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a b s t r a c t 

Person re-identification is critical for human tracking in the video surveillance which has attracted 

more and more attention in recent years. Various recent approaches have made great progress in 

re-identification performance using metric learning techniques and among them, Keep It Simple and 

Straightforward (KISS) metric learning method has shown remarkably importance because of its simple- 

ness and high-efficiency. The KISS method is based on an assumption that the differences between fea- 

ture pairs obey the Gaussian distribution. However, for most existing features of person re-identification, 

the distributions of differences between feature pairs are irregular and undulant. Therefore, prior to the 

Guassian based metric learning step, it’s important to augment the Guassian distribution of data without 

losing discernment. Moreover, most metric learning methods were greatly influenced by the small sam- 

ple size (SSS) problem and the KISS method is no exception, which causing the inexistence of inverse 

of covariance matrices. To solve the above two problems, we present Kernelized Random KISS (KRKISS) 

metric learning method. By transforming the original features into kernelized features, the differences 

between feature pairs can better fit the Gaussian distribution and thus they can be more suitable for the 

Guassian assumption based models. To solve the inverse of covariance matrix estimation problem, we 

apply a random subspace ensemble method to obtain exact estimation of covariance matrix by randomly 

selecting and combining several different subspaces. In each subspace, the influence of SSS problem can 

be minimized. Experimental results on three challenging person re-identification datasets demonstrate 

that the KRKISS method significantly improves the KISS method and achieves better performance than 

most existing metric learning approaches. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Person re-identification is a sub-problem in automated video

urveillance which has attracted more and more attention in the

ast five years because of its significance [1 , 2] . Given an image of

ne person, the objective of person re-identification is to match

im/her among a large number of images of pedestrians which

re captured by some different cameras. As humans, we do it

ll the time without paying much effort, but it’s an extremely

ifficult task for computer because there are many factors that

ay influence the performance. The images of pedestrians are

lways low-quality, which causes the traditional biometrics, such
∗ Corresponding author at: Department of Computer Science and Technology, 

ongji University, Shanghai, China. 

E-mail address: zhaocairong@tongji.edu.cn (C. Zhao). 
1 The authors contribute equally to this work. 
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s face [24 , 38] , gait [39] and iris [40] , to be not available. More-

ver, the appearances of pedestrians often change across camera

iews due to wide variations in viewpoints, illumination, and pose.

he occlusions in the images also bring more difficulty to it. To

eal with this problem, researchers have proposed many different

ethods in which the most common research direction is feature

epresentation. It aims to extract robust and effective features

rom each pedestrian image. The features can be hand-crafted

4–6 , 18-20 , 29] or learned [3 , 17 , 28 , 30–34 , 44 , 59 , 60] based on visual

nformation like color, texture, and shape. It has been proved that

mong all the visual information, color plays the most important

ole for person re-identification. 

After extracting distinguishing features, the next step is nat-

rally to compute the distances between different feature pairs

nd choose the smallest one as the matching image pair. Different

istances, such as Euclidean distance, cosine distance, and Maha-

anobis distance, are usually used for pedestrian matching. The

http://dx.doi.org/10.1016/j.neucom.2017.08.064
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.08.064&domain=pdf
mailto:zhaocairong@tongji.edu.cn
http://dx.doi.org/10.1016/j.neucom.2017.08.064
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procedure of learning a discriminant distance function is called

metric learning. Researchers have proposed many metric learning

algorithms for person re-identification which can be summarized

to several groups according to their basic theories. For instance,

based on the theory of Fisher Discriminant Analysis (FDA), some

metric learning methods such as, Local Fisher Discriminant Analy-

sis (LFDA) [7] , Marginal Fisher Analysis (MFA) [8] and Cross-view

Quadratic Discriminant Analysis (XQDA) [6] , were proposed. Most

of them tried to project descriptors into a more discriminatory

subspace based on an eigenvalue resolution. By adding special

constraints to the distance functions, some methods like Pairwise

Constrained Component Analysis (PCCA) [9] , Large Margin Nearest

Neighbor (LMNN) [10] and Locally-Adaptive Decision Functions

(LADF) [11] were proposed. Different constraints in the methods

show different performances when they are applied for person

re-identification. Some kernel-based metric learning methods

also have been proposed to improve the identification ability of

features because of the non-linearity in the appearance of pedes-

trians [5 , 8 , 21 , 35 , 41–43 ]. The benefits of kernel-based methods for

person re-identification are twofold: (1) True matches and wrong

matches become more separablein the nonlinear space; (2) the

kernel can be chosen flexibly. In addition, value difference metric

(VDM) [49] and its varieties [50-58] have been proposed to find

reasonable distance between each pair of instances with nominal

attributes only. 

It is specially worth mentioning that based on the maximum

likelihood (ML) estimation, Keep It Simple and Straightforward

(KISS) metric learning method [12] was proposed. The KISS metric

learning method is both efficient and effective by considering a log

likelihood ratio test of two Gaussian distributions as the distance

between a feature pair. With a simplified and efficient solution,

the covariance matrix of Mahalanobis distance is obtained by

computing the difference between the inverse of two covariance

matrices. Although the KISS metric learning method has been

widely applied to the person re-identification because of its sim-

pleness and effectivenes36s, there are still two problems. Firstly,

there is an assumption of the KISS metric learning method that

pairwise differences are agreeing with Gaussian distribution, if not,

the performance would decrease. Second, most metric learning

methods suffer from SSS (small sample size) problem because the

size of samples is always much smaller than the dimensionality of

features, and the KISS metric learning method is no exception. In

the training procedure of the KISS method, the covariance matrices

may be singular when the training size of data is small, resulting

in the inexistence of the inverse of covariance matrices. How to

augment the Guassian distribution of data without losing discern-

ment and how to accurately estimate the inverse of covariance

matrix in the case of small samples are still open problems which

exsit in various fields. To overcome the inverse of covariance

matrix estimation problem, unsupervised dimensionality reduction

is required as the most common method. In [12] , before applying

the KISS metric learning method, the PCA (Principal Component

Analysis) was used to project the concatenated descriptors into a

34-dimensional subspace which was greatly less than the origi-

nal feature dimension. However, in the procedure of dimension

reduction, the abandon dimensionalities also have the ability of

distinguishing pedestrians, and thus the unsupervised dimension-

ality reduction will make the learned distance less discriminative.

There are some improved metric learning methods based on the

KISS method such as Regularized Smoothing KISS (RS-KISS) [13] ,

minimum classification error-KISS (MCE-KISS) [14] , Regularized

Bayesian Metric Learning (RBML) [15] and Dual-Regularized KISS

(DR-KISS) [36] . Although improvement of performance can be

seen, the problems mentioned above are still unsolved. 

In this paper, based on the KISS method we propose a novel

metric learning method called Kernelized Random KISS (KRKISS)
n which a special kernel technique is used to augment the Gaus-

ian distributionof data by transforming the original features into

ernelized features, and a random subspace ensemble method

s applied tosolve the inverse of covariance matrix estimation

roblem in the case of small samples. It contains the advantages

f the KISS metric learning method and the kernel theory, and

voids using dimensionality reduction techniques or regularization

echniques which will cause a loss to discernment of features.

e have introduced above that the KISS method was proposed

nder the assumption of Gaussian distribution. When the original

eatures are transformed into kernelized features by our proposed

ethod, they can better fit Gaussian distribution and obtain more

iscrimination for person re-identification. It is the inspiration

nd motivation that why we utilize the transformation to improve

he KISS metric learning method. As far as we know, it is the

rst of its kind to improves the KISS method by augmenting the

uassian model of data. Moreover, the covariance matrix usually

e singular when the size of samples is small, which would cause

he inexistence of the inverse of covariance matrix. The random

ubspace ensemble method we applied to obtain exact estimation

f covariance matrix is simple but very efficient, which decreases

he feature dimension by randomly selecting and combining

everal different subspaces. In each subspace, the influence of

SS problem can be minimized. It also works to other covariance

atrix based metric learning methods. Experiments with five

inds of features (LOMO [6] , kCCA [5] , SCNCD [4] , ELF18 [19] and

FN [17] ) on different datasets show that our proposed KRKISS

etric learning algorithm can improve the identification accuracy

bviously and get better performance than other state-of-the-art

etric learning methods in most of experiments. 

The main contributions of our work are summarized as below: 

(1) We augment the Gaussian distribution of data by transform-

ing the original feature into special kernelized feature. By

doing so, the differences between feature pairs can better

fit the Gaussian distribution, which is more aligned with the

metric learning methods based on Gaussian distribution as-

sumption. 

(2) We apply a random subspace ensemble method to take the

place of regularization methods in the procedure of estimat-

ing the inverse of covariance matrix. In each randomly se-

lected subspace, the influence of SSS problem can be mini-

mized and the inverse of covariance matrix can be estimated

more accurately. 

The rest of the paper is organized as follows. Section 2 in-

roduces some related works about person re-identification.

ection 3 proposes our Kernelized Random KISS (KRKISS) met-

ic learning method. Experiments on three public datasets are

escribed in Section 4 . Finally, the conclusion is draw in Section 5 .

. Related work 

The proposed methods for person re-identification can be

enerally categorized into two groups which have been briefly

escribed in Section 1 . The first group of methods focuses on

esigning features which are robust to viewpoint change, illumi-

ation change and other variations in pedestrian’s images. There

re many useful features like the ensemble of localized features

ELF) [3] , salient color names based color descriptor (SCNCD) [4] ,

ocal Maximal Occurrence (LOMO) [6] and hierarchal Gaussian

escriptor (GOG) [29] which have been proposed and applied in

erson re-identification successfully. However, they are still not

obust enough to huge variations in pedestrian’s images. Therefore,

ore and more researchers turn attention to the second group

f methods (metric learning) which focuses on learning a robust

istance or similarity function to deal with the matching problem. 
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Fig. 1. The typical distribution of differences between feature pairs. The blue bar 

represents the actual distribution and the red line represents the computed Gaus- 

sian distribution. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Many effective metric learning algorithms have been proposed

nd widely applied to solve the person re-identification problem.

avis et al. [37] proposed information-theoretic metric learning

ITML) from the perspective of information theoretic. Weinberger

t al. [10] proposed the large-margin nearest neighbor metric

LMNN) to improve the performance of the kNN classification. In

9] , an algorithm for learning distance metric called Pairwise Con-

trained Component Analysis (PCCA) was proposed. It projected

he features into a low-dimensional space where the distance

etween pairs of data points respects the desired constraints. In

ddition, some kernel based metric learning methods have been

roposed in recent years. Xiong et al. [8] proposed kernel LFDA

etric learning method which performs better than LFDA [7] .

isanti et al. [5] applied a learning technique based on Kernel

anonical Correlation Analysis (KCCA) which finds a common sub-

pace between the proposed descriptors extracted from disjoint

ameras and then projects them into a new descriptors space. Hu

t al. [48] proposed a new deep transfer metric learning (DTML)

ethod to learn a set of hierarchical nonlinear transformations

y transferring discriminative knowledge from the labeled source

omain to the unlabeled target domain. Duan et al. [47] proposed

 deep localized metric learning (DLML) approach by learning mul-

iple fine-grained deep localized metrics. In [21] , kernel technique

as utilized to learning a kernelized discriminative null space. 

Moreover, Köstinger et al. [12] proposed the KISS metric learn-

ng algorithm which considered a log likelihood ratio test of two

aussian distributions and obtained a simplified and efficient

olution to solve it. There are also some improved methods based

n the KISS method. In [13] , a regularized smoothing KISS metric

earning (RS-KISS) was presented which seamlessly integrated

moothing and regularization techniques to estimate covariance

atrices. In [14] , the KISS metric learning method was improved

ased on the minimum classification error (MCE). Tao et al.

36] proposed a Dual-Regularized KISS (DR-KISS) metric learning

y regularizing the two covariance matrices and theoretically

emonstrated that the proposed regularization method is robust

or generalization. However, the above KISS based improved meth-

ds focus on solving the SSS problem. They may still perform

oorly when the features do not obey the Gaussian Distribution. 

In this paper, we focus on the second group of methods, i.e.

etric learning. Aiming at augmenting Guassian distribution of

ata and exactly estimating the inverse of covariance matrix, we

ropose Kernelized Random KISS (KRKISS) metric learning method.

. Proposed approach 

.1. Kernelizd random KISS metric learning (KRKISS) 

The person re-identification problem can be formulated as

ollows. Let ( x i , y i ) 
m 

i =1 
denote all training samples, where x i is the

 -th sample, y i is the identity of the corresponding person and

 is the number of training samples. The goal of metric learning

ethods is to learn a generic distance function d ( · ) from the

raining samples that outputs smaller value for samples of the

ame person and larger value for different people. During the

est phase, given a probe pedestrian image and a set of gallery

mages, they are transformed into descriptors firstly. Then we use

he distance function d ( · ) to measure distance from all of them,

nd rank the gallery images according to their distance to the

robe image. Usually we use the Mahalanobis distance function to

easure the distance between two samples x i and x j , such as 

( x i , x j ) = ( x i − x j ) 
T M( x i − x j ) 

hus we need to learn a robust and discriminative matrix M from

raining samples. In the KISS metric learning method [12] , under

 assumption that the differences between features pairs obey
uassian distribution, the matrix M was calculated by 

 = �−1 
1 − �−1 

0 

here �1 is the covariance matrix of differences between same

erson and �0 is the covariance matrix of differences between

ifferent people. 

It is an simple and efficient metric learning algorithm, however,

he commonly used features for person re-identification do not

bet the assumption that the differences between feature pair

re Gaussian distributed. For example, the typical distribution of

ifferences between f eature pairs are shown in Fig. 1 . As we can

ee, the actual distribution is at odds with the computed Gaussian

istribution, which causes a significant decrease in performance

f Guassian distribution based metric learning methods. The

uassian distribution assumption puts forward high demand to

he feature representation. Moreover, the sample size is small

n most cases, and thus the estimation of inverse of covariance

atrix is inaccurate, or not exist. Some regularization methods

ave been proposed to solve it [13 , 14 , 15 , 36] . However, the existing

egularization methods are still not robust enough because the

eights of regularization are hand-crafted. To solve those two

roblems, we propose Kernelized Random KISS (KRKISS) metric

earning method. For convenience, Table 1 lists frequently used

otations and descriptions in the paper. 

The first procedure of KRKISS is to transform the origi-

al features into kernelized features. Given a function �( x i )

hich maps the sample x i into an unknown space. Differ-

nt with the common usage of kernel trick, we utilize the

nner products of �( x i ) and a training sample feature �( x j )

s a novel feature of sample x i . For example, �( x i ) 
T �( x j ) de-

otes the j -th novel feature, and thus the sample x i can be

ransformed into [�( x i ) 
T �( x 1 ) , �( x i ) 

T �( x 2 ) , . . . , �( x i ) 
T �( x m 

)]

hen there are m training samples. Given a kernel

unction k ( x i , x j ) = 〈 �( x i ) , �( x j ) 〉 = �( x i ) 
T �( x j ) , x i can

e transformed into kernelized features ˜ x i = K ( x i , X ) =
 k ( x i , x 1 ) , k ( x i , x 2 ) , . . . , k ( x i , x m 

)] T ∈ R m ×1 . In the same way, the

raining samples X and the testing samples Z can be trans-

ormed into ˜ X = [ K ( x 1 , X ) , K ( x 2 , X ) , . . . , K ( x m 

, X )] ∈ R 

m ×m and
˜ 
 = [ K ( z 1 , X ) , K ( z 2 , X ) , . . . , K ( z n , X )] ∈ R 

m ×n respectively. Unless

tated, otherwise, RBF kernel is used in our method with kernel

idth determined automatically using the mean pairwise distance

f samples. After transforming the original features into kernelized

eatures, the actual distribution of differences between kernel-

zed feature pairs better fit the computed Gaussian distribution.
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Table 1 

Frequently used notations and descriptions in the paper. 

Notation Description Notation Description 

X / x i Training samples Z / z i Testing samples 

m Number of training samples n Number of testing samples 
˜ X / ̃ x i Kernelized features of training samples ˜ Z / ̃ z i Kernelized features of testing samples 

˜ x i j Difference of kernelized feature pair and ˜ x j ˜ z i j Difference of kernelized feature pair ˜ z i and ˜ z j 
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Moreover, there are many advantages of kernelized features which

will be described in detail and analyzed in next section. 

Given a pair of testing samples z i and z j that we need to decide

if they are the same person. They can be transformed to kernelized

features ˜ z i and ˜ z j according to the above method. Let H 0 denotes

the hypothesis that the testing feature pair ( ̃ z i and ˜ z j ) is dissimilar

( ̃ z i and ˜ z j are different people), H 1 denotes the hypothesis that the

feature pair ( ̃ z i and ˜ z j ) is similar ( ̃ z i and ˜ z j are the same people).

If ˜ z i j satisfies the Gaussian distribution, we have 

p( ̃ z i j | H k ) = 

1 

(2 π) 
m/ 2 | �k | 1 / 2 

exp 

(
−1 

2 

˜ z T i j �
−1 
k 

˜ z i j 

)
(1)

where k ∈ {0, 1}, p( ̃ z i j | H 0 ) and p( ̃ z i j | H 1 ) denotes the probability

of ˜ z i j under the hypothesis of H 0 and H 1 respectively, �0 is

the covariance matrix of interpersonal differences and �1 is the

covariance matrix of intrapersonal differences. 

The two covariance matrices can be estimated by the training

samples. Define y ij as the indicated variable of two training sam-

ples ˜ x i and ˜ x j : y i j = 1 if ˜ x i and ˜ x j are the same person and y i j = 0 ,

otherwise. So we have 

�0 = 

1 

N 0 

∑ 

y i j =0 

˜ x i j ̃  x T i j = 

1 

N 0 

∑ 

y i j =0 

( ̃  x i − ˜ x j ) ( ̃  x i − ˜ x j ) 
T 

�1 = 

1 

N 1 

∑ 

y i j =1 

˜ x i j ̃  x T i j = 

1 

N 1 

∑ 

y i j =1 

( ̃  x i − ˜ x j ) ( ̃  x i − ˜ x j ) 
T 

(2)

where N 0 denotes the number of interpersonal differences, N 1 

denotes the number of intrapersonal differences. 

In order to decide if ˜ z i and ˜ z j are the same person, the loga-

rithm of the ratio between two posterior probabilities is defined

as follows: 

δ( ̃ z i j ) = log 

(
p( H 0 | ̃ z i j ) 

p( H 1 | ̃ z i j ) 

)
(3)

According to the Bayes formula, (3) can be transformed to 

δ( ̃ z i j ) = log 

(
p( ̃ z i j | H 0 ) 

p( ̃ z i j | H 1 ) 

)
+ log 

(
p( H 0 ) 

p( H 1 ) 

)
(4)

Given (1) , (4) can be rewritten as 

δ( ̃ z i j ) = 

1 

2 

˜ z T i j (�
−1 
1 − �−1 

0 ) ̃ z i j + 

1 

2 

log 

( | �1 | 
| �0 | 

)
+ log 

(
p( H 0 ) 

p( H 1 ) 

)
(5)

So ˜ z i and ˜ z j are the same people while the value of δ( ̃ z i j ) is

negative and a positive value of δ( ̃ z i j ) indicates ˜ z i and ˜ z j are

different people. By dropping the constant in (5) , we have 

δ( ̃ z i j ) = 

˜ z T i j (�
−1 
1 − �−1 

0 ) ̃ z i j (6)

The smaller the value of δ( ̃ z i j ) is, the bigger the probability of ˜ z i 
and ˜ z j belong to same person. It is similar with the Mahalanobis

distance in form, and thus the distance between two testing

samples z i and z j is 

d( z i , z j ) = ( ̃ z i − ˜ z j ) 
T (�−1 

1 − �−1 
0 )( ̃ z i − ˜ z j ) (7)

The dimension of kernelized feature is the same as the number

of training samples, which is greatly less than the dimension of

original feature in most of scenes. However, the SSS problem still
emains, resulting in the inexistence of the inverse matrices �−1 
0 

nd �−1 
1 

. The common solution is to add a regularization process

or covariance matrix such as 

0 = (1 − α0 ) �0 + α0 
trace ( �0 ) 

d 
I 

1 = (1 − α1 ) �1 + α1 
trace ( �1 ) 

d 
I (8)

here α0 and α1 denotes the weights of regularization. The

ignificance of this regularization method has been demonstrated

heoretically in [36] . However it is not robust enough because the

arameters α0 and α1 are hand-controlled. 

To address this problem, we propose a random subspace

nsemble method which projects the training features into dif-

erent randomly selected subspaces. Then the inverse matrices

re computed by all the traning samples in each subspace. When

he dimension of subspace is greatly less than the number of

raining samples, we can obtain the inverse matrices without the

SS problem. The final distance is computed by 

( z i , z j ) = 

L ∑ 

k =1 

( D k ( ̃ z i ) − D k ( ̃ z j )) 
T 

M k ( D k ( ̃ z i ) − D k ( ̃ z j )) (9)

 k = �−1 
1 − �−1 

0 

= 

1 

N 1 

∑ 

y i j =1 

D k ( ̃  x i j ) D k ( ̃  x i j ) 
T − 1 

N 0 

∑ 

y i j =0 

D k ( ̃  x i j ) D k ( ̃  x i j ) 
T 

(10)

here L denotes the number of selected subspaces and D k denotes

 randomly selected subspace. The diagram of KRKISS metric

earning method is shown in Fig 2 and the complete KRKISS

lgorithm is summarized in Algorithm 1. 

.2. Discussion of kernelized random KISS method 

The Kernelized Random KISS (KRKISS) method has the main

dvantages as below: 

(1) When the original features are transformed into kernelized

eatures, the differences between feature pairs can better fit Gaussian

istribution. 

For example, given the LOMO feature [ d 1 , d 2 , . . . , d 26960 ] 
T =

 ∈ R 26960 ×632 extracted from VIPeR dataset [25] , where 26,960

s the dimensionality of the LOMO feature, 632 is the number

f samples and d j ∈ R 1 × 632 denotes the j -th dimension data. For

very one-dimensional data d k , it is able to calculate two sets of

ifferences dif 0 and dif 1 according to the labels of samples, where

if 0 denotes a set of differences between interperson feature pairs

nd dif 1 denotes a set of differences between intraperson feature

airs. Since the means of dif 0 and dif 1 are both zero, we can obtain

wo Gaussian distributions by calculating the variances of dif 0 and

if 1 respectively. Comparing the concrete probability distributions

f differences with the computed Gaussian distribution, we can

onsider the set of differences obeys the Gaussian distribution if

hey are similar in shape. The typical probability distributions of

our original features (LOMO [6] , kCCA [5] , SCNCD [4] and ELF18

19] ) are shown in Fig 3 a and b. The blue bars are concrete proba-

ility distributions of differences and the red line is the computed
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Fig. 2. The diagram of KRKISS metric learning method. 

Algorithm 1 

Kernelized Random KISS (KRKISS). 

Input: Training samples ( x i , y i ) 
m 
i =1 

, testing samples ( z i ) 
n 
i =1 

, the number of se lected subspaces L and the dimension of subspace d 

Output: Some Mahalanobis matrices M k , (k = 1 , 2 , . . . , L ) and the distance be tween two test samples z i and z j 
1: while i < m 

2: i ← i + 1 ; 

3: Calculate the kernelized feature of i th training sample by ˜ x i = K ( x i , X ) = [ k ( x i , x 1 ) , k ( x i , x 2 ) , . . . , k ( x i , x m )] T ; 

4: end while 

5: while t < n 

6: t ← t + 1 ; 

7: Calculate the kernelized feature of t -th testing sample by ˜ z t = K ( z t , X ) = [ k ( z t , x 1 ) , k ( z t , x 2 ) , ..., k ( z t , x m )] T ; 

8: end while 

9: while k < L 

10: Randomly select a d -dimension subspace D k from kernealized feature space; 

11: Calculate the k -th Mahalanobis matrix M k according to Eq. (10 ); 

12: end while 

13: Calculate the distance between two test samples z i and z j according to Eq. (9 ) 

Table 2 

The Lilliefors test results of two features. 

Features /Lilliefors test LOMO kCCA 

Original Kernelized Original Kernelized 

features features features features 

Lilliefors test of dif 1 0.0462 0.3497 0.4673 0.6139 

Lilliefors test of dif 0 0.0355 0.3956 0.4691 0.8149 
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Table 3 

The variance ratio of two features. 

Features LOMO kCCA 

Original Kernelized Original Kernelized 

features features features features 

variance ratio σ0 

σ1 
1.1502 1.4389 1.2429 2.4177 
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a  
aussian distribution. As we can see in Fig 3 a and b, the probabil-

ty distributions of the differences between original feature pairs

re irregular and most of them are concentrated around the zero

alue. The computed Gaussian distributions do not fit the probabil-

ty distributions of the differences since the values of variance are

igher when the distributions are irregular. In the same way, it is

ble to calculate the differences between kernelized feature pairs

nd the typical probability distributions of four kernelized features

LOMO, kCCA, SCNCD, ELF18), as shown in Fig 3 c and d. When

he original features are transformed into kernelized feature, the

robability distributions of the differences will be more regular

nd better fit to the computed Gaussian distribution in shape. 

Moreover, we have applied the Lilliefors test [45] to test the

ull hypothesis that the data come from a normally distributed

opulation. The Lilliefors test is a normality test based on the

olmogorov-Smirnov test with mean and variance unknown.

e set the value of 
n 0 
N to represent the degree of distribution,

here n 0 denotes the number of one-dimensional feature which

s consistent with the outcome of Lilliefors test, N denotes the di-

ensionality of features. The value of 
n 0 
N is larger and the features

etter fit to Gaussian distribution. The results are shown in Table

 . As we can see in Table 2 , the value of 
n 0 
N increases significantly

hen the original features are transformed into kernelized feature.
t demonstrates that the kernelized feature better fit to the Gaus-

ian distribution and is more suitable for the Guassian distribution

ssumption based metric methods. 

(2). The kernelized features always have higher recognition

apability in the non-linear space. 

The variance ratio of two differences sets dif 0 and dif 1 can be

een as a performance index of discernment [6] . The distributions

f dif 0 and dif 1 are shown in Fig 4 . σ 0 denotes the variance of

if 0 and σ 1 denotes the variance of dif 1 . The higher the variance

atio 
σ0 
σ1 

is, the more discriminative the feature is. The value of

ariance ratio for every one-dimensional feature was calculated

nd the average value was taken. The results are shown in Table 3 .

ince the mean variance ratio of kernelized feature is higher than

he original feature, we consider that when the original features

re transformed into the kernelized features, they would become

ore distinguishable. 

(3) The robustness to the variation of parameters. 

There are two parameters in KRKISS method, the number of se-

ected subspaces L and the dimension of subspace d . Experientially

e set d = 

m 

4 to guarantee the existence of the inverse of covari-

nce matrices in subspace. Next, we conduct some experiments

ith different parameters to compare the influence of L in KRKISS

ethod. Fig 5 shows the experimental results of LOMO feature

nd kCCA feature respectively. The blue line represents the impact
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Fig. 3. The probability distributions. The blue bars are concrete probability distributions of differences and the red line is the computed Gaussian distribution of differences. 

(a) Differences of original features between intraperson image pairs. (b) Differences of original features between interperson image pairs. (c) Differences of kernelized features 

between intraperson image pairs. (d) Differences of kernelized features between interperson image pairs. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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of subspaces number on rank-1 matching rate and the red line

represents the impact of regularized weight on rank-1 matching

rate. 

As we can see in Fig 5 , the matching rate of regularized method

has obvious fluctuations which cause the difficulty to choose a

better parameter. Instead, the matching rate of random subspace

ensemble method always achieves near the maximum when

the number of subspaces increases,. Taking into account of the

efficiency of algorithm, we set L = 

d 
2 , and thus all the parameters

in the KRKISS method need not to be adjusted manually. 

(4) Low computational complexity. 
Suppose the m training samples consist of a images captured

rom one view and b images captured from the other view

 m = a + b). In KRKISS method, the computation of feature trans-

orm requires O ( dm 

2 ) multiplication operations and for each ran-

omly selected subspace, the computation of the two covariance

atrices �I and �E require O ( Nkm 

2 ) and O ( abm 

2 ) multiplication

perations, respectivesly, where N = max (a, b) , d denotes the

imension of original feature and k represents the average number

f images in each person. Therefore, the total computation of the

wo covariance matrices �I and �E in KRKISS method require

 ( LNkm 

2 ) and O ( Labm 

2 ) multiplication operations, respectivesly.
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Fig. 4. The computed Gaussian distributions of dif 0 and dif 1 . 
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Fig. 6. Example images from VIPeR dataset [25] . 
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ecause �I and �E can be computed directly from sample mean

nd covariance of each class and all classes according to the com-

uting method in [6] , the total computations of �I and �E can be

oth reduced to O ( LNm 

2 ). Adding the computation of feature trans-

orm, the computation of KRKISS requires O (LN m 

2 + d m 

2 ) multipli-

ation operations totally. Compared with the computation of KISS

ethod ( O ( Nd 2 )), the computation of KRKISS is even less when the

imension of original feature is much larger than the size of train-

ng samples. It is a common case in the applications of person re-

dentification and for example, in [6] , the sizes of training samples

n the expriments of VIPeR and QMUL dataset are 632 and 250,

espectively, while the dimension of feature is 26,960 and much

arger than the size of training samples. The efficientness of KRKISS

s also validated through a related experiment in next section. 

. Experiments 

In this section, we conduct experiments to evaluate the KRKISS

ethod and compare it with the state of the art methods. All

xperiments were tested on publicly and standard datasets,

amely VIPeR [25] , PRID 450S [26] and CUHK01 [27] . For all the
ig. 5. CMC curves on the VIPeR dataset ( P = 316). (a) Comparison of different paramete

CCA feature. 
xperiments, we used the cumulative matching characteristic

CMC) curve to evaluate the identification performance which

s the most widely used evaluation methodology for person re-

dentification. It shows how performance improves as the number

f requested images increases. 

The features used in our experiments includes LOMO [6] , kCCA

5] , FNN [17] , SCNCD [4] , ELF18 [19] . Moreover, we propose a

ovel feature which consists of different color, texture and shape

eature. The extracted method of color feature is same as [5] and

29] . Then we extract the Scale Invariant Local Ternary Pattern

SILTP) [6] description as the texture feature. The shape feature

s Histogram of Oriented Gradient (HOG) descriptor [23] and the

xtracting procedure is similar to [22] . We use the novel feature

s original features of pedestrians in the following experiments

nless noted otherwise. 

.1. Experiments on the VIPeR dataset 

VIPeR [25] is a challenging person re-identification dataset

hich has been widely used for performance evaluation. It con-

ains 632 pedestrian image pairs which are captured from two

ifferent camera views. The cameras have different viewpoints and

llumination variations exist between them. All images have been

caled to 128 × 48 pixels. Fig 6 shows some example images from

his dataset. In the experiments, the VIPeR dataset was randomly

ivided into half for training and the other half for testing. In
rs by using the LOMO feature. (b) Comparison of different parameters by using the 
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Fig. 7. CMC curves on the VIPeR dataset ( P = 316). (a) Comparison of KISS based metric learning methods by using the LOMO feature. (b) Comparison of KISS based metric 

learning methods by using the kCCA feature. 

Table 4 

Comparison of different metric learning methods on the VIPeR database ( P = 316). The cumulative matching scores (%) at rank 1, 5, and 10 are listed. Red and blue numbers 

are the best and second best results, respectively. 

Feature/Method LOMO( d = 26,960) kCCA( d = 5138) SCNCD( d = 70) ELF18( d = 8064) Reference 

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 

KRKISS 41.7 73.7 85.1 46.0 76.0 87.8 41.3 73.1 85.0 40.3 72.7 84.8 Ours 

NFST [21] 40.1 70.3 82.3 44.9 74.5 86.0 36.7 67.6 80.0 37.8 70.3 84.0 2016 CVPR 

MLAPG [16] 39.5 70.0 82.4 32.3 61.8 75.8 25.8 57.6 73.1 18.0 44.7 61.5 2015 ICCV 

XQDA [6] 39.0 69.3 81.3 33.5 62.3 74.4 24.3 50.9 65.2 30.7 59.2 72.9 2015 CVPR 

MFA [8] 35.4 67.9 81.0 40.4 70.1 83.1 37.9 68.9 81.4 36.8 70.3 83.0 2014 ECCV 

kLFDA [8] 36.3 65.1 77.1 39.2 67.7 79.8 36.9 68.5 81.1 32.6 60.7 71.7 2014 ECCV 

RBML [15] 33.4 65.1 78.6 37.7 67.2 79.5 37.7 65.2 77.6 33.9 63.8 77.1 2014 ECCV 

LFDA [7] 37.6 68.7 81.3 34.8 64.6 77.5 16.3 29.8 36.6 33.1 63.3 76.8 2013 CVPR 

RS-KISS [13] 33.0 66.7 80.4 36.2 67.0 79.8 37.1 67.2 79.7 34.2 63.6 76.6 2013 IEEE 

KISSME [12] 32.3 64.6 77.9 35.8 65.8 78.8 38.7 69.8 82.8 32.7 63.5 78.5 2012 CVPR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Training time (seconds) of metric learning algorithms. 

KRKISS NFST MLAPG XQDA MFA kLFDA KISSME LFDA 

Time 5.04 2.48 40.9 3.86 2.58 2.74 7.41 229.3 
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order to obtain a precise experimental result, this procedure was

repeated 10 times and an average value was taken. 

4.1.1. Comparison of metric learning algorithms 

Firstly, in order to demonstrate the improvement to KISS

method, we compare our KRKISS method with three KISS based

methods (KISSME [12] , RS-KISS [13] and RBML [15] ) by using two

features (LOMO [6] and the kCCA [5] ) respectively. Both features

have greatly identification ability for person re-identification. The

experimental results are shown in Fig 7 . In the experiment of the

LOMO feature, it can be seen that our proposed method (KRKISS)

is obviously better than other KISS based methods, achieving a rate

of 41.7% at rank = 1. In the experiments of the kCCA feature, our

proposed KRKISS method improves the rank-1 accuracy from 37.7%

to 46.0%. Both experimental results show the greatly improve-

ment of KRKISS method to KISS based methods and demonstrate

that the kernelized feature transform and the random subspace

ensemble method are necessity for KISS based methods. 

Next we compare the KRKISS method with some state-of-the-

art metric learning methods which were reported having good

performance on the VIPeR dataset. The compared metric learning

methods includes NFST [21] , MLAPG [16] , XQDA [6] , MFA [8] ,

kLFDA [8] , RBML [15] , LFDA [7] , RS-KISS [13] and KISSME [12] .

For testing the robustness of metric learning methods to different

features, we apply four kinds of features (LOMO [6] , kCCA [5] ,

SCNCD [4] and ELF18 [19] ) for all metric learning methods in

the experiments. The experimental results are shown in Table

4 and Fig 8 . It can be seen that our proposed KRKISS method

achieves the best matching rates in all experiments with four

features, which demonstrates that the KRKISS method not noly
as better performance than all the compared methods, but also

as good stability and strong robustness to different kinds of

eatures. Meanwhile, the average training time comparison of

etric learning methods is shown in Table 5 (including subspace

earning time). The training was performed on a notebook PC with

n Intel i5-3210 @2.50 GHz CPU. Table 5 shows that the KRKISS

s efficient and the time consumption is even less than KISSME

12] method. The theoretical analysis and the experimental results

oth show the efficientness of our proposed KRKISS method.

lthough it needs to compute several Mahalanobis matrices in

ifferent subspaces, the KRKISS method is still efficient because

he dimension of subspace is greatly less than original features. 

.1.2. Comparison to the state of the art 

In order to demonstrate that our proposed method (KRKISS) can

chieve state-of-the-art performance for person re-identification,

e compare it with other state-of-the-art methods like GOG [29] ,

NN [17] , NFST [21] , etc. The compared methods include two

eature represent based methods [6 , 29] and five metric learning

ased methods [6 , 16 , 21] . In the experiment, all the parameter

ettings, the used features and the metric learning method were

efer to their own paper. The experimental result is shown in Table

 and Fig 9 . It can be seen that our proposed method (KRKISS)

chieves the best performance while it improves the most
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Fig. 8. CMC curves on the VIPeR dataset (P = 316). (a) Comparison of different metric learning methods by using the LOMO feature. (b) Comparison of different metric 

learning methods by using the kCCA feature. (c) Comparison of different metric learning methods by using the SCNCD feature. (b) Comparison of different metric learning 

methods by using the ELF18 feature. 

Table 6 

Comparison of state-of-the-art results reported with the VIPeR database ( P = 316). 

The cumulative matching scores (%) at rank 1, 5, 10, and 20 are listed. The best and 

the second best scores are respectively shown in red and blue. 

Method r = 1 r = 5 r = 10 r = 20 Reference 

KRKISS 54.2 83.5 91.3 96.4 Ours 

GOG [29] 47.0 75.1 85.4 93.9 2016 CVPR 

NFST [21] 42.3 71.5 82.9 92.1 2016 CVPR 

MLAPG [16] 39.5 70.0 82.4 92.8 2015 ICCV 

LOMO + XQDA [6] 39.0 69.3 81.3 91.6 2015 CVPR 

RBML [15] 33.4 65.1 78.6 90.2 2014 ECCV 

RS-KISS [13] 33.0 66.7 80.4 91.0 2013 IEEE 

KISSME [12] 32.3 64.6 77.9 89.5 2012 CVPR 
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Fig. 9. The CMC curves and rank-1 matching rates on the VIPeR dataset. 
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mportant index for person re-identification (rank-1 accuracy)

rom 47.0% to 54.2%. It proves our model can effectively improve

he performance of person Re -ID. 

.2. Experiments on the PRID 450S dataset 

In this section, we conduct some experiments to evaluate the

RKISS method on the PRID 450S dataset [26] . The PRID 450S

ataset consists of 450 images pairs of pedestrians with significant

ifferences in background, viewpoint and illumination. It has

een recently released and is regarded as more realistic. Some

xample images from the PRID 450S dataset are shown in Fig 10 .

n the experiments, the PRID 450S dataset was randomly divided

nto half for training and half for testing and the procedure was

epeated 10 times to record an average performance. 
.2.1. Comparison of metric learning algorithms 

Firstly, we compare our proposed KRKISS method with other

hree KISS based methods (KISSME [12] , RS-KISS [13] and RBML

15] ). The used features include two efficient features, LOMO

6] and FFN [17] . Among them, the LOMO feature is artificially

esigned and the FNN feature is learned by a deep learning

ethod. The experimental results are shown in Fig 11 . As we

an see in Fig 11 , whether using the LOMO feature or the FNN

eature, the red line which shows the cumulative matching rate

urve of KRKISS method is higher than other lines. It demonstrates
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Table 7 

Comparison of different metric learning methods on the PRID 450S database ( P = 225). The cumulative matching scores (%) at rank 1, 5 and 10 are listed. The best and the 

second best scores are respectively shown in red and blue. 

Method/Feature LOMO( d = 26,960) FFN( d = 4096) SCNCD( d = 70) ELF18( d = 8064) 

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 Reference 

KRKISS 58.0 83.8 90.9 53.0 77.5 85.8 43.7 71.0 81.6 31.9 59.5 72.3 Ours 

NFST [21] 57.1 82.8 89.8 54.4 79.0 86.9 32.0 57.7 68.6 29.5 54.1 67.4 2016 CVPR 

MLAPG [16] 55.5 80.1 88.3 22.7 46.5 57.9 30.4 60.3 73.6 8.8 23.8 35.2 2015 ICCV 

XQDA [6] 55.9 80.6 88.0 48.4 71.6 80.9 16.1 40.7 53.6 27.8 51.5 63.0 2015 CVPR 

MFA [8] 50.8 78.7 87.7 47.9 75.1 84.6 41.6 70.5 80.6 30.0 57.2 69.7 2014 ECCV 

kLFDA [8] 51.3 78.8 88.2 48.6 75.7 84.9 20.9 39.3 49.4 9.1 23.9 32.5 2014 ECCV 

RBML [15] 54.0 80.7 88.6 51.3 75.9 84.1 35.6 63.0 74.3 29.8 55.3 67.0 2014 ECCV 

LFDA [7] 54.1 79.4 87.8 49.9 75.0 83.8 28.9 50.9 62.1 30.5 55.1 66.9 2013 CVPR 

RS-KISS [13] 54.6 79.5 88.1 49.5 74.4 83.6 33.4 61.1 72.4 29.1 52.9 65.4 2013 IEEE 

KISSME [12] 47.1 75.5 85.6 41.8 69.4 79.7 33.9 58.9 69.3 25.9 53.6 66.7 2012 CVPR 

Fig. 10. Example images from PRID 450S dataset [25] . 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Comparison of state-of-the-art results reported with the PRID 450S database 

( P = 225). The cumulative matching scores (%) at rank 1, 5, 10, and 20 are listed. 

The best and the second best scores are respectively shown in red and blue. 

Method r = 1 r = 5 r = 10 r = 20 Reference 

KRKISS 70.4 89.0 94.1 97.8 Ours 

GOG [29] 66.4 87.6 93.8 97.5 2016 CVPR 

NFST [21] 68.0 87.0 92.6 96.4 2016 CVPR 

MLAPG [16] 55.5 80.1 88.3 94.7 2015 ICCV 

LOMO + XQDA [6] 55.9 80.6 88.0 93.4 2015 CVPR 

RBML [15] 54.0 80.7 88.6 93.9 2014 ECCV 

RS-KISS [13] 54.6 79.5 88.1 94.0 2013 IEEE 

KISSME [12] 46.4 74.9 84.9 92.3 2012 CVPR 
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that our proposed KRKISS method has the highest performance

in all compared KISS-based methods. Meanwhile, it further proves

the necessity of kernelized feature transform and the random

subspace ensemble for KISS based methods. 

Next, we compare our proposed KRKISS method with some

state-of-the-art metric learning methods [6 , 7 , 8 , 12 , 13, 15 , 16 , 21] .

The features we used in this experiment include LOMO [6] , FFN

[17] , SCNCD [4] , and ELF18 [19] which were reported with good

performance on the PRID 450S dataset. The experimental results

are shown in Table 7 and Fig 12 . It can be seen that the KRKISS

method achieves the best performance with three features (LOMO,

SCNCD, ELF18) and the second best with FNN feature. The results

of comparing with other state-of-the-art metric learning methods
Fig. 11. CMC curves on the PRID 450S dataset ( P = 225). (a) Comparison of KISS based m

metric learning methods by using the FFN feature. 
emonstrate the effectiveness and the robustness of our proposed

RKISS algorithm. 

.2.2. Comparison to the state of the art 

Next we compare our proposed method with the state-of-the-

rt methods on the PRID 450S dataset. The compared methods

nd the experimental setups are same as to the experiments on

he VIPeR dataset. The cumulative matching rates at rank 1, 5, 10,

nd 20 are listed in Table 8 and the CMC curves are shown in

ig 13 . As we can see in Table 8 , the rank-1, rank-5, rank-10 and

ank-20 matching rates of our proposed method achieve 70.4%,

9.0%, 94.1% and 97.7%, respectively, which are the highest in all

ompared methods. The PRID 450S dataset is regarded as more

ealistic for person re-identification, and thus the experimental

esults on the PRID 450S dataset demonstrate that our proposed

ethod is robust to different environments of person Re -ID. 
etric learning methods by using the LOMO feature. (b) Comparison of KISS based 
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Fig. 12. CMC curves on the PRID 450S dataset ( P = 225). (a) Comparison of different metric learning methods by using the LOMO feature. (b) Comparison of different metric 

learning methods by using the FFN feature. (c) Comparison of different metric learning methods by using the SCNCD feature. (b) Comparison of different metric learning 

methods by using the ELF18 feature. 

Fig. 13. The CMC curves and rank-1 matching rates on the PRID 450S dataset. 
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Fig. 14. Example images from CUHK01 dataset [27] . 
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.3. Experiments on the CUHK01 dataset 

CUHK01 [27] is another challenging person re-identification

ataset which contains 971 pedestrians. Each pedestrian has four

mages captured from two different camera views in a campus

nvironment. Camera A captures the frontal view or back view of

eople while camera B captures the side view. Large inter-camera

ariations are observed in this dataset which makes person re-

dentification challenging. All images have been normalized to
60 × 60 pixels. Fig 14 shows some example images from this

ataset. Different with the experimental settings of VIPeR dataset

nd PRID 450S dataset, the expriments of CUHK01 dataset can be

ivided into CUHK01(M = 1) and CUHK01(M = 2) because each

edestrian has more than two images. The experimental setting of
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Fig. 15. CMC curves on the CUHK01 dataset ( P = 486). (a) Comparison of KISS based metric learning methods with the single shot setting by using the LOMO feature. (b) 

Comparison of KISS based metric learning methods with the multi shot setting by using the LOMO feature. (c) Comparison of KISS based metric learning methods with the 

single shot setting by using the FFN feature. (d) Comparison of KISS based metric learning methods with the multi shot setting by using the FFN feature. 

Table 9 

Comparison of different metric learning methods on the CUHK01 database ( P = 486). The cumulative matching scores (%) at rank 1, 5 and 10 are listed. The best and the 

second best scores are respectively shown in red and blue. 

Feature/Method M = 1 M = 2 

LOMO( d = 26,960) FFN( d = 4096) LOMO( d = 26,960) FFN( d = 4096) Reference 

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 

KRKISS 61.4 81.7 87.4 42.7 65.2 74.6 66.9 86.9 91.9 46.2 70.3 79.1 Ours 

NFST [21] 60.0 80.8 86.7 39.4 60.6 69.0 65.0 85.0 89.9 43.4 66.5 74.4 2016 CVPR 

MLAPG [16] 58.4 79.0 85.5 24.8 46.5 56.9 64.7 86.6 91.6 26.8 50.3 61.3 2015 ICCV 

XQDA [6] 55.8 78.6 85.7 34.5 55.6 63.9 62.8 83.9 90.5 39.7 60.1 68.4 2015 CVPR 

MFA [8] 58.7 81.2 88.1 39.6 64.2 73.9 63.8 85.7 91.9 44.7 70.6 79.9 2014 ECCV 

kLFDA [8] 58.9 80.8 86.9 32.0 53.8 64.2 64.7 84.0 90.4 34.1 58.5 69.0 2014 ECCV 

RBML [15] 55.1 77.8 84.7 42.1 63.7 72.3 63.7 83.5 89.8 46.1 68.5 76.9 2014 ECCV 

LFDA [7] 55.6 77.9 85.1 39.3 63.6 73.1 62.9 83.5 89.7 44.8 68.7 77.7 2013 CVPR 

RS-KISS [13] 54.2 76.7 83.3 42.2 65.2 74.3 60.6 81.8 88.0 45.9 70.2 77.9 2013 IEEE 

KISSME [12] 52.6 75.2 82.5 39.8 63.1 72.1 58.2 81.7 88.8 45.5 68.6 77.3 2012 CVPR 
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CUHK01(M = 1) is the single shot setting and CUHK01(M = 2) is

the multi shot setting, which are common to [46] and [6] respec-

tively. 

4.3.1. Comparison of metric learning algorithms 

Same as to the experiments in PRID 450S dataset, we compare

our proposed KRKISS method with other three KISS based methods

(KISSME [12] , RS-KISS [13] and RBML [15] ) by using two features

(LOMO [6] and the FFN [17] ) respectively. The experimental

matching rate curves are shown in Fig 15 . Meanwhile, we have

performed some experiments to compare the KRKISS method with
ome state-of-the-art metric learning methods. The experimental

esults are shown in Table 9 and Fig 16 . 

As we can see in Fig 15 , our proposed KRKISS method

chieves better matching rates than other three KISS based meth-

ds no matter the experimental setting is the single shot set-

ing or the multi shot setting. In Table 9 and Fig 16 , com-

ared with other state-of-the-art metric learning methods, the

RKISS method achieves the best rank-1 rate when the ex-

erimental setting is the single shot setting, and it is among

he top two when the experimental setting is the multi shot

etting. All the experimental results indicates that the KRKISS

etric learning method is not only suit for the single-shot
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Fig. 16. CMC curves on the CUHK01 dataset ( P = 486). (a) Comparison of different metric learning methods with the single shot setting by using the LOMO feature. (b) 

Comparison of different metric learning methods with the multi shot setting by using the LOMO feature. (c) Comparison of different metric learning methods with the single 

shot setting by using the FFN feature. (b) Comparison of different metric learning methods with the multi shot setting by using the FFN feature. 

Table 10 

Comparison of state-of-the-art results reported with the CUHK01 database ( P = 486). The cumulative matching scores (%) at rank 1, 5, 10, and 20 are listed. The best and 

the second best scores are respectively shown in red and blue. 

Method CUHK01(M = 1) CUHK01(M = 2) Reference 

r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 

KRKISS 66.9 83.0 88.7 92.7 72.9 89.8 94.0 96.9 Ours 

NFST [21] 60.0 80.8 86.7 91.9 65.0 85.0 89.9 94.4 2016 CVPR 

GOG [29] 59.8 77.6 84.3 89.9 66.4 84.9 90.4 94.5 2016 CVPR 

MLAPG [16] 58.4 79.0 85.5 91.6 64.7 86.6 91.6 95.4 2015 ICCV 

LOMO + XQDA [6] 55.8 78.6 85.7 91.3 62.8 83.9 90.5 94.6 2015 CVPR 

RBML [15] 55.1 77.8 84.7 90.5 63.6 83.5 89.8 94.8 2014 ECCV 

RS-KISS [13] 54.2 76.7 83.3 89.8 60.6 81.8 88.0 93.1 2013 IEEE 

KISSME [12] 52.6 75.2 82.5 89.4 58.2 81.7 88.8 94.0 2012 CVPR 
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ases in person re-identification, but also suit for the multi-shot

ases. 

.3.2. Comparison to the state of the art 

Next we compare our proposed methods (KRKISS) with some

tate-of-the-art methods which were reported with good perfor-

ance on the CUHK01 dataset. The compared methods and the

xperimental setups are same as to the experiments on the VIPeR

ataset. The experimental results are shown in Table 10 and Fig

7 . It can be observed that our proposed method achieves the best

atching rates on CUHK01 (M = 1) and CUHK01(M = 2), which

re 6.9% and 7.9% better than the second at rank-1 respectively.

he significantly improvement of performance demonstrates that

ur proposed KRKISS method is also suitable to multi shot scenes

n the applications of person Re -ID. 
. Conclusions and future works 

In this paper, we have presented a novel metric learning

ethod for person re-identification called Kernelized Random KISS

KRKISS). The KRKISS method can augment Guassian distribution

f data by transforming the original features into kernelized

eature. By doing so, the differences between kernelized features

airs can better fit to Gaussian distribution, and thus they can be

ore suitable for the Guassian assumption based models. Mean-

hile, the SSS problem in covariance matrix estimation based

ethods can now be solved by a random subspace ensemble

ethod because the influence of SSS problem would decreases or

isappears when the dimension of subspace is greatly less than

umber of samples. The experiments on three publicly datasets,

IPeR, PRID 450S, CUHK01, show the effectiveness and the robust-
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Fig. 17. The CMC curves and rank-1 matching rates on the CUHK01 dataset. (a) Comparison of some state-of-the-art methods with the single shot setting. (b) Comparison 

of some state-of-the-art methods with the multi shot setting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ness of KRKISS method, and demonstrate that the KRKISS method

is better than the state-of-the-art metric learning methods in

most cases. It would be interesting to see that the KRKISS method

can apply to other cross-view matching problem, such as face

recognition. 
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