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Abstract—Multi-view multi-label learning has attracted the
attention of many scholars and widely used in multiple fields.
While in real-world applications, due to the lack of man-
power and equipment failure, the data sets to be processed
maybe loss some labels or views. Moreover, most multi-view
multi-label learning methods neglect the global and local
label correlations of both the whole data set and each view
and the complementary information coming from different
views sometimes. Furthermore, some methods ignore such
a phenomenon that each class label might be determined
by some specific features of its own. In order to improve
the performance of such methods, in this paper, we develop
an improved multi-view multi-label learning with incomplete
views and labels (IMVL-IV). In framework of IMVL-IV, the
usage of label-specific features makes the decision of label be
determined by some specific features rather than all features
so that we can pay more attention to portion specific features
and save time; the introduction of label correlation matrix
offsets the defect of missing labels; the adoption of low-rank
assumption matrix restores missing views; global and local
label correlations are taken into consideration with clustering
technology; a consensus multi-view representation is put to
use to encode the complementary information from different
views. Different from traditional learning methods, this is
the first attempt to design a multi-view multi-label learning
method with incomplete views and labels by the learning
of label-specific features, label correlation matrix, low-rank
assumption matrix, global and local label correlations, and
complementary information. Experimental results validate that
IMVL-IV achieves a better performance and it is superior
to the classical multi-view learning methods and multi-label
learning methods.

Keywords-incomplete views and labels; label-specific fea-
tures; multi-view multi-label; label correlation.

I. INTRODUCTION
A. What is multi-view multi-label data sets

In real-world applications, three kinds of data sets are
widely encountered, i.e., multi-label, multi-view, and multi-
view multi-label data sets [1].

Multi-label data sets consist of instances with multiple
class labels. A classical example is that a scene image can
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be annotated with several tags [2]. Please see Fig. 1, a
data set consists of two scene images (instances) and four
tags (class labels). These four labels are nature, landscape,
history, oil painting and ’1’ indicates yes, '0’ represents
'no’. For the two instances, one is an oil painting which
shows a natural landscape, i.e., a country in China, thus
its label is (1,1,0,1), the other is an oil painting showing
Napoleon Bonaparte who was a historical personage, thus
its label is (0,0,1,1). Besides for this example, there are
many other examples including a document may belong to
multiple topics, and a piece of music may be associated with
different genres.

In a multi-view data set, an instance (data point) is
represented by multiple forms. Each form is a view. For
example, as in Fig. 2, a web page data set consists of
multiple web pages and each web page (instance) can be
described by text, image, and video. Then, text, image, and
video are regarded as three views. Moreover, each instance
only has one class label. In Fig. 2, two of them belong to
class science and the other two belong to class entertainment
and arts.

Different from traditional multi-view data sets and multi-
label data sets, multi-view multi-label data sets consists of
instances which have multiple views and class labels. In
a multi-view multi-label data set, each instance exhibits
multiple views and in each view, the instance can be
represented by multiple class labels. For example, as in Fig.
3, if there is publicity website about the Imperial Palace
and people can appreciate and understand it from multiple
aspects including the text introduction, image introduction,
and video introduction. Now text, image, and video can be
regarded as different views. Then from different views, the
content of propaganda can be labeled differently. When it
comes to any textual information, it can be treated as an
introduction to history; according to image introduction, it
can be treated as an oil painting which describes landscape
and history; when people listen and watch the video, it can
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Figure 1. Example of a multi-label data set.
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Figure 2. Example of a multi-view data set.

be treated as a stereoscopic introduction about landscape and
history rather than an oil painting. Here, history, landscape,
oil painting, etc. can be regarded as class labels and such a
data set is a multi-view multi-label one.

B. Problems of traditional multi-view multi-label learning
methods and previous solutions

Since multi-view multi-label data sets exist in real-world
applications widely, thus some related tasks are put forward.
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Figure 3. Example of a multi-view multi-label data set.

Among them, classification task is of a general nature.

For multi-view multi-label classification task, Zhu et. al
[3] develop a classical solution named multi-view multi-
sparsity kernel reconstruction (MMKR for short) model to
process multi-class (multi-label) image classification. Given
images (including test images and training images) repre-
senting with multiple visual features (multi-view), MMKR
first maps them into a high-dimensional space, e.g., a repro-
ducing kernel Hilbert space (RKHS), where test images are
then linearly reconstructed by some representative training
images, rather than all of them. Furthermore a classification
rule is proposed to classify test images. Maeday et. al de-
velop a multi-feature fusion based on supervised multi-view
multi-label canonical correlation projection (sM2CP) [4].
The proposed method applies sM2CP-based feature fusion
to multiple features obtained from various convolutional
neural networks (CNNs) whose characteristics are different.
Since new fused features with high representation ability
can be obtained, performance improvement of multi-label
classification is realized. Specifically, in order to tackle the
multi-label problem, sM2CP introduces a label similarity
information of label vectors into the objective function of
supervised multi-view canonical correlation analysis. Thus,
sM2CP can deal with complex label information such as
multi-label annotation.

While these classical methods always have no ability to
process the data set with incomplete views and labels. Qian
et. al develop a semi-supervised dimension reduction for
multi-label and multi-view learning (SSDR-MML) to solve
the challenges including incomplete labels [5]; Due to matrix
completion (MC) has recently been introduced as a method
for transductive (semi-supervised) multi-label classification,
and has several distinct advantages, including robustness to
missing data and background noise in both feature and label
space, thus Luo et. al propose a multi-view MC (MVMC)
framework [6] for multi-view cases. MVMC is robust to
noise and can handle incomplete views and labels in multi-
view multi-label learning.

While we know, among labels of instances may exist some
correlation, for example, label *nature’ and label ’landscape’
have a belonging relationship. If the label correlations are
shared by all instances, the correlations are global label
correlations. If the label correlations are shared only by a
data subset, then the correlations are local label correlations.
The above methods cannot take the label correlation into
consideration. In 2014, Zhang et. al propose a high-order
label correlation driven active learning (HoAL) approach
that allows the iterative learning algorithm itself to select
the informative insatnce-label pairs from which it learns so
as to learn an accurate classifier with less annotation efforts.
In the selection procedure, pair-wise label correlations and
high-order label correlations are adopted [7]; Zhu et. al
develop a multi-label learning with global and local label
correlation (GLOCAL) model to deal with both the full-



label and the missing-label cases, exploiting global and local
label correlations simultaneously, through learning a latent
label representation and optimizing label manifolds [2]; He
et. al develop a multi-label classification approach joint
with label correlations, missing labels and feature selection,
named MLMF [8]. The proposed MLMF not only makes
the joint learning of independent binary classifiers, but also
allows the joint learning of multi-label classification and
label correlations.

Moreover, we know each class label might be determined
by some specific features of its own, and only a partial
label set of each instance can be obtained for some real
applications. Zhang et. al develop a multi-label learning with
label specific features (LIFT). LIFT firstly constructs fea-
tures specific to each label by conducting clustering analysis
on its positive and negative instances, and then performs
training and testing by querying the clustering result [9];
Someone develop a multi-label learning with label-specific
features by resolving label correlations (MLFC). In MLFC,
scholars propose to learn label-specific features using spar-
sity regularized optimization which cover the information
of label correlations. Indeed, label correlations are repre-
sented by additional features generated in the optimization
process, and a KNN-like method is designed to obtain
label correlations-based features of test data [10]; Huang
et. al develop a method to learn label-specific features for
multi-label classification with missing labels, named LSML.
First, a new supplementary label matrix is augmented from
the incomplete label matrix by learning high-order label
correlations. Then, a label-specific data representation for
each class label is learned, and the multi-label classifier is
constructed simultaneously based on it by incorporating the
learned high-order label correlations [11].

Furthermore, since among multiple views, since views are
always different, thus complementary information coming
from different views is always important for the design of
a learning machine. Zou et. al develop a multi-view multi-
label (abbreviated by MVML) learning algorithm which take
multiple features (multi-view) and ensemble learning into
account simultaneously [12]. In MVML, they make full
use of the complementarity among the views and the base
learners of ensemble learning, leading to higher accuracy
of image annotation. Wang et. al develop a semi-supervised
multi-view multi-label classification learning method based
on nonnegative matrix factorization (NMF-SSMM) [13]. In
NMF-SSMM, it explores the complementary information
by adopting multi-view NMF, regularizes the learned labels
of each view towards a common consensus labeling, and
obtains the labels of the unlabeled data guided by supervised
information.

According to the above contents, we find that for multi-
view multi-label learning, incomplete views and labels,
global and local label correlation, label-specific features, and
complementary information are four necessary issues should
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be solved.

C. Objectives

In order to solve the above issues, we develop an improved
multi-view multi-label learning with incomplete views and
labels (IMVL-1V). The framework of IMVL-1V consists of
five parts. First, we use label-specific features so that each
label is determined by some specific features rather than
all features. Second, we introduce a label correlation matrix
so as to solve the problem of incomplete labels. Third, we
adopt low-rank assumption matrices to restore the missing
information of views and solve the problem of incomplete
views. Fourth, we use clustering technology to take the
global and local label correlations of both the whole data
set and each view into consideration. Fifth, we introduce a
consensus multi-view representation into this new model so
as to encode the complementary information coming from
different views.

D. Novelty and contributions

Novelty: in the field of multi-view multi-label learning,
it is the first attempt to process a multi-view multi-label
data set with incomplete views and labels by the learning
of label-specific features, label correlation matrix, low-rank
assumption matrix, global and local label correlations, and
complementary information. Different from the traditional
learning methods, the proposed method can classify and
process more complicated data sets well.

Contributions: (1) it has a better ability to process multi-
view multi-label data sets; (2) it moves forward research of
multi-view multi-label learning.

II. IMPROVED MULTI-VIEW MULTI-LABEL LEARNING
WITH INCOMPLETE VIEWS AND LABELS (IMVL-1V)

A. Data preparation

Suppose there is a multi-view multi-label data set X =

{21,y gy oy} € RX™ with v views and n instances.
v
Dimension d = ) d; where d; is the number of features or
i=1 ,

dimension in jth view. If xly is the bth feature of ith instance
inits jth view, then 2] = {a7,, ...}y, ..., iy} € R% <1 jg
the representation of ith instance in its jth view. Under this
definition, ; = {z},...,z!,...,2¥} € R represents ith
instance and X7 = {z7,...,2], ..., } € R%L*" represents
jth view. Here, b € [1,d,], i € [1,n] and j € [1,].

Furthermore, in different views, an instance always pos-
sesses different labels, thus suppose y; € RY*! is a label
vector of ith instance in the jth view and each component
of y/ indicates the label of 27} for the corresponding class. I,
represents that at jth view, instances have [; classes. If the
k;th component of yf , namely, ygkj = 1, it means :Uj belongs
to k;jth class. If y7, = —1, this indicates that 2 does not
belong to k;th class. Then Y7 = {y], ...y, ...yl } € Rlixn



represents the label matrix of jth view. Under this definition,
y'~% € R indicates the label vector for k;th label and
each component of 37=% (y/ ™) represents whether a”
belongs to k;th label or not. Here, k; € [1,1;].

B. Multi-view multi-label learning with label-specific fea-
tures
Suppose w’~Pi € R%*! is the p;th label vector in jth
view and it indicates which features are related to some
labels. Different from y! and y’ %, w/~Pi represents the
relevances between pjth label and d;s features in jth view,
and each component is a related relevance. Here, p; € [1,1;].
Then the optimization problem of a multi-view multi-label
learning with label-specific features for one label is given
below. Here, A} is the tradeoff parameter for jth view.
v
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Then we consider all labels and Eq. (1) is rewritten as below.
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C. Multi-view multi-label learning with missing labels

2
+ (D)
2
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wl TP XTI — g kj

prj .1 (% [w" X7 - YJ'HE + 0 ||w

where W7 = [w? ™!, ..., w?Pi ... wi~li] € RE ¥,

Suppose any missing labels can be reconstructed by the
values of other labels by the correlations between them and
let C7 € R > represents the label correlation matrix for l;
labels in jth view. In this matrix, p; lth row and me column
element Cplp? indicates the degree of correlation that label

72 =

Yl ?; is correlated with Yl ?} and in most cases, Cp1p2
Cp2pl- Note that one class label may be correlated with only
a suf)set of class labels, thus we add the ¢;-norm regularizer
over (Y to learn sparse label dependencies. The objective
function can be written as,

/1 ST coill?
- 1w X9 — C‘J Y7 + 3
ain, 3 (3] . ®

e vl el + 1)
9 F 2 1 3 1
L
/\i Z Cplp? WP — i P; )
pipi=1
st.  CI=0

and this objectwe function combmes label-specific features.

If label 47?5 and label 7~ P} are strongly correlated,
namely, ¢ pip? OF Cp2pl is large, they will have similar label-
speCIﬁc features Thus the corresponding model coefficients

w P and wi P will be quite similar, and the Euclidean

distance between them will be small. Otherwise, w’?5 and
w5 will be dissimilar, and the Euclidean distance between
them will be large. After some mathematical operations, the
optimization problem can be rewritten as,

min ( HW'J X7 —¢y? + (4
Wi Ci =1

71 1C7Y7 = Y[+ M (7], + A4 ||w7]], +
Ntr(WI LIWi "T))

st.  CI=0

where L7 € Rb %l is the graph Laplacian matrix of CV and
tr(A) represents the trace of A..

D. Multi-view multi-label learning with incomplete views

In order to restore the incomplete views, we suppose Z7 €
R %™ is the low-rank assumption matrix of X/ and it can be
decomposed into the form Z7 = U7VJ where U7 € R%*"
and V7 € R %" and rank(Z7) = r;.

Then the corresponding optimization problem can be
rewritten as,

v

o1 j it 2
;1_1111_52(A;I)HUJVJ—ZJHF—I— (5)

Ui Vi
i=1

-

where f(U7,VI) Y7 = (PIUIVI4+V{)oYI -1 —BJ €
RY*" and Vj € RY>" is a bias matrix, B/ € RY*" is
a loose variable matrix, I/ € R%*™ is an all-one matrix,
and P/ € RY%*9 is a weight matrix and it is different
from W7, PJ is used to classify the restored X7, i.e., U7V
while W7 is a label matrix which is applied to original X7.
Moreover, the operation of o is given as follows. (PPUIVI4
(PIUIVI + Vi )1diag((Y7)1)

Vo vi = (PIUIVI + Vi )adiag((Y7)2)
oy

where
(PIUIVI + V), diag((Y7)y,)
diag(A) indicates the diagonalization operation and (A);
represents the ith row of A.
Thus, Eq. (5) can be rewritten as Eq. (6).
.1 o s
iz (Vv -2l ©

i=1

j
As

(PIUIVI + Vi) o YT — IV — BJHQ)

E. Multi-view multi-label learning with global and local
label correlations

Under j-th view, suppose X7 is divided into ¢/ groups by
some clustering methods, i.e., X9 = {X7 .. X .., X7}



and m-th group of X7 is XJ, € RL " where nJ, is the
number of instances in X7, and n{ +ny+...+n, +...4n),; =
n. In our method, we adopt active three-way clustering
(ATC) [14] for clustering. Details of ATC can be referred to
[14]. Then let F}j = P7X7 € R'*"™ represent the classifier
output matrix of X7 and FJ, = PIXJ € RY*"n represent
the one of X}

e
Then, on the base of X7, X/ and their corresponding
label matrices, we compute the label correlation matrices.
_ ‘ ; ;
Take X7 as instance, S} {[Sulp;pf_} denote's global
label correlation matrix under jth view and [Sj],1,2 =
T R |

_-;'—pl. '—;:2.
J 7 N
! ! ——7 Tepresents the global label correlation of

o1
I p.'! U J

y

p3-th label with respect to p?-th label and /=77 is the pjth
row of Y7, Then we let L), be the Laplacian matrix of S;.
Similarly, for X7, S = {[S,{t]p}p?} is the corresponding
local label correlation matrix and L7, is its Laplacian matrix.
Dimensions of S}, Lj, SJ,, LJ, are both [; x I; and
p;.p} € [1,1].

With the above definitions, since we want the classifier
outputs can be closer if two labels are more positively cor-
related, thus the corresponding problem is given as follows.

Ir}l}ljll (7)
° B T g T

> (er(E ) + 3 e L))
=1 m=1

F. Multi-view multi-label learning with complementary in-
Sformation originating from different views

Let 77 € R%*"i be the basic matrix of X7 and Q €
R"™ %™ be a latent representation matrix. Here, 77 has a
similar function with U7 and @ has a similar function V7.
r; is the rank of X7, Then the corresponding optimization
problem is given as,

mi ®
o SO ||XI —TIQ|[}. + Ao Y IND(T?, T)
Jj=1 J#t

v . . 2 . .

here, Y || X7 — T7Q|[}, searches a comprehensive multi-
Jj=1 .

view representation and Y. IND(T7,T") is used to mea-

J#t
sure the independence ?between different views where
IND(T?,T") = —HSIC(T?,T") and HSIC is a Hilbert-
Schmidt independence criterion estimator [15].
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G. Finally objective function of IMVL-IV

The final objective function of IMVL-IV is given below
and all terms are important.

v 1 . 2
1 — 71 J_ aya
mén;(ZHW X/ - o[+

(€)

3 [lervs = va|[2 4 M|, + X ||

[+

>

=1

1

,\f;tr(w-?'LinT)) +3 (,\g [|U7V7 — Z-?'||f; +

N |[(PTUivI 4 Vi) oy — 1 —BJHE) +

v g7
> (Mer(R LR + X Y or(F T F
i=1
o ST||XI — TIQ| % + Ao Y IND(T?, T)
7t

) +

m=1

i=1

s.t. C’' =0

where Q = {W7,C9,U7, V3,21, Pi V] BI, T, Q}.
H. Realization

In order to solve Eq. (9), alternating optimization is
adopted here and in each iteration, we update one of the
variables in {W4,C7, U, V3, ZI PI V], B, T, Q} with
gradient descent and leave the others fixed. After we get the
Va where A € {W9,C9, U7, VI 73, PI Vi B, TV,Q},
we can use A := A —nV 4 to update A where 7 is the step
size. Finally, when we get the optimal matrices, W' U7V
can be used to compute the classifier outputs for X7,

I. Computational complexity

In order to solve the Eq. (9) and optimize the IMVL-
IV, in each iteration, we update one of the variables in
(Wi ,Ci, Ui, vi,zi, Pi V{, B, T, Q} with gradient de-
scent and leave the others fixed. Thus, the computational
complexity of IMVL-IV is depended on the ones of the
update of these parameters. What’s more, since the compu-
tational complexity of matrix multiplication is much larger
than matrix subtraction, thus the computational complexity
of the update for a variable is mainly depended on the
computation of V4 rather than the computation of A :=
A—nV 4. So, we can say that the computational complexity
of IMVL-1V is finally depended on the computation of V 4s.
By detailed computation, the total comgutational complexity

of IMVL-1V is O(Cn?) where C' = > (rj+6l;+d;)isa
constant. =

III. EXPERIMENTS
A. Experimental setting

1) Data set: In our experiments, we adopt three kinds
of data sets for experiments. First kind is 6 multi-view



Table 1
DETAILED INFORMATION OF MULTI-VIEW DATA SETS.

Order Data No. No. No.
set instances  labels  views
1 Mfeat 2000 10 6
2 Reuters 111740 6 5
3 Corel 1000 10 4
4 voC 9963 20 2
5 MIR 23691 38 2
6 3Source 169 6 3
Table 11
DETAILED INFORMATION OF MULTI-LABEL DATA SETS.
Order Data No. No. No. label/
set instances  features  labels  instance
7 Arts 5000 462 26 1.64
8 Business 5000 438 30 1.59
9 Computers 5000 681 33 1.51
10 Education 5000 550 33 1.46
11 Entertainment 5000 640 21 1.42
12 Health 5000 612 32 1.66

data sets, namely, Mfeat', Reuters®, Corel’, Pascal VOC
2007 (VOC)*, MIR-Flickr (MIR)?, 3Source® (see Table I).
The second kind is 6 multi-label data sets which are also
used in [2], [10], [11]. Table II shows information of them
and label /instance represents the average number of labels
possessed by each instance. The third kind is a multi-view
multi-label data set, namely, NUS-WIDE (let its order be
13). NUS-WIDE consists of 810 images (instances) and 81
labels. Each instance is related with some of the 81 labels
and has 6 views including color histogram, color correlo-
gram, edge direction histogram, wavelet texture, block-wise
color moments extracted over 5 x 5 fixed grid partitions, and
bag of words based on SIFT descriptions [16], [17].
Furthermore, since our proposed IMVL-IV can process
incomplete views and labels, thus for each used multi-view
data set, suppose it has n instances and we randomly select
|| instances from these n instances and randomly remove
one view from each instance. Then in our experiments,
|| /n falls in [0.1,1]. Indeed, || /n can be regarded the
rate of missing views. Furthermore, for each available multi-
label data set, we randomly sample p percent of the elements
in the label matrix as missing, and the rest as observed.
The p falls in [10,90]. For NUS-WIDE, both || /n and p
are used, but the range should include value 0 so that for
NUS-WIDE, it should cover three cases, namely, incomplete
views, incomplete labels, and incomplete views and labels.
For convenience, we use order — x to represents these
different missing cases. The meanings of = are given in

Thttp://archive.ics.uci.edu/ml/datasets/Multiple+Features
2http://archive.ics.uci.edu/ml/datasets/Reuters+tRCV 1 +RCV2+
Multilingual %2C+Multiview+Text+Categorization+Test+collection
3http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features

“http://host.robots.ox.ac.uk/pascal/VOC/
Shttp://press.liacs.nl/mirflickr/
Shttp://mlg.ucd.ie/datasets/3sources.html
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Table 111
DETAILED MEANING OF X,
X meaning X meaning
a | missing 10% views | j | missing 10% labels
b | missing 20% views | k | missing 20% labels
¢ | missing 30% views 1 missing 30% labels
d | missing 40% views | m | missing 40% labels
¢ | missing 50% views | n | missing 50% labels
f | missing 60% views | o | missing 60% labels
g | missing T0% views | p | missing 70% labels
h | missing 80% views | q | missing 80% labels
i | missing 90% views | r | missing 90% labels
Table IV
CHARACTERISTICS OF COMPARED METHODS.
1 2 3 4 5 6 7
LMSC [18] 7
MLDL [19] v
MLCHE [20] v
MMKR [3] v
sM2CP [4] v
SSDR-MML [5] v v
MVMC [6] Vv
GLOCAL [2] v v v
MLMF [8] v <
LF-LPLC [21] v v oy
LIFT [9] v v
MLEC [10] v v
LSML [11] v v v v
MVML [12] v v
NMF-SSMM [13] v v

Table III. For example, 1 — a represents Mfeat with 10%
views missing. In order to describe the cases for NUS-
WIDE, we can use the formation order —x—x. For example,
36 —a — k represents NUS-WIDE with 10% views and 20%
labels missing.

2) Compared method: Since three kinds of data sets are
adopted in our experiments, thus for the fair comparison, we
also adopt three kinds of learning methods for comparisons.
They are multi-view learning methods, multi-label ones, and
multi-view multi-label ones. Table IV shows the character-
istics of the used compared methods. In this table, 1 ~ 7
indicate 7 characteristics, namely, 1-multi-view, 2-multi-
label, 3-multi-view multi-label, 4-incomplete data, 5-label
correlations, 6-label-specific features, 7-complementary in-
formation.

3) Parameter setting and how to get the experimental
results: For the compared methods, the parameter settings
of them can be found in the respective references. Then for
the proposed IMVL-1V, the settings are given below.

For IMVL-1V, we divide the data set into several group-
s with ATC and the setting of ATC can refer to [14].
WI,CI, U3, VI 23, PI V], BY, T9,Q can be initialized
according to the X7/ and their corresponding groups. For
Ms, they are selected from {277,274 ... 29}, Furthermore,
the maximum number of iterations is set to be 1000.

In order to get the optimal results and according to the
compared methods” demands, for each data set, we randomly



select {10%,20%, ...,60%} for training and the rest for
test. Then we repeat the experiments with each parameter
combination for ten times and get the average results and
the corresponding standard deviation. The best parameters
are the ones whose average precision is the best. Then, the
other performance indexes including the AUC (i.e., the arca
under the receiver operating characteristic (ROC) curve),
running time, convergence, etc. are given with the optimal
parameters. Here, we should notice that for each data set,
different methods should process same data.

4) Experimental environment: The experimental environ-
ment is given below. All computations are performed on
a node of compute cluster with 32 CPUs (Intel Core Due
3.0GHz) running RedHat Linux Enterprise 5 with 48GB
main memory. The coding environment is python 3.0.

B. Experimental results

In order to validate the effectiveness of the IMVL-IV, we
conduct experiments from multiple aspects including AUC,
precision, running time, hamming loss, ranking loss, macro-
F1, or micro-F1. For the limitation of the length for
this manuscript, we only show the results on Mfeat,
Arts, and NUS-WIDE on AUC, precision, running time.
But for other data sets and evaluation indexes, the
results are similar. Moreover, for NUS-WIDE, only results
about AUC are given. Results can be found in Fig. (4)
and Fig. (5). According to the results, we can see that our
IMVL-IV performs best in terms of AUC and precision.
Although it should cost more time, but the better classifica-
tion performances offset such a disadvantage. Furthermore,
missing more views or labels brings a worse performance,
but our IMVL-IV still performs best in average. Combining
the results about the standard deviation, we can find the
performances about AUC, precision, and running time are
statable in generally.

IV. CONCLUSIONS

Multi-view multi-label data sets with incomplete data is
widely used in real-world application and most traditional
multi-view multi-label learning methods cannot process that.
This manuscript develops an improved multi-view multi-
label learning with incomplete views and labels (IMVL-IV)
for this issue. In framework of IMVL-IV, five important
factors which enhance the processing ability to process
multi-view multi-label data sets with incomplete data are
introduced, i.e., label-specific features, label correlation ma-
trix, low-rank assumption matrix, global and local label cor-
relations, and consensus multi-view representation. Different
from traditional learning methods, this is the first attempt
to design a multi-view multi-label learning method with
incomplete views and labels by the learning of these five
factors. Experimental results validate that IMVL-IV achieves
a better performance and it is superior to the classical multi-
view learning methods and multi-label learning methods.
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Figure 4. Experimental results on data sets Mfeat and Arts.
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