonal differences.

3. We have thoroughly compared QRKISS with other KISS-based metric learning methods
and the state-of-the-art metric learning methods on three public datasets (VIPeR, PRID
450S andCUHK01). Experimental results demonstrate that our proposedQRKISSmetric
learning method obtains better rank-1 matching rate and lower time consumption in most
of the experiments.

The rest of the paper is organized as follows: in Sect. 2, we briefly review related works
for person re-identification and we give an overview of KISS-based methods in Sect. 3. In

123



C. Zhao et al.

Sect. 4, we detail the proposed QRKISS method. Section 5 shows the experimental results
on three representative datasets. Finally, we conclude the paper in Sect. 6.

2 Related Works

The proposed methods for person re-identification can be generally categorized into two
groups which have been briefly described in Sect. 1. The first group of methods focuses
on designing features which are robust to viewpoint change, illumination change and other
variations between pedestrian’s images. Based on the color, shape and texture information
of pedestrian’s appearance, several features have been proposed for person re-identification.
Yang et al. [5] proposed a novel SalientColorNamesBasedColorDescriptor (SCNCD)which
utilized the probability of sixteen salient color names as feature representation. Liao et al.
[6] proposed an effective feature representation method called Local Maximal Occurrence
(LOMO) which was composed of HSV histogram and the Scale Invariant Local Ternary
Pattern (SILTP) [33] descriptor. There are some other hand-crafted features which have
remained more or less the same in the recent years, such as Kernel Canonical Correlation
Analysis (kCCA) descriptor [27], Gaussian Of Gaussian (GOG) [9], etc. Moreover, with
the development of deep learning technique, more and more researchers used it to extract
deep features from pedestrian images [7, 19, 20]. For example, Wu et al. [7] proposed a novel
feature extractionmodel calledFeatureFusionNet (FFN) for pedestrian image representation,
which utilized the Convolutional Neural Network (CNN) to extract features. However, most
of visual features do not capture all the invariant factors under sample variances, thus a good
distance metric is critical for re-ID systems.

As mentioned above, the second group of methods for person re-identification focuses on
metric learning, in detail it aims to learn a discriminant distance function among the data,
keeping all the vectors of the same class closer while pushing vectors of different classes
further apart. Several metric learning methods have been proposed and applied to person
re-identification successfully. Weinberger et al. [11] proposed the Large-Margin Nearest
Neighbor (LMNN) metric to improve the performance of the kNN classification. To avoid
the overfitting problems encountered in LMNN, Davis et al. [34] proposed the Information-
Theoretic Metric Learning (ITML) as a trade-off between two aspects, namely satisfying the
given similarity constraints and ensuring that the learned metric is close to the initial dis-
tance function. In [24], an algorithm for learning distance metric called Pairwise Constrained
Component Analysis (PCCA) was proposed. It projected the features into a low-dimensional
space where the distance between pairs of data points respects the desired constraints. Based
on the theory of Fisher Discriminant Analysis (FDA), Local Fisher Discriminant Analysis
(LFDA) [13] was proposed to further reduce the dimensionality after an unsupervised PCA
dimensionality reduction stage. To deal with the non-linearity in the appearance of pedestri-
ans, Xiong et al. [23] proposed Kernel Local Fisher Discriminant Analysis (kLFDA), which
utilized the kernel technique to reduce the influence of non-linearity. Moreover, Köstinger
et al. [12] proposed a simplified and efficient metric learning method called Keep It Sim-
ple and Straightforward (KISS), which obtained the metric matrix of Mahalanobis distance
by computing the difference between two inverses of covariance matrices. Because of its
simpleness and effectiveness, more and more researchers pay attentions to KISS method and
some improvedmethods based onKISS have been proposed. In [31], a regularized smoothing
KISS metric learning (RS-KISS) was presented which seamlessly integrated smoothing and
regularization techniques to estimate covariance matrices. Tao et al. [32] proposed a Dual-
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Table 1 The important notations
used in the paper

Notations Descriptions

X / xi Training samples

d Dimension of samples

xi j xi − x j
�0 The set of interpersonal

differences

�1 The set of intrapersonal
differences

�0 The covariance matrices of Ω0

�1 The covariance matrices of �1

I The identity matrix

trace() The trace function

Regularized KISS (DR-KISS) metric learning by regularizing the two covariance matrices.
Liong et al. [35] proposed a new Regularized Bayesian Metric Learning (RBML) method
to model and regulate the eigen-spectrums of these two covariance matrices in a parametric
manner. Liao et al. [6] proposed a metric learning method called Cross-view Quadratic Dis-
criminant Analysis (XQDA), which combined the KISS and LDA algorithms for cross-view
metric learning. Although the KISS-based metric learning methods have shown greatly per-
formance for person re-identification, they still face covariance estimation problem and high
computational complexity problem, especially when the dimension of data is very high.

In this paper, we focus on the second group of methods, i.e. metric learning, and we aim
to explore a novel extension of the KISS method.

3 Overview of KISS Based Methods

In this section,wegive a brief overviewof classicalKISSand its three extensions: PCA+KISS
[12], DR-KISS [32] and XQDA [6]. For convenience, we present in Table 1 the important
notations used in the paper.

3.1 Classical KISS

Köstinger et al. [12] proposed a simplified and efficient metric learning method called Keep
It Simple and Straightforward (KISS), which has acquired the state-of-the-art retrieval per-
formance for real-life applications, such as person re-identification and face recognition.

Given a feature vector pair xi and x j which represents two samples. Let H0 denote the
hypothesis that the sample pair (xi , x j ) is dissimilar (xi and x j are extracted from different
people), and H1 denote the hypothesis that the feature pair (xi , x j ) is similar (xi and x j are
extracted from the same person). Formula (1) defines the logarithm of the ratio between two
posteriors

δ
(
xi , x j

) � log

(
p

(
H0|

(
xi − x j

))

p
(
H1|

(
xi − x j

))

)

(1)
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Let xi j � xi − x j , formula (1) can be transformed into

δ
(
xi , x j

) � log

(
p

(
H0|xi j

)

p
(
H1|xi j

)

)

(2)

According to the Bayes formula, formula (2) can be rewritten as

δ
(
xi , x j

) � log

(
p

(
xi j |H0

)

p
(
xi j |H1

)

)

+ log

(
p(H0)

p(H1)

)
(3)

Assuming the difference space is a Gaussian structure, we have

p
(
xi j |Hk

) � 1

(2π )d/2 |�k |1/2
exp

(
−1

2
xTi j�

−1
k xi j

)
, (k � 0, 1) (4)

�0 � 1

N0

∑

yi j�0

xi j x
T
i j � 1

N0

∑

yi j�0

(
xi − x j

) (
xi − x j

)T (5)

�1 � 1

N1

∑

yi j�1

xi j x
T
i j � 1

N1

∑

yi j�1

(
xi − x j

) (
xi − x j

)T (6)

where yi j denotes the indicated variable with respect to the two samples xi and x j , namely
yi j � 1 if xi and x j are extracted from the same person, otherwise yi j � 0. Moreover, N0

denotes the number of interpersonal differences, N1 denotes the number of intrapersonal
differences. Given formula (4), formula (3) can be rewritten as

δ
(
xi , x j

) � 1

2
xTi j

(
�−1

1 − �−1
0

)
xi j +

1

2
log

( |�1|
|�0|

)
+ log

(
p(H0)

p(H1)

)
(7)

The smaller the value of δ(xi , x j ) is, the bigger the probability that xi and x j belong to
the same person. By dropping the constant terms, we have

δ
(
xi , x j

) � xTi j

(
�−1

1 − �−1
0

)
xi j (8)

It is similar with the Mahalanobis distance in form, and thus the distance between two
samples xi and x j is

d
(
xi , x j

) � δ
(
xi , x j

) � (
xi − x j

)T M
(
xi − x j

)
(9)

M � �−1
1 − �−1

0 (10)

3.2 Extensions of Classical KISS

Although the KISS metric learning method for discriminative distance metric learning has
been shown to be effective for the person re-identification, the estimation of the inverse of
a covariance matrix is unstable and indeed may not exist when the scale of the training set
is small, resulting in poor performance. Several extensions including PCA+KISS [12], DR-
KISS [32] and XQDA [6] were proposed in the past to deal with the singularity problems as
follows.

3.2.1 PCA+KISS

A common way to deal with the singularity problem is to apply a dimension reduction
algorithm, such as PCA, to reduce the dimension of the original data before classical KISS
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is applied. This is known as PCA+KISS. In this two-stage algorithm, the first stage aims to
compute an optimal transformationmatrixW that solves the following optimization problem:

W ∗ � arg max
WTW�I

trace
(
WT X̄ X̄T W

)
(11)

where X̄ denotes the centered data of X which has mean 0. The solution can be obtained by
solving the eigenvalue problem on X̄ X̄ T [21].

In the second stage, KISS algorithm is applied in the novel low-dimensional space, and
the distance between a feature vector pair (xi , x j ) can be rewritten as

d
(
xi , x j

) � δ
(
xi , x j

) � (
xi − x j

)T
W ∗ (

�̃−1
1 − �̃−1

0

)
W ∗T (

xi − x j
)

(12)

where �̃0 � W ∗T�0W ∗ and �̃1 � W ∗T�1W ∗.
PCA+KISS algorithm has been used successfully in several models of person re-

identification [5, 12, 14]. However, PCA is a time consuming process because of the huge
computing requirement of SVD.Meanwhile, the optimal dimension of transformationmatrix
is difficult to determined, which may lead to some useful information lost in the dimension
reduction stage.

3.2.2 DR-KISS

To deal with the singularity problems of two covariance matrices, Tao et al. [32] proposed
a simple method called DR-KISS by regularizing the two covariance matrices. The two
regularized covariance matrices can be obtained by following formulas:

�0,γ0 � (1 − γ0)�0 + γ0α0I (13)

�1,γ1 � (1 − γ1)�1 + γ1α1I (14)

where α0 � (1/d)trace(�0), α1 � (1/d)trace(�1), 0 < γ0 < 1 and 0 < γ1 < 1.
DR-KISS improves on KISS by reducing overestimation of large eigenvalues of the two

estimated covariance matrices and, in doing so, guarantees that the covariance matrix is
reversible. Furthermore, [32] provided theoretical analyses for supporting the motivations
and proved why the regularization is necessary. A limitation of DR-KISS is that the optimal
values of the two parameters γ0 and γ1 are difficult to determine.

3.2.3 XQDA

Similar to PCA+KISS, Liao et al. [6] try to reduce the dimension of the original data before
classical KISS is applied, and they proposed a novel metric learning method called Cross-
view Quadratic Discriminant Analysis (XQDA). XQDA is different with PCA+KISS in the
procedure of dimension reduction, since XQDA aims to solve the following optimization
problem:

W ∗ � arg max
WTW�I

trace

(
WT�0W

WT�1W

)
(15)

This optimization problem can be solved by the generalized eigenvalue decomposition
problem as similar in LDA.
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After obtaining the optimal transformation matrix W ∗, KISS algorithm is applied in the
novel low-dimensional space, and the distance between a feature vector pair (xi , x j ) can be
rewritten as

d
(
xi , x j

) � δ
(
xi , x j

) � (
xi − x j

)T
W ∗ (

�̃−1
1 − �̃−1

0

)
W ∗T (

xi − x j
)

where �̃0 � W ∗T�0W ∗ and �̃1 � W ∗T�1W ∗.
XQDAhave been successfully used in the application of person re-identification, however,

the calculated transformation matrix W ∗ may have contained some inaccuracy, since the
number of intrapersonal samples is much less than the interpersonal samples in person re-
identification.

4 Proposed Method

Classical KISS metric learning method based on covariance matrix estimation may performs
poorly especiallywhen the dimension of data is large, since the inverse of covariancematrices
are inaccurate or non-existent. In view of this, we want to find an optimal transformation
matrixW that can transform the high-dimensional original data into a low-dimensional space,
inwhere the estimated covariancematrixwould bemore accuracy. Aiming at this issue, in this
section, we propose a two-stage metric learning via QR decomposition and KISS, namely,
QRKISS.

4.1 QRKISS: A Two-Stage Metric Learning

The procedure of QRKISS algorithm can be divided into two steps: (1) Obtaining an optimal
transformationmatrixW via QRDecomposition. (2) Expanding the classical KISS algorithm
in the novel low-dimensional space.

According to classical KISS method, formula (5) and formula (6) represent the way of
computing two covariance matrices (�0 and �1) respectively. They can be rewritten as

�k � 1

Nk
X

(
Dk − Mk

)
XT , (k � 0, 1) (16)

where

M0
i j �

{
0 i f yi � y j
1 i f yi �� y j

(17)

M1
i j �

{
1 i f yi � y j and i �� j
0 otherwise

(18)

Dk denotes a diagonal matrix (Each element sums all affinity values over the columns of
Mk , such that Dk

ii � ∑N
j�1 M

k
i j ), Nk denotes the number of value ‘1’ in the matrix Mk .

Given a data matrix X ∈ �d×N , where d denotes the dimension of data, and N denotes
the number of samples. We consider finding a linear transformation W ∈ �d×l that maps
each column xi of X , for 1 ≤ i ≤ N , to a l-dimensional space as WT xi ∈ �l (l < d).
Thus, the novel low-dimensional data can be represented by WT X . Therefore, the formula
for computing the covariance matrices in the classical KISS algorithm can be rewritten as

�k � WT X
(
Dk − Mk

)
XTW, (k � 0, 1) (19)
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Considering the number of intrapersonal samples is much less than the interpersonal
samples in person re-identification, we try to obtain the optimal transformation matrix W ∗
without utilizing the covariance matrix of intrapersonal differences �1. Thus, the first stage
of QRKISS aims to compute the optimal transformation matrix W ∗ that can maximize the
trace of novel covariance matrix in the low-dimensional space as follows

W ∗ � arg max
WTW�I

trace
(
WT X

(
D0 − M0) XTW

)
. (20)

According to the QR decomposition [36], the data matrix X can be decomposed to the
product of two matrices, such as

X � QR (21)

where Q ∈ �d×N has orthonormal columns, R ∈ �N×N is upper triangular.
Let’s multiply both sides by QT , we can obtain

QT X � QT QR (22)

Considering the matrix Q has orthonormal columns, the formula (22) can be rewritten as

QT X � I R � R (23)

where I denotes a N -dimensional identify matrix.
Comparing the formula (23) with the dimension reduction formula WT X , we can find

that both formulas have similar forms. Thus we can consider the matrix Q as the linear
transformation W , and the matrix R as the novel low-dimensional data matrix WT X . Next,
we will give a prove to show W ∗ � Q solves the optimization problem in formula (20).

Lemma 1 Let A ∈ �n×n be positive semidefinite and W ∈ �n×q have orthogonal columns,
where q ≤ n. The following inequality holds

trace
(
WT AW

)
≤ trace(A).

Proof Let W̃ ∈ �n×(n−q) be the matrix such that
[
W, W̃

]
is orthogonal. That is,

[
W, W̃

]
·
[
W, W̃

]T � WWT + W̃ W̃ T�In (24)

where In ∈ �n×n is the identity matrix.
It follows that

trace
(
WT AW

)
� trace

(
AWWT

)
� trace(A) − trace

(
AW̃ W̃ T

)

� trace(A) − trace
(
W̃ T AW̃

)
≤ trace(A) (25)

where the last inequality follows since W̃ T AW̃ is positive semidefinite. This completes the
proof of the Lemma 1. �

Theorem 1 Let X � QR be the QR Decomposition of X, where Q ∈ �d×N has orthonor-
mal columns and R ∈ �N×N is upper triangular. Then,

W ∗ � QM,

for any orthogonal matrix M, solves the optimization problem in formula (20).
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Fig. 1 The flow chart of QRKISS metric learning method

Proof Let X � QR be the QR Decomposition of X . Then, we have

X (D0 − M0)XT � QR(D0 − M0)RT QT�QEQT (26)

where E � R(D1 − M1)RT .
For any W with orthonormal columns, it is clear that

trace(WT X (D0 − M0)XTW ) ≤ trace(X (D0 − M0)XT ) � trace(QEQT )

� trace(EQT Q) � trace(E) (27)

where the first inequality from Lemma 1 mentioned above. Thus, trace(E) is an upper bound
for the optimization in formula (20).

Next,we show that the upper bound is achieved by choosingW ∗ � QM for any orthogonal
M . By the property of trace and the fact that Q has orthonormal columns, we have

trace
((
W ∗)T X

(
D0 − M0) XTW ∗) � trace

(
MT QT QR

(
D0 − M0) RT QT QM

)

� trace
(
MT R

(
D0 − M0) RT M

)
� trace

(
MT EM

)

� trace
(
EMMT

)
� trace(E) (28)

This completes the proof of the theorem. �

Note the choice of orthogonalmatrixM is arbitrary since trace(WT X (D0−M0)XTW ) �
trace(MTWT X (D0 − M0)XTWM), for any orthogonal matrix M . For convenience, M is
set to be the identity matrix and finally we can obtain the optimal transformation matrix
W ∗ � Q.

After obtaining the optimal transformation matrixW ∗ � Q, we can compute the distance
between a pair vector xi and x j according to the theory of KISS, and the distance function is

d
(
xi , x j

) � (
xi − x j

)T
Q

(
�̃−1

1 − �̃−1
0

)
QT (

xi − x j
)

(29)

�̃k � QT X
(
Dk − Mk

)
XT Q, (k � 0, 1) (30)

Figure 1 shows the flow chart of QRKISS metric learning method and the complete
algorithm is summarized in Algorithm 1.
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Algorithm 1 QRKISS
Input: Training data X , Training labels Y and testing samples 1( )ni iz =

Output: The distance between two test samples iz and jz

Stage1
1: Calculate the 0D , 1D , 0M , 1M in Eq. (16) according to the training labels Y; 
2: Calculate Q according to Eq. (21) (QR Decomposition);
Stage2
3: Calculate 0Σ and 1Σ according to Eq. (30);
4: Calculate the distance between two test samples iz  and jz  according to Eq. (29) 

4.2 The Differences Between QRKISS, PCA+KISS and XQDA

Same as QRKISS, both PCA+KISS and XQDA try to find a transformation matrix to reduce
the dimension of data. But there are some differences among them.

QRKISS aims to compute an optimal transformation matrix W that solves the following
optimization problem:

WQR � arg max
WTW�I

trace
(
WT�0W

)
(31)

The solution can be obtained by utilizing the QR Decomposition for the original data X . It is
a simple and quick step that leads QRKISS to be less time-consuming than other KISS-based
methods. Moreover, QRKISS can cope with the SSS problem in person re-identification
better, since QR Decomposition can reduce the dimension of features effectively.

By contrast, KISS+PCA aims to compute an optimal transformation matrix WPCA that
solves the following optimization problem:

WPCA � arg max
WTW�I

trace
(
WT X̄ X̄T W

)
(32)

where X̄ denotes the centered data of X which has mean 0. The solution can be obtained
by solving the eigenvalue problem on XXT . It’s easy to prove that the solution of optimiza-
tion problem of PCA+KISS method WPCA is not suitable for the optimization problem of
QRKISS, and trace(WT

PCA�kWPCA) ≤ trace(WT
QR�kWQR), (k � 0, 1).

XQDA aims to compute an optimal transformation matrixWXQDA that solves the follow-
ing optimization problem:

WXQDA � arg max
WTW�I

trace

(
WT�0W

WT�1W

)
(33)

which can be solved by the generalized eigenvalue decomposition problem as similar in
LDA. According to the theory of Fisher Discriminant Analysis (FDA), it seems that the
value of trace(WT�1W ) should be as small as possible. However, in the real application
of person re-identification, the number of intrapersonal samples is much less than interper-
sonal samples, which would cause the inaccuracy of solution when the optimization problem
of XQDA is solved by the generalized eigenvalue decomposition. Compared with XQDA
method, QRKISS can cope with the SSS problem better, since it doesn’t utilize the imprecise
covariance matrix of the intrapersonal differences �1.
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Fig. 2 Example images from VIPeR dataset [37]

Moreover, compared from the aspect of time complexity, QRKISS is more efficient than
KISS+PCA andXQDA, since the procedures of eigenvalue decomposition of PCA and LDA
are time-consumed.

In conclusion, comparing the two classical KISS-based metric learning methods
(PCA+KISS and XQDA), our proposed QRKISS metric learning method has mainly two
advantages: (1) QRKISS can cope with the SSS problem in person re-identification bet-
ter. (2) QRKISS is less time consuming. Both advantages have been verified in the next
section.

5 Experiments

In this section, we conducted thorough validation experiments on three challenging person
re-identification datasets to demonstrate the effectiveness of our proposed QRKISS method.

5.1 Datasets and Settings

5.1.1 Datasets

Three widely used challenging datasets, VIPeR [37], PRID 450S [14], and CUHK01 [38],
were used for experiments.

VIPeR [37] is a challenging person re-identification dataset which has been widely used
for performance evaluation. The dataset contains 1264 images of 632 pedestrians totally, each
pedestrian has two images captured form two different cameras. All the images are cropped
and scaled to a resolution of 128×48. Figure 2 shows some example images from this dataset.
The VIPeR dataset is randomly divided into two parts, namely one half for training and the
other half for testing in the experiments.

PRID 450S dataset [14] consists of 450 images pairs of pedestrians with significant dif-
ferences in background, viewpoint, and illumination. It has been recently released and is
regarded as more realistic. Some example images from PRID 450S dataset are shown in
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Fig. 3 Example images from PRID 450S dataset [14]

Fig. 3. Same as the experimental protocol on the VIPeR dataset, the PRID 450S dataset was
randomly divided into two parts, namely one half for training and the other half for testing
in the experiments.

CUHK01 [38] is another challenging person re-identification dataset which contains 971
pedestrians. Each pedestrian has four images captured from two different camera views in a
campus environment. Camera A captures the frontal view or back view of people while cam-
era B captures the side view. Large inter-camera variations are observed in this dataset which
makes person re-identification challenging. Figure 4 shows some example images from this
dataset. Unlike the experimental settings ofVIPeR dataset and PRID 450S dataset, the experi-
ments of CUHK01 dataset can be divided into CUHK01(M=1) andCUHK01(M=2) because
each pedestrian has more than two images. The experimental setting of CUHK01(M=1) is
the single shot setting and CUHK01(M=2) is the multi shot setting, which are common to
[39] and [6] respectively.

5.1.2 Feature Representations

In our experiments, four kinds of features, LOMO [6], FFN [7], SCNCD [5] and ELF18 [8],
were used for all metric learning methods in this experiment. Table 2 shows the comparison
of four different features.

5.1.3 Evaluation Metrics

We used Cumulated Matching Characteristics (CMC) curve to evaluate the performance
of person re-identification methods for all datasets in this paper. All the experiments
were repeated 20 times to record an average performance. Because the complexity of the
re-identification problem, the top n-ranked matching rate was considered (n is a small value).
In this paper, 1-ranked, 5-ranked, 10-ranked and 20-ranked matching rates were selected for
compared.
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Fig. 4 Example images from CUHK01 dataset [38]

Table 2 The comparison of four different features used in our experiments

Features LOMO FFN SCNCD ELF18

Dimension 26960 8064 70 8064

Type Hand-crafted Deep learned Hand-crafted Hand-crafted

Year 2015 2016 2014 2015

5.2 Experimental Results and Analysis

5.2.1 Experiments on VIPeR Dataset

In this section,we compare our proposedQRKISSmetric learningmethodwith other state-of-
the-art metric learning methods, including five KISS-based methods (XQDA [6], DR-KISS
[32], RBML [35], RS-KISS [31] and PCA+KISS [12]) and five distance metric learning-
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Fig. 5 CMC curves on the VIPeR dataset (P=316). a Comparison of KISS based metric learning methods by
using the LOMO feature. b Comparison of KISS based metric learning methods by using the FFN feature.
c Comparison of KISS based metric learning methods by using the SCNCD feature. d Comparison of KISS
based metric learning methods by using the ELF18 feature

based methods (NFST [26], MLAPG [40], MFA [23], kLFDA [23] and LFDA [13]). Four
kinds of features (LOMO [6], FFN [7], SCNCD [5] and ELF18 [8]) were used for all metric
learning methods in the experiments.

Figure 5 shows the comparison of our proposed QR-KISS metric learning with five KISS-
based methods. In each subfigure, the x-coordinate is the rank score, and the y-coordinate
is the matching rate. Only the top 50 ranking positions are shown in the figure. Among
the compared KISS-based methods, XQDA and PCA+KISS are discriminative subspace
learning-based methods, whilst the others (DR-KISS, RBML, RS-KISS) are regularization-
based methods. As we can see from Fig. 5, the matching accuracies of QRKISS have
significantly increased in all experiments, which demonstrate that the QR Decomposition-
based subspace learning play a distinctive role to improve the performance of classical KISS
method.

Moreover, the cumulative matching scores at rank 1, 5, 10 of all compared state-of-
the-art metric learning methods are listed in Table 3. Bold and italics numbers are the best
and second-best results, respectively. The experimental results in Table 3 show that our
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Table 4 Training time (s) of metric learning algorithms

Methods QRKISS NFST MLAPG XQDA DR-KISS MFA

Time (s) 2.91 2.98 40.90 3.86 1383.45 3.74

Methods kLFDA RBML LFDA RS-KISS KISS+PCA

Time (s) 3.24 9.47 229.34 8.03 7.41

proposed QRKISS metric learning method achieves the best performance in the experiments
of three features (LOMO, FFN, and SCNCD), and obtains the best rank-1 accuracy in the
experiment of ELF18 feature, which demonstrates that the performance of QRKISS metric
learning method achieves the state-of-the-art level on VIPeR dataset. It is worth mentioning
that the FFN feature is extracted by deep learning method, and the other three features are
hand-crafted. The experimental results demonstrate that QRKISS metric learning method is
effective for both hand-crafted feature and deep feature.

Meanwhile, the average training time comparison of metric learning methods is shown in
Table 4 (including subspace learning time). The training was performed on a notebook PC
with an Intel i5-3210 @2.50 GHz CPU. Table 4 shows that QRKISS is the quickest metric
learning method in all compared state-of-the-art methods. This is because in the procedure
of QRKISS, the original data would be projected into a lower dimensional space by QR
decomposition, while the QR decomposition is not time-consuming.

5.2.2 Experiments on PRID 450S Dataset

In this section, we compared our proposed method with five KISS-based metric learning
methods and some other state-of-the-art metric learning methods on the PRID 450S dataset
[14]. The features we used in this experiment were the same with the experiment on VIPeR
dataset. The comparedmetric learningmethods includes NFST,MLAPG, XQDA, DR-KISS,
MFA, kLFDA, RBML, LFDA, RS-KISS and PCA+KISS.

Figure 6 shows the comparison of our proposedQR-KISSmetric learningwith otherKISS-
based methods. As we can see from the Fig. 6, our proposed QRKISSmethod achieves better
rank-1 matching rate than other KISS-based methods, which demonstrates that QRKISS
is an enhancement of the classical KISS method, with better performance and lower time
consumption compared with state-of-the-art methods.

Table 5 shows the experimental results of comparison of differentmetric learningmethods.
The experimental results in Table 5 show that our proposed QRKISS metric learning method
achieves the best rank-1 accuracy in the experiments of two features (LOMO and ELF18) and
obtains the second-best performance in the experiments of FFN feature and SCNCD feature,
which demonstrates that QRKISS metric learning method is effective for both hand-crafted
feature and deep feature, and its performance has reached state-of-the-art. As a kernel-based
metric learningmethod, theNFSTmethod achieves the top performance in the experiments of
LOMO feature and FFN feature because of the non-linearity in the appearance of pedestrian.
Despite all this, QRKISS method still obtains better rank-1 accuracy than NFST in the
experiment of LOMO feature, which is considered to be the most important performance
index for person re-identification.
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Fig. 6 CMC curves on the PRID 450S dataset (P=225). a Comparison of KISS basedmetric learningmethods
by using the LOMO feature. b Comparison of KISS based metric learning methods by using the FFN feature.
c Comparison of KISS based metric learning methods by using the SCNCD feature. d Comparison of KISS
based metric learning methods by using the ELF18 feature

5.2.3 Experiments on CUHK01 Dataset

In this section, we compared our proposed method with five KISS based metric learning
methods and some other state-of-the-art metric learning methods on CUHK01 dataset. The
features we used in this experiment include LOMO [6] and FFN [7].

The experimental matching rate curves of all KISS-basedmethods are shown in Fig. 7 and
the experimental results of all state-of-the-art metric learning methods are shown in Table 6.
Aswe can see inFig. 7 andTable 6, our proposedQRKISSmethod achieves goodperformance
in the experiments of LOMO feature, but doesn’t perform well in the experiments of FFN
feature. There are two reasons for that, one of which is that the dimension of FFN feature
(4096) is less than most of features. Another reason is that there are more training images
and more interpersonal feature pairs in CUHK01 dataset, thus the SSS problem causes less
impact on each metric learning method when the FFN feature is used. To prove this point,
we reduce the number of training pedestrian image pairs from 486 to 200, and the new
experimental results of all state-of-the-art metric learning methods are shown in Table 7. In
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Fig. 7 CMC curves on the CUHK01 dataset (P=486). a Comparison of KISS based metric learning methods
with the single shot setting by using the LOMO feature. bComparison of KISS based metric learning methods
with the single shot setting by using the FFN feature. c Comparison of KISS based metric learning methods
with the multi shot setting by using the LOMO feature. d Comparison of KISS based metric learning methods
with the multi shot setting by using the FFN feature

Table 7, compared with other state-of-the-art metric learning methods, the QRKISS method
achieves the best performance. The experimental results indicate that the QRKISS metric
learning method is not only suit for the single-shot cases in person re-identification, but also
suit for the multi-shot cases, especially with the lack of training samples.

6 Conclusions and Future Works

In this paper, we have presented a novel two-stage metric learning method for person re-
identification called QRKISS. Compared with the classical KISS method, the QRKISS
method can improve the performance of KISS method by utilizing QR decomposition to
reduce the dimension of data, and thus the computation complexity of QRKISS method
would bemuch lower than KISSmethod. The experiments on three publicly datasets, VIPeR,
PRID 450S and CUHK01, show that the QRKISS method is better than state-of-the-art met-
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Table 7 Comparison of different metric learning methods on the CUHK01 database (P=200)

Method Feature Reference

FFN (d=4096)

M=1 M=2

r=1 r=5 r=10 r=1 r=5 r=10

QRKISS 33.7 55.7 64.4 37.5 60.2 69.6 Ours

NFST [26] 29.7 52.2 62.1 34.0 57.9 68.1 2016 CVPR

MLAPG [40] 15.9 34.2 43.2 18.2 37.3 48.3 2015 ICCV

XQDA [6] 28.0 47.5 56.5 31.8 52.9 61.9 2015 CVPR

DR-KISS [32] 29.8 50.4 58.4 32.2 52.7 61.2 2015 IEEE

MFA [23] 26.9 48.8 58.8 32.0 57.4 67.3 2014 ECCV

kLFDA [23] 22.4 42.2 52.2 25.2 47.5 58.5 2014 ECCV

RBML [35] 30.3 51.2 60.6 33.7 56.2 65.8 2014 ECCV

LFDA [13] 30.5 52.9 62.6 34.7 58.6 68.3 2013 CVPR

RS-KISS [31] 28.2 49.2 59.3 33.0 56.7 66.3 2013 IEEE

PCA+KISS
[12]

24.6 45.6 55.3 30.3 56.4 63.7 2012 CVPR

The cumulative matching scores (%) at rank 1, 5 and 10 are listed. The best and the second-best scores are
respectively shown in bold and italics

ric learning methods with the top performance and the lowest time consumption, especially
with the small size samples. It would be interesting to see that the QRKISS method can be
applied to other cross-view matching problem, such as face recognition.
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