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Universum-based multi-view matrix learning
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Abstract—In real-world applications, most data sets consist [1]. For the recognition of instances, there are many widely

of few labeled instances and many unlabeled instances. Forysed approaches, i.e., matrix learning, Universum learning,
those data sets, labeled ones can provide useful dlscrlmlnantmulti_view learning, etc.

information for training a learning machines while unlabeled 1) Matrix | ina: | | Id licati to ch
ones only provide less information. Thus most traditional learning ) Matrix learning: In real-world applications, to choose

machines have no ability to process this kind of data sets. @n appropriate representation for instances is necessary. In
In order to process the small-size-labeled problems, previous traditional pattern recognition applications, an instance is
scholars develop Universum learning which can generate addi- always represented by a point in ddimensional space
tional unlabeled instances with some discriminant information 197 gych g representation is treated as vector representation
so as to enhance useful information for training a feasible . : . . .
learning machine. Moreover, many learning machines have been and can bring a qonvenlence In math?mat'cs' Instances with
developed to process matrix instances including images, video, VECtOr representation are called vector instances and the corre-
etc. These matrix learning machines have better classification sponding learning machine is named as vector-instance-based
performances compared with the original vector-instance-based |earning machine or vector learning machine. While vector
learning matihine_s it”C'“dingj\f‘:ppotﬁ \;ector machihnel Whe(;‘ th‘ley learning machine cannot process matrix instances which are
rocess matrix instances. er at, some scnoilars aevelo . . . . .
I%arning machines to process both matrix instances and smallr-) rgpresented by a matrlxl .representa.ltlc.)n including images or
size-labeled data sets, for example, double-fold localized multiple Videos. Moreover, vectorizing a matrix instance to be a vector
matrix learning machine with Universum (UDLMMLM). While  one so as to fit to the model of vector learning machine brings
those learning machines have no ability_ to process multi-vieyv three potential problems [2]-[4]. One is the loss of some
data sets whose instances consist of multiple views and each viewyyjicit structural or local contextual information, another
represen-tstmformgt'otn ng_:\r)”s\;?_r,:;es frog] a f'leldr'n-Tnhufﬁ 'nht-:'s is the requirement of a large memory, the third is the high
;nna(jnléi?gr?d’ :::vsena{ogg| to mu|t|-v|ewa(s:aasea'|s'llf|:e enaéwl |egarn?r$g Imea_ r|Sk Of Ovel’tl’alnlng TO SO|Ve these pr0b|emS, matI’IX-InStance-
chine is named as Universum-based multi-view matrix learning based learning machine, i.e., matrix learning machine which
machine (UMMLM). Experiments on some different kinds of can process matrix instances directly has been developed.
data dsets validate the eflfecm’.e”ess of UMML'\l"' _ . Some classical matrix leaming machines are matrix-instance-
vielwn ég%%r;nS_Mamx eaming, Universum learning, Multi- based Ho-Kashyap (HK) learning machine with regularization
learning (MatMHKS) [5], new least squares support vector
classification based on matrix instances (MatLSSVC) [6], and
one-class support vector machines based on matrix instances
A. Background (OCSVM) [7]. Related experiments have validated that matrix
Pattern recognition is a branch of machine learning thitarning machines can reduce the computational complexity

focuses on the recognition of instances and regularities in datad improve the classification performance [3], [4], [8], [9].

I. INTRODUCTION
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Fig. 1. (a) Example of semi-supervised learning with two claséie) Example of semi-supervised learning with two classes and Universum.

2) Universum learning: Moreover, in real-world applica- any class of data, but do belong to the same domain as the
tions, most data sets consist of labeled instances and unlabglexblem and these collections or generations are named Uni-
instances. In terms of these labeled ones, since the labadssum instances which reflect some discriminant information.
of instances are known beforehand, thus these instances BgnUniversum, we can obtain a robust decision hyperplane,
provide some useful discriminant information for training @lease see Fig. 1-(b). Some references [15], [17]-[19] have
feasible learning machine. On the contrary, those unlabeleglidated that a learning machine with Universum has a
ones can not provide enough information due to the labdistter classification performance in some fields including body
are not known beforehand. For a data set, if the trainipmse recognition [20], boosting strategy [21], dimensionality
set consists of all labeled instances, we name the data reetuction technique [22], and multi-view learning [23], [24].
as supervised data set. If the training set consists of labele®) Multi-view learning: Multi-view learning aims to pro-
instances and some unlabeled ones, we name the datacest multi-view data set which consists of instances with
as semi-supervised data set. Since most real-world data setstiple views and each view is made up a feature group. For
consist of few labeled training instances and more unlabelegample, a video data set consists of videos from YouTube and
training instances, thus in order to process the small-sizeach video appears in multiple varied forms, e.g., visual, audio,
labeled problems, there are two kinds of solutions. Firahd text. Each form can be treated as a view of this data set.
solution is adopting semi-supervised learning machines whiElarthermore, take text view as example, this view has several
are developed to process semi-supervised data sets directly.features including text color, size, content and these features
these machines, both labeled and unlabeled original instanfmen a feature group. Learning machines or approaches de-
are used to train a learning machine. For example, multieloped on the base of multi-view instances are named multi-
view semi-supervised classification via adaptive regressigiew learning machines or multi-view approaches [25]-[32]
(MVAR) [10], co-labeling [11], sparse Markov chain-baseénd multi-view learning machines has been widely used in
semi-supervised multi-instance multi-label method (Sparsewulti-view clustering [33], handwritten digit recognition [34],
Markov) [12], and semi-supervised multi-view hash moddluman gait recognition [35], image recognition [36], [37] and
(SSMVH) [13] are present popular used semi-supervised on [38].
learning machines. While due to the size of unlabeled in-
stances is still large, thus these machines have to cosB.aProblem

longer training time. Furthermore, although current most Semi'According to the above contents, each approach has many
supervised learning machines achieve considerable succesgjged learning machines and these learning machines are
the domain of machine learning [14], availability of only geasiple for corresponding data sets. Moreover, many schol-
few labeled instances may affect classification performanggs combine these approaches into together for processing
[15]. Please see Fig. 1-(a) which is also given in [15], thgiore complicated data sets. For example, double-fold lo-
classifier or learning machine fails to learn a robust hyperplapg|i;eq multiple matrix learning machine with Universum
with insufficient labeled instances and enormous unlabel DLMMLM) [39] is a combination of matrix learning and
instances. Thus, in order to process this issue, some scho{gs,ersum learning and UDLMMLM can process both matrix
develop the second solution, i.e., Universum learning whighsiances and small-size-labeled data sets. While it is found
was developed by Vapnik et al. [16] initially. In generaljai UpLMMLM has no ability to process multi-view data
Universum learning adopts labeled instances as the basic 3pgs and furthermore, to the best of our knowledge, there is
collects or generates some instances which do not belong,¥jearning machine is developed to process matrix instances,
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small-size-labeled data sets, and multi-view data sets simulthem is always smaller thaN'. Thus, when scholars process
neously. small-size-labeled matrix data sets, UDLMMLM can train a
o o feasible learning machine and save the training time.
C. Proposal, contributions, and paper organization In terms of the second step, suppose therer&abeled
Thus, according to what we said before, in order to proceggatrix instances(4;, ¢;), i = 1,2, ..., N and L Universum
matrix data sets, small-size-labeled data sets, and multi-vigWtancesA*, j = 1,2, ..., L. Then similar with DLMMLM
data sets simultaneously, this manuscript adopts UDLMMLM.e., double-fold localized multiple matrix learning machine
as a basic learning machine and extends its model to muji40]), since a matrix instance has multiple diverse matrix
view case. The new learning machine is named as Universui@presentations and a vector instance also can be matrixzed
based multi-view matrix learning machine (UMMLM). into different matrix representations [5], then each matrix
The contributions of UMMLM are (1) compared withrepresentation has respective function to the training a learning

traditional matrix learning, Universum learning, multi-viewmachine, so scholars Igi-th matrix representation of;
learning, UMMLM is the combination of them and has ampe A? € R™>*" and p-th matrix representation ofd’

ability to process matrix data sets, small-size-labeled data s@lg, 4*? ¢ R™»*"» where m, xn, = m xn. Then the

and multi-view data sets simultaneously; (2) compared widiptimization problem of UDLMMLM is given below.
the original traditional multi-view learning machines, since

Universum learning is adopted, thus, our developed UMMLM M /N
has a better classification performance; (3) compared with min L = < (pigP(AY) —1— bf)2 + F) 3)
UDLMMLM, UMMLM is feasible for both single-view and p=1 \i=1
multi-view data sets. N M M 2
The rest organization of this paper is given below. Section =0 (g”(Af) - Z%(A?)Q"(A?)> +
II reviews UDLMMLM. Section Il gives the description of i=1 p=1 a=1
the proposed learning machine UMMLM. In section IV, the v L
experimental results show the feasibility and effectiveness of EZ Z (g"(AT")—1— b’f’”)2 +
UMMLM. Finally, conclusions are given in section V. ol B ! !
Il. REVIEW OF UDLMMLM LM Y
UDLMMLM can process small-size-labeled data sets and D;; (g (457 - hzzlnh(Aj )g" (4] )>

matrix data sets simultaneously and its framework consists
of two main steps. The first step is generating Universum T o ——
instances and the second step is training the learning macferer’ = C(u?” SyuP+a?" S7iv), gP (A7) = uP” AfoP+vg.
with labeled and Universum instances. M is the number of matrix representations, ¢7, andv}, rep-

In terms of the first step, UDLMMLM adopts creating in_re;ent the left weight, right weight, an_d bias of a Ieaming ma-
between Universum patterns (CIBU) method. Simply speakbine under the-th matrix representatiorby’, ..., by, e DRIT

. . . * 1 T

ing, suppose there is a binary-class data set Withiabeled COMPOSes Eg)e \;ectdjp ?Ir)d (657, ..., 637, ..., bL]" composes
matrix instanceg4;, ;), i = 1,2,..,N and N’ unlabeled the vectorb™”. b; and b} represent the_ loose variable of a
matrix instancesA,, i = 1,2,..N. A, € R™" or learning machine forA” and A3” respectively under thp-th

u

(A, € R™") andy; € {+1,—1} is the class label ofl;. matrix representatiorC’ and E are the regularization parame-

Then, scholars only adopt th& labeled training instancesteprS whiley andD are coupling parametersy = 1L, xm,,
and calculate the neighbor-distance maifix The i-th row 2 = "»ln,xn, are two regularization matrices corresponding
and j-th column datum of, i.e., G;; is given below. to thew? and oP respectively. The lengths af? and o? are
! respectivelym,, andn,,.
Gij =) Ai=Aj |5, if As € Ni(Aj) or Aj € Nie(Ai) (1) 1n order to minimize Eq. (3), UDLMMLM adopts the two-
If the condition4; € Ny,(4;) or A; € Ny(A;) is not satisfied, step a.lternating optimization.algorithm and details can be
Gyj = +oo. Nu(A;) and Ny, (4;) are the sets of the-nearest found in [39]. After the algorithm, one can get the optimal

) . 74 q i q N4 q
neighbors ofA4; and A;, respectively, andi; and A; are the results of parameters?, ¥, andug, i.€.,uf, %, anduoy, under

instances from different classes, respectively. In practids, ]tche ?_'th mfatlrjél_r'(\aﬂp'\;ﬁsl\tﬂentalzl_o?{ _Then ;h? f'?ag ?'?ﬁ”{n":am
set to be3. When the value of;; is finite, CIBU creates the .untc |onBo is defined b IW 'Ch |38l;s_e i 0 ﬂ? e';, es
Universum instances from the middle of the shortest path'gs? ances; 1S delined below Where; 1S 1S g-th matrix rep-
between different training instances as below. resentation andg, is the weight ofg-th matrix representation.

If g(B;) > 0, the instanceB; belongs to class+1 while if

Al = Ai+ Aj ) g(B;) < 0, this instance belongs to classl.
2
With Eqg. (2), one can generate Universum instances and M S
L < kN. According to [39] said, these Universum instances 9(Bi) = ng(ud” BIT + vol) 4)
can provide useful discriminant information and the size of q=1
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I1l. FRAMEWORK OFUMMLM persons and each person provides 10 images about faces with

UMMLM is developed on the base of UDLMMLM Variable expressions. Each face has a dimensiortility 20.
and it can further process matrix data sets, small-siZer these three data sets, we sef#% instances for training,

labeled data sets, and multi-view data sets simultaneousi§?0 instances for validation, and the re#t% instances for

Suppose there is a matrix small-size-labeled mul€Sting. _ _
view data set X = {X! X2 .. X" . X"} = The small-size-labeled data sets are Shaking and Woman.

0) A .1 Information of them are given in Table | and Fig. 3. Different
{0, 91), oy (i 0)y o (AN o8 ), Auts oy Ao A ) from the matrix data sets, these two data sets are collected
training instances. Herey = 1,2,...V, i = 1,2,..,N, from two moving objects in continuously changing environ-
andi = 1,2,..,N. XV represents the-th view and ments. Both of these data sets are real-world data sets. For the
XU = {AV, . AV .. A%, A WAV A .} where A? reason that each frame of these two data sets is an image with

andA”, represent the foatures df “and A_“Under thep-th RGB color, so each image has three dimensions. For Shaking,

view. With such a definitiond; = {A!, ..., A?,.., AV} and OU' objective is catching the head of the person who is playing
A —{AL, AV, . AV, }Z_ o the guitar. For Woman, we should catch the woman who is

Then we should first to ‘Collect some Universum instanc¥@lking in the street. Moreover, for Shaking, we coll86b

under each view. The collection method is same as CIBU givE@mes and for Woman, we colless0 frames. Then for each
in [39] and unden-th view, there are.” Universum instances ©f them, we labeb0% instances and the res0% instances

are collected where thgth Universum instance isl**, j = are used for testing. Among _thﬁ)% instances40% (i.e.,. _
1.2, LV 20% of the whole data sets) instances are used for training
" ha and60% (i.e., 30% of the whole data sets) instances are used
for validation. For the validation part, although we know the
labels of them, for the semi-supervised learning machines, we
L V " still regard them as unlabeled and adopt them along with the
minL = ZL () original labeled instances to train a leaning machine.
v=l The multi-view data sets are Mfeat, Reuters, and Corel [41].
where L” represents the updated version of Eq. (3) under the terms of these three data sets, (1) Mfeat consists of hand
v-view and each term: in Eq. (3) is replaced by:". written digits (0-9) [42] and each instance consists of six
The optimization of Eq. (5) is similar with the one ofyiews, i.e., Fourier coefficients of the character shapes (fou),
UDLMMLM. Simply speaking, underv-th view and ¢-th profile correlations (fac), Karhunen-Love coefficients (kar),
matrix representation, the Optimization of left Welught,urlghb|xe| averages i x 3 windows (p|X), Zernike moments(zer)’
weight, and the bias of the learning machine, i€.,, v, and morphological features (mor). Details of Mfeat can be
andvj is same as the one af/, 3%, andv;. If we denote the found in Table II. (2) Reuters consists of machine translated
optimal results are , o , anduv; , then we can use Eq. (6) documents which are written in five different languages which
to label thei-th test instancd; = {B}, ..., BY,..., B } where are treated as five views [43], [44]. These five languages
B} is theg-th matrix representation d8}, B; is the features are English (EN), French (FR), German (GR), Italian (IT),
of B; underv-th view, andsign represents sign function. If and Spanish (SP) and each document can be translated from
g(B;) > 0, B; belongs to class-1 while if g(B;) < 0, this one language to another language. Moreover, the documents

with V views, N labeled training instances, at{ unlabeled

Then if we suppose’ represents the term underwv-th
view, the optimization problem of UMMLM is given below.

instance belongs to classl. are also categorized into six different topics, i.e., classes.
v M Details of Reuters can be shown in Table IIl. (3) Corel is

9(B;) = Zsign(z nq(UZUTBfo)%U +v01")) (6) extracted from a Corel image collection [42] and it consists
p— =1 of 68040 photos from various categories. In our experiments,

we randomly select 1000 photos from 10 categories and each
. . category has 100 photos. The 10 categories are CO-Africa, C1-
A. Experimental setting Beach, C2-Building, C3-Buses, C4-Dinosaurs, C5-Elephants,
1) Setting of data sets: In order to validate the feasibility C6-Flowers, C7-Horses, C8-Mountains and C9-Food. For this
and practicality of UMMLM, we adopt some matrix datadata set, four views are adopted. They are color histogram
sets, small-size-labeled data sets, and multi-view data sets(&dobr. Col-h), color histogram layout (abbr. Col-hl), color
experiments. moments (abbr. Col-m), and co-occurrence texture (abbr. Coo-
The matrix data sets used here are three image data $etEach view represents a feature set. Information of this data
which are also used in [39]. They are Coil-20, Letter-Imagset is given in Table 1V. For each multi-view data set, we also
and ORL. Information of them are given in Table | and Fig. Zelect20% instances for training30% instances for validation,
For Coil-20, it consists of instances from 20 categories and wed 50% instances for testing.
select 72 instances for each category. Each instanc&2is 32 2) Setting of learning machines: Then we compare our
image. For Letter-Image, it consists of hand written digits froddMMLM with some matrix learning machines, learning ma-
0-9 and each digit is treated as a class which has 50 instancleisies to process small-size-labeled data sets, and multi-view
whose dimensions akl x 18. ORL is a face data sets with 40learning machines as below.

IV. EXPERIMENTS
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TABLE |
DESCRIPTION OF THE USED MATRIX AND SMALL-SIZE-LABELED DATA
SETS
Order Data set No.dimension No.class No. instances
Matrix
1 Coil-20 32 x 32 20 1440
2 Letter-Image 24 x 18 10 500
ORL 32 X 20 40 400
Small-size-labeled
4 Shaking 352 X 624 X 3 1 365
5 Woman 288 X 352 X 3 1 550

Fig. 2. Image data sets: the first and second rows show imagesJailr20, ‘
the third and fourth rows show ones from Letter-Image, and the fifth and sixth [
rows show ones from ORL.

Fig. 3. Small-size-labeled data sets: the first and second rbaws frames
from Shaking, the third and fourth rows show frames from Woman.

TABLE Il
DETAILED INFORMATION OF MFEAT DATA SET.
View No_msances  No.features  No. dgis The compared matrix learning machines are MatMHK-
o 200 % 2 S [5], MatLSSVC [6], OCSVM [7], DLMMLM [40], and
bx 2000 210 e UDLMMLM [39].
o 5000 Y b The compared learning machines to process small-size-
labeled data sets include MVAR [10], co-labeling [11],
Sparse-Markov [12], SSMVH [13], regularized matrix-pattern-
TABLE I oriented classification machine with Universum (RMMU) [19],

and UDLMMLM [39].
The compared multi-view learning machines are multiple-

DETAILED INFORMATION OF REUTERS DATA SET

e Doy e view multiple-learner (MVML) [34], multi-view low-rank DL
oR 20053 Sa270 (MLDL) [36], multi-view linear discriminant analysis (MV-
T 24030 15506 LDA) [45], multi-view canonical correlation analysis (MV-
st CCA) [46], multi-view locality preserving projections (MV-
T o 1226 LPP) [47].
comr o 116 For all compared learning machines, the parameter settings
M 1942 173 can be found in respective references. For our UMMLM,
its parameter setting is same as the one of UDLMMLM.
Specially, the weight of each matrix representatio%issime
TABLE IV according to [39] said, the influence of matrix representation
DETAILED INFORMATION OF COREL DATA SET. |S not too |arge
View  No.instances __No_featires __No. categories 3) Setting of experimental environment: We carry out the
Gothl 1000 > 0 experiments with the below experimental environment: Intel
oot 1000 16 10 dual-core processors, 2.66GHz strobe frequency, 4G RAM

DDR, Win 7 operating system, and MATLAB R2014a.
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4) Way to obtain the optimal experimental results: In order TABLE VII

to get the optimal experimental results, we adopt the grid- AVERAGE CLASSIFICATION ACCURACY(%) AND THE STANDARD
DEVIATION COMPARISONS WITH DIFFERENT MULTHVIEW LEARNING

search method. Namely, for one combination of the parameter- MACHINES ON CORRESPONDING DATA SETS

s, for each data set with the corresponding learning machines,

with the restriction of the ratios of training set, validation MVML _ MLDL ___WVADA __MV:CCA __WMVAPP UMMM

set, and test set, we select the training, validation, and test "™ %% .05 0w iosi  diva soae

instances in random. Then we repeat the experiments for " .5  .o%  tour  soss sous soso
. Corel 84.76 86.24 87.67 88.20 90.78 91.46

ten times and get the average results. The parameters whose 4128 143 £1.77 140 £1.54 _ +0.71

average experimental results are best are regarded as the

optimal experimental parameters and the experimental results
are regarded as the best ones. process multi-view data sets. Thus, in this manuscript, we
) adgt UDLMMLM as the basic and extend its model to

B. Performance comparison multi-view version, the new developed learning machine is
For different data sets, we adopt corresponding learning me&med as Universum-based multi-view matrix learning ma-

chines for experiments. Tables V, VI, and VIl show the class¢hine (UMMLM) and related experiments on some matrix

fication accuracy%) and the standard deviation comparisondata sets, small-size-labeled data sets, and multi-view data sets

of the corresponding learning machines on different data sétsve validated that our proposed UMMLM outperforms the

respectively. According to these three tables, it is found thedrresponding learning machines.

our proposed UMMLM has a best performance on different

data sets in average. Indeed, our UMMLM can process matrix ACKNOWLEDGMENT
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